1
|
Christopoulou ME, Aletras AJ, Papakonstantinou E, Stolz D, Skandalis SS. WISP1 and Macrophage Migration Inhibitory Factor in Respiratory Inflammation: Novel Insights and Therapeutic Potentials for Asthma and COPD. Int J Mol Sci 2024; 25:10049. [PMID: 39337534 PMCID: PMC11432718 DOI: 10.3390/ijms251810049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Recent advancements highlight the intricate interplay between the extracellular matrix (ECM) and immune responses, notably in respiratory diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). The ECM, a dynamic structural framework within tissues, orches-trates a plethora of cellular processes, including immune cell behavior and tissue repair mecha-nisms. WNT1-inducible-signaling pathway protein 1 (WISP1), a key ECM regulator, controls immune cell behavior, cytokine production, and tissue repair by modulating integrins, PI3K, Akt, β-catenin, and mTOR signaling pathways. WISP1 also induces macrophage migration inhibitory factor (MIF) expression via Src kinases and epidermal growth factor receptor (EGFR) activation. MIF, through its wide range of activities, enhances inflammation and tissue restructuring. Rec-ognized for its versatile roles in regulating the immune system, MIF interacts with multiple immune components, such as the NLRP3 inflammasome, thereby sustaining inflammatory pro-cesses. The WISP1-MIF axis potentially unveils complex molecular mechanisms governing im-mune responses and inflammation. Understanding the intricate roles of WISP1 and MIF in the pathogenesis of chronic respiratory diseases such as asthma and COPD could lead to the identi-fication of novel targets for therapeutic intervention to alleviate disease severity and enhance patient outcomes.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexios J Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Eleni Papakonstantinou
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daiana Stolz
- Clinic of Pneumology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Patel J, Dawson VL, Dawson TM. Blocking the Self-Destruct Program of Dopamine Neurons through Macrophage Migration Inhibitory Factor Nuclease Inhibition. Mov Disord 2024; 39:644-650. [PMID: 38396375 PMCID: PMC11160583 DOI: 10.1002/mds.29748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition that pathognomonically involves the death of dopaminergic neurons in the substantia nigra pars compacta, resulting in a myriad of motor and non-motor symptoms. Given the insurmountable burden of this disease on the population and healthcare system, significant efforts have been put forth toward generating disease modifying therapies. This class of treatments characteristically alters disease course, as opposed to current strategies that focus on managing symptoms. Previous literature has implicated the cell death pathway known as parthanatos in PD progression. Inhibition of this pathway by targeting poly (ADP)-ribose polymerase 1 (PARP1) prevents neurodegeneration in a model of idiopathic PD. However, PARP1 has a vast repertoire of functions within the body, increasing the probability of side effects with the long-term treatment likely necessary for clinically significant neuroprotection. Recent work culminated in the development of a novel agent targeting the macrophage migration inhibitory factor (MIF) nuclease domain, also named parthanatos-associated apoptosis-inducing factor nuclease (PAAN). This nuclease activity specifically executes the terminal step in parthanatos. Parthanatos-associated apoptosis-inducing factor nuclease inhibitor-1 was neuroprotective in multiple preclinical mouse models of PD. This piece will focus on contextualizing this discovery, emphasizing its significance, and discussing its potential implications for parthanatos-directed treatment. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jaimin Patel
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Pang Q, Chen L, An C, Zhou J, Xiao H. Single-cell and bulk RNA sequencing highlights the role of M1-like infiltrating macrophages in antibody-mediated rejection after kidney transplantation. Heliyon 2024; 10:e27865. [PMID: 38524599 PMCID: PMC10958716 DOI: 10.1016/j.heliyon.2024.e27865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background Antibody-mediated rejection (ABMR) significantly affects transplanted kidney survival, yet the macrophage phenotype, ontogeny, and mechanisms in ABMR remain unclear. Method We analyzed post-transplant sequencing and clinical data from GEO and ArrayExpress. Using dimensionality reduction and clustering on scRNA-seq data, we identified macrophage subpopulations and compared their infiltration in ABMR and non-rejection cases. Cibersort quantified these subpopulations in bulk samples. Cellchat, SCENIC, monocle2, and monocle3 helped explore intercellular interactions, predict transcription factors, and simulate differentiation of cell subsets. The Scissor method linked macrophage subgroups with transplant prognosis. Furthermore, hdWGCNA, nichnet, and lasso regression identified key genes associated with core transcription factors in selected macrophages, validated by external datasets. Results Six macrophage subgroups were identified in five post-transplant kidney biopsies. M1-like infiltrating macrophages, prevalent in ABMR, correlated with pathological injury severity. MIF acted as a primary intercellular signal in these macrophages. STAT1 regulated monocyte-to-M1-like phenotype transformation, impacting transplant prognosis via the IFNγ pathway. The prognostic models built on the upstream and downstream genes of STAT1 effectively predicted transplant survival. The TLR4-STAT1-PARP9 axis may regulate the pro-inflammatory phenotype of M1-like infiltrating macrophages, identifying PARP9 as a potential target for mitigating ABMR inflammation. Conclusion Our study delineates the macrophage landscape in ABMR post-kidney transplantation, underscoring the detrimental impact of M1-like infiltrating macrophages on ABMR pathology and prognosis.
