1
|
Kim E, Tanzi RE, Choi SH. Therapeutic potential of exercise-hormone irisin in Alzheimer's disease. Neural Regen Res 2025; 20:1555-1564. [PMID: 38993140 DOI: 10.4103/nrr.nrr-d-24-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Irisin is a myokine that is generated by cleavage of the membrane protein fibronectin type III domain-containing protein 5 (FNDC5) in response to physical exercise. Studies reveal that irisin/FNDC5 has neuroprotective functions against Alzheimer's disease, the most common form of dementia in the elderly, by improving cognitive function and reducing amyloid-β and tau pathologies as well as neuroinflammation in cell culture or animal models of Alzheimer's disease. Although current and ongoing studies on irisin/FNDC5 show promising results, further mechanistic studies are required to clarify its potential as a meaningful therapeutic target for alleviating Alzheimer's disease. We recently found that irisin treatment reduces amyloid-β pathology by increasing the activity/levels of amyloid-β-degrading enzyme neprilysin secreted from astrocytes. Herein, we present an overview of irisin/FNDC5's protective roles and mechanisms against Alzheimer's disease.
Collapse
Affiliation(s)
- Eunhee Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Castorina A, Scheller J, Keay KA, Marzagalli R, Rose-John S, Campbell IL. Increased Expression of the Neuropeptides PACAP/VIP in the Brain of Mice with CNS Targeted Production of IL-6 Is Mediated in Part by Trans-Signalling. Int J Mol Sci 2024; 25:9453. [PMID: 39273398 PMCID: PMC11395455 DOI: 10.3390/ijms25179453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown. In this study, PACAP/VIP levels were assessed in the brain of GFAP-IL6 mice. In addition, we utilised bi-genic GFAP-IL6 mice carrying the human sgp130-Fc transgene (termed GFAP-IL6/sgp130Fc mice) to determine whether trans-signalling inhibition rescued PACAP/VIP changes in the CNS. Transcripts and protein levels of PACAP and VIP, as well as their receptors PAC1, VPAC1 and VPAC2, were significantly increased in the cerebrum and cerebellum of GFAP-IL6 mice vs. wild type (WT) littermates. These results were paralleled by a robust activation of the JAK/STAT3, NF-κB and ERK1/2MAPK pathways in GFAP-IL6 mice. In contrast, co-expression of sgp130Fc in GFAP-IL6/sgp130Fc mice reduced VIP expression and activation of STAT3 and NF-κB pathways, but it failed to rescue PACAP, PACAP/VIP receptors and Erk1/2MAPK phosphorylation. We conclude that forced expression of IL-6 in astrocytes induces the activation of the PACAP/VIP neuropeptide system in the brain, which is only partly modulated upon IL-6 trans-signalling inhibition. Increased expression of PACAP/VIP neuropeptides and receptors may represent a homeostatic response of the CNS to an uncontrolled IL-6 synthesis and its neuroinflammatory consequences.
Collapse
Affiliation(s)
- Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Jurgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Kevin A. Keay
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Stefan Rose-John
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, 24098 Kiel, Germany;
| | - Iain L. Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
3
|
Schaefer JK, Engert V, Valk SL, Singer T, Puhlmann LM. Mapping pathways to neuronal atrophy in healthy, mid-aged adults: From chronic stress to systemic inflammation to neurodegeneration? Brain Behav Immun Health 2024; 38:100781. [PMID: 38725445 PMCID: PMC11081785 DOI: 10.1016/j.bbih.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Growing evidence implicates systemic inflammation in the loss of structural brain integrity in natural ageing and disorder development. Chronic stress and glucocorticoid exposure can potentiate inflammatory processes and may also be linked to neuronal atrophy, particularly in the hippocampus and the human neocortex. To improve understanding of emerging maladaptive interactions between stress and inflammation, this study examined evidence for glucocorticoid- and inflammation-mediated neurodegeneration in healthy mid-aged adults. N = 169 healthy adults (mean age = 39.4, 64.5% female) were sampled from the general population in the context of the ReSource Project. Stress, inflammation and neuronal atrophy were quantified using physiological indices of chronic stress (hair cortisol (HCC) and cortisone (HEC) concentration), systemic inflammation (interleukin-6 (IL-6), high-sensitive C-reactive protein (hs-CRP)), the systemic inflammation index (SII), hippocampal volume (HCV) and cortical thickness (CT) in regions of interest. Structural equation models were used to examine evidence for pathways from stress and inflammation to neuronal atrophy. Model fit indices indicated good representation of stress, inflammation, and neurological data through the constructed models (CT model: robust RMSEA = 0.041, robust χ2 = 910.90; HCV model: robust RMSEA <0.001, robust χ2 = 40.95). Among inflammatory indices, only the SII was positively associated with hair cortisol as one indicator of chronic stress (β = 0.18, p < 0.05). Direct and indirect pathways from chronic stress and systemic inflammation to cortical thickness or hippocampal volume were non-significant. In exploratory analysis, the SII was inversely related to mean cortical thickness. Our results emphasize the importance of considering the multidimensionality of systemic inflammation and chronic stress, with various indicators that may represent different aspects of the systemic reaction. We conclude that inflammation and glucocorticoid-mediated neurodegeneration indicated by IL-6 and hs-CRP and HCC and HEC may only emerge during advanced ageing and disorder processes, still the SII could be a promising candidate for detecting associations between inflammation and neurodegeneration in younger and healthy samples. Future work should examine these pathways in prospective longitudinal designs, for which the present investigation serves as a baseline.
Collapse
Affiliation(s)
- Julia K. Schaefer
- Cognitive Neuropsychology, Department of Psychology, Ludwig-Maximilians-Universität München, Germany
| | - Veronika Engert
- Research Group “Social Stress and Family Health”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Clinic, Friedrich-Schiller University, Jena, Germany
| | - Sofie L. Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Singer
- Social Neuroscience Lab, Max Planck Society, Berlin, Germany
| | - Lara M.C. Puhlmann
- Research Group “Social Stress and Family Health”, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| |
Collapse
|
4
|
Hasantari I, Nicolas N, Alzieu P, Leval L, Shalabi A, Grolleau S, Dinet V. Factor H's Control of Complement Activation Emerges as a Significant and Promising Therapeutic Target for Alzheimer's Disease Treatment. Int J Mol Sci 2024; 25:2272. [PMID: 38396950 PMCID: PMC10889136 DOI: 10.3390/ijms25042272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The complement is a component of the innate immune system designed to fight infections and tissue- or age-related damages. Complement activation creates an inflammatory microenvironment, which enhances cell death. Excessive complement inflammatory activity has been linked to alterations in the structure and functions of the blood-brain barrier, contributing to a poor prognosis for Alzheimer's disease (AD). In the AD preclinical phase, individuals are often clinically asymptomatic despite evidence of AD neuropathology coupled with heightened inflammation. Considering the involvement of the complement system in the risk of developing AD, we hypothesize that inhibiting complement activation could reduce this inflammatory period observed even before clinical signs, thereby slowing down the onset/progression of AD. To validate our hypothesis, we injected complement inhibitor factor H into the brain of APP/PS1 AD mice at early or late stages of this pathology. Our results showed that the injection of factor H had effects on both the onset and progression of AD by reducing proinflammatory IL6, TNF-α, IL1β, MAC and amyloid beta levels. This reduction was associated with an increase in VGLUT1 and Psd95 synaptic transmission in the hippocampal region, leading to an improvement in cognitive functions. This study invites a reconsideration of factor H's therapeutic potential for AD treatment.
Collapse
Affiliation(s)
- Iris Hasantari
- INSERM (Institut National de la Santé et de la Recherche Médicale), Biologie des Maladies Cardiovasculaires, U1034, University Bordeaux, F-33600 Pessac, France; (I.H.); (N.N.)
| | - Nabil Nicolas
- INSERM (Institut National de la Santé et de la Recherche Médicale), Biologie des Maladies Cardiovasculaires, U1034, University Bordeaux, F-33600 Pessac, France; (I.H.); (N.N.)
| | - Philippe Alzieu
- INSERM (Institut National de la Santé et de la Recherche Médicale), Biologie des Maladies Cardiovasculaires, U1034, University Bordeaux, F-33600 Pessac, France; (I.H.); (N.N.)
| | - Léa Leval
- INSERM (Institut National de la Santé et de la Recherche Médicale), Biologie des Maladies Cardiovasculaires, U1034, University Bordeaux, F-33600 Pessac, France; (I.H.); (N.N.)
| | - Andree Shalabi
- Medizinische Hochschule Hannover, Abt. Infektiologie, 30625 Hannover, Germany
| | - Sylvain Grolleau
- INSERM (Institut National de la Santé et de la Recherche Médicale), Biologie des Maladies Cardiovasculaires, U1034, University Bordeaux, F-33600 Pessac, France; (I.H.); (N.N.)
| | - Virginie Dinet
- INSERM (Institut National de la Santé et de la Recherche Médicale), Biologie des Maladies Cardiovasculaires, U1034, University Bordeaux, F-33600 Pessac, France; (I.H.); (N.N.)
| |
Collapse
|
5
|
Rodríguez J, De Santis Arévalo J, Dennis VA, Rodríguez AM, Giambartolomei GH. Bystander activation of microglia by Brucella abortus-infected astrocytes induces neuronal death via IL-6 trans-signaling. Front Immunol 2024; 14:1343503. [PMID: 38322014 PMCID: PMC10844513 DOI: 10.3389/fimmu.2023.1343503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024] Open
Abstract
Inflammation plays a key role in the pathogenesis of neurobrucellosis where glial cell interactions are at the root of this pathological condition. In this study, we present evidence indicating that soluble factors secreted by Brucella abortus-infected astrocytes activate microglia to induce neuronal death. Culture supernatants (SN) from B. abortus-infected astrocytes induce the release of pro-inflammatory mediators and the increase of the microglial phagocytic capacity, which are two key features in the execution of live neurons by primary phagocytosis, a recently described mechanism whereby B. abortus-activated microglia kills neurons by phagocytosing them. IL-6 neutralization completely abrogates neuronal loss. IL-6 is solely involved in increasing the phagocytic capacity of activated microglia as induced by SN from B. abortus-infected astrocytes and does not participate in their inflammatory activation. Both autocrine microglia-derived and paracrine astrocyte-secreted IL-6 endow microglial cells with up-regulated phagocytic capacity that allows them to phagocytose neurons. Blocking of IL-6 signaling by soluble gp130 abrogates microglial phagocytosis and concomitant neuronal death, indicating that IL-6 activates microglia via trans-signaling. Altogether, these results demonstrate that soluble factors secreted by B. abortus-infected astrocytes activate microglia to induce, via IL-6 trans-signaling, the death of neurons. IL-6 signaling inhibition may thus be considered a strategy to control inflammation and CNS damage in neurobrucellosis.
Collapse
Affiliation(s)
- Julia Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julia De Santis Arévalo
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vida A Dennis
- Center for NanoBiotechnology Research and Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Ana M Rodríguez
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Belge JB, Mulders P, Van Diermen L, Sienaert P, Sabbe B, Abbott CC, Tendolkar I, Schrijvers D, van Eijndhoven P. Reviewing the neurobiology of electroconvulsive therapy on a micro- meso- and macro-level. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110809. [PMID: 37331685 DOI: 10.1016/j.pnpbp.2023.110809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) remains the one of the most effective of biological antidepressant interventions. However, the exact neurobiological mechanisms underlying the efficacy of ECT remain unclear. A gap in the literature is the lack of multimodal research that attempts to integrate findings at different biological levels of analysis METHODS: We searched the PubMed database for relevant studies. We review biological studies of ECT in depression on a micro- (molecular), meso- (structural) and macro- (network) level. RESULTS ECT impacts both peripheral and central inflammatory processes, triggers neuroplastic mechanisms and modulates large scale neural network connectivity. CONCLUSIONS Integrating this vast body of existing evidence, we are tempted to speculate that ECT may have neuroplastic effects resulting in the modulation of connectivity between and among specific large-scale networks that are altered in depression. These effects could be mediated by the immunomodulatory properties of the treatment. A better understanding of the complex interactions between the micro-, meso- and macro- level might further specify the mechanisms of action of ECT.
