1
|
Steady-state voltammetric characterization and simulation-aided study of the mass transfer enhancement at conical W/WO2 ultramicroelectrodes. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Lee D, Chan SSY, Aksic N, Bajalovic N, Loke DK. Ultralong-Time Recovery and Low-Voltage Electroporation for Biological Cell Monitoring Enabled by a Microsized Multipulse Framework. ACS OMEGA 2021; 6:35325-35333. [PMID: 34984264 PMCID: PMC8717367 DOI: 10.1021/acsomega.1c04257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 05/05/2023]
Abstract
Long-term nondestructive monitoring of cells is of significant importance for understanding cell proliferation, cell signaling, cell death, and other processes. However, traditional monitoring methods are limited to a certain range of testing conditions and may reduce cell viability. Here, we present a microgap, multishot electroporation (M2E) system for monitoring cell recovery for up to ∼2 h using ∼5 V pulses and with excellent cell viability using a medium cell population. Electric field simulations reveal the bias-voltage- and gap-size-dependent electric field intensities in the M2E system. In addition to excellent transparency with low cell toxicity, the M2E system does not require specialized components, expensive materials, complicated fabrication processes, or cell manipulations; it just consists of a micrometer-sized pattern and a low-voltage square-wave generator. Ultimately, the M2E system can offer a long-term and nontoxic method of cell monitoring.
Collapse
Affiliation(s)
- Denise Lee
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Sophia S. Y. Chan
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Nemanja Aksic
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Natasa Bajalovic
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Desmond K. Loke
- Department
of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
- Office
of Innovation, Changi General Hospital, Singapore 529889, Singapore
| |
Collapse
|
3
|
Wu Y, Fu A, Yossifon G. Micromotor-based localized electroporation and gene transfection of mammalian cells. Proc Natl Acad Sci U S A 2021; 118:e2106353118. [PMID: 34531322 PMCID: PMC8463876 DOI: 10.1073/pnas.2106353118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 11/18/2022] Open
Abstract
Herein, we studied localized electroporation and gene transfection of mammalian cells using a metallodielectric hybrid micromotor that is magnetically and electrically powered. Much like nanochannel-based, local electroporation of single cells, the presented micromotor was expected to increase reversible electroporation yield, relative to standard electroporation, as only a small portion of the cell's membrane (in contact with the micromotor) is affected. In contrast to methods in which the entire membrane of all cells within the sample are electroporated, the presented micromotor can perform, via magnetic steering, localized, spatially precise electroporation of the target cells that it traps and transports. In order to minimize nonselective electrical lysis of all cells within the chamber, resulting from extended exposure to an electrical field, magnetic propulsion was used to approach the immediate vicinity of the targeted cell, after which short-duration, electric-driven propulsion was activated to enable contact with the cell, followed by electroporation. In addition to local injection of fluorescent dye molecules, we demonstrated that the micromotor can enhance the introduction of plasmids into the suspension cells because of the dielectrophoretic accumulation of the plasmids in between the Janus particle and the attached cell prior to the electroporation step. Here, we chose a different strategy involving the simultaneous operation of many micromotors that are self-propelling, without external steering, and pair with cells in an autonomic manner. The locally electroporated suspension cells that are considered to be very difficult to transfect were shown to express the transfected gene, which is of significant importance for molecular biology research.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Mechanical Engineering, Micro-, and Nanofluidics Laboratory, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Afu Fu
- Technion Rappaport Integrated Cancer Center, the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro-, and Nanofluidics Laboratory, Technion - Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
4
|
Ma C, Wu S, Zhou Y, Wei H, Zhang J, Chen Z, Zhu J, Lin Y, Zhu W. Bio‐Coreactant‐Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Hui‐Fang Wei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jun‐Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| |
Collapse
|
5
|
Ma C, Wu S, Zhou Y, Wei HF, Zhang J, Chen Z, Zhu JJ, Lin Y, Zhu W. Bio-Coreactant-Enhanced Electrochemiluminescence Microscopy of Intracellular Structure and Transport. Angew Chem Int Ed Engl 2021; 60:4907-4914. [PMID: 33188721 DOI: 10.1002/anie.202012171] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Indexed: 12/14/2022]
Abstract
A bio-coreactant-enhanced electrochemiluminescence (ECL) microscopy realizes the ECL imaging of intracellular structure and dynamic transport. This microscopy uses Ru(bpy)3 2+ as the electrochemical molecular antenna connecting extracellular and intracellular environments, and uses intracellular biomolecules as the coreactants of ECL reactions via a "catalytic route". Accordingly, intracellular structures are identified without using multiple labels, and autophagy involving DNA oxidative damage is detected using nuclear ECL signals. A time-resolved image sequence discloses the universal edge effect of cellular electroporation due to the influence of the geometric properties of cell membranes on the induced transmembrane voltage. The dynamic transport of Ru(bpy)3 3+ in the different cellular compartments unveils the heterogeneous intracellular diffusivity correlating with the actin cytoskeleton. In addition to single-cell studies, the bio-coreactant-enhanced ECL microscopy is used to image a slice of a mouse liver and a colony of Shewanella oneidensis MR-1.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shaojun Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yang Zhou
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Hui-Fang Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jianrong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Wenlei Zhu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
6
|
Ultrathin glass fiber microprobe for electroporation of arbitrary selected cell groups. Bioelectrochemistry 2020; 135:107545. [PMID: 32446151 DOI: 10.1016/j.bioelechem.2020.107545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
A new type of ultrathin fiber microprobe for selective electroporation is reported. The microprobe is 10 cm long and has a diameter of 350 µm. This microprobe is a low cost tool, which allows electroporation of an arbitrary selected single cell or groups of cells among population with use of a standard microscope and cell culture plates. The microprobe in its basic form contains two metal microelectrodes made of a silver-copper alloy, running along the fiber, each with a diameter of 23 µm. The probe was tested in vitro on a population of normal and cancer cells. Successful targeted electroporation was observed by means of accumulation of trypan blue (TB) dye marker in the cell. The electroporation phenomenon was also verified with propidium iodide and AnnexinV in fluorescent microscopy.