Collapse
Affiliation(s)
- Qidan Pang
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Liang Chen
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Changyong An
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Juan Zhou
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Hanyu Xiao
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| |
Collapse
|
4
|
Chua C, Mahamed D, Nkongolo S, Sanchez Vasquez JD, Mehrotra A, Wong DKH, Chung RT, Feld JJ, Janssen HLA, Gehring AJ. Liver-restricted Type I IFN Signature Precedes Liver Damage in Chronic Hepatitis B Patients Stopping Antiviral Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1002-1011. [PMID: 38294274 DOI: 10.4049/jimmunol.2300569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024]
Abstract
Immune-mediated liver damage is the driver of disease progression in patients with chronic hepatitis B virus (HBV) infection. Liver damage is an Ag-independent process caused by bystander activation of CD8 T cells and NK cells. How bystander lymphocyte activation is initiated in chronic hepatitis B patients remains unclear. Periods of liver damage, called hepatic flares, occur unpredictably, making early events difficult to capture. To address this obstacle, we longitudinally sampled the liver of chronic hepatitis B patients stopping antiviral therapy and analyzed immune composition and activation using flow cytometry and single-cell RNA sequencing. At 4 wk after stopping therapy, HBV replication rebounded but no liver damage was detectable. There were no changes in cell frequencies at viral rebound. Single-cell RNA sequencing revealed upregulation of IFN-stimulated genes (ISGs) and proinflammatory cytokine migration inhibitory factor (MIF) at viral rebound in patients that go on to develop hepatic flares 6-18 wk after stopping therapy. The type I IFN signature was only detectable within the liver, and neither IFN-α/β or ISG induction could be detected in the peripheral blood. In vitro experiments confirmed the type I IFN-dependent ISG profile whereas MIF was induced primarily by IL-12. MIF exposure further amplified inflammatory cytokine production by myeloid cells. Our data show that innate immune activation is detectable in the liver before clinically significant liver damage is evident. The combination of type I IFN and enhanced cytokine production upon MIF exposure represent the earliest immunological triggers of lymphocyte bystander activation observed in hepatic flares associated with chronic HBV infection.
Collapse
Affiliation(s)
- Conan Chua
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Deeqa Mahamed
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shirin Nkongolo
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Internal Medicine IV (Gastroenterology, Hepatology, Infectious Diseases), University Hospital Heidelberg, Heidelberg, Germany
| | - Juan Diego Sanchez Vasquez
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Aman Mehrotra
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - David K H Wong
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Jordan J Feld
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Adam J Gehring
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Liver Disease, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Parkins A, Sandin SI, Knittel J, Franz AH, Ren J, de Alba E, Pantouris G. Underrepresented Impurities in 4-Hydroxyphenylpyruvate Affect the Catalytic Activity of Multiple Enzymes. Anal Chem 2023; 95:4957-4965. [PMID: 36877482 DOI: 10.1021/acs.analchem.2c04969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a key immunostimulatory protein with regulatory properties in several disorders, including inflammation and cancer. All the reported inhibitors that target the biological activities of MIF have been discovered by testing against its keto/enol tautomerase activity. While the natural substrate is still unknown, model MIF substrates are used for kinetic experiments. The most extensively used model substrate is 4-hydroxyphenyl pyruvate (4-HPP), a naturally occurring intermediate of tyrosine metabolism. Here, we examine the impact of 4-HPP impurities in the precise and reproducible determination of MIF kinetic data. To provide unbiased evaluation, we utilized 4-HPP powders from five different manufacturers. Biochemical and biophysical analyses showed that the enzymatic activity of MIF is highly influenced by underrepresented impurities found in 4-HPP. Besides providing inconsistent turnover results, the 4-HPP impurities also influence the accurate calculation of ISO-1's inhibition constant, an MIF inhibitor that is broadly used for in vitro and in vivo studies. The macromolecular NMR data show that 4-HPP samples from different manufacturers result in differential chemical shift perturbations of amino acids in MIF's active site. Our MIF-based conclusions were independently evaluated and confirmed by 4-hydroxyphenylpyruvate dioxygenase (HPPD) and D-dopachrome tautomerase (D-DT); two additional enzymes that utilize 4-HPP as a substrate. Collectively, these results explain inconsistencies in previously reported inhibition values, highlight the effect of impurities on the accurate determination of kinetic parameters, and serve as a tool for designing error-free in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Suzanne I Sandin