Collapse
Affiliation(s)
- Jean-Baptiste Belge
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Peter Mulders
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Linda Van Diermen
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Psychiatric Center Bethanië, Andreas Vesaliuslaan 39, Zoersel 2980, Belgium
| | - Pascal Sienaert
- KU Leuven - University of Leuven, University Psychiatric Center KU Leuven, Academic Center for ECT and Neuromodulation (AcCENT), Leuvensesteenweg 517, Kortenberg 3010, Belgium
| | - Bernard Sabbe
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Indira Tendolkar
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Didier Schrijvers
- Department of Psychiatry, Collaborative Antwerp Psychiatric Research Institute (CAPRI), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Psychiatry, University Psychiatric Center Duffel, Stationstraat 22, Duffel 2570, Belgium
| | - Philip van Eijndhoven
- Department of Psychiatry, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Neuroscience, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
7
|
Kim E, Kim H, Jedrychowski MP, Bakiasi G, Park J, Kruskop J, Choi Y, Kwak SS, Quinti L, Kim DY, Wrann CD, Spiegelman BM, Tanzi RE, Choi SH. Irisin reduces amyloid-β by inducing the release of neprilysin from astrocytes following downregulation of ERK-STAT3 signaling. Neuron 2023; 111:3619-3633.e8. [PMID: 37689059 PMCID: PMC10840702 DOI: 10.1016/j.neuron.2023.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2023] [Accepted: 08/11/2023] [Indexed: 09/11/2023]
Abstract
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid-β (Aβ) protein in the brain. Physical exercise has been shown to reduce Aβ burden in various AD mouse models, but the underlying mechanisms have not been elucidated. Irisin, an exercise-induced hormone, is the secreted form of fibronectin type-III-domain-containing 5 (FNDC5). Here, using a three-dimensional (3D) cell culture model of AD, we show that irisin significantly reduces Aβ pathology by increasing astrocytic release of the Aβ-degrading enzyme neprilysin (NEP). This is mediated by downregulation of ERK-STAT3 signaling. Finally, we show that integrin αV/β5 acts as the irisin receptor on astrocytes required for irisin-induced release of astrocytic NEP, leading to clearance of Aβ. Our findings reveal for the first time a cellular and molecular mechanism by which exercise-induced irisin attenuates Aβ pathology, suggesting a new target pathway for therapies aimed at the prevention and treatment of AD.
Collapse
Affiliation(s)
- Eunhee Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hyeonwoo Kim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA; Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Grisilda Bakiasi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Joseph Park
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jane Kruskop
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Younjung Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sang Su Kwak
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luisa Quinti
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christiane D Wrann
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard University Medical School, Boston, MA 02115, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Gruol DL, Calderon D, Huitron-Resendiz S, Cates-Gatto C, Roberts AJ. Impact of Elevated Brain IL-6 in Transgenic Mice on the Behavioral and Neurochemical Consequences of Chronic Alcohol Exposure. Cells 2023; 12:2306. [PMID: 37759527 PMCID: PMC10527024 DOI: 10.3390/cells12182306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Alcohol consumption activates the neuroimmune system of the brain, a system in which brain astrocytes and microglia play dominant roles. These glial cells normally produce low levels of neuroimmune factors, which are important signaling factors and regulators of brain function. Alcohol activation of the neuroimmune system is known to dysregulate the production of neuroimmune factors, such as the cytokine IL-6, thereby changing the neuroimmune status of the brain, which could impact the actions of alcohol. The consequences of neuroimmune-alcohol interactions are not fully known. In the current studies we investigated this issue in transgenic (TG) mice with altered neuroimmune status relative to IL-6. The TG mice express elevated levels of astrocyte-produced IL-6, a condition known to occur with alcohol exposure. Standard behavioral tests of alcohol drinking and negative affect/emotionality were carried out in homozygous and heterozygous TG mice and control mice to assess the impact of neuroimmune status on the actions of chronic intermittent alcohol (ethanol) (CIE) exposure on these behaviors. The expressions of signal transduction and synaptic proteins were also assessed by Western blot to identify the impact of alcohol-neuroimmune interactions on brain neurochemistry. The results from these studies show that neuroimmune status with respect to IL-6 significantly impacts the effects of alcohol on multiple levels.
Collapse
Affiliation(s)
- Donna L. Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Delilah Calderon
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Chelsea Cates-Gatto
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037, USA (A.J.R.)
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037, USA (A.J.R.)
| |
Collapse
|
9
|
Fronza MG, Alves D, Praticò D, Savegnago L. The neurobiology and therapeutic potential of multi-targeting β-secretase, glycogen synthase kinase 3β and acetylcholinesterase in Alzheimer's disease. Ageing Res Rev 2023; 90:102033. [PMID: 37595640 DOI: 10.1016/j.arr.2023.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Alzheimer's Disease (AD) is the most common form of dementia, affecting almost 50 million of people around the world, characterized by a complex and age-related progressive pathology with projections to duplicate its incidence by the end of 2050. AD pathology has two major hallmarks, the amyloid beta (Aβ) peptides accumulation and tau hyperphosphorylation, alongside with several sub pathologies including neuroinflammation, oxidative stress, loss of neurogenesis and synaptic dysfunction. In recent years, extensive research pointed out several therapeutic targets which have shown promising effects on modifying the course of the disease in preclinical models of AD but with substantial failure when transposed to clinic trials, suggesting that modulating just an isolated feature of the pathology might not be sufficient to improve brain function and enhance cognition. In line with this, there is a growing consensus that an ideal disease modifying drug should address more than one feature of the pathology. Considering these evidence, β-secretase (BACE1), Glycogen synthase kinase 3β (GSK-3β) and acetylcholinesterase (AChE) has emerged as interesting therapeutic targets. BACE1 is the rate-limiting step in the Aβ production, GSK-3β is considered the main kinase responsible for Tau hyperphosphorylation, and AChE play an important role in modulating memory formation and learning. However, the effects underlying the modulation of these enzymes are not limited by its primarily functions, showing interesting effects in a wide range of impaired events secondary to AD pathology. In this sense, this review will summarize the involvement of BACE1, GSK-3β and AChE on synaptic function, neuroplasticity, neuroinflammation and oxidative stress. Additionally, we will present and discuss new perspectives on the modulation of these pathways on AD pathology and future directions on the development of drugs that concomitantly target these enzymes.
Collapse
Affiliation(s)
- Mariana G Fronza
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis (LASOL), Center for Chemical, Pharmaceutical and Food Sciences (CCQFA), UFPel, RS, Brazil
| | - Domenico Praticò
- Alzheimer's Center at Temple - ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Lucielli Savegnago
- Neurobiotechnology Research Group (GPN) - Centre for Technology Development CDTec, Federal University of Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
10
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
11
|
McNaughton KA, Williamson LL. Effects of sex and pro-inflammatory cytokines on context discrimination memory. Behav Brain Res 2023; 442:114320. [PMID: 36720350 PMCID: PMC9930642 DOI: 10.1016/j.bbr.2023.114320] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In learning and memory tasks, immune overactivation is associated with impaired performance, while normal immune activation is associated with optimal performance. In one specific domain of memory, context discrimination memory, peripheral immune stimulation has been shown to impair performance on the context-object discrimination memory task in male rats. In order to evaluate potential sex differences in this task, as well as potential mechanisms for the memory impairment, we evaluated the ability of peripheral immune stimulation to impair task performance in both males and females. Next, we examined whether treatment with interleukin-1 receptor antagonist (IL-1ra), a receptor antagonist for the pro-inflammatory cytokine interleukin (IL)-1β, was able to rescue the memory deficit. We examined microglial morphology in the hippocampus and cytokine mRNA and protein expression in the hippocampus and the periphery. Male rats displayed memory impairment in response to LPS, and this impairment was not rescued by IL-1ra. Female rats did not have significant memory impairments and IL-1ra administration improved memory following inflammation. A subset of cytokines and chemokines were increased only in LPS-treated males. Inflammation alone did not alter microglia morphology, but IL-1ra did in certain sub-regions of the hippocampus. Together, these results indicate that sex differences exist in the ability of a peripheral immune stimulus to influence context discrimination memory and specific cytokine signals may be altered in impaired males. This study highlights the importance of sex differences in response to inflammatory challenges, especially related to memory impairments in context discrimination memory.
Collapse
Affiliation(s)
- Kathryn A McNaughton
- University of Maryland (UMD), 0112 Biology-Psychology Building, Department of Psychology, College Park, MD 20742, United States.
| | - Lauren L Williamson
- Northern Kentucky University, 100 Nunn Dr, FH 359F, Highland Heights, KY 41099, United States.
| |
Collapse
|
12
|
Yang Y, Yang T, Zhou J, Cao Z, Liao Z, Zhao Y, Su X, He J, Hua J. Prenatal exposure to concentrated ambient PM 2.5 results in spatial memory defects regulated by DNA methylation in male mice offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35142-35152. [PMID: 36526934 PMCID: PMC10017658 DOI: 10.1007/s11356-022-24663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Ambient fine particulate matter (PM2.5) exposures during pregnancy could lead to adverse birth outcomes, including neurobehavioral development defects. However, limited studies explored the effects and potential epigenetic mechanisms of maternal PM2.5 exposure on offspring spatial memory defects. This study aims to explore the effects and underlying epigenetic mechanisms of maternal concentrated ambient PM2.5 exposure in male mice offspring with spatial memory defects. Pregnant female C57BL/6 mice were exposed daily to concentrated ambient PM2.5 (CAP) or filtered air (FA) throughout gestation, with the concentration of particulates (102.99 ± 78.74 μg/m3) and (2.78 ± 1.19 μg/m3), respectively. Adult male mice offspring were subsequently assessed for spatial learning and memory ability using Morris Water Maze tests and locomotor activities in open field tests. The hippocampus of the male mice offspring was harvested to test mRNA expression and DNA methylation. Results from the probe test of Morris Water Maze showed that the mice offspring in the CAP group had shorter swimming distance travelled in the target quadrant, shorter duration in the target quadrant, and less number of entries into the target quadrant (p < 0.05), suggesting spatial memory impairments. The acquisition trials of Morris Water Maze did not show a significant difference in learning ability between the groups. The mRNA level of interleukin 6 (IL-6) in the CAP group hippocampus (10.80 ± 7.03) increased significantly compared to the FA group (1.08 ± 0.43). Interestingly, the methylation levels of the CpG sites in the IL-6 promoter region declined significantly in the CAP group, (5.66 ± 0.83)% vs. (4.79 ± 0.48)%. Prenatal exposure to concentrated ambient PM2.5 induced long-lasting spatial memory defects in male mice offspring. The underlying biological mechanism might be mediated by an inflammatory reaction which is regulated by DNA methylation.