Collapse
|
7
|
Wu Y, Fu A, Yossifon G. Active particles as mobile microelectrodes for selective bacteria electroporation and transport. SCIENCE ADVANCES 2020; 6:eaay4412. [PMID: 32064350 PMCID: PMC6989140 DOI: 10.1126/sciadv.aay4412] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/22/2019] [Indexed: 05/16/2023]
Abstract
Self-propelling micromotors are emerging as a promising micro- and nanoscale tool for single-cell analysis. We have recently shown that the field gradients necessary to manipulate matter via dielectrophoresis can be induced at the surface of a polarizable active ("self-propelling") metallodielectric Janus particle (JP) under an externally applied electric field, acting essentially as a mobile floating microelectrode. Here, we successfully demonstrated that the application of an external electric field can singularly trap and transport bacteria and can selectively electroporate the trapped bacteria. Selective electroporation, enabled by the local intensification of the electric field induced by the JP, was obtained under both continuous alternating current and pulsed signal conditions. This approach is generic and applicable to bacteria and JP, as well as a wide range of cell types and micromotor designs. Hence, it constitutes an important and novel experimental tool for single-cell analysis and targeted delivery.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Afu Fu
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine and Research Institute, Technion–Israel Institute of Technology, Haifa 3109602, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion–Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
8
|
Shinde P, Mohan L, Kumar A, Dey K, Maddi A, Patananan AN, Tseng FG, Chang HY, Nagai M, Santra TS. Current Trends of Microfluidic Single-Cell Technologies. Int J Mol Sci 2018; 19:E3143. [PMID: 30322072 PMCID: PMC6213733 DOI: 10.3390/ijms19103143] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
The investigation of human disease mechanisms is difficult due to the heterogeneity in gene expression and the physiological state of cells in a given population. In comparison to bulk cell measurements, single-cell measurement technologies can provide a better understanding of the interactions among molecules, organelles, cells, and the microenvironment, which can aid in the development of therapeutics and diagnostic tools. In recent years, single-cell technologies have become increasingly robust and accessible, although limitations exist. In this review, we describe the recent advances in single-cell technologies and their applications in single-cell manipulation, diagnosis, and therapeutics development.
Collapse
Affiliation(s)
- Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Loganathan Mohan
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Amogh Kumar
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Koyel Dey
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Anjali Maddi
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| | - Alexander N Patananan
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Hwan-You Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu City 30071, Taiwan.
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan.
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India.
| |
Collapse
|
9
|
Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods – An overview. Bioelectrochemistry 2018; 120:166-182. [DOI: 10.1016/j.bioelechem.2017.12.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
|
10
|
Yang Y, Huang Y, Wu J, Liu N, Deng J, Luan T. Single-cell analysis by ambient mass spectrometry. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Chang L, Li L, Shi J, Sheng Y, Lu W, Gallego-Perez D, Lee LJ. Micro-/nanoscale electroporation. LAB ON A CHIP 2016; 16:4047-4062. [PMID: 27713986 DOI: 10.1039/c6lc00840b] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electroporation has been one of the most popular non-viral technologies for cell transfection. However, conventional bulk electroporation (BEP) shows significant limitations in efficiency, cell viability and transfection uniformity. Recent advances in microscale-electroporation (MEP) resulted in improved cell viability. Further miniaturization of the electroporation system (i.e., nanoscale) has brought up many unique advantages, including negligible cell damage and dosage control capabilities with single-cell resolution, which has enabled more translational applications. In this review, we give an insight into the fundamental and technical aspects of micro- and nanoscale/nanochannel electroporation (NEP) and go over several examples of MEP/NEP-based cutting-edge research, including gene editing, adoptive immunotherapy, and cellular reprogramming. The challenges and opportunities of advanced electroporation technologies are also discussed.
Collapse
Affiliation(s)
- Lingqian Chang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Lei Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Junfeng Shi
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Sheng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43209, USA
| | - Wu Lu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43209, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA. and Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Ly James Lee
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA. and Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA and William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43209, USA
| |
Collapse
|
12
|
Casciola M, Bonhenry D, Liberti M, Apollonio F, Tarek M. A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols. Bioelectrochemistry 2014; 100:11-7. [DOI: 10.1016/j.bioelechem.2014.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 03/20/2014] [Accepted: 03/20/2014] [Indexed: 01/25/2023]
|
13
|
Santra TS, Chang HY, Wang PC, Tseng FG. Impact of pulse duration on localized single-cell nano-electroporation. Analyst 2014; 139:6249-58. [PMID: 25320952 DOI: 10.1039/c4an01050g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We introduce a localized single-cell membrane nano-electroporation with controllable sequential molecular delivery by millisecond to nanosecond electrical pulses. An intense electrical field was generated by a pair of transparent indium tin oxide (ITO)-based nano-electrodes, which was confined to a narrow region of the single-cell membrane surface near the nano-electrode edges (approximately 2 μm × 50 nm area), whereas the remaining area of the membrane was unaffected. Moreover, a 250 nm SiO2 passivation layer on top of the nano-electrode reduced not only the thermal effect on the cell membrane surface, but it also avoided the generation of ions during the experiment, resulting in the reduction of cell toxicity and a significant enhancement of cell viability. Our approach precisely delivers dyes, Quantum Dots (QDs) and plasmids, through a localized region of single HeLa cells by considerably enhanced electrophoresis and diffusion effects with different duration of the pulsing process. The smaller molecules took less time to deliver into a single cell with a single pulse, whereas larger biomolecules took longer time even for multiple numbers of long lasting pulses. The system not only generates sequential well-controlled nano-pores allowing for the rapid recovery of cell membranes, but it also provides spatial, temporal and qualitative dosage control to deliver biomolecules into localized single-cell levels, which can be potentially beneficial for single cell studies and therapeutic applications.
Collapse
Affiliation(s)
- Tuhin Subhra Santra
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Taiwan.
| | | | | | | |
Collapse
|
14
|
Cox JT, Gunderson CG, Zhang B. Redox-filled Carbon-Fiber Microelectrodes for Single-Cell Exocytosis. ELECTROANAL 2014; 25:2151-2158. [PMID: 24833889 DOI: 10.1002/elan.201300255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Carbon-fiber microelectrodes (CFEs) are the primary electroanalytical tool in single-cell exocytosis and in-vivo studies. Here we report a new study on the kinetic properties of electrolyte-filled CFEs in single-cell measurements and demonstrate that the addition of outer sphere redox species, such as Fe(CN)63- and Ru(NH3)63+, in the backfill electrolyte solution can greatly enhance the kinetic response of CFEs. We show that at 750 mV, a voltage normally applied for detection of dopamine, the presence of fast outer sphere redox species in the backfilling solution significantly enhances the kinetic response of CFEs toward fast dopamine detection at single PC12 cells. Moreover, we also demonstrate that the use of Fe(CN)63- in the backfilling solution has enabled direct measurement of dopamine at applied voltages as low as 200 mV. This kinetic enhancement is believed to be due to faster electron-transfer kinetics on the coupling pole as compared to the sluggish reduction of oxygen. We anticipate that such redox-filled CFE ultramicroelectrodes will find many useful applications in single cell exocytosis and in-vivo sensing.
Collapse
Affiliation(s)
- Jonathan T Cox
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700 USA
| | | | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700 USA
| |
Collapse
|
15
|
Optimization of single-cell electroporation protocol for forced gene expression in primary neuronal cultures. Mol Biotechnol 2014; 56:824-32. [PMID: 24794046 DOI: 10.1007/s12033-014-9761-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The development and function of the central nervous system (CNS) are realized through interactions between many neurons. To investigate cellular and molecular mechanisms of the development and function of the CNS, it is thus crucial to be able to manipulate the gene expression of single neurons in a complex cell population. We recently developed a technique for gene silencing by introducing small interfering RNA into single neurons in primary CNS cultures using single-cell electroporation. However, we had not succeeded in forced gene expression by introducing expression plasmids using single-cell electroporation. In the present study, we optimized the experimental conditions to enable the forced expression of green fluorescent protein (GFP) in cultured cerebellar Purkinje neurons using single-cell electroporation. We succeeded in strong GFP expression in Purkinje neurons by increasing the inside diameter of micropipettes or by making the size of the original plasmid smaller by digestion and cyclizing it by ligation. Strong GFP expression in Purkinje neurons electroporated under the optimal conditions continued to be observed for more than 25 days after electroporation. Thus, this technique could be used for forced gene expression in single neurons to investigate cellular and molecular mechanisms of the development, function, and disease of the CNS.