- Department of Bioengineering, University of California, Merced, California 95343, United States
- Chemistry and Biochemistry Graduate Program, University of California, Merced, California 95343, United States
| | - Jonathon Knittel
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Andreas H Franz
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Jianhua Ren
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| | - Eva de Alba
- Department of Bioengineering, University of California, Merced, California 95343, United States
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California 95211, United States
| |
Collapse
|
6
|
Tilstam PV, Schulte W, Holowka T, Kim BS, Nouws J, Sauler M, Piecychna M, Pantouris G, Lolis E, Leng L, Bernhagen J, Fingerle-Rowson G, Bucala R. MIF but not MIF-2 recruits inflammatory macrophages in an experimental polymicrobial sepsis model. J Clin Invest 2021; 131:127171. [PMID: 34850744 DOI: 10.1172/jci127171] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Excessive inflammation drives the progression from sepsis to septic shock. Macrophage migration inhibitory factor (MIF) is of interest because MIF promoter polymorphisms predict mortality in different infections, and anti-MIF antibody improves survival in experimental models when administered 8 hours after infectious insult. The recent description of a second MIF superfamily member, D-dopachrome tautomerase (D-DT/MIF-2), prompted closer investigation of MIF-dependent responses. We subjected Mif-/- and Mif-2-/- mice to polymicrobial sepsis and observed a survival benefit with Mif but not Mif-2 deficiency. Survival was associated with reduced numbers of small peritoneal macrophages (SPMs) that, in contrast to large peritoneal macrophages (LPMs), were recruited into the peritoneal cavity. LPMs produced higher quantities of MIF than SPMs, but SPMs expressed higher levels of inflammatory cytokines and the MIF receptors CD74 and CXCR2. Adoptive transfer of WT SPMs into Mif-/- hosts reduced the protective effect of Mif deficiency in polymicrobial sepsis. Notably, MIF-2 lacks the pseudo-(E)LR motif present in MIF that mediates CXCR2 engagement and SPM migration, supporting a specific role for MIF in the recruitment and accumulation of inflammatory SPMs.
Collapse
Affiliation(s)
- Pathricia Veronica Tilstam
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Wibke Schulte
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Thomas Holowka
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bong-Sung Kim
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Plastic, Reconstructive and Hand Surgery, RWTH Aachen University, Aachen, Germany.,Division of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Jessica Nouws
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maor Sauler
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marta Piecychna
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Georgios Pantouris
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Elias Lolis
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Munich, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen Bonn Köln Düsseldorf, Cologne, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Sumaiya K, Langford D, Natarajaseenivasan K, Shanmughapriya S. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol Ther 2021; 233:108024. [PMID: 34673115 DOI: 10.1016/j.pharmthera.2021.108024] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine encoded within a functionally polymorphic genetic locus. MIF was initially recognized as a cytokine generated by activated T cells, but in recent days it has been identified as a multipotent key cytokine secreted by many other cell types involved in immune response and physiological processes. MIF is a highly conserved 12.5 kDa secretory protein that is involved in numerous biological processes. The expression and secretion profile of MIF suggests that MIF to be ubiquitously and constitutively expressed in almost all mammalian cells and is vital for numerous physiological processes. MIF is a critical upstream mediator of host innate and adaptive immunity and survival pathways resulting in the clearance of pathogens thus playing a protective role during infectious diseases. On the other hand, MIF being an immune modulator accelerates detrimental inflammation, promotes cancer metastasis and progression, thus worsening disease conditions. Several reports demonstrated that genetic and physiological factors, including MIF gene polymorphisms, posttranslational regulations, and receptor binding control the functional activities of MIF. Taking into consideration the multi-faceted role of MIF both in physiology and pathology, we thought it is timely to review and summarize the expressional and functional regulation of MIF, its functional mechanisms associated with its beneficial and pathological roles, and MIF-targeting therapies. Thus, our review will provide an overview on how MIF is regulated, its response, and the potency of the therapies that target MIF.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA..
| | - Santhanam Shanmughapriya
- Heart and Vascular Institute, Department of Medicine, Department of Cellular and Molecular Physiology, Pennsylvania State University, College of Medicine, Hershey PA-17033, USA.