Collapse
Affiliation(s)
- Yingying Yang
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Yang
- Department of Social Medicine, School of Public Health, Fudan University, Shanghai, China
| | - Ji Zhou
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, China
- Shanghai Typhoon Institute, CMA, Shanghai, China
- Department of Atmospheric and Oceanic Sciences, & Institute of Atmospheric Sciences, Fudan University, Shanghai, China
| | - Zhijuan Cao
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Yan Zhao
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiujuan Su
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jia He
- School of Medicine, Tongji University, Shanghai, China
| | - Jing Hua
- Department of Women and Children's Health Care, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Ma Z, Yang F, Fan J, Li X, Liu Y, Chen W, Sun H, Ma T, Wang Q, Maihaiti Y, Ren X. Identification and immune characteristics of molecular subtypes related to protein glycosylation in Alzheimer's disease. Front Aging Neurosci 2022; 14:968190. [PMID: 36408104 PMCID: PMC9667030 DOI: 10.3389/fnagi.2022.968190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Protein glycosylation has been confirmed to be involved in the pathological mechanisms of Alzheimer's disease (AD); however, there is still a lack of systematic analysis of the immune processes mediated by protein glycosylation-related genes (PGRGs) in AD. MATERIALS AND METHODS Transcriptomic data of AD patients were obtained from the Gene Expression Omnibus database and divided into training and verification datasets. The core PGRGs of the training set were identified by weighted gene co-expression network analysis, and protein glycosylation-related subtypes in AD were identified based on k-means unsupervised clustering. Protein glycosylation scores and neuroinflammatory levels of different subtypes were compared, and functional enrichment analysis and drug prediction were performed based on the differentially expressed genes (DEGs) between the subtypes. A random forest model was used to select important DEGs as diagnostic markers between subtypes, and a line chart model was constructed and verified in other datasets. We evaluated the differences in immune cell infiltration between the subtypes through the single-sample gene set enrichment analysis, analyzed the correlation between core diagnostic markers and immune cells, and explored the expression regulation network of the core diagnostic markers. RESULTS Eight core PGRGs were differentially expressed between the training set and control samples. AD was divided into two subtypes with significantly different biological processes, such as vesicle-mediated transport in synapses and neuroactive ligand-receptor interactions. The high protein glycosylation subtype had a higher level of neuroinflammation. Riluzole and sulfasalazine were found to have potential clinical value in this subtype. A reliable construction line chart model was constructed based on nine diagnostic markers, and SERPINA3 was identified as the core diagnostic marker. There were significant differences in immune cell infiltration between the two subtypes. SERPINA3 was found to be closely related to immune cells, and the expression of SERPINA3 in AD was found to be regulated by a competing endogenous RNA network that involves eight long non-coding RNAs and seven microRNAs. CONCLUSION Protein glycosylation and its corresponding immune process play an important role in the occurrence and development of AD. Understanding the role of PGRGs in AD may provide a new potential therapeutic target for AD.
Collapse
Affiliation(s)
- Zhaotian Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiajia Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Honghao Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tengfei Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiongying Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueriguli Maihaiti
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqiao Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Institute of Ethnic Medicine, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Xiaoqiao Ren,
| |
Collapse
|
14
|
Abstract
Mental health disorders, particularly depression and anxiety, affect a significant number of the global population. Several pathophysiological pathways for these disorders have been identified, including the hypothalamic-pituitary-adrenal axis, autonomic nervous system, and the immune system. In addition, life events, environmental factors, and lifestyle affect the onset, progression, and recurrence of mental health disorders. These may all overlap with periodontal and/or peri-implant disease. Mental health disorders are associated with more severe periodontal disease and, in some cases, poorer healing outcomes to nonsurgical periodontal therapy. They can result in behavior modification, such as poor oral hygiene practices, tobacco smoking, and alcohol abuse, which are also risk factors for periodontal disease and, therefore, may have a contributory effect. Stress has immunomodulatory effects regulating immune cell numbers and function, as well as proinflammatory cytokine production. Stress markers such as cortisol and catecholamines may modulate periodontal bacterial growth and the expression of virulence factors. Stress and some mental health disorders are accompanied by a low-grade chronic inflammation that may be involved in their relationship with periodontal disease and vice versa. Although the gut microbiome interacting with the central nervous system (gut-brain axis) is thought to play a significant role in mental illness, less is understood about the role of the oral microbiome. The evidence for mental health disorders on implant outcomes is lacking, but may mainly be through behaviourial changes. Through lack of compliance withoral hygiene and maintenance visits, peri-implant health can be affected. Increased smoking and risk of periodontal disease may also affect implant outcomes. Selective serotonin reuptake inhibitors have been linked with higher implant failure. They have an anabolic effect on bone, reducing turnover, which could account for the increased loss.
Collapse
Affiliation(s)
- Jake Ball
- Centre for Rural Dentistry and Oral HealthCharles Sturt UniversityOrangeNew South WalesAustralia
| | - Ivan Darby
- Periodontics, Melbourne Dental SchoolThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
15
|
Lin H, Dixon SG, Hu W, Hamlett ED, Jin J, Ergul A, Wang GY. p38 MAPK Is a Major Regulator of Amyloid Beta-Induced IL-6 Expression in Human Microglia. Mol Neurobiol 2022; 59:5284-5298. [PMID: 35697992 PMCID: PMC9398979 DOI: 10.1007/s12035-022-02909-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 01/24/2023]
Abstract
The accumulation of amyloid beta (Aβ) plaques in the brain is a hallmark of Alzheimer's disease (AD) pathology. Microglial activation-mediated neuroinflammation has been implicated in the pathogenesis of AD and the expression levels of interleukin-6 (IL-6) were increased in the brains of AD patients. However, the mechanisms by which IL-6 expression is regulated in human microglia are incompletely understood. Here, we show that Aβ1-40 oligomers (Aβ40) dose-dependently stimulate IL-6 expression in HMC3 human microglial cells. Treatment with Aβ40 promotes the transcription of IL-6 and tumor necrosis factor α (TNFα) mRNAs in both HMC3 and THP-1 cells. Mechanistic studies reveal that Aβ40-induced increase of IL-6 secretion is associated with the activation of p38 mitogen-activated protein kinase (p38 MAPK). Inhibition of p38 MAPK by BIRB 796 or SB202190 abrogates Aβ40-induced increase of IL-6 production. Through analyzing brain specimens, we found that the immunoreactivity for IL-6 and phosphorylated (the activated form) p38 MAPK was markedly higher in microglia of AD patients than in age-matched control subjects. Moreover, our studies identified the co-localization of IL-6 with phosphorylated p38 MAPK in microglia in the cortices of AD patients. Taken together, these results indicate that p38 MAPK is a major regulator of Aβ-induced IL-6 production in human microglia, which suggests that targeting p38 MAPK may represent a new approach to ameliorate Aβ accumulation-induced neuroinflammation in AD.
Collapse
Affiliation(s)
- Houmin Lin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Steven Grant Dixon
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA
| | - Wei Hu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA
| | - Junfei Jin
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA
- Ralph H. Johnson VAMC, Charleston, SC, 29403, USA
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, MSC908, Charleston, SC, 29425, USA.
| |
Collapse
|
16
|
Cook M, Lin H, Mishra SK, Wang GY. BAY 11-7082 inhibits the secretion of interleukin-6 by senescent human microglia. Biochem Biophys Res Commun 2022; 617:30-35. [PMID: 35671608 PMCID: PMC9540971 DOI: 10.1016/j.bbrc.2022.05.090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/02/2022]
Abstract
The accumulation of senescent cells in aged tissues has been implicated in a variety of age-related diseases, including cancer and neurodegenerative disorders. Recent studies have demonstrated a link between age-associated increase of senescent glial cells in the brain and the pathogenesis of Alzheimer's disease (AD). However, there is a lack of in vitro cellular models of senescent human microglia, which significantly limits our approaches to study AD pathogenesis. Here, we show for the first time that ionizing radiation (IR) dose-dependently induces premature senescence in HMC3 human microglial cells. Senescence-associated β-galactosidase activity, a well-characterized marker of cellular senescence, was substantially increased in irradiated HMC3 cells compared with control cells. Furthermore, we found that phosphorylated p53 levels and p21 expression levels were markedly higher in IR-induced senescent microglia than in control cells. Senescent human microglia exhibited the senescence-associated secretory phenotype (SASP), as evidenced by the increased secretion of pro-inflammatory cytokine interleukin-6 (IL-6). Treatment with an NF-κB inhibitor, BAY 11-7082, inhibits the secretion of IL-6 by senescent HMC3 cells. Collectively, our studies have established an in vitro cellular model of human microglial senescence and suggest that the NF-κB pathway may play a critical role in regulating the SASP of senescent HMC3 cells.
Collapse
Affiliation(s)
- Maxwell Cook
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Houmin Lin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Sandeep K Mishra
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA; Developmental Cancer Therapeutics Program, Hollings Cancer Center, Charleston, SC, 29425, USA.
| |
Collapse
|
17
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
18
|
Syme TE, Grill M, Hayashida E, Viengkhou B, Campbell IL, Hofer MJ. Strawberry notch homolog 2 regulates the response to interleukin-6 in the central nervous system. J Neuroinflammation 2022; 19:126. [PMID: 35624480 PMCID: PMC9145108 DOI: 10.1186/s12974-022-02475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The cytokine interleukin-6 (IL-6) modulates a variety of inflammatory processes and, context depending, can mediate either pro- or anti-inflammatory effects. Excessive IL-6 signalling in the brain is associated with chronic inflammation resulting in neurodegeneration. Strawberry notch homolog 2 (Sbno2) is an IL-6-regulated gene whose function is largely unknown. Here we aimed to address this issue by investigating the impact of Sbno2 disruption in mice with IL-6-mediated neuroinflammation. METHODS Mice with germline disruption of Sbno2 (Sbno2-/-) were generated and crossed with transgenic mice with chronic astrocyte production of IL-6 (GFAP-IL6). Phenotypic, molecular and transcriptomic analyses were performed on tissues and primary cell cultures to clarify the role of SBNO2 in IL-6-mediated neuroinflammation. RESULTS We found Sbno2-/- mice to be viable and overtly normal. By contrast GFAP-IL6 × Sbno2-/- mice had more severe disease compared with GFAP-IL6 mice. This was evidenced by exacerbated neuroinflammation and neurodegeneration and enhanced IL-6-responsive gene expression. Cell culture experiments on primary astrocytes from Sbno2-/- mice further showed elevated and sustained transcript levels of a number of IL-6 stimulated genes. Notably, despite enhanced disease in vivo and gene expression both in vivo and in vitro, IL-6-stimulated gp130 pathway activation was reduced when Sbno2 is disrupted. CONCLUSION Based on these results, we propose a role for SBNO2 as a novel negative feedback regulator of IL-6 that restrains the excessive inflammatory actions of this cytokine in the brain.
Collapse
Affiliation(s)
- Taylor E Syme
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Magdalena Grill
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010, Graz, Austria
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036, Graz, Austria
| | - Emina Hayashida
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Barney Viengkhou
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Iain L Campbell
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences and the Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
19
|
The cytokines interleukin-6 and interferon-α induce distinct microglia phenotypes. J Neuroinflammation 2022; 19:96. [PMID: 35429976 PMCID: PMC9013466 DOI: 10.1186/s12974-022-02441-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Elevated production of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is implicated in the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Transgenic mice with CNS-targeted chronic production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN) recapitulate important clinical and pathological features of these human diseases. The activation of microglia is a prominent manifestation found both in the human diseases and in the transgenic mice, yet little is known about how this contributes to disease pathology. Methods Here, we used a combination of ex vivo and in situ techniques to characterize the molecular, cellular and transcriptomic phenotypes of microglia in GFAP-IL6 versus GFAP-IFN mice. In addition, a transcriptomic meta-analysis was performed to compare the microglia response from GFAP-IL6 and GFAP-IFN mice to the response of microglia in a range of neurodegenerative and neuroinflammatory disorders. Results We demonstrated that microglia show stimulus-specific responses to IL-6 versus IFN-α in the brain resulting in unique and extensive molecular and cellular adaptations. In GFAP-IL6 mice, microglia proliferated, had shortened, less branched processes and elicited transcriptomic and molecular changes associated with phagocytosis and lipid processing. In comparison, microglia in the brain of GFAP-IFN mice exhibited increased proliferation and apoptosis, had larger, hyper-ramified processes and showed transcriptomic and surface marker changes associated with antigen presentation and antiviral response. Further, a transcriptomic meta-analysis revealed that IL-6 and IFN-α both contribute to the formation of a core microglia response in animal models of neurodegenerative and neuroinflammatory disorders, such as Alzheimer’s disease, tauopathy, multiple sclerosis and lipopolysaccharide-induced endotoxemia. Conclusions Our findings demonstrate that microglia responses to IL-6 and IFN-α are highly stimulus-specific, wide-ranging and give rise to divergent phenotypes that modulate microglia responses in neuroinflammatory and neurodegenerative diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02441-x.