Collapse
|
16
|
Lewis KJ, Masterman B, Laffafian I, Dewitt S, Campbell JS, Hallett MB. Minimal impact electro-injection of cells undergoing dynamic shape change reveals calpain activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1182-7. [PMID: 24607452 DOI: 10.1016/j.bbamcr.2014.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/09/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
The ability of neutrophils to rapidly change shape underlies their physiological functions of phagocytosis and spreading. A major problem in establishing the mechanism is that conventional microinjection of substances and indicators interferes with this dynamic cell behaviour. Here we show that electroinjection, a "no-touch" point-and-shoot means of introducing material into the cell, is sufficiently gentle to allow neutrophils to be injected whilst undergoing chemokinesis and spreading without disturbing cell shape change behaviour. Using this approach, a fluorogenic calpain-1 selective peptide substrate was introduced into the cytosol of individual neutrophils undergoing shape changes. These data showed that (i) physiologically elevated cytosolic Ca(2+) concentrations were sufficient to trigger calpain-1 activation, blockade of Ca(2+) influx preventing calpain activation and (ii) calpain-1 activity was elevated in spreading neutrophil. These findings provide the first direct demonstration of a physiological role for Ca(2+) elevation in calpain-1 activation and rapid cell spreading. Electroinjection of cells undergoing dynamic shape changes thus opens new avenues of investigation for defining the molecular mechanism underlying dynamic cell shape changes.
Collapse
Affiliation(s)
- Kimberley J Lewis
- Neutrophil Signalling Group, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff University, Cardiff CF14 4XN, UK
| | - Benjamin Masterman
- Neutrophil Signalling Group, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff University, Cardiff CF14 4XN, UK
| | - Iraj Laffafian
- Neutrophil Signalling Group, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff University, Cardiff CF14 4XN, UK
| | - Sharon Dewitt
- School of Dentistry, Cardiff University, Heath Park, Cardiff University, Cardiff CF14 4XN, UK
| | - Jennie S Campbell
- Neutrophil Signalling Group, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff University, Cardiff CF14 4XN, UK
| | - Maurice B Hallett
- Neutrophil Signalling Group, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff University, Cardiff CF14 4XN, UK.
| |
Collapse
|
17
|
|
18
|
Oyama K, Ohara S, Sato S, Karube F, Fujiyama F, Isomura Y, Mushiake H, Iijima T, Tsutsui KI. Long-lasting single-neuron labeling by in vivo electroporation without microscopic guidance. J Neurosci Methods 2013; 218:139-47. [PMID: 23769867 DOI: 10.1016/j.jneumeth.2013.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 11/17/2022]
Abstract
In order to make a direct link between the morphological and functional study of the nervous system, we established an experimental protocol for labeling individual neurons persistently without microscopic guidance by injecting a plasmid encoding fluorescent protein electroporatively after recording their activity extracellularly. Using a glass pipette filled with electrolyte solution containing a plasmid encoding green fluorescent protein (GFP), single-neuron recording and electroporation were performed on anesthetized rats. When performing the electroporation at the completion of recording, the degree of contact between the target neuron and the electrode tip was adjusted by monitoring the change of the trace of recorded action potentials and the increase of electrode resistance. The expression of GFP and its immunostaining with a polyclonal antibody enabled us to clearly see the basic structural components such as cell bodies, axons, dendrites, and even smaller components such as spines. Identification of the morphological subtypes of neurons was possible with every labeled neuron. The optimum condition for labeling was a 30% increase of the electrode resistance, and the labeling success rate evaluated 3 days after labeling was 40%. The rate evaluated one month after labeling was only slightly lower (33%). We also confirmed experimentally that this recording and labeling procedure can be similarly successful in head-fixed behaving rats. This new experimental protocol will be a breakthrough in systems neuroscience because it makes a direct link between the morphology and behavior-related activity of single neurons.
Collapse
Affiliation(s)
- Kei Oyama
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kang W, Yavari F, Minary-Jolandan M, Giraldo-Vela JP, Safi A, McNaughton RL, Parpoil V, Espinosa HD. Nanofountain probe electroporation (NFP-E) of single cells. NANO LETTERS 2013; 13:2448-57. [PMID: 23650871 PMCID: PMC3736975 DOI: 10.1021/nl400423c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The ability to precisely deliver molecules into single cells is of great interest to biotechnology researchers for advancing applications in therapeutics, diagnostics, and drug delivery toward the promise of personalized medicine. The use of bulk electroporation techniques for cell transfection has increased significantly in the past decade, but the technique is nonspecific and requires high voltage, resulting in variable efficiency and low cell viability. We have developed a new tool for electroporation using nanofountain probe (NFP) technology, which can deliver molecules into cells in a manner that is highly efficient and gentler to cells than bulk electroporation or microinjection. Here we demonstrate NFP electroporation (NFP-E) of single HeLa cells within a population by transfecting them with fluorescently labeled dextran and imaging the cells to evaluate the transfection efficiency and cell viability. Our theoretical analysis of the mechanism of NFP-E reveals that application of the voltage creates a localized electric field between the NFP cantilever tip and the region of the cell membrane in contact with the tip. Therefore, NFP-E can deliver molecules to a target cell with minimal effect of the electric potential on the cell. Our experiments on HeLa cells confirm that NFP-E offers single cell selectivity, high transfection efficiency (>95%), qualitative dosage control, and very high viability (92%) of transfected cells.
Collapse
Affiliation(s)
- Wonmo Kang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- iNfinitesimal LLC, Winnetka, IL 60093, USA
| | - Fazel Yavari
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Majid Minary-Jolandan
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | | | - Asmahan Safi
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Rebecca L. McNaughton
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- iNfinitesimal LLC, Winnetka, IL 60093, USA
| | | | - Horacio D. Espinosa
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Corresponding author: , Phone: 847-467-5989; Fax: 847-491-3915
| |
Collapse
|
20
|
Daniel J, Polder HR, Lessmann V, Brigadski T. Single-cell juxtacellular transfection and recording technique. Pflugers Arch 2013; 465:1637-49. [PMID: 23748581 DOI: 10.1007/s00424-013-1304-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 05/17/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
Genetic modifications and pharmacological studies enable the analysis of protein function in living cells. While many of these studies investigate the effect of proteins by bulk administration or withdrawal of the protein in complex cellular networks, understanding the more subtle mechanisms of protein function requires fine-tuned changes on a single-cell level without affecting the balance of the system. In order to analyse the consequences of protein modification at the single-cell level, we have developed a single-cell transfection method in the loose patch configuration, which allows juxtacellular recordings of neuronal cells prior to juxtacellular transfection. CA1 pyramidal neurons were selected based on morphological and electrophysiological criteria. Using a patch clamp amplifier which allows sensitive recordings of action currents in the loose seal mode as well as electroporation with high-voltage electrical stimulation the identified neurons were transfected with a combination of specific nucleotides, e.g. siRNA and a plasmid coding for GFP for later cell retrieval. Two days after transfection, whole-cell patch clamp recordings of transfected cells were performed to analyse electrophysiological properties. Action potential firing and synaptic transmission of single electroporated CA1 pyramidal cells were comparable to untransfected cells. Our study presents a method which enables identification of neurons by juxtacellular recording prior to single-cell juxtacellular transfection, allowing subsequent analysis of morphological and electrophysiological parameters several days after the genetic modification.