| |
Collapse
|
8
|
Macrophage migration inhibitory factor is an early marker of severe acute pancreatitis based on the revised Atlanta classification. BMC Gastroenterol 2021; 21:34. [PMID: 33482739 PMCID: PMC7821474 DOI: 10.1186/s12876-020-01598-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Various serum markers for early identification of severe acute pancreatitis (SAP) have been studied. Serum macrophage migration inhibitory factor (MIF) was reported to be correlated with severity of acute pancreatitis (AP) based on the 1992 Atlanta classification. However, MIF has never been proven to be predictive of disease severity based on the revised Atlanta classification (RAC). The potential predictive value of MIF needs to be further validated. METHODS Consecutive patients with AP within 48 h after symptom onset and 10 healthy control volunteers were enrolled prospectively. Serum MIF levels were measured by enzyme-linked immunosorbent assay (ELISA). The predictive value of MIF, clinical scores and other serum markers were determined. RESULTS Among 143 patients with AP, there were 52 (36.4%), 65 (45.5%) and 26 (18.1%) with mild, moderate and severe disease based on the RAC respectively. Compared with healthy volunteers, serum levels of MIF were significantly higher in AP patients, especially those with SAP (P < 0.001). Multivariate regression analysis indicated that increased serum MIF (cut-off 2.30 ng/ml, OR = 3.16, P = 0.008), IL-6 (cut-off 46.8 pg/ml, OR = 1.21, P = 0.043), APACHE II score (cut-off 7.5, OR = 2.57, P = 0.011) and BISAP score (cut-off 1.5, OR = 1.01, P = 0.038) were independent risk factors for predicting SAP (P < 0.05). By using the area under the receiver operating characteristic (ROC) curve (AUC), MIF (AUC 0.950) demonstrated more excellent discriminative power for predicting SAP than APACHE II (AUC 0.899), BISAP (AUC 0.886), and IL-6 (AUC 0.826). CONCLUSIONS Serum MIF is a valuable early marker for predicting the severity of AP based on the RAC.
Collapse
|
9
|
Walker C, Nguyen TM, Jessel S, Alvero AB, Silasi DA, Rutherford T, Draghici S, Mor G. Automated Assay of a Four-Protein Biomarker Panel for Improved Detection of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13020325. [PMID: 33477343 PMCID: PMC7830619 DOI: 10.3390/cancers13020325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary The survival of patients diagnosed with ovarian cancer depends largely on the extent of the disease upon diagnosis. When confined to the ovaries, patients’ 10-year survival is more than 70%. This drastically drops to less than 5% when patients are diagnosed with far-advanced disease. Unfortunately, more than 80% of patients are diagnosed at advanced stage due to the lack of test for early detection. We report the development of a blood test measuring four proteins (macrophage migration inhibitory factor, osteopontin, prolactin and cancer antigen 125), which can distinguish ovarian cancer samples, even early-stage disease, from healthy samples in the population tested. This study is another step towards the application of a useful test for early detection of ovarian cancer that is both highly accurate and specific. Abstract Background: Mortality from ovarian cancer remains high due to the lack of methods for early detection. The difficulty lies in the low prevalence of the disease necessitating a significantly high specificity and positive-predictive value (PPV) to avoid unneeded and invasive intervention. Currently, cancer antigen- 125 (CA-125) is the most commonly used biomarker for the early detection of ovarian cancer. In this study we determine the value of combining macrophage migration inhibitory factor (MIF), osteopontin (OPN), and prolactin (PROL) with CA-125 in the detection of ovarian cancer serum samples from healthy controls. Materials and Methods: A total of 432 serum samples were included in this study. 153 samples were from ovarian cancer patients and 279 samples were from age-matched healthy controls. The four proteins were quantified using a fully automated, multi-analyte immunoassay. The serum samples were divided into training and testing datasets and analyzed using four classification models to calculate accuracy, sensitivity, specificity, PPV, negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Results: The four-protein biomarker panel yielded an average accuracy of 91% compared to 85% using CA-125 alone across four classification models (p = 3.224 × 10−9). Further, in our cohort, the four-protein biomarker panel demonstrated a higher sensitivity (median of 76%), specificity (median of 98%), PPV (median of 91.5%), and NPV (median of 92%), compared to CA-125 alone. The performance of the four-protein biomarker remained better than CA-125 alone even in experiments comparing early stage (Stage I and Stage II) ovarian cancer to healthy controls. Conclusions: Combining MIF, OPN, PROL, and CA-125 can better differentiate ovarian cancer from healthy controls compared to CA-125 alone.
Collapse
Affiliation(s)
- Christopher Walker
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (C.W.); (A.B.A.)
| | - Tuan-Minh Nguyen
- Department of Computer Science, Wayne State University, Detroit, MI 48201, USA; (T.-M.N.); (S.D.)
| | - Shlomit Jessel
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.); (D.-A.S.)
| | - Ayesha B. Alvero
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (C.W.); (A.B.A.)
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI 48201, USA
| | - Dan-Arin Silasi
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.); (D.-A.S.)
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL 33606, USA
- Correspondence: (T.R.); (G.M.)
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI 48201, USA; (T.-M.N.); (S.D.)
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI 48201, USA
| | - Gil Mor
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (C.W.); (A.B.A.)