Collapse
|
20
|
Mavroudis I, Kazis D, Chowdhury R, Petridis F, Costa V, Balmus IM, Ciobica A, Luca AC, Radu I, Dobrin RP, Baloyannis S. Post-Concussion Syndrome and Chronic Traumatic Encephalopathy: Narrative Review on the Neuropathology, Neuroimaging and Fluid Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12030740. [PMID: 35328293 PMCID: PMC8947595 DOI: 10.3390/diagnostics12030740] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury is a significant public health issue and represents the main contributor to death and disability globally among all trauma-related injuries. Martial arts practitioners, military veterans, athletes, victims of physical abuse, and epileptic patients could be affected by the consequences of repetitive mild head injuries (RMHI) that do not resume only to short-termed traumatic brain injuries (TBI) effects but also to more complex and time-extended outcomes, such as post-concussive syndrome (PCS) and chronic traumatic encephalopathy (CTE). These effects in later life are not yet well understood; however, recent studies suggested that even mild head injuries can lead to an elevated risk of later-life cognitive impairment and neurodegenerative disease. While most of the PCS hallmarks consist in immediate consequences and only in some conditions in long-termed processes undergoing neurodegeneration and impaired brain functions, the neuropathological hallmark of CTE is the deposition of p-tau immunoreactive pre-tangles and thread-like neurites at the depths of cerebral sulci and neurofibrillary tangles in the superficial layers I and II which are also one of the main hallmarks of neurodegeneration. Despite different CTE diagnostic criteria in clinical and research approaches, their specificity and sensitivity remain unclear and CTE could only be diagnosed post-mortem. In CTE, case risk factors include RMHI exposure due to profession (athletes, military personnel), history of trauma (abuse), or pathologies (epilepsy). Numerous studies aimed to identify imaging and fluid biomarkers that could assist diagnosis and probably lead to early intervention, despite their heterogeneous outcomes. Still, the true challenge remains the prediction of neurodegeneration risk following TBI, thus in PCS and CTE. Further studies in high-risk populations are required to establish specific, preferably non-invasive diagnostic biomarkers for CTE, considering the aim of preventive medicine.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK; (I.M.); (R.C.)
- Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki, 54634 Thessaloniki, Greece; (V.C.); (S.B.)
- Research Institute for Alzheimer’s Disease and Neurodegenerative Diseases, Heraklion Langada, 57200 Thessaloniki, Greece
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (D.K.); (F.P.)
| | - Rumana Chowdhury
- Department of Neuroscience, Leeds Teaching Hospitals, NHS Trust, Leeds LS2 9JT, UK; (I.M.); (R.C.)
| | - Foivos Petridis
- Third Department of Neurology, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece; (D.K.); (F.P.)
| | - Vasiliki Costa
- Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki, 54634 Thessaloniki, Greece; (V.C.); (S.B.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iași, 700057 Iași, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.); (R.P.D.)
| | - Alina-Costina Luca
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Correspondence: (A.C.); (A.-C.L.); (R.P.D.)
| | - Iulian Radu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
| | - Romeo Petru Dobrin
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Correspondence: (A.C.); (A.-C.L.); (R.P.D.)
| | - Stavros Baloyannis
- Laboratory of Neuropathology and Electron Microscopy, Aristotle University of Thessaloniki, 54634 Thessaloniki, Greece; (V.C.); (S.B.)
- Research Institute for Alzheimer’s Disease and Neurodegenerative Diseases, Heraklion Langada, 57200 Thessaloniki, Greece
| |
Collapse
|
21
|
Hu M, Zhang P, Wang R, Zhou M, Pang N, Cui X, Ge X, Liu X, Huang XF, Yu Y. Three Different Types of β-Glucans Enhance Cognition: The Role of the Gut-Brain Axis. Front Nutr 2022; 9:848930. [PMID: 35308288 PMCID: PMC8927932 DOI: 10.3389/fnut.2022.848930] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Dietary fiber is fermented in the lower gastrointestinal tract, potentially impacting the microbial ecosystem and thus may improve elements of cognition and brain function via the gut-brain axis. β-glucans, soluble dietary fiber, have different macrostructures and may exhibit different effects on the gut-brain axis. This study aimed to compare the effects of β-glucans from mushroom, curdlan and oats bran, representing β-(1,3)/(1,6)-glucan, β-(1,3)-glucan or β-(1,3)/(1,4)-glucan, on cognition and the gut-brain axis. Methods C57BL/6J mice were fed with either control diet or diets supplemented with β-glucans from mushroom, curdlan and oats bran for 15 weeks. The cognitive functions were evaluated by using the temporal order memory and Y-maze tests. The parameters of the gut-brain axis were examined, including the synaptic proteins and ultrastructure and microglia status in the hippocampus and prefrontal cortex (PFC), as well as colonic immune response and mucus thickness and gut microbiota profiles. Results All three supplementations with β-glucans enhanced the temporal order recognition memory. Brain-derived neurotrophic factor (BDNF) and the post-synaptic protein 95 (PSD95) increased in the PFC. Furthermore, mushroom β-glucan significantly increased the post-synaptic thickness of synaptic ultrastructure in the PFC whilst the other two β-glucans had no significant effect. Three β-glucan supplementations decreased the microglia number in the PFC and hippocampus, and affected complement C3 and cytokines expression differentially. In the colon, every β-glucan supplementation increased the number of CD206 positive cells and promoted the expression of IL-10 and reduced IL-6 and TNF-α expression. The correlation analysis highlights that degree of cognitive behavior improved by β-glucan supplementations was significantly associated with microglia status in the hippocampus and PFC and the number of colonic M2 macrophages. In addition, only β-glucan from oat bran altered gut microbiota and enhanced intestinal mucus. Conclusions We firstly demonstrated long-term supplementation of β-glucans enhanced recognition memory. Comparing the effects of β-glucans on the gut-brain axis, we found that β-glucans with different molecular structures exhibit differentia actions on synapses, inflammation in the brain and gut, and gut microbiota. This study may shed light on how to select appropriate β-glucans as supplementation for the prevention of cognitive deficit or improving immune function clinically.
Collapse
Affiliation(s)
- Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ruiqi Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ning Pang
- Tianjin Third Central Hospital, Tianjin, China
| | - Xiaoying Cui
- Queensland Centre for Mental Health Research, Wacol, QLD, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Yinghua Yu ;
| |
Collapse
|
22
|
Fields JA, Swinton MK, Montilla-Perez P, Ricciardelli E, Telese F. The Cannabinoid Receptor Agonist, WIN-55212-2, Suppresses the Activation of Proinflammatory Genes Induced by Interleukin 1 Beta in Human Astrocytes. Cannabis Cannabinoid Res 2022; 7:78-92. [PMID: 33998879 PMCID: PMC8864424 DOI: 10.1089/can.2020.0128] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Alterations of astrocyte function play a crucial role in neuroinflammatory diseases due to either the loss of their neuroprotective role or the gain of their toxic inflammatory properties. Accumulating evidence highlights that cannabinoids and cannabinoid receptor agonists, such as WIN55,212-2 (WIN), reduce inflammation in cellular and animal models. Thus, the endocannabinoid system has become an attractive target to attenuate chronic inflammation in neurodegenerative diseases. However, the mechanism of action of WIN in astrocytes remains poorly understood. Objective: We studied the immunosuppressive property of WIN by examining gene expression patterns that were modulated by WIN in reactive astrocytes. Materials and Methods: Transcriptomic analysis by RNA-seq was carried out using primary human astrocyte cultures stimulated by the proinflammatory cytokine interleukin 1 beta (IL1β) in the presence or absence of WIN. Real-time quantitative polymerase chain reaction analysis was conducted on selected transcripts to characterize the dose-response effects of WIN, and to test the effect of selective antagonists of cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptors (PPAR). Results: Transcriptomic analysis showed that the IL1β-induced inflammatory response is robustly inhibited by WIN pretreatment. WIN treatment alone also induced substantial gene expression changes. Pathway analysis revealed that the anti-inflammatory properties of WIN were linked to the regulation of kinase pathways and gene targets of neuroprotective transcription factors, including PPAR and SMAD (mothers against decapentaplegic homolog). The inhibitory effect of WIN was dose-dependent, but it was not affected by selective antagonists of CB1 or PPAR. Conclusions: This study suggests that targeting the endocannabinoid system may be a promising strategy to disrupt inflammatory pathways in reactive astrocytes. The anti-inflammatory activity of WIN is independent of CB1, suggesting that alternative receptors mediate the effects of WIN. These results provide mechanistic insights into the anti-inflammatory activity of WIN and highlight that astrocytes are a potential therapeutic target to ameliorate neuroinflammation in the brain.
Collapse
Affiliation(s)
- Jerel Adam Fields
- Department of Psychiatry and University of California San Diego, La Jolla, California, USA
| | - Mary K. Swinton
- Department of Psychiatry and University of California San Diego, La Jolla, California, USA
| | | | - Eugenia Ricciardelli
- Institute of Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Francesca Telese
- Department of Medicine, University of California San Diego, La Jolla, California, USA.,*Address correspondence to: Francesca Telese, PhD, Department of Medicine, University of California San Diego, La Jolla, CA 93093, USA,
| |
Collapse
|
23
|
Guan X, Wang Q, Liu M, Sun A, Li X. Possible Involvement of the IL-6/JAK2/STAT3 Pathway in the Hypothalamus in Depressive-Like Behavior of Rats Exposed to Chronic Mild Stress. Neuropsychobiology 2022; 80:279-287. [PMID: 33238265 DOI: 10.1159/000509908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/19/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The interleukin-6/janus kinase 2/signal transducer and activator of transcription 3 (IL-6/JAK2/STAT3) pathway plays an important role in immune function, but little research has focused on this pathway in depression. We sought to examine the relationship between the IL-6/JAK2/STAT3 pathway and depressive-like behavior. METHODS Using a chronic mild stress (CMS) paradigm, a total of 36 adult male Sprague-Dawley rats were divided into four matched groups: (1) control + vehicle, (2) CMS + vehicle, (3) control + paroxetine, and (4) CMS + paroxetine. We investigated the effects of CMS on depressive-like behavior by using the forced swimming test (FST). Subsequently, the mRNA levels of members of the IL-6/JAK2/STAT3 pathway were assessed by qRT-PCR. RESULTS We found that rats exposed to CMS displayed a significant increase in immobility time and a decrease in climbing time in the FST. Moreover, mRNA levels of IL-6, JAK2, and STAT3 in the hypothalamus were increased following CMS. We also found that mRNA levels of IL-6, JAK2, and STAT3 were normalized by paroxetine administration, which coincided with normalization of the depressive-like behavior. CONCLUSIONS The IL-6/JAK2/STAT3 pathway may be activated in depression, and targeting this pathway may provide a novel effective therapeutic approach for the treatment of depression.
Collapse
Affiliation(s)
- Xiaofeng Guan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Psychiatry, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Medical Psychology, General Hospital of Shenyang Military Command, Shenyang, China
| | - Mengxi Liu
- Department of Medical Psychology, Navy General Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Anji Sun
- Northeast Yucai Experimental School, Shenyang, China
| | - Xiaobai Li
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China,
| |
Collapse
|
24
|
Wang X, Zhao Y, Shi X, Gong M, Hao Y, Fu Y, Velez de-la-Paz OI, Wang X, Du Y, Guo X, Song L, Meng L, Gao Y, Yin X, Wang S, Shi Y, Shi H. Sulfur dioxide derivatives attenuates consolidation of contextual fear memory in mice. Eur J Pharmacol 2022; 914:174658. [PMID: 34861211 DOI: 10.1016/j.ejphar.2021.174658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by an enhancement of traumatic memory. Intervention strategies based on the different stages of memory have been shown to be effective in the prevention and control of PTSD. The endogenous gaseous molecule, sulfur dioxide (SO2), has been reported to significantly exert neuromodulatory effects; however, its regulation of learning and memory remains unestablished. This study aimed to investigate the effects of exogenous SO2 derivatives administration on the formation, consolidation, reconsolidation, retention, and expression of contextual fear memory. Behavioral results showed that both intraperitoneal injection (50 mg/kg, ip) and hippocampal infusion (5 μg/side) of SO2 derivatives (a mixture of sodium sulfite and sodium bisulfite, Na2SO3/NaHSO3, 3:1 M/M) significantly impaired consolidation but had no effect on reconsolidation and retention of contextual fear memory. These findings suggest that the attenuating effects of SO2 on the consolidation of fear memory involves, at least partially, the region of the hippocampus. The findings of this study provide direct evidence for the development of new strategies for PTSD prevention and treatment involving the use of gaseous SO2.