Collapse
Affiliation(s)
- Julia Daniel
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | | | | | | |
Collapse
|
21
|
Delivery of molecules into cells using localized single cell electroporation on ITO micro-electrode based transparent chip. Biomed Microdevices 2013; 14:811-7. [PMID: 22674171 DOI: 10.1007/s10544-012-9660-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Single cell electroporation is one of the nonviral method which successfully allows transfection of exogenous macromolecules into individual living cell. We present localized cell membrane electroporation at single-cell level by using indium tin oxide (ITO) based transparent micro-electrodes chip with inverted microscope. A focused ion beam (FIB) technique has been successfully deployed to fabricate transparent ITO micro-electrodes with submicron gaps, which can generate more intense electric field to produce very localized cell membrane electroporation. In our approach, we have successfully achieved 0.93 μm or smaller electroporation region on the cell surface to inject PI (Propidium Iodide) dye into the cell with 60 % cell viability. This experiments successfully demonstrate the cell self-recover process from the injected PI dye intensity variation. Our localized cell membrane electroporation technique (LSCMEP) not only generates reversible electroporation process but also it provides a clear optical path for potentially monitoring/tracking of drugs to deliver in single cell level.
Collapse
|
22
|
Jokilaakso N, Salm E, Chen A, Millet L, Guevara CD, Dorvel B, Reddy B, Karlstrom AE, Chen Y, Ji H, Chen Y, Sooryakumar R, Bashir R. Ultra-localized single cell electroporation using silicon nanowires. LAB ON A CHIP 2013. [PMID: 23179093 PMCID: PMC3535553 DOI: 10.1039/c2lc40837f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Analysis of cell-to-cell variation can further the understanding of intracellular processes and the role of individual cell function within a larger cell population. The ability to precisely lyse single cells can be used to release cellular components to resolve cellular heterogeneity that might be obscured when whole populations are examined. We report a method to position and lyse individual cells on silicon nanowire and nanoribbon biological field effect transistors. In this study, HT-29 cancer cells were positioned on top of transistors by manipulating magnetic beads using external magnetic fields. Ultra-rapid cell lysis was subsequently performed by applying 600-900 mV(pp) at 10 MHz for as little as 2 ms across the transistor channel and the bulk substrate. We show that the fringing electric field at the device surface disrupts the cell membrane, leading to lysis from irreversible electroporation. This methodology allows rapid and simple single cell lysis and analysis with potential applications in medical diagnostics, proteome analysis and developmental biology studies.
Collapse
Affiliation(s)
- Nima Jokilaakso
- Division of Molecular Biotechnology, Royal Institute of Technology (KTH), Stockholm 106 91, Sweden
| | - Eric Salm
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
| | - Aaron Chen
- Department of Physics, Ohio State University, Columbus 43210, OHIO, USA
| | - Larry Millet
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
| | - Carlos Duarte Guevara
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
| | - Brian Dorvel
- Department of Biophysics, University of Illinois Urbana-Champaign Urbana 61801, ILLINOIS, USA
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
| | - Bobby Reddy
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
| | | | - Yu Chen
- Institute of Microelectronics, Singapore. A*STAR (Agency for Science, Technology and Research), Singapore 117685, Singapore
| | - Hongmiao Ji
- Institute of Microelectronics, Singapore. A*STAR (Agency for Science, Technology and Research), Singapore 117685, Singapore
| | - Yu Chen
- Institute of Microelectronics, Singapore. A*STAR (Agency for Science, Technology and Research), Singapore 117685, Singapore
| | | | - Rashid Bashir
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
- Micro and Nanotechnology Lab, University of Illinois Urbana-Champaign, Urbana 61801, ILLINOIS, USA
- Fax: 217-244-6375 Tel: 217-333-3097
| |
Collapse
|
23
|
Wang S, Lee LJ. Micro-/nanofluidics based cell electroporation. BIOMICROFLUIDICS 2013; 7:11301. [PMID: 23405056 PMCID: PMC3555966 DOI: 10.1063/1.4774071] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/04/2012] [Indexed: 05/04/2023]
Abstract
Non-viral gene delivery has been extensively explored as the replacement for viral systems. Among various non-viral approaches, electroporation has gained increasing attention because of its easy operation and no restrictions on probe or cell type. Several effective systems are now available on the market with reasonably good gene delivery performance. To facilitate broader biological and medical applications, micro-/nanofluidics based technologies were introduced in cell electroporation during the past two decades and their advances are summarized in this perspective. Compared to the commercially available bulk electroporation systems, they offer several advantages, namely, (1) sufficiently high pulse strength generated by a very low potential difference, (2) conveniently concentrating, trapping, and regulating the position and concentration of cells and probes, (3) real-time monitoring the intracellular trafficking at single cell level, and (4) flexibility on cells to be transfected (from single cell to large scale cell population). Some of the micro-devices focus on cell lysis or fusion as well as the analysis of cellular properties or intracellular contents, while others are designed for gene transfection. The uptake of small molecules (e.g., dyes), DNA plasmids, interfering RNAs, and nanoparticles has been broadly examined on different types of mammalian cells, yeast, and bacteria. A great deal of progress has been made with a variety of new micro-/nanofluidic designs to address challenges such as electrochemical reactions including water electrolysis, gas bubble formation, waste of expensive reagents, poor cell viability, low transfection efficacy, higher throughput, and control of transfection dosage and uniformity. Future research needs required to advance micro-/nanofluidics based cell electroporation for broad life science and medical applications are discussed.
Collapse
Affiliation(s)
- Shengnian Wang
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71272, USA and Chemical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272, USA
| | | |
Collapse
|
24
|
Ainla A, Xu S, Sanchez N, Jeffries GDM, Jesorka A. Single-cell electroporation using a multifunctional pipette. LAB ON A CHIP 2012; 12:4605-9. [PMID: 22810424 PMCID: PMC3805499 DOI: 10.1039/c2lc40563f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present here a novel platform combination, using a multifunctional pipette to individually electroporate single-cells and to locally deliver an analyte, while in their culture environment. We demonstrate a method to fabricate low-resistance metallic electrodes into a PDMS pipette, followed by characterization of its effectiveness, benefits and limits in comparison with an external carbon microelectrode.