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (T.R.); (G.M.)
| |
Collapse
|
10
|
Gegenfurtner K, Fröhlich T, Kösters M, Mermillod P, Locatelli Y, Fritz S, Salvetti P, Forde N, Lonergan P, Wolf E, Arnold GJ. Influence of metabolic status and genetic merit for fertility on proteomic composition of bovine oviduct fluid†. Biol Reprod 2020; 101:893-905. [PMID: 31347661 DOI: 10.1093/biolre/ioz142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/03/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
The oviduct plays a crucial role in fertilization and early embryo development providing the microenvironment for oocyte, spermatozoa, and early embryo. Since dairy cow fertility declined steadily over the last decades, reasons for early embryonic loss have gained increasing interest. Analyzing two animal models, this study aimed to investigate the impact of genetic predisposition for fertility and of metabolic stress on the protein composition of oviduct fluid. A metabolic model comprised maiden Holstein heifers and postpartum lactating (Lact) and non-lactating (Dry) cows, while a genetic model consisted of heifers from the Montbéliarde breed and Holstein heifers with low- and high-fertility index. In a holistic proteomic analysis of oviduct fluid from all groups using nano-liquid chromatography tandem-mass spectrometry analysis and label-free quantification, we were able to identify 1976 proteins, among which 143 showed abundance alterations in the pairwise comparisons within both models. Most differentially abundant proteins were revealed between low fertility Holstein and Montbéliarde (52) in the genetic model and between lactating and maiden Holstein (19) in the metabolic model, demonstrating a substantial effect of genetic predisposition for fertility and metabolic stress on the oviduct fluid proteome. Functional classification of affected proteins revealed actin binding, translation, and immune system processes as prominent gene ontology (GO) clusters. Notably, Actin-related protein 2/3 complex subunit 1B and the three immune system-related proteins SERPIND1 protein, immunoglobulin kappa locus protein, and Alpha-1-acid glycoprotein were affected in both models, suggesting that abundance changes of immune-related proteins in oviduct fluid play an important role for early embryonic loss.
Collapse
Affiliation(s)
- Katrin Gegenfurtner
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Miwako Kösters
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Pascal Mermillod
- Institut National de Recherche Agronomique (INRA), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Yann Locatelli
- Institut National de Recherche Agronomique (INRA), UMR7247, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | - P Salvetti
- Allice, Station de Phénotypage, Nouzilly, France
| | - Niamh Forde
- Division of Reproduction and Early Development, School of Medicine, University of Leeds, Leeds, UK
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany.,Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Dankers W, Hasnat MA, Swann V, Alharbi A, Lee JP, Cristofaro MA, Gantier MP, Jones SA, Morand EF, Flynn JK, Harris J. Necrotic cell death increases the release of macrophage migration inhibitory factor by monocytes/macrophages. Immunol Cell Biol 2020; 98:782-790. [PMID: 32654231 DOI: 10.1111/imcb.12376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 12/01/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory molecule with both cytokine and noncytokine activity. MIF is constitutively released from multiple cell types via an unconventional secretory pathway that is not well defined. Here, we looked at MIF release from human and mouse monocytes/macrophages in response to different stimuli. While MIF release was not significantly altered in response to lipopolysaccharide or heat-killed Escherichia coli, cytotoxic stimuli strongly promoted release of MIF. MIF release was highly upregulated in cells undergoing necrosis, necroptosis and NLRP3 inflammasome-dependent pyroptosis. Our data suggest that cell death represents a major route for MIF release from myeloid cells. The functional significance of these findings and their potential importance in the context of autoimmune and inflammatory diseases warrant further investigation.
Collapse
Affiliation(s)
- Wendy Dankers
- Rheumatology Research Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Md Abul Hasnat
- Rheumatology Research Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Vanesa Swann
- Rheumatology Research Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Arwaf Alharbi
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute for Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Jacinta Pw Lee
- Rheumatology Research Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Megan A Cristofaro
- Rheumatology Research Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute for Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Sarah A Jones
- Rheumatology Research Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Eric F Morand
- Rheumatology Research Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Jacqueline K Flynn
- Rheumatology Research Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - James Harris
- Rheumatology Research Group, Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Yan XB, Shen DC. Overview and prospect of serum markers for early prediction of severity of acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2020; 28:796-801. [DOI: 10.11569/wcjd.v28.i16.796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common and potentially fatal emergencies of the digestive system. Aseptic inflammation of the pancreas caused by self-digestion of trypsin is considered to be the main pathogenesis of AP. The clinical course and prognosis of AP with different degrees of severity vary greatly, so early prediction of the severity of AP is of great significance to the diagnosis and treatment of this disease. In recent years, great progress has been made in the early risk assessment and severity stratification of AP patients with serum markers. This article gives an overview and discuss the prospects of serum markers for early prediction of the severity of AP.