Collapse
Affiliation(s)
- Xinhao Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Yize Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Xiaorui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Ying Hao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Yaling Fu
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Omar Israel Velez de-la-Paz
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Xi Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Xiangfei Guo
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Li Meng
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medicinal University, Shijiazhuang, 050017, China.
| |
Collapse
|
25
|
Kluever V, Fornasiero EF. Principles of brain aging: Status and challenges of modeling human molecular changes in mice. Ageing Res Rev 2021; 72:101465. [PMID: 34555542 DOI: 10.1016/j.arr.2021.101465] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Due to the extension of human life expectancy, the prevalence of cognitive impairment is rising in the older portion of society. Developing new strategies to delay or attenuate cognitive decline is vital. For this purpose, it is imperative to understand the cellular and molecular events at the basis of brain aging. While several organs are directly accessible to molecular analysis through biopsies, the brain constitutes a notable exception. Most of the molecular studies are performed on postmortem tissues, where cell death and tissue damage have already occurred. Hence, the study of the molecular aspects of cognitive decline largely relies on animal models and in particular on small mammals such as mice. What have we learned from these models? Do these animals recapitulate the changes observed in humans? What should we expect from future mouse studies? In this review we answer these questions by summarizing the state of the research that has addressed cognitive decline in mice from several perspectives, including genetic manipulation and omics strategies. We conclude that, while extremely valuable, mouse models have limitations that can be addressed by the optimal design of future studies and by ensuring that results are cross-validated in the human context.
Collapse
|
26
|
Chakraborty A, Banerjee S, Mukherjee B, Poddar MK, Ali N. Calorie restriction modulates neuro-immune system differently in young and aged rats. Int Immunopharmacol 2021; 100:108141. [PMID: 34536745 DOI: 10.1016/j.intimp.2021.108141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 02/02/2023]
Abstract
Aging weakens and deregulates the immune system and plays an impact on the central nervous system (CNS). A crosstalk in between the CNS-mediated immune system and the body's overall innate immunity is often found to increase and subsequently accelerate neurodegeneration and behavioural impairment during aging. Dietary calorie restriction (CR) is found to be a beneficial non-invasive anti-aging therapy as it shows rejuvenation of stress response, brain functions and behaviour during aging. The present investigation deals with the consequence of CR diet supplementation for two different duration (one and two consecutive months) on aging-related alteration of the immune response in male albino Wistar rats at the level of (a) lymphocyte viability, proliferation, cytotoxicity, and DNA fragmentation in blood, spleen, and thymus and (b) cytokines (IL-6, IL-10, and TNF-α) in blood, spleen, thymus and different brain-regions to understand the effect of CR diet on neuroimmune system. The results depict that CR diet consumption for consecutive one and two months by the aged (18 and 24 months) rats significantly attenuated the aging-related (a) decrease of blood, splenic and thymic lymphocyte viability, proliferative activity, cytotoxicity, and IL-10 level and (b) increase of (i) blood, splenic and thymic DNA fragmentation and (ii) IL-6 and TNF-α level in those tissues and also in different brain regions. Unlike older rats, in young (4 months) rats, the consumption of CR diet under similar conditions affected those above-mentioned immune parameters reversibly and adversely. This study concludes that (a) aging significantly (p < 0.01) deregulates the above-mentioned immune parameters, (b) consecutive consumption of CR diet for one and two months is (i) beneficial (p < 0.05) to the aging-related immune system [lymphocyte viability, lymphocyte proliferation, cytotoxicity, pro (IL-6 and TNF-α)- and anti (IL-10)-inflammatory cytokines], but (ii) adverse (p < 0.05) to the immune parameters of the young rats, and (c) consumption of CR diet for consecutive two months is more potent (p < 0.05) than that due to one month.
Collapse
Affiliation(s)
- Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Soumyabrata Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India; Department of Psychology, Neuroscience Program, Field Neurosciences Institute Research Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India
| | - Mrinal K Poddar
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S.C Mallick Road, Kolkata 700032, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700 032, India
| |
Collapse
|
27
|
Desai A, Chen H, Kevala K, Kim HY. Higher n-3 Polyunsaturated Fatty Acid Diet Improves Long-Term Neuropathological and Functional Outcome after Repeated Mild Traumatic Brain Injury. J Neurotrauma 2021; 38:2622-2632. [PMID: 33913741 PMCID: PMC8403198 DOI: 10.1089/neu.2021.0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Repeated mild traumatic brain injury (TBI) can cause persistent neuropathological effects and is a major risk factor for chronic traumatic encephalopathy. PUFAs (n-3 polyunsaturated fatty acids) were shown to improve acute TBI outcomes in single-injury models in most cases. In this study, we demonstrate positive effects of dietary n-3 PUFA on long-term neuropathological and functional outcome in a clinically relevant model of repeated mild TBI using the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA). Adult mice, reared on n-3 PUFA adequate (higher n-3 PUFA) or deficient (lower n-3 PUFA) diets, were given a mild CHIMERA daily for 3 consecutive days. At 2 months after injury, visual function and spatial memory were evaluated. Glia cell activation was assessed by immunostaining using antibodies of ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein, and axonal damage was examined using silver staining. Repeated CHIMERA (rCHIMERA)-induced gliosis was significantly suppressed in the optic tract, corpus callosum, and hippocampus of mice fed the n-3 PUFA adequate diet compared to the deficient diet group. Considerable axonal damage was detected in the optic tract after rCHIMERA, but the adequate diet group displayed less axonal damage compared to the deficient diet group. rCHIMERA induced a drastic reduction in N1 amplitude of the visual evoked potential in both diet groups and the a-wave amplitude of the electroretinogram in the deficient diet group. However, reduction of N1 and a-wave amplitude were less severe in the adequate diet group. The Morris water maze probe test indicated a significant decrease in the number of platform crossings in the deficient diet group compared to the adequate group. In summary, dietary n-3 PUFA can attenuate persistent glial cell activation and axonal damage and improve deficits in visual function and spatial memory after repeated mild TBI. These data support the neuroprotective potential of a higher n-3 PUFA diet in ameliorating the adverse outcome of repeated mild TBI.
Collapse
Affiliation(s)
- Abhishek Desai
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Huazhen Chen
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, Maryland, USA
| | - Karl Kevala
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Chesworth R, Gamage R, Ullah F, Sonego S, Millington C, Fernandez A, Liang H, Karl T, Münch G, Niedermayer G, Gyengesi E. Spatial Memory and Microglia Activation in a Mouse Model of Chronic Neuroinflammation and the Anti-inflammatory Effects of Apigenin. Front Neurosci 2021; 15:699329. [PMID: 34393713 PMCID: PMC8363202 DOI: 10.3389/fnins.2021.699329] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022] Open
Abstract
Chronic neuroinflammation characterized by microglia reactivity is one of the main underlying processes in the initiation and progression of neurodegenerative diseases such as Alzheimer’s disease. This project characterized spatial memory during healthy aging and prolonged neuroinflammation in the chronic neuroinflammatory model, glial fibrillary acidic protein-interleukin 6 (GFAP-IL6). We investigated whether chronic treatment with the natural flavonoid, apigenin, could reduce microglia activation in the hippocampus and improve spatial memory. GFAP-IL6 transgenic and wild-type-like mice were fed with apigenin-enriched or control chow from 4 months of age and tested for spatial memory function at 6 and 22 months using the Barnes maze. Brain tissue was collected at 22 months to assess microgliosis and morphology using immunohistochemistry, stereology, and 3D single cell reconstruction. GFAP-IL6 mice showed age-dependent loss of spatial memory recall compared with wild-type-like mice. Chronic apigenin treatment decreased the number of Iba-1+ microglia in the hippocampus of GFAP-IL6 mice and changed microglial morphology. Apigenin did not reverse spatial memory recall impairment in GFAP-IL6 mice at 22 months of age. GFAP-IL6 mice may represent a suitable model for age-related neurodegenerative disease. Chronic apigenin supplementation significantly reduced microglia activation, but this did not correspond with spatial memory improvement in the Barnes Maze.
Collapse
Affiliation(s)
- Rose Chesworth
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Rashmi Gamage
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Faheem Ullah
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Translational Neuroscience Lab, Center for Translational Science, Department of Environmental Sciences, Robert Stempel College of Public Health, Florida International University, Port St. Lucie, FL, United States
| | - Sandra Sonego
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Christopher Millington
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Amanda Fernandez
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Huazheng Liang
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Neurology, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Tim Karl
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
29
|
Asgarov R, Sen MK, Mikhael M, Karl T, Gyengesi E, Mahns DA, Malladi CS, Münch GW. Characterisation of the Mouse Cerebellar Proteome in the GFAP-IL6 Model of Chronic Neuroinflammation. THE CEREBELLUM 2021; 21:404-424. [PMID: 34324160 DOI: 10.1007/s12311-021-01303-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 12/14/2022]
Abstract
GFAP-IL6 transgenic mice are characterised by astroglial and microglial activation predominantly in the cerebellum, hallmarks of many neuroinflammatory conditions. However, information available regarding the proteome profile associated with IL-6 overexpression in the mouse brain is limited. This study investigated the cerebellum proteome using a top-down proteomics approach using 2-dimensional gel electrophoresis followed by liquid chromatography-coupled tandem mass spectrometry and correlated these data with motor deficits using the elevated beam walking and accelerod tests. In a detailed proteomic analysis, a total of 67 differentially expressed proteoforms including 47 cytosolic and 20 membrane-bound proteoforms were identified. Bioinformatics and literature mining analyses revealed that these proteins were associated with three distinct classes: metabolic and neurodegenerative processes as well as protein aggregation. The GFAP-IL6 mice exhibited impaired motor skills in the elevated beam walking test measured by their average scores of 'number of footslips' and 'time to traverse' values. Correlation of the proteoforms' expression levels with the motor test scores showed a significant positive correlation to peroxiredoxin-6 and negative correlation to alpha-internexin and mitochondrial cristae subunit Mic19. These findings suggest that the observed changes in the proteoform levels caused by IL-6 overexpression might contribute to the motor function deficits.