Collapse
Affiliation(s)
- Alar Ainla
- Department of Chemical and Biological Engineering, Chalmers University of Technology, S-41296 Göteborg, Sweden
| | | | | | | | | |
Collapse
|
25
|
Homhuan S, Zhang B, Sheu FS, Bettiol AA, Watt F. Single-cell electroporation using proton beam fabricated biochips. Biomed Microdevices 2012; 14:533-40. [PMID: 22327811 DOI: 10.1007/s10544-012-9630-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We report the design and fabrication of a novel single cell electroporation biochip featuring high aspect ratio nickel micro-electrodes with smooth side walls between which individual cells are attached. The biochip is fabricated using Proton Beam Writing (PBW), a new direct write lithographic technique capable of fabricating high quality high-aspect-ratio nano and microstructures. By applying electrical impulses across the biochip electrodes, SYTOX® Green nucleic acid stain is incorporated into mouse neuroblastoma (N2a) cells and observed via green fluorescence when the stain binds with DNA inside the cell nucleus. Three parameters; electric field strength, pulse duration, and numbers of pulses have been investigated for the single cell electroporation process. The results indicate high transfection rates as well as cell viability of 82.1 and 86.7% respectively. This single cell electroporation system may represent a promising method for the introduction of a wide variety of fluorophores, nanoparticles, quantum dots, DNAs and proteins into cells.
Collapse
Affiliation(s)
- S Homhuan
- Prince of Songkla University, Department of Physics, Hat Yai, Songkhla 90112, Thailand.
| | | | | | | | | |
Collapse
|
26
|
Tanaka M. Single-Cell Electroporation of siRNA in Primary Neuronal Cultures. CONTROLLED GENETIC MANIPULATIONS 2012. [DOI: 10.1007/978-1-61779-533-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Abstract
Electroporation is a powerful technique to increase the permeability of cell membranes and subsequently introduce foreign materials into cells. Pores are created in the cell membrane upon application of an electric field (kV/cm). Most applications employ bulk electroporation, at the scale of 1 mL of cells (ca. one million cells). However, recent progresses have shown the interest to miniaturize the technique to a single cell. Single cell electroporation is achieved either using microelectrodes which are placed in close vicinity to one cell, or in a microfluidic format. We focus here on this second approach, where individual cells are trapped in micrometer-size structures within a microchip, exposed in situ to a high electric field and loaded with either a dye (proof-of-principle experiments) or a plasmid. Specifically, we present one device that includes an array of independent electroporation sites for customized and successive poration of nine cells. The different steps of the single cell electroporation protocol are detailed including cell sample preparation, cell trapping, actual cell poration and on-chip detection of pore formation. Electroporation is illustrated here with the transport of dyes through the plasma membrane, the transfection of cells with GFP-encoding plasmids, and the study of the ERK1 signaling pathway using a GFP-ERK1 protein construct expressed by the cells after their transfection with the corresponding plasmid. This last example highlights the power of microfluidics with the implementation of various steps of a process (cell poration, culture, imaging) performed at the single cell level, on a single device.
Collapse
Affiliation(s)
- Séverine Le Gac
- BIOS the Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.
| | | |
Collapse
|
28
|
Jesorka A, Stepanyants N, Zhang H, Ortmen B, Hakonen B, Orwar O. Generation of phospholipid vesicle-nanotube networks and transport of molecules therein. Nat Protoc 2011; 6:791-805. [PMID: 21637199 DOI: 10.1038/nprot.2011.321] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe micromanipulation and microinjection procedures for the fabrication of soft-matter networks consisting of lipid bilayer nanotubes and surface-immobilized vesicles. These biomimetic membrane systems feature unique structural flexibility and expandability and, unlike solid-state microfluidic and nanofluidic devices prepared by top-down fabrication, they allow network designs with dynamic control over individual containers and interconnecting conduits. The fabrication is founded on self-assembly of phospholipid molecules, followed by micromanipulation operations, such as membrane electroporation and microinjection, to effect shape transformations of the membrane and create a series of interconnected compartments. Size and geometry of the network can be chosen according to its desired function. Membrane composition is controlled mainly during the self-assembly step, whereas the interior contents of individual containers is defined through a sequence of microneedle injections. Networks cannot be fabricated with other currently available methods of giant unilamellar vesicle preparation (large unilamellar vesicle fusion or electroformation). Described in detail are also three transport modes, which are suitable for moving water-soluble or membrane-bound small molecules, polymers, DNA, proteins and nanoparticles within the networks. The fabrication protocol requires ∼90 min, provided all necessary preparations are made in advance. The transport studies require an additional 60-120 min, depending on the transport regime.
Collapse
Affiliation(s)
- Aldo Jesorka
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
29
|
Tanaka M, Asaoka M, Yanagawa Y, Hirashima N. Long-term gene-silencing effects of siRNA introduced by single-cell electroporation into postmitotic CNS neurons. Neurochem Res 2011; 36:1482-9. [PMID: 21509509 DOI: 10.1007/s11064-011-0474-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2011] [Indexed: 12/16/2022]
Abstract
To explore how long the gene-silencing effects of siRNA introduced into postmitotic neurons continue, we transferred siRNA against GFP into GFP-expressing Purkinje and Golgi cells in cerebellar cell cultures by single-cell electroporation. The temporal changes in the intensity of GFP fluorescence in the same electroporated cells were monitored in real time using GFP imaging. Under standard conditions, GFP fluorescence was reduced to under one-tenth of the initial levels 4-7 days after electroporation. Such effects continued at least up to 14 days after electroporation. The effects of siRNAs against endogenous genes also continued for the same period. Thus, this method could be an effective tool for silencing gene expression for a long period in postmitotic neurons.
Collapse
Affiliation(s)
- Masahiko Tanaka
- Department of Cellular Biophysics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan.
| | | | | | | |
Collapse
|
30
|
Abstract
Extraordinary advances in lab on a chip systems have been made on the basis of the development of micro/nanofluidics and its fusion with other technologies based on electrokinetics and optics. Optoelectrofluidic technology, which has been recently introduced as a new manipulation scheme, allows programmable manipulation of particles or fluids in microenvironments based on optically induced electrokinetics. Herein, the behaviour of particles or fluids can be controlled by inducing or perturbing electric fields on demand in an optical manner, which includes photochemical, photoconductive, and photothermal effects. This elegant scheme of the optoelectrofluidic platform has attracted attention in various fields of science and engineering. A lot of research on optoelectrofluidic manipulation technologies has been reported and the field has advanced rapidly, although some technical hurdles still remain. This review describes recent developments and future perspectives of optoelectrofluidic platforms for chemical and biological applications.