Collapse
Affiliation(s)
- Xue-Bo Yan
- Department of Hepatobiliary and Pancreatosplenic Surgery, The Affiliated Zhuzhou Hospital Xiangya Medical College of Central South University, Zhuzhou 412007, Hunan Province, China
| | - Ding-Cheng Shen
- Department of Hepatobiliary and Pancreatosplenic Surgery, The Affiliated Zhuzhou Hospital Xiangya Medical College of Central South University, Zhuzhou 412007, Hunan Province, China
| |
Collapse
|
13
|
Atypical Membrane-Anchored Cytokine MIF in a Marine Dinoflagellate. Microorganisms 2020; 8:microorganisms8091263. [PMID: 32825358 PMCID: PMC7565538 DOI: 10.3390/microorganisms8091263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022] Open
Abstract
Macrophage Migration Inhibitory Factors (MIF) are pivotal cytokines/chemokines for vertebrate immune systems. MIFs are typically soluble single-domain proteins that are conserved across plant, fungal, protist, and metazoan kingdoms, but their functions have not been determined in most phylogenetic groups. Here, we describe an atypical multidomain MIF protein. The marine dinoflagellate Lingulodinium polyedra produces a transmembrane protein with an extra-cytoplasmic MIF domain, which localizes to cell-wall-associated membranes and vesicular bodies. This protein is also present in the membranes of extracellular vesicles accumulating at the secretory pores of the cells. Upon exposure to biotic stress, L. polyedra exhibits reduced expression of the MIF gene and reduced abundance of the surface-associated protein. The presence of LpMIF in the membranes of secreted extracellular vesicles evokes the fascinating possibility that LpMIF may participate in intercellular communication and/or interactions between free-living organisms in multispecies planktonic communities.
Collapse
|
14
|
Illescas O, Pacheco-Fernández T, Laclette JP, Rodriguez T, Rodriguez-Sosa M. Immune modulation by the macrophage migration inhibitory factor (MIF) family: D-dopachrome tautomerase (DDT) is not (always) a backup system. Cytokine 2020; 133:155121. [PMID: 32417648 DOI: 10.1016/j.cyto.2020.155121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 01/06/2023]
Abstract
Human macrophage migration inhibition factor (MIF) is a protein with cytokine and chemokine properties that regulates a diverse range of physiological functions related to innate immunity and inflammation. Most research has focused on the role of MIF in different inflammatory diseases. D-dopachrome tautomerase (DDT), a different molecule with structural similarities to MIF, which shares receptors and biological functions, has recently been reported, but little is known about its roles and mechanisms. In this review, we sought to understand the similarities and differences between these molecules by summarizing what is known about their different structures, receptors and mechanisms regulating their expression and biological activities with an emphasis on immunological aspects.
Collapse
Affiliation(s)
- Oscar Illescas
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Thalia Pacheco-Fernández
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Juan P Laclette
- Department of Immunology, Institute of Biomedical Research, Universidad Nacional Autónoma de México (UNAM), Mexico City C.P. 04510, Mexico
| | - Tonathiu Rodriguez
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico
| | - Miriam Rodriguez-Sosa
- Biomedicine Unit, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, MEX C.P. 54090, Mexico.
| |
Collapse
|
15
|
Kim BS, Tilstam PV, Arnke K, Leng L, Ruhl T, Piecychna M, Schulte W, Sauler M, Frueh FS, Storti G, Lindenblatt N, Giovanoli P, Pallua N, Bernhagen J, Bucala R. Differential regulation of macrophage activation by the MIF cytokine superfamily members MIF and MIF-2 in adipose tissue during endotoxemia. FASEB J 2020; 34:4219-4233. [PMID: 31961019 PMCID: PMC7060131 DOI: 10.1096/fj.201901511r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 01/01/2023]
Abstract
Sepsis is a leading cause of death worldwide and recent studies have shown white adipose tissue (WAT) to be an important regulator in septic conditions. In the present study, the role of the inflammatory cytokine macrophage migration inhibitory factor (MIF) and its structural homolog D-dopachrome tautomerase (D-DT/MIF-2) were investigated in WAT in a murine endotoxemia model. Both MIF and MIF-2 levels were increased in the peritoneal fluid of LPS-challenged wild-type mice, yet, in visceral WAT, the proteins were differentially regulated, with elevated MIF but downregulated MIF-2 expression in adipocytes. Mif gene deletion polarized adipose tissue macrophages (ATM) toward an anti-inflammatory phenotype while Mif-2 gene knockout drove ATMs toward a pro-inflammatory phenotype and Mif-deficiency was found to increase fibroblast viability. Additionally, we observed the same differential regulation of these two MIF family proteins in human adipose tissue in septic vs healthy patients. Taken together, these data suggest an inverse relationship between adipocyte MIF and MIF-2 expression during systemic inflammation, with the downregulation of MIF-2 in fat tissue potentially increasing pro-inflammatory macrophage polarization to further drive adipose inflammation.