Collapse
Affiliation(s)
- Rustam Asgarov
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Monokesh K Sen
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Meena Mikhael
- Mass Spectrometry Facility, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Tim Karl
- Behavioural Neuroscience Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Neuroscience Research Australia (NeuRA), Randwick, NSW, 2031, Australia.,School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - David A Mahns
- Integrative Physiology Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Chandra S Malladi
- Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Gerald W Münch
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
30
|
Miller BJ, Herzig KH, Jokelainen J, Karhu T, Keinänen-Kiukaanniemi S, Järvelin MR, Veijola J, Viinamäki H, Päivikki Tanskanen, Jääskeläinen E, Isohanni M, Timonen M. Inflammation, hippocampal volume, and cognition in schizophrenia: results from the Northern Finland Birth Cohort 1966. Eur Arch Psychiatry Clin Neurosci 2021; 271:609-622. [PMID: 32382794 DOI: 10.1007/s00406-020-01134-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Increased blood interleukin-6 (IL-6) levels are a replicated abnormality in schizophrenia, and may be associated with smaller hippocampal volumes and greater cognitive impairment. These findings have not been investigated in a population-based birth cohort. The general population Northern Finland Birth Cohort 1966 was followed until age 43. Subjects with schizophrenia were identified through the national Finnish Care Register. Blood IL-6 levels were measured in n = 82 subjects with schizophrenia and n = 5373 controls at age 31. Additionally, 31 patients with schizophrenia and 63 healthy controls underwent brain structural MRI at age 34, and cognitive testing at ages 34 and 43. Patients with schizophrenia had significantly higher median (interquartile range) blood IL-6 levels than controls (5.31, 0.85-17.20, versus 2.42, 0.54-9.36, p = 0.02) after controlling for potential confounding factors. In both schizophrenia and controls, higher blood IL-6 levels were predictors of smaller hippocampal volumes, but not cognitive performance at age 34. We found evidence for increased IL-6 levels in patients with midlife schizophrenia from a population-based birth cohort, and replicated associations between IL-6 levels and hippocampal volumes. Our results complement and extend the previous findings, providing additional evidence that IL-6 may play a role in the pathophysiology of schizophrenia and associated brain alterations.
Collapse
Affiliation(s)
- Brian J Miller
- Department of Psychiatry and Health Behavior, Augusta University, 997 Saint Sebastian Way, Augusta, GA, 30912, USA.
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
| | - Jari Jokelainen
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Toni Karhu
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.,MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Juha Veijola
- Medical Research Center (MRC) and Oulu University Hospital, Oulu, Finland.,Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Heimo Viinamäki
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Psychiatry, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Erika Jääskeläinen
- Department of Psychiatry, Research Unit of Clinical Neuroscience, University of Oulu, Oulu, Finland
| | - Matti Isohanni
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Markku Timonen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| |
Collapse
|
31
|
Mouihate A, Kalakh S. Maternal Interleukin-6 Hampers Hippocampal Neurogenesis in Adult Rat Offspring in a Sex-Dependent Manner. Dev Neurosci 2021; 43:106-115. [PMID: 34023825 DOI: 10.1159/000516370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/19/2021] [Indexed: 11/19/2022] Open
Abstract
Maternal immune activation (MIA) during pregnancy leads to long-lasting effects on brain development and function. Several lines of evidence suggest that the maternal inflammatory cytokine interleukin (IL)-6 plays a crucial role in the long-lasting effects of MIA on adult offspring. IL-6 is naturally produced during pregnancy in the absence of any underlying immune activation. The objective of this study was to assess whether this naturally occurring IL-6 has long-lasting effects on brain plasticity and function. Therefore, pregnant rats were given either an IL-6-neutralizing antibody (IL-6Ab) or vehicle during the third week of pregnancy. Newly born (doublecortin) and mature neurons (NeuN) were monitored in the hippocampus of adult male and female offspring. Prenatal IL-6Ab led to an enhanced number of newly born and mature neurons in the dentate gyrus of the hippocampus of male but not female adult offspring. This enhanced neurogenesis was associated with an increased propensity in memory acquisition in male offspring. Blunting the naturally occurring IL-6 during pregnancy did not have a significant long-lasting impact on astrocyte cell density (GFAP), or on anxiety-like behavior as assessed with elevated plus maze and open field tests. Taken together, these data suggest that maternal IL-6 contributes, at least in part, to the programming of the brain's development in a sex-dependent manner.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Samah Kalakh
- Department of Physiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| |
Collapse
|
32
|
Nosi D, Lana D, Giovannini MG, Delfino G, Zecchi-Orlandini S. Neuroinflammation: Integrated Nervous Tissue Response through Intercellular Interactions at the "Whole System" Scale. Cells 2021; 10:1195. [PMID: 34068375 PMCID: PMC8153304 DOI: 10.3390/cells10051195] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Different cell populations in the nervous tissue establish numerous, heterotypic interactions and perform specific, frequently intersecting activities devoted to the maintenance of homeostasis. Microglia and astrocytes, respectively the immune and the "housekeeper" cells of nervous tissue, play a key role in neurodegenerative diseases. Alterations of tissue homeostasis trigger neuroinflammation, a collective dynamic response of glial cells. Reactive astrocytes and microglia express various functional phenotypes, ranging from anti-inflammatory to pro-inflammatory. Chronic neuroinflammation is characterized by a gradual shift of astroglial and microglial phenotypes from anti-inflammatory to pro-inflammatory, switching their activities from cytoprotective to cytotoxic. In this scenario, the different cell populations reciprocally modulate their phenotypes through intense, reverberating signaling. Current evidence suggests that heterotypic interactions are links in an intricate network of mutual influences and interdependencies connecting all cell types in the nervous system. In this view, activation, modulation, as well as outcomes of neuroinflammation, should be ascribed to the nervous tissue as a whole. While the need remains of identifying further links in this network, a step back to rethink our view of neuroinflammation in the light of the "whole system" scale, could help us to understand some of its most controversial and puzzling features.
Collapse
Affiliation(s)
- Daniele Nosi
- Section of Histology anf Human Anatomy, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Florence, Italy;
| | - Daniele Lana
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Gaetano Pieraccini, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Maria Grazia Giovannini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Gaetano Pieraccini, 50139 Florence, Italy; (D.L.); (M.G.G.)
| | - Giovanni Delfino
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Florence, Italy;
| | - Sandra Zecchi-Orlandini
- Section of Histology anf Human Anatomy, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Florence, Italy;
| |
Collapse
|
33
|
Sanguino‐Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. An emerging role for microglia in stress‐effects on memory. Eur J Neurosci 2021; 55:2491-2518. [PMID: 33724565 PMCID: PMC9373920 DOI: 10.1111/ejn.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro‐inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress‐related memory impairments.
Collapse
Affiliation(s)
| | - Jacobus C. Buurstede
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Oihane Abiega
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
- Program in Neurosciences and Mental Health Hospital for Sick Children Toronto ON Canada
| | - Onno C. Meijer
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
34
|
Gruol DL, Melkonian C, Huitron-Resendiz S, Roberts AJ. Alcohol alters IL-6 Signal Transduction in the CNS of Transgenic Mice with Increased Astrocyte Expression of IL-6. Cell Mol Neurobiol 2021; 41:733-750. [PMID: 32447612 PMCID: PMC7680720 DOI: 10.1007/s10571-020-00879-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022]
Abstract
Neuroimmune factors, including the cytokine interleukin-6 (IL-6), are important chemical regulators of central nervous system (CNS) function under both physiological and pathological conditions. Elevated expression of IL-6 occurs in the CNS in a variety of disorders associated with altered CNS function, including excessive alcohol use. Alcohol-induced production of IL-6 has been reported for several CNS regions including the cerebellum. Cerebellar actions of alcohol occur through a variety of mechanisms, but alcohol-induced changes in signal transduction, transcription, and translation are known to play important roles. IL-6 is an activator of signal transduction that regulates gene expression. Thus, alcohol-induced IL-6 production could contribute to cerebellar effects of alcohol by altering gene expression, especially under conditions of chronic alcohol abuse, where IL-6 levels could be habitually elevated. To gain an understanding of the effects of alcohol on IL-6 signal transduction, we studied activation/expression of IL-6 signal transduction partners STAT3 (Signal Transducer and Activator of Transcription), CCAAT-enhancer binding protein (C/EBP) beta, and p42/p44 mitogen-activated protein kinase (MAPK) at the protein level. Cerebella of transgenic mice that express elevated levels of astrocyte produced IL-6 in the CNS were studied. Results show that the both IL-6 and chronic intermittent alcohol exposure/withdrawal affect IL-6 signal transduction partners and that the actions of IL-6 and alcohol interact to alter activation/expression of IL-6 signal transduction partners. The alcohol/IL-6 interactions may contribute to cerebellar actions of alcohol, whereas the effects of IL-6 alone may have relevance to cerebellar changes occurring in CNS disorders associated with elevated levels of IL-6.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Claudia Melkonian
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
35
|
Lyra E Silva NM, Gonçalves RA, Pascoal TA, Lima-Filho RAS, Resende EDPF, Vieira ELM, Teixeira AL, de Souza LC, Peny JA, Fortuna JTS, Furigo IC, Hashiguchi D, Miya-Coreixas VS, Clarke JR, Abisambra JF, Longo BM, Donato J, Fraser PE, Rosa-Neto P, Caramelli P, Ferreira ST, De Felice FG. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer's disease. Transl Psychiatry 2021; 11:251. [PMID: 33911072 PMCID: PMC8080782 DOI: 10.1038/s41398-021-01349-z] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored. Using T2-weighted magnetic resonance imaging (MRI), we observed signs of probable inflammation in the hypothalamus and in the hippocampus of AD patients when compared to cognitively healthy control subjects. Pathological examination of post-mortem AD hypothalamus revealed the presence of hyperphosphorylated tau and tangle-like structures, as well as parenchymal and vascular amyloid deposits surrounded by astrocytes. T2 hyperintensities on MRI positively correlated with plasma IL-6, and both correlated inversely with cognitive performance and hypothalamic/hippocampal volumes in AD patients. Increased IL-6 and suppressor of cytokine signaling 3 (SOCS3) were observed in post-mortem AD brains. Moreover, activation of the IL-6 pathway was observed in the hypothalamus and hippocampus of AD mice. Neutralization of IL-6 and inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling in the brains of AD mouse models alleviated memory impairment and peripheral glucose intolerance, and normalized plasma IL-6 levels. Collectively, these results point to IL-6 as a link between cognitive impairment and peripheral metabolic alterations in AD. Targeting pro-inflammatory IL-6 signaling may be a strategy to alleviate memory impairment and metabolic alterations in the disease.
Collapse
Affiliation(s)
- Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Rafaella A Gonçalves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Elisa de Paula França Resende
- Behavioral and Cognitive Neurology Research Group, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Erica L M Vieira
- Centre of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Antonio L Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Santa Casa BH Ensino e Pesquisa, Belo Horizonte, MG, Brazil
| | - Leonardo C de Souza
- Behavioral and Cognitive Neurology Research Group, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julyanna A Peny
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana T S Fortuna
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Isadora C Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Debora Hashiguchi
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Vivian S Miya-Coreixas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose F Abisambra
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease University of Florida, Gainesville, FL, USA
| | - Beatriz M Longo
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology Research Group, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.
- Department of Biomedical and Molecuar Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
36
|
Improvement of psychomotor retardation after electroconvulsive therapy is related to decreased IL-6 levels. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110146. [PMID: 33091545 DOI: 10.1016/j.pnpbp.2020.110146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Prior studies suggest that IL-6 may be involved in the pathophysiology of psychomotor symptoms in depression. Electroconvulsive therapy (ECT), as yet the most effective biological treatment of severe depression, is known to improve psychomotor functioning, while recent studies have shown a decrease in the elevated IL-6 levels of depressed patients following ECT. OBJECTIVES This study investigates whether the improvement in psychomotor functions in patients with depression after ECT is related to changes in IL-6 levels. METHODS Peripheral IL-6 was quantified and the severity of psychomotor agitation and retardation determined using the CORE assessment of psychomotor symptoms in 62 patients with a (unipolar or bipolar) depressive episode within one week before and within one week after their course of ECT. RESULTS IL-6 levels had decreased significantly following ECT and both psychomotor retardation and agitation had improved. The decrease in IL-6 levels was related to the improvement of psychomotor retardation, with post-hoc analysis revealing that higher baseline IL-6 levels positively correlated with higher psychomotor retardation scores. CONCLUSION With this study, we provide the first evidence that the improvement of psychomotor retardation after ECT for depression is related to the immunomodulatory properties of the treatment, most specifically the decrease in IL-6 levels.