Collapse
Affiliation(s)
- Hyundoo Hwang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
31
|
Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophys J 2010; 98:2506-14. [PMID: 20513394 DOI: 10.1016/j.bpj.2010.02.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/22/2010] [Accepted: 02/12/2010] [Indexed: 01/04/2023] Open
Abstract
Conventional electroporation (EP) changes both the conductance and molecular permeability of the plasma membrane (PM) of cells and is a standard method for delivering both biologically active and probe molecules of a wide range of sizes into cells. However, the underlying mechanisms at the molecular and cellular levels remain controversial. Here we introduce a mathematical cell model that contains representative organelles (nucleus, endoplasmic reticulum, mitochondria) and includes a dynamic EP model, which describes formation, expansion, contraction, and destruction for the plasma and all organelle membranes. We show that conventional EP provides transient electrical pathways into the cell, sufficient to create significant intracellular fields. This emerging intracellular electrical field is a secondary effect due to EP and can cause transmembrane voltages at the organelles, which are large enough and long enough to gate organelle channels, and even sufficient, at some field strengths, for the poration of organelle membranes. This suggests an alternative to nanosecond pulsed electric fields for intracellular manipulations.
Collapse
|
32
|
Wang M, Orwar O, Olofsson J, Weber SG. Single-cell electroporation. Anal Bioanal Chem 2010; 397:3235-48. [PMID: 20496058 DOI: 10.1007/s00216-010-3744-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 11/24/2022]
Abstract
Single-cell electroporation (SCEP) is a relatively new technique that has emerged in the last decade or so for single-cell studies. When a large enough electric field is applied to a single cell, transient nano-pores form in the cell membrane allowing molecules to be transported into and out of the cell. Unlike bulk electroporation, in which a homogenous electric field is applied to a suspension of cells, in SCEP an electric field is created locally near a single cell. Today, single-cell-level studies are at the frontier of biochemical research, and SCEP is a promising tool in such studies. In this review, we discuss pore formation based on theoretical and experimental approaches. Current SCEP techniques using microelectrodes, micropipettes, electrolyte-filled capillaries, and microfabricated devices are all thoroughly discussed for adherent and suspended cells. SCEP has been applied in in-vivo and in-vitro studies for delivery of cell-impermeant molecules such as drugs, DNA, and siRNA, and for morphological observations.
Collapse
Affiliation(s)
- Manyan Wang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
33
|
|
34
|
Ron A, Fishelson N, Croitoru N, Shur I, Benayahu D, Shacham-Diamand Y. Examination of the induced potential gradients across inner and outer cellular interfaces in a realistic 3D cytoplasmic-embedded mitochondrion model. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2009.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Agarwal A, Wang M, Olofsson J, Orwar O, Weber SG. Control of the release of freely diffusing molecules in single-cell electroporation. Anal Chem 2009; 81:8001-8. [PMID: 19731948 PMCID: PMC2938737 DOI: 10.1021/ac9010292] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-cell electroporation using an electrolyte-filled capillary is an emerging technique for transient pore formation in adherent cells. Because adherent cells do not have a simple and consistent shape and because the electric field emanating from the tip of the capillary is inhomogeneous, the Schwan equation based on spherical cells in homogeneous electrical fields does not apply. We sought to determine experimental and cell parameters that influence the outcome of a single-cell electroporation experiment. A549 cells were exposed to the thiol-reactive dye Thioglo-1, leading to green fluorescence from intracellular thiol adducts. Electroporation causes a decrease with time of the intracellular fluorescence intensity of Thioglo-1-loaded cells from diffusive loss of thiol adducts. The transient curves thus obtained are well-described by a simple model originally developed by Puc et al. We find that the final fluorescence following electroporation is related to the capillary tip-to-cell distance and cell size (specifically, 2(A/pi)(1/2) where A is the area of the cell's image in pixels. This quantity is the diameter if the image is a circle). In separate experiments, the relationship obtained can be used to control the final fluorescence following electroporation by adjusting the tip-to-cell distance based on cell size. The relationship was applied successfully to A549 as well as DU 145 and PC-3 cells. Finally, F-tests show that the variability in the final fluorescence (following electroporation) is decreased when the tip-to-cell distance is controlled according to the derived relationship in comparison to experiments in which the tip-cell distance is a constant irrespective of cell size.
Collapse
Affiliation(s)
| | | | | | | | - Stephen G. Weber
- Corresponding author. Phone: +1(412)624-8520. Fax: +1(412)624-1668.
| |
Collapse
|
36
|
Electrical characterization of a single cell electroporation biochip with the 2-D scanning vibrating electrode technology. Biomed Microdevices 2009; 11:1239-50. [DOI: 10.1007/s10544-009-9343-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Wang M, Orwar O, Weber SG. Single-cell transfection by electroporation using an electrolyte/plasmid-filled capillary. Anal Chem 2009; 81:4060-7. [PMID: 19351139 DOI: 10.1021/ac900265f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Single-cell transfection of adherent cells has been accomplished using single-cell electroporation (SCEP) with a pulled capillary. HEPES-buffered physiological saline solution containing pEGFP plasmid at a low concentration (0.16 approximately 0.78 microg/microL) filled a 15 cm long capillary with a tip opening of 2 microm. The electric field is applied to individual cells by bringing the tip close to the cell and subsequently applying one or two brief electric pulses. Many individual cells can thus be transfected with a small volume of plasmid-containing solution (approximately 1 microL). The extent of electroporation is determined by measuring the percentage loss of freely diffusing thiols (chiefly reduced glutathione) that have been derivatized with the fluorogenic ThioGlo 1. A mass transport model is used to fit the time-dependent fluorescence intensity decay in the target cells. The fits, which are excellent, yield the electroporation-induced fluorescence loss at steady state and the mass transfer rate through the electroporated cell membrane. Steady-state fluorescence loss ranged approximately from 0 to about 80% (based on the fluorescence intensity before electroporation). For the cells having a loss of thiol-ThioGlo 1 fluorescence intensity greater than 10% and mass transfer rate greater than 0.03 s(-1), EGFP fluorescence is observed after 24 h. The EGFP fluorescence is increased at 48 h. With a loss smaller than 10% and a mass transfer rate smaller than 0.03 s(-1), no EGFP fluorescence is detected. Thus, transfection success is closely related to the small molecule mass transport dynamics as indicated by the loss of fluorescence from thiol-ThioGlo 1 conjugates. The EGFP expression is weaker than bulk lipid-mediated transfection, as indicated by the EGFP fluorescence intensities. However, the success with the single-cell approach is considerably greater than lipid-mediated transfection.
Collapse
Affiliation(s)
- Manyan Wang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
38
|
Valley JK, Neale S, Hsu HY, Ohta AT, Jamshidi A, Wu MC. Parallel single-cell light-induced electroporation and dielectrophoretic manipulation. LAB ON A CHIP 2009; 9:1714-20. [PMID: 19495455 PMCID: PMC2752467 DOI: 10.1039/b821678a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electroporation is a common technique for the introduction of exogenous molecules across the, otherwise, impermeant cell membrane. Conventional techniques are limited by either low throughput or limited selectivity. Here we present a novel technique whereby we use patterned light to create virtual electrodes which can induce the parallel electroporation of single cells. This technique seamlessly integrates with optoelectronic tweezers to provide a single cell manipulation platform as well. We present evidence of parallel, single cell electroporation using this method through use of fluorescent dyes and dielectrophoretic responses. Additionally, through the use of integrated microfluidic channels, we show that cells remain viable following treatment in the device. Finally, we determine the optimal field dosage to inject propidium iodide into a HeLa cell and maintain cellular viability.