Collapse
Affiliation(s)
- Bong-Sung Kim
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Department of Plastic, Reconstructive and Hand Surgery, RWTH Aachen University, Aachen, Germany
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland
| | - Pathricia V. Tilstam
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Kevin Arnke
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tim Ruhl
- Department of Plastic, Reconstructive and Hand Surgery, RWTH Aachen University, Aachen, Germany
| | - Marta Piecychna
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Wibke Schulte
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Department of Surgery, Yale University School of Medicine, New Haven, CT
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Maor Sauler
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT
| | - Florian S. Frueh
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland
| | - Gabriele Storti
- Unit of Plastic and Reconstructive Surgery University of Rome- “Tor Vergata”
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland
| | - Norbert Pallua
- Department of Plastic, Reconstructive and Hand Surgery, RWTH Aachen University, Aachen, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-University Munich, Munich, Germany
- Munich Cluster for Systems Neurology, 81377 Munich, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
16
|
Macrophage migration inhibitory factor regulates TLR4 expression and modulates TCR/CD3-mediated activation in CD4+ T lymphocytes. Sci Rep 2019; 9:9380. [PMID: 31253838 PMCID: PMC6599059 DOI: 10.1038/s41598-019-45260-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/04/2019] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4) is involved in CD4+ T lymphocyte-mediated pathologies. Here, we demonstrate that CD4+ T lymphocytes express functional TLR4 that contributes to their activation, proliferation and cytokine secretion. In addition, we demonstrate that TLR4-induced responses are mediated by macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. We also demonstrate that MIF regulates suboptimal TCR/CD3-mediated activation of T lymphocytes. On one hand, MIF prevents excessive TCR/CD3-mediated activation of CD4+ T lymphocytes under suboptimal stimulation conditions and, on the other hand, MIF enables activated CD4+ T lymphocytes to sense their microenvironment and adapt their effector response through TLR4. Therefore, MIF appears to be a major regulator of the activation of CD4+ T lymphocytes and the intensity of their effector response. TLR4-mediated activation is thus an important process for T cell-mediated immunity.
Collapse
|
17
|
Lv Z, Guo M, Li C, Shao Y, Zhao X, Zhang W. Macrophage migration inhibitory factor is involved in inflammation response in pathogen challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 87:839-846. [PMID: 30797067 DOI: 10.1016/j.fsi.2019.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine and plays critical roles in inflammatory and immune responses in vertebrates. However, its functional role in inflammation has not been well studied in invertebrates. In the present study, we cloned and characterized MIF gene from Apostichopus japonicus by RNA-seq and RACE approaches (designated as AjMIF). A 1047 bp fragment representing the full-length cDNA of AjMIF was obtained, including a 5' UTR of 100 bp, an open reading frame (ORF) of 366 bp encoding a polypeptide of 121 amino acids residues with the molecular weight of 13.43 kDa and theoretical isoelectric point of 5.63 and a 3' UTR of 580 bp. SMART analysis showed that AjMIF has conserved MIF domain (2-117aa) similar to its mammalian counterparts. The amino terminal proline residue (P2) and invariant lysine residue (K33) which are critical active sites of tautomerase activity in mammalian MIF were also detected. Phylogenic analysis and multiple alignments have shown that AjMIF shared higher degree of structural conservation and sequence identities with other counterparts from invertebrates and vertebrates. For Vibrio splendidus challenged sea cucumber, the peak expression of AjMIF mRNAs in coelomocytes were detected at 6 h (23.5-fold) and remained at high levels until 24 h (4.01-fold), and returned to normal level at 48 h in comparison with that of the control group. Similarly, a significant increase in the relative mRNA levels of AjMIF was also found in 10 μg mL-1 LPS-exposed primary cultured coelomocytes. Functional analysis indicated that recombinant AjMIF incubation could promote inflammatory response related genes of Ajp105, AjVEGF, AjMMP1 and AjHMGB3 expression by 1.35-fold, 1.36-fold, 1.83-fold and 1.27-fold increase, respectively, which was consistent with the findings in vertebrate MIFs. All these results collectively suggested that AjMIF had a similar function to MIFs in higher animals and might serve as a candidate cytokine in inflammatory regulation in sea cucumber.
Collapse
Affiliation(s)
- Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| |
Collapse
|
18
|
Kim HK, Garcia AB, Siu E, Tilstam P, Das R, Roberts S, Leng L, Bucala R. Macrophage migration inhibitory factor regulates innate γδ T-cell responses via IL-17 expression. FASEB J 2019; 33:6919-6932. [PMID: 30817226 DOI: 10.1096/fj.201802433r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
T cells expressing invariant γδ antigen receptors (γδ T cells) bridge innate and adaptive immunity and facilitate barrier responses to pathogens. Macrophage migration inhibitory factor (MIF) is an upstream mediator of host defense that up-regulates the expression of pattern recognition receptors and sustains inflammatory responses by inhibiting activation-induced apoptosis in monocytes and macrophages. Surprisingly, Mif-/- γδ T cells, when compared with wild type, were observed to produce >10-fold higher levels of the proinflammatory cytokine IL-17 after stimulation with gram-positive exotoxins. High-IL-17 expression was associated with the characteristic features of IL-17-producing γδ T (γδ17) cells, including expression of IL-23R, IL-1R1, and the transcription factors RORγt and Sox13. In the gram-positive model of shock mediated by toxic shock syndrome toxin (TSST-1), Mif-/- mice succumbed to death more quickly with increased pulmonary neutrophil accumulation and higher production of cytokines, including IL-1β and IL-23. Mif-/- γδ T cells also produced high levels of IL-17 in response to Mycobacterium lipomannan, and depletion of γδ T cells improved survival from acutely lethal Mycobacterium infection or TSST-1 administration. These data indicate that MIF deficiency is associated with a compensatory amplification of γδ17 cell responses, with implications for innate immunity and IL-17-mediated pathology in situations such as gram-positive toxic shock or Mycobacterium infection.-Kim, H. K., Garcia, A. B., Siu, E., Tilstam, P., Das, R., Roberts, S., Leng, L., Bucala, R. Macrophage migration inhibitory factor regulates innate γδ T-cell responses via IL-17 expression.
Collapse
Affiliation(s)
- Hee Kyung Kim
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Alvaro Baeza Garcia
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Edwin Siu
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Pathricia Tilstam
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Rita Das
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and.,Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Scott Roberts
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Lin Leng
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Richard Bucala
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Role of MIF and D-DT in immune-inflammatory, autoimmune, and chronic respiratory diseases: from pathogenic factors to therapeutic targets. Drug Discov Today 2018; 24:428-439. [PMID: 30439447 DOI: 10.1016/j.drudis.2018.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/04/2018] [Accepted: 11/06/2018] [Indexed: 01/03/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a protein that acts as a cytokine-, enzyme-, endocrine- and chaperon-like molecule. It binds to the cell-surface receptor CD74 in association with CD44, which activates the downstream signal transduction pathway. In addition, MIF acts also as a noncognate ligand for C-X-C chemokine receptor type 2 (CXCR2), type 4 (CXCR4), and type 7 (CXCR7). Recently, D-dopachrome tautomerase (D-DT), a second member of the MIF superfamily, was identified. From a pharmacological and clinical point of view, the nonredundant biological properties of MIF and D-DT anticipate potential synergisms from their simultaneous inhibition. Here, we focus on the role of MIF and D-DT in human immune-inflammatory, autoimmune, and chronic respiratory diseases, providing an update on the progress made in the identification of specific small-molecule inhibitors of these proteins.
Collapse
|
20
|
Nahar A, Kadokawa H. Expression of macrophage migration inhibitory factor (MIF) in bovine oviducts is higher in the postovulatory phase than during the oestrus and luteal phase. Reprod Fertil Dev 2018; 29:1521-1529. [PMID: 27465152 DOI: 10.1071/rd15546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/21/2016] [Indexed: 11/23/2022] Open
Abstract
Whether macrophage migration inhibitory factor (MIF) in the bovine oviduct is important for early embryogenesis has not been well substantiated. The aim of the present study was to test the hypothesis that bovine oviduct expresses higher levels of MIF during the post-ovulation phase. Both ampullary and isthmic samples were collected from Japanese black heifers during oestrus (Day 0; n=5), postovulation (Day 3; n=6) and luteal phase (Days 9-12; n=5). MIF mRNA and protein were extracted from the ampullary and isthmic samples and their levels measured by real-time polymerase chain reaction and western blot analysis respectively. Fluorescent immunohistochemistry was performed on frozen ampullary and isthmic sections using antibodies against MIF. MIF mRNA and protein expression was higher in the postovulatory phase than during oestrus and the luteal phase (P<0.05). Fluorescent immunohistochemistry confirmed that in all phases of the oestrous cycle evaluated, the primary site of MIF expression in the ampulla and isthmus was the tunica mucosa. In conclusion, the bovine ampulla and isthmus have higher MIF expression during the postovulatory phase. Further studies are needed to clarify the role of MIF in bovine oviducts.
Collapse
Affiliation(s)
- Asrafun Nahar
- Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi-shi, Yamaguchi-ken, 753-8515, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi-shi, Yamaguchi-ken, 753-8515, Japan
| |
Collapse
|
21
|
Li J, Tang Y, Tang PMK, Lv J, Huang XR, Carlsson-Skwirut C, Da Costa L, Aspesi A, Fröhlich S, Szczęśniak P, Lacher P, Klug J, Meinhardt A, Fingerle-Rowson G, Gong R, Zheng Z, Xu A, Lan HY. Blocking Macrophage Migration Inhibitory Factor Protects Against Cisplatin-Induced Acute Kidney Injury in Mice. Mol Ther 2018; 26:2523-2532. [PMID: 30077612 DOI: 10.1016/j.ymthe.2018.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is elevated in patients with acute kidney injury (AKI) and is suggested as a potential predictor for renal replacement therapy in AKI. In this study, we found that MIF also plays a pathogenic role and is a therapeutic target for AKI. In a cisplatin-induced AKI mouse model, elevated plasma MIF correlated with increased serum creatinine and the severity of renal inflammation and tubular necrosis, whereas deletion of MIF protected the kidney from cisplatin-induced AKI by largely improving renal functional and histological injury, and suppressing renal inflammation including upregulation of cytokines such as interleukin (IL)-1β, tumor necrosis factor-alpha (TNF-α), IL-6, inducible nitric oxide synthase (iNOS), MCP-1, IL