Collapse
|
37
|
Childs R, Gamage R, Münch G, Gyengesi E. The effect of aging and chronic microglia activation on the morphology and numbers of the cerebellar Purkinje cells. Neurosci Lett 2021; 751:135807. [PMID: 33705934 DOI: 10.1016/j.neulet.2021.135807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
Reduced cerebellar volume and motor dysfunction have previously been observed in the GFAP-IL6 murine model of chronic neuroinflammation. This study aims to extend these findings by investigating the effect of microglial activation and ageing on the total number of Purkinje cells and the morphology of their dendritic arborization. Through comparison of transgenic GFAP-IL6 mice and their wild-type counterparts at the ages of 12 and 24-months, we were able to investigate the effects of ageing and chronic microglial activation on Purkinje cells. Unbiased stereology was used to estimate the number of microglia in Iba1+ stained tissue and Purkinje cells in calbindin stained tissue. Morphological analyses were made using 3D reconstructions of images acquired from the Golgi-stained cerebellar tissue. We found that the total number of microglia increased by approximately 5 times in the cerebellum of GFAP-IL6 mice compared to their WT littermates. The number of Purkinje cells decreased by as much as 50 % in aged wild type mice and 83 % in aged GFAP-IL6 mice. The remaining Purkinje cells in these cohorts were found to have significant reductions in their total dendritic length and number of branching points, indicating how the complexity of the Purkinje cell dendritic arbor reduces through age and inflammation. GFAP-IL6 mice, when compared to WT mice, had higher levels of microglial activation and more profound neurodegenerative changes in the cerebellum. The presence of constitutive IL6 production, driving chronic neuroinflammation, may account for these neurodegenerative changes in GFAP-IL6 mice.
Collapse
Affiliation(s)
- Ryan Childs
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Rashmi Gamage
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Erika Gyengesi
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia.
| |
Collapse
|
38
|
Yang X, Li M, Jiang J, Hu X, Qing Y, Sun L, Yang T, Wang D, Cui G, Gao Y, Zhang J, Li X, Shen Y, Qin S, Wan C. Dysregulation of phospholipase and cyclooxygenase expression is involved in Schizophrenia. EBioMedicine 2021; 64:103239. [PMID: 33581645 PMCID: PMC7892797 DOI: 10.1016/j.ebiom.2021.103239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Schizophrenia (SZ) is a severe mental disease with highly heterogeneous clinical manifestations and pathological mechanisms. Schizophrenia is linked to abnormalities in cell membrane phospholipids and blunting of the niacin skin flush response, but the associations between these phenotypes and its molecular pathogenesis remain unclear. This study aimed to describe the PLA2/COX pathway, the key link between phospholipids and niacin flush, and to illustrate the pathogenic mechanisms in schizophrenia that mediate the above phenotypes. METHODS A total of 166 patients with schizophrenia and 54 healthy controls were recruited in this study and assigned to a discovery set and a validation set. We assessed the mRNA levels of 19 genes related to the PLA2/COX cascade in leukocytes by real-time PCR. Plasma IL-6 levels were measured with an ELISA kit. Genetic association analysis was performed on PLA2G4A and PTGS2 to investigate their potential relationship with blunted niacin-skin response in an independent sample set. FINDINGS Six of the 19 genes in the PLA2/COX pathway exhibited significant differences between schizophrenia and healthy controls. The disturbance of the pathway indicates the activation of arachidonic acid (AA) hydrolysis and metabolization, resulting in the abnormalities of membrane lipid homeostasis and immune function, further increasing the risk of schizophrenia. On the other hand, the active process of AA hydrolysis from cell membrane phospholipids and decreased transcription of CREB1, COX-2 and PTGER4 may explain the reported findings of a blunted niacin response in schizophrenia. The significant genetic associations between PLA2G4A and PTGS2 with the niacin-skin responses further support the inference. INTERPRETATION These results suggested that the activation of AA hydrolysis and the imbalance in COX-1 and COX-2 expression are involved in the pathogenesis of schizophrenia and blunting of the niacin flush response. FUNDING This work was supported by the National Key R&D Program of China (2016YFC1306900, 2016YFC1306802); the National Natural Science Foundation of China (81971254, 81771440, 81901354); Interdisciplinary Program of Shanghai Jiao Tong University (ZH2018ZDA40, YG2019GD04, YG2016MS48); Grants of Shanghai Brain-Intelligence Project from STCSM (16JC1420500); Shanghai Key Laboratory of Psychotic Disorders (13DZ2260500); and Shanghai Municipal Science and Technology Major Project (2017SHZDZX01); China Postdoctoral Science Foundation (2018M642029, 2018M630442, 2019M661526, 2020T130407); Natural Science Foundation of Shanghai (20ZR1426700); and Startup Fund for Youngman Research at SJTU (19 × 100040033).
Collapse
Affiliation(s)
- Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Minghui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Tianqi Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Gaoping Cui
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhua Shen
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
39
|
Necula D, Riviere-Cazaux C, Shen Y, Zhou M. Insight into the roles of CCR5 in learning and memory in normal and disordered states. Brain Behav Immun 2021; 92:1-9. [PMID: 33276089 DOI: 10.1016/j.bbi.2020.11.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/25/2020] [Accepted: 11/28/2020] [Indexed: 12/21/2022] Open
Abstract
As cognitive impairments continue to rise in prevalence, there is an urgent need to understand the mechanisms of learning and memory in normal and disordered states. C-C chemokine receptor 5 (CCR5) has been implicated in the regulation of multiple forms of learning and memory via its regulation on learning-related cell signaling and neuronal plasticity. As a chemokine receptor and a co-receptor for HIV, CCR5's role in immune response and HIV-associated neurocognitive disorder (HAND) has been widely studied. In contrast, CCR5 is less understood in cognitive deficits associated with other disorders, including Alzheimer's disease (AD), stroke and certain psychiatric disorders. A broad overview of the present literature shows that CCR5 acts as a potent suppressor of synaptic plasticity and learning and memory, although a few studies have reported the opposite effect of CCR5 in stroke or AD animal models. By summarizing the current literature of CCR5 in animal and human studies of cognition, this review aims to provide a comprehensive overview of the role of CCR5 in learning and memory in both normal and disordered states and to discuss the possibility of CCR5 suppression as an effective therapeutic to alleviate cognitive deficits in HAND, AD, and stroke.
Collapse
Affiliation(s)
- Deanna Necula
- Department of Neuroscience, UCSF, San Francisco, CA, USA
| | - Cecile Riviere-Cazaux
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Yang Shen
- Neurobiology, Psychiatry and Psychology Departments & Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA
| | - Miou Zhou
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
40
|
Sarkar S, Biswas SC. Astrocyte subtype-specific approach to Alzheimer's disease treatment. Neurochem Int 2021; 145:104956. [PMID: 33503465 DOI: 10.1016/j.neuint.2021.104956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes respond to any pathological condition in the central nervous system (CNS) including Alzheimer's disease (AD), and this response is called astrocyte reactivity. Astrocyte reaction to a CNS insult is a highly heterogeneous phenomenon in which the astrocytes undergo a set of morphological, molecular and functional changes with a characteristic secretome profile. Such astrocytes are termed as 'reactive astrocytes'. Controversies regarding the reactive astrocytes abound. Recently, a continuum of reactive astrocyte profiles with distinct transcriptional states has been identified. Among them, disease-associated astrocytes (DAA) were uniquely present in AD mice and expressed a signature set of genes implicated in complement cascade, endocytosis and aging. Earlier, two stimulus-specific reactive astrocyte subtypes with their unique transcriptomic signatures were identified using mouse models of neuroinflammation and ischemia and termed as A1 astrocytes (detrimental) and A2 astrocytes (beneficial) respectively. Interestingly, although most of the A1 signature genes were also detected in DAA, as opposed to A2 astrocyte signatures, some of the A1 specific genes were expressed in other astrocyte subtypes, indicating that these nomenclature-based signatures are not very specific. In this review, we elaborate the disparate functions and cytokine profiles of reactive astrocyte subtypes in AD and tried to distinguish them by designating neurotoxic astrocytes as A1-like and neuroprotective ones as A2-like without directly referring to the A1/A2 original nomenclature. We have also focused on the dual nature from a functional perspective of some cytokines depending on AD-stage, highlighting a number of them as major candidates in AD therapy. Therefore, we suggest that promoting subtype-specific beneficial roles, inhibiting subtype-specific detrimental roles or targeting subtype-specific cytokines constitute a novel therapeutic approach to AD treatment.
Collapse
Affiliation(s)
- Sukanya Sarkar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700 032, India.
| |
Collapse
|
41
|
Huang YQ, Wang Y, Hu K, Lin S, Lin XH. Hippocampal Glycerol-3-Phosphate Acyltransferases 4 and BDNF in the Progress of Obesity-Induced Depression. Front Endocrinol (Lausanne) 2021; 12:667773. [PMID: 34054732 PMCID: PMC8158158 DOI: 10.3389/fendo.2021.667773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Obesity has been reported to lead to increased incidence of depression. Glycerol-3-phosphate acyltransferases 4 (GPAT4) is involved in triacylglycerol synthesis and plays an important role in the occurrence of obesity. GPAT4 is the only one of GPAT family expressed in the brain. The aim of this study is to investigate if central GPAT4 is associated with obesity-related depression and its underlying mechanism. RESULTS A high-fat diet resulted in increased body weight and blood lipid. HFD induced depression like behavior in the force swimming test, tail suspension test and sucrose preference test. HFD significantly up-regulated the expression of GPAT4 in hippocampus, IL-1β, IL-6, TNF-α and NF-κB, accompanied with down-regulation of BDNF expression in hippocampus and ventromedical hypothalamus, which was attributed to AMP-activated protein kinase (AMPK) and cAMP-response element binding protein (CREB). CONCLUSION Our findings suggest that hippocampal GPAT4 may participate in HFD induced depression through AMPK/CREB/BDNF pathway, which provides insights into a clinical target for obesity-associated depression intervention.