Collapse
Affiliation(s)
- Justin K Valley
- Berkeley Sensor and Actuator Center, Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Chang WC, Sretavan DW. Single cell and neural process experimentation using laterally applied electrical fields between pairs of closely apposed microelectrodes with vertical sidewalls. Biosens Bioelectron 2009; 24:3600-7. [PMID: 19535240 DOI: 10.1016/j.bios.2009.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/14/2009] [Accepted: 05/19/2009] [Indexed: 11/25/2022]
Abstract
As biomedical research has moved increasingly towards experimentation on single cells and subcellular structures, there has been a need for microscale devices that can perform manipulation and stimulation at a correspondingly small scale. We propose a microelectrode array (MEA) featuring thickened microelectrodes with vertical sidewalls (VSW) to focus electrical fields horizontally on targets positioned in between paired electrodes. These microelectrodes were fabricated using gold electroplating that was molded by photolithographically patterned SU-8 photoresist. Finite element modeling showed that paired VSW electrodes produce more uniform electrical fields compared to conventional planar microelectrodes. Using paired microelectrodes, 3 microm thick and spaced 10 microm apart, we were able to perform local electroporation of individual axonal processes, as demonstrated by entry of EGTA to locally chelate intra-axonal calcium, quenching the fluorescence of a pre-loaded calcium indicator dye. The same electrode configuration was used to electroporate individual cells, resulting in the targeted transfection of a transgene expressing a cytoplasmically soluble green fluorescent protein (GFP). In addition to electroporation, our electrode configuration was also capable of precisely targeted field stimulation on individual neurons, resulting in action potentials that could be tracked by optical means. With its ability to deliver well-characterized electrical fields and its versatility, our configuration of paired VSW electrodes may provide the basis for a new tool for high-throughput and high-content experimentation in broad areas of neuroscience and biomedical research.
Collapse
Affiliation(s)
- Wesley C Chang
- Department of Ophthalmology, University of California, K110, Box 0730, UC San Francisco, 10 Koret Way, K-110, San Francisco, CA 94143, USA.
| | | |
Collapse
|
40
|
Electroporation in Biological Cell and Tissue: An Overview. ELECTROTECHNOLOGIES FOR EXTRACTION FROM FOOD PLANTS AND BIOMATERIALS 2009. [DOI: 10.1007/978-0-387-79374-0_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Sedgwick H, Caron F, Monaghan PB, Kolch W, Cooper JM. Lab-on-a-chip technologies for proteomic analysis from isolated cells. J R Soc Interface 2008; 5 Suppl 2:S123-30. [PMID: 18534931 PMCID: PMC2706034 DOI: 10.1098/rsif.2008.0169.focus] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 01/21/2023] Open
Abstract
Lab-on-a-chip systems offer a versatile environment in which low numbers of cells and molecules can be manipulated, captured, detected and analysed. We describe here a microfluidic device that allows the isolation, electroporation and lysis of single cells. A431 human epithelial carcinoma cells, expressing a green fluorescent protein-labelled actin, were trapped by dielectrophoresis within an integrated lab-on-a-chip device containing saw-tooth microelectrodes. Using these same trapping electrodes, on-chip electroporation was performed, resulting in cell lysis. Protein release was monitored by confocal fluorescence microscopy.
Collapse
Affiliation(s)
- H Sedgwick
- Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | |
Collapse
|
42
|
Adams KL, Puchades M, Ewing AG. In Vitro Electrochemistry of Biological Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:329. [PMID: 20151038 PMCID: PMC2819529 DOI: 10.1146/annurev.anchem.1.031207.113038] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This article reviews recent work involving electrochemical methods for in vitro analysis of biomolecules, with an emphasis on detection and manipulation at and of single cells and cultures of cells. The techniques discussed include constant potential amperometry, chronoamperometry, cellular electroporation, scanning electrochemical microscopy, and microfluidic platforms integrated with electrochemical detection. The principles of these methods are briefly described, followed in most cases with a short description of an analytical or biological application and its significance. The use of electrochemical methods to examine specific mechanistic issues in exocytosis is highlighted, as a great deal of recent work has been devoted to this application.
Collapse
Affiliation(s)
- Kelly L. Adams
- Pennsylvania State University, Department of Chemistry, University Park, Pennsylvania 16802
- Göteborg University, Department of Chemistry, SE-412 96 Göteborg, Sweden
| | - Maja Puchades
- Göteborg University, Department of Chemistry, SE-412 96 Göteborg, Sweden
| | - Andrew G. Ewing
- Pennsylvania State University, Department of Chemistry, University Park, Pennsylvania 16802
- Göteborg University, Department of Chemistry, SE-412 96 Göteborg, Sweden
| |
Collapse
|
43
|
Yin X, Zhu L, Wang M. Intracellular Labeling Methods for Chip-Based Capillary Electrophoresis. J LIQ CHROMATOGR R T 2008. [DOI: 10.1080/10826070802128698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xuefeng Yin
- a Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University , Hangzhou, P. R. China
| | - Lanlan Zhu
- a Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University , Hangzhou, P. R. China
| | - Min Wang
- a Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University , Hangzhou, P. R. China
| |
Collapse
|
44
|
Gene delivery by electroporation after dielectrophoretic positioning of cells in a non-uniform electric field. Bioelectrochemistry 2008; 72:141-8. [PMID: 18276199 DOI: 10.1016/j.bioelechem.2008.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 01/11/2008] [Indexed: 11/23/2022]
Abstract
We report the use of dielectrophoresis (DEP) to position U-937 monocytes within a non-uniform electric field, prior to electroporation (EP) for gene delivery. DEP positioning and EP pulsing were both accomplished using a common set of inert planar electrodes, micro-fabricated on a glass substrate. A single-shell model of the cell's dielectric properties and finite-element modeling of the electric field distribution permitted us to predict the major features of cell positioning. The extent to which electric pulses increased the permeability of the cell membranes to fluorescent molecules and to pEGFPLuc DNA plasmids were found to depend on prior positioning. For a given set of pulse parameters, EP was either irreversible (resulting in cytolysis), reversible (leading to gene delivery), or not detectable, depending on where cells were positioned. Our results clearly demonstrate that position-dependent EP of cells in a non-uniform electric field can be controlled by DEP.
Collapse
|
45
|
Bae C, Butler PJ. Finite element analysis of microelectrotension of cell membranes. Biomech Model Mechanobiol 2007; 7:379-86. [PMID: 17657517 PMCID: PMC3251963 DOI: 10.1007/s10237-007-0093-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 07/11/2007] [Indexed: 01/13/2023]
Abstract
Electric fields can be focused by micropipette-based electrodes to induce stresses on cell membranes leading to tension and poration. To date, however, these membrane stress distributions have not been quantified. In this study, we determine membrane tension, stress, and strain distributions in the vicinity of a microelectrode using finite element analysis of a multiscale electro-mechanical model of pipette, media, membrane, actin cortex, and cytoplasm. Electric field forces are coupled to membranes using the Maxwell stress tensor and membrane electrocompression theory. Results suggest that micropipette electrodes provide a new non-contact method to deliver physiological stresses directly to membranes in a focused and controlled manner, thus providing the quantitative foundation for micreoelectrotension, a new technique for membrane mechanobiology.
Collapse
|
46
|
Yuan TF. Electroporation: an arsenal of application. Cytotechnology 2007; 54:71-6. [PMID: 19003020 PMCID: PMC2267498 DOI: 10.1007/s10616-007-9082-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022] Open
Abstract
Electroporation is a way to induce nanometersized membrane pore for exogenous substances delivery into cytoplasm using an artificial electric field. Now it was widely used for molecules transfer especially in molecular experiments and genetic aspects. In recent years, modern electroporation on the embryo was developed, whose most important point is that it adopts low energy and rectangular pulse that could obtain high transfection efficiency and low damage to the embryo. This paper reviewed on the pool of application: from lab works to human clinical treatments.
Collapse
Affiliation(s)
- Ti-Fei Yuan
- Department of Biological Science and Biotechnology, Life Science School, Sun Yat-Sen (ZhongShan) University, P.O. Box A075#, XinGangXi Road 135, HaiZhu District, 510275, Guangzhou, China,
| |
Collapse
|
47
|
Olofsson J, Levin M, Strömberg A, Weber SG, Ryttsén F, Orwar O. Scanning electroporation of selected areas of adherent cell cultures. Anal Chem 2007; 79:4410-8. [PMID: 17511419 DOI: 10.1021/ac062140i] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a computer-controlled scanning electroporation method. Adherent cells are electroporated using an electrolyte-filled capillary in contact with an electrode. The capillary can be scanned over a cell culture and locally deliver both an electric field and an electroporation agent to the target area without affecting surrounding cells. The instantaneous size of the targeted area is determined by the dimensions of the capillary. The size and shape of the total electroporated area are defined by these dimensions in combination with the scanning pattern. For example, striped and serpentine patterns of electroporated cells in confluent cultures can be formed. As it is easy to switch between different electroporation agents, the method is suitable for design of cell cultures with complex composition. Finite element method simulations were used to study the spatial distributions of the electric field and the concentration of an electroporation agent, as well as the fluid dynamics related to scanning and flow of electroporation agent from the capillary. The method was validated for transfection by introduction of a 9-base-pair-long randomized oligonucleotide into PC12 cells and a pmaxGFP plasmid coding for green fluorescent protein into CHO and WSS cells.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Physical Chemistry, Chalmers University of Technology, Kemivägen 10, SE-412 96 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Olofsson J, Levin M, Strömberg A, Weber SG, Ryttsén F, Orwar O. Generation of focused electric field patterns at dielectric surfaces. Anal Chem 2007; 77:4667-72. [PMID: 16013887 PMCID: PMC1482473 DOI: 10.1021/ac0502302] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We here report on a concept for creating well-defined electric field gradients between the boundaries of capillary electrode (a capillary of a nonconducting material equipped with an interior metal electrode) outlets, and dielectric surfaces. By keeping a capillary electrode opening close to a boundary between a conducting solution and a nonconducting medium, a high electric field can be created close to the interface by field focusing effects. By varying the inner and outer diameters of the capillary, the span of electric field strengths and the field gradient obtained can be controlled, and by varying the slit height between the capillary rim and the surface, or the applied current, the average field strength and gradient can be varied. Field focusing effects and generation of electric field patterns were analyzed using finite element method simulations. We experimentally verified the method by electroporation of a fluorescent dye (fluorescein diphosphate) into adherent, monolayered cells (PC-12 and WSS-1) and obtained a pattern of fluorescent cells corresponding to the focused electric field.
Collapse
Affiliation(s)
| | | | | | | | | | - Owe Orwar
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Khine M, Ionescu-Zanetti C, Blatz A, Wang LP, Lee LP. Single-cell electroporation arrays with real-time monitoring and feedback control. LAB ON A CHIP 2007; 7:457-62. [PMID: 17389961 DOI: 10.1039/b614356c] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rapid well-controlled intracellular delivery of drug compounds, RNA, or DNA into a cell--without permanent damage to the cell--is a pervasive challenge in basic cell biology research, drug discovery, and gene delivery. To address this challenge, we have developed a bench-top system comprised of a control interface, that mates to disposable 96-well-formatted microfluidic devices, enabling the individual manipulation, electroporation and real-time monitoring of each cell in suspension. This is the first demonstrated real-time feedback-controlled electroporation of an array of single-cells. Our computer program automatically detects electroporation events and subsequently releases the electric field, precluding continued field-induced damage of the cell, to allow for membrane resealing. Using this novel set-up, we demonstrate the reliable electroporation of an array (n = 15) of individual cells in suspension, using low applied electric fields (<1 V) and the rapid and localized intracellular delivery of otherwise impermeable compounds (Calcein and Orange Green Dextran). Such multiplexed electrical and optical measurements as a function of time are not attainable with typical electroporation setups. This system, which mounts on an inverted microscope, obviates many issues typically associated with prototypical microfluidic chip setups and, more importantly, offers well-controlled and reproducible parallel pressure and electrical application to individual cells for repeatability.
Collapse
Affiliation(s)
- Michelle Khine
- School of Engineering, University of California, Merced, CA, USA.
| | | | | | | | | |
Collapse
|
50
|
Zudans I, Agarwal A, Orwar O, Weber SG. Numerical calculations of single-cell electroporation with an electrolyte-filled capillary. Biophys J 2007; 92:3696-705. [PMID: 17351001 PMCID: PMC1853140 DOI: 10.1529/biophysj.106.097683] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An electric field is focused on one cell in single-cell electroporation. This enables selective electroporation treatment of the targeted cell without affecting its neighbors. While factors that lead to membrane permeation are the same as in bulk electroporation, quantitative description of the single-cell experiments is more complicated. This is due to the fact that the potential distribution cannot be solved analytically. We present single-cell electroporation with an electrolyte-filled capillary modeled with a finite element method. Potential is calculated in the capillary, the solution surrounding the cell, and the cell. The model enables calculation of the transmembrane potential and the fraction of the cell membrane that is above the critical electroporation potential. Electroporation at several cell-to-tip distances of human lung carcinoma cells (A549) stained with ThioGlo-1 demonstrated membrane permeation at distances shorter than approximately 7.0 microm. This agrees well with the model's prediction that a critical transmembrane potential of 250 mV is achieved when the capillary is approximately 6.5 microm or closer to the cell. Simulations predict that at short cell-to-tip distances, the transmembrane potential increases significantly while the total area of the cell above the critical potential increases only moderately.
Collapse
Affiliation(s)
- Imants Zudans
- University of Pittsburgh, Department of Chemistry, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|