Collapse
Affiliation(s)
- Yin-qiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yaofeng Wang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Keyue Hu
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, Australia
- *Correspondence: Xia-hong Lin, ; Shu Lin,
| | - Xia-hong Lin
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Xia-hong Lin, ; Shu Lin,
| |
Collapse
|
42
|
Wang Y, Meagher RB, Ambati S, Ma P, Phillips BG. Patients with obstructive sleep apnea have suppressed levels of soluble cytokine receptors involved in neurodegenerative disease, but normal levels with airways therapy. Sleep Breath 2020; 25:1641-1653. [PMID: 33037528 PMCID: PMC8376707 DOI: 10.1007/s11325-020-02205-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/13/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Purpose Obstructive sleep apnea (OSA) results in systemic intermittent hypoxia. By one model, hypoxic stress signaling in OSA patients alters the levels of inflammatory soluble cytokines TNF and IL6, damages the blood brain barrier, and activates microglial targeting of neuronal cell death to increase the risk of neurodegenerative disorders and other diseases. However, it is not yet clear if OSA significantly alters the levels of the soluble isoforms of TNF receptors TNFR1 and TNFR2 and IL6 receptor (IL6R) and co-receptor gp130, which have the potential to modulate TNF and IL6 signaling. Methods Picogram per milliliter levels of the soluble isoforms of these four cytokine receptors were estimated in OSA patients, in OSA patients receiving airways therapy, and in healthy control subjects. Triplicate samples were examined using Bio-Plex fluorescent bead microfluidic technology. The statistical significance of cytokine data was estimated using the nonparametric Wilcoxon rank-sum test. The clustering of these high-dimensional data was visualized using t-distributed stochastic neighbor embedding (t-SNE). Results OSA patients had significant twofold to sevenfold reductions in the soluble serum isoforms of all four cytokine receptors, gp130, IL6R, TNFR1, and TNFR2, as compared with control individuals (p = 1.8 × 10−13 to 4 × 10−8). Relative to untreated OSA patients, airways therapy of OSA patients had significantly higher levels of gp130 (p = 2.8 × 10−13), IL6R (p = 1.1 × 10−9), TNFR1 (p = 2.5 × 10−10), and TNFR2 (p = 5.7 × 10−9), levels indistinguishable from controls (p = 0.29 to 0.95). The data for most airway-treated patients clustered with healthy controls, but the data for a few airway-treated patients clustered with apneic patients. Conclusions Patients with OSA have aberrantly low levels of four soluble cytokine receptors associated with neurodegenerative disease, gp130, IL6R, TNFR1, and TNFR2. Most OSA patients receiving airways therapy have receptor levels indistinguishable from healthy controls, suggesting a chronic intermittent hypoxia may be one of the factors contributing to low receptor levels in untreated OSA patients. Electronic supplementary material The online version of this article (10.1007/s11325-020-02205-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ye Wang
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Bradley G Phillips
- Clinical and Administrative Pharmacy, University of Georgia, Athens, GA, 30602, USA.,Clinical and Translational Research Unit, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
43
|
Interleukin-6: A neuro-active cytokine contributing to cognitive impairment in Duchenne muscular dystrophy? Cytokine 2020; 133:155134. [DOI: 10.1016/j.cyto.2020.155134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
|
44
|
Effectiveness of tocilizumab in Behcet's disease: A systematic literature review. Semin Arthritis Rheum 2020; 50:797-804. [DOI: 10.1016/j.semarthrit.2020.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
|
45
|
Gruol DL, Melkonian C, Ly K, Sisouvanthong J, Tan Y, Roberts AJ. Alcohol and IL-6 Alter Expression of Synaptic Proteins in Cerebellum of Transgenic Mice with Increased Astrocyte Expression of IL-6. Neuroscience 2020; 442:124-137. [PMID: 32634532 DOI: 10.1016/j.neuroscience.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
Recent studies indicate that neuroimmune factors, including the cytokine interleukin-6 (IL-6), play a role in the CNS actions of alcohol. The cerebellum is a sensitive target of alcohol, but few studies have examined a potential role for neuroimmune factors in the actions of alcohol on this brain region. A number of studies have shown that synaptic transmission, and in particular inhibitory synaptic transmission, is an important cerebellar target of alcohol. IL-6 also alters synaptic transmission, although it is unknown if IL-6 targets are also targets of alcohol. This is an important issue because alcohol induces glial production of IL-6, which could then covertly influence the actions of alcohol. The persistent cerebellar effects of both IL-6 and alcohol typically involve chronic exposure and, presumably, altered gene and protein expression. Thus, in the current studies we tested the possibility that proteins involved in inhibitory and excitatory synaptic transmission in the cerebellum are common targets of alcohol and IL-6. We used transgenic mice that express elevated levels of astrocyte produced IL-6 to model persistently elevated expression of IL-6, as would occur in alcohol use disorders, and a chronic intermittent alcohol exposure/withdrawal paradigm (CIE/withdrawal) that is known to produce alcohol dependence. Multiple cerebellar synaptic proteins were assessed by Western blot. Results show that IL-6 and CIE/withdrawal have both unique and common actions that affect synaptic protein expression. These common targets could provide sites for IL-6/alcohol exposure/withdrawal interactions and play an important role in cerebellar symptoms of alcohol use such as ataxia.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Claudia Melkonian
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristine Ly
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jasmin Sisouvanthong
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yvette Tan
- Neuroscience Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amanda J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
46
|
Vinay P, Karen C, Balamurugan K, Rajan KE. Cronobacter sakazakii Infection in Early Postnatal Rats Impaired Contextual-Associated Learning: a Putative Role of C5a-Mediated NF-κβ and ASK1 Pathways. J Mol Neurosci 2020; 71:28-41. [PMID: 32567007 DOI: 10.1007/s12031-020-01622-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
This study was designed to test whether the Cronobacter sakazakii infection-impaired contextual learning and memory are mediated by the activation of the complement system; subsequent activation of inflammatory signals leads to alternations in serotonin transporter (SERT). To test this, rat pups (postnatal day, PND 15) were treated with either C. sakazakii (107 CFU) or Escherichia coli OP50 (107 CFU) or Luria bertani broth (100 μL) through oral gavage and allowed to stay with their mothers until PND 24. Experimental groups' rats were allowed to explore (PNDs 31-35) and then trained in contextual learning task (PNDs 36-43). Five days after training, individuals were tested for memory retention (PNDs 49-56). Observed behavioural data showed that C. sakazakii infection impaired contextual-associative learning and memory. Furthermore, our analysis showed that C. sakazakii infection activates complement system complement anaphylatoxin (C5a) (a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS1)) and mitogen-activated protein kinase kinase1 (MEKK1). Subsequently, MEKK1 induces pro-inflammatory signals possibly through apoptosis signal-regulating kinase-1 (ASK-1), c-Jun N-terminal kinase (JNK1/3) and protein kinase B gamma (AKT-3). In parallel, activated nuclear factor kappa-light-chain-enhancer B cells (NF-κB) induces interleukin-6 (IL-6) and IFNα-1, which may alter the level of serotonin transporter (SERT). Observed results suggest that impaired contextual learning and memory could be correlated with C5a-mediated NF-κβ and ASK1 pathways.
Collapse
Affiliation(s)
- Ponnusamy Vinay
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Christopher Karen
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | | | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
47
|
Gruol DL, Hernandez RV, Roberts A. Alcohol Enhances Responses to High Frequency Stimulation in Hippocampus from Transgenic Mice with Increased Astrocyte Expression of IL-6. Cell Mol Neurobiol 2020; 41:1299-1310. [PMID: 32562098 DOI: 10.1007/s10571-020-00902-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Recent studies show that alcohol exposure can induce glial production of neuroimmune factors in the CNS. Of these, IL-6 has gained attention because it is involved in a number of important physiological and pathophysiological processes that could be affected by alcohol-induced CNS production of IL-6, particularly under conditions of excessive alcohol use. For example, IL-6 has been shown to play a role in hippocampal behaviors and synaptic plasticity (long-term potentiation; LTP) associated with memory and learning. Surprisingly, in our in vitro studies of LTP at the Schaffer collateral to CA1 pyramidal neuron synapse in hippocampus from transgenic mice that express elevated levels of astrocyte produced IL-6 (TG), LTP was not altered by the increased levels of IL-6. However, exposure to acute alcohol revealed neuroadaptive changes that served to protect LTP against the alcohol-induced reduction of LTP observed in hippocampus from non-transgenic control mice (WT). Here we examined the induction phase of LTP to assess if presynaptic neuroadaptive changes occurred in the hippocampus of TG mice that contributed to the resistance of LTP to alcohol. Results are consistent with a role for IL-6-induced neuroadaptive effects on presynaptic mechanisms involved in transmitter release in the resistance of LTP to alcohol in hippocampus from the TG mice. These actions are important with respect to a role for IL-6 in physiological and pathophysiological processes in the CNS and in CNS actions of alcohol, especially when excessive alcohol used is comorbid with conditions associated with elevated levels of IL-6 in the CNS.
Collapse
Affiliation(s)
- Donna L Gruol
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Ruben V Hernandez
- Neuroscience Department, SR301, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Amanda Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
48
|
Eissa N, Sadeq A, Sasse A, Sadek B. Role of Neuroinflammation in Autism Spectrum Disorder and the Emergence of Brain Histaminergic System. Lessons Also for BPSD? Front Pharmacol 2020; 11:886. [PMID: 32612529 PMCID: PMC7309953 DOI: 10.3389/fphar.2020.00886] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Many behavioral and psychological symptoms of dementia (BPSD) share similarities in executive functioning and communication deficits with those described in several neuropsychiatric disorders, including Alzheimer's disease (AD), epilepsy, schizophrenia (SCH), and autism spectrum disorder (ASD). Numerous studies over the last four decades have documented altered neuroinflammation among individuals diagnosed with ASD. The purpose of this review is to examine the hypothesis that central histamine (HA) plays a significant role in the regulation of neuroinflammatory processes of microglia functions in numerous neuropsychiatric diseases, i.e., ASD, AD, SCH, and BPSD. In addition, this review summarizes the latest preclinical and clinical results that support the relevance of histamine H1-, H2-, and H3-receptor antagonists for the potential clinical use in ASD, SCH, AD, epilepsy, and BPSD, based on the substantial symptomatic overlap between these disorders with regards to cognitive dysfunction. The review focuses on the histaminergic neurotransmission as relevant in these brain disorders, as well as the effects of a variety of H3R antagonists in animal models and in clinical studies.
Collapse
Affiliation(s)
- Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Adel Sadeq
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
49
|
Gehrke N, Schattenberg JM. Metabolic Inflammation-A Role for Hepatic Inflammatory Pathways as Drivers of Comorbidities in Nonalcoholic Fatty Liver Disease? Gastroenterology 2020; 158:1929-1947.e6. [PMID: 32068022 DOI: 10.1053/j.gastro.2020.02.020] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global and growing health concern. Emerging evidence points toward metabolic inflammation as a key process in the fatty liver that contributes to multiorgan morbidity. Key extrahepatic comorbidities that are influenced by NAFLD are type 2 diabetes, cardiovascular disease, and impaired neurocognitive function. Importantly, the presence of nonalcoholic steatohepatitis and advanced hepatic fibrosis increase the risk for systemic comorbidity in NAFLD. Although the precise nature of the crosstalk between the liver and other organs has not yet been fully elucidated, there is emerging evidence that metabolic inflammation-in part, emanating from the fatty liver-is the engine that drives cellular dysfunction, cell death, and deleterious remodeling within various body tissues. This review describes several inflammatory pathways and mediators that have been implicated as links between NAFLD and type 2 diabetes, cardiovascular disease, and neurocognitive decline.
Collapse
Affiliation(s)
- Nadine Gehrke
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany.
| | - Jörn M Schattenberg
- Metabolic Liver Research Program, I. Department of Medicine, University Medical Center, Mainz, Germany
| |
Collapse
|
50
|
Aghjayan SL, Jakicic JM, Rogers RJ, Esteban-Cornejo I, Peven JC, Stillman CM, Watt JC, Erickson KI. The fitness versus body fat hypothesis in relation to hippocampal structure. Psychophysiology 2020; 58:e13591. [PMID: 32352571 DOI: 10.1111/psyp.13591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/19/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
The Fitness Versus Body Fat Hypothesis argues that cardiorespiratory fitness (CRF) plays a more important role in cardiovascular health than adiposity. It remains poorly understood whether CRF or adiposity accounts for a greater amount of variation in measures of brain health. We examined the contribution of CRF, adiposity, and their interaction with hippocampal structure. This study included 124 sedentary adults (M = 44.34) with overweight/obesity (Body Mass Index mean = 32.43). FMRIB's Integrated Registration and Segmentation Tool was used to segment the hippocampus. Using hierarchical regression, we examined whether CRF, assessed via a submaximal graded exercise test, or adiposity, assessed as percent body fat using dual-energy x-ray absorptiometry (DXA) was associated with left and right hippocampal volume. Vertex-wise shape analysis was performed to examine regional shape differences associated with CRF and adiposity. Higher CRF was significantly associated with greater left hippocampal volume (p = .031), with outward shape differences along the surface of the subiculum and CA1 regions. Adiposity was not associated with left or right hippocampal volume or shape. The interaction between adiposity and CRF was not significant. Neither CRF nor adiposity were associated with thalamus or caudate nucleus volumes or shapes, two control regions. Higher CRF, but not adiposity, was related to greater left hippocampal volume, with outward shape differences along the surface of the subiculum and CA1 regions in a midlife sample with overweight/obesity. These findings indicate that, within the context of obesity, CRF is an important contributor to hippocampal structure, highlighting the importance of interventions targeting CRF.
Collapse
Affiliation(s)
- Sarah L Aghjayan
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - John M Jakicic
- Department of Health and Physical Activity, Physical Activity and Weight Management Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renee J Rogers
- Department of Health and Physical Activity, Physical Activity and Weight Management Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health through physical activity" Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.,Department of Psychology, Center for Cognitive and Brain Health, Northeastern University, Boston, MA, USA
| | - Jamie C Peven
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jennifer C Watt
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.,Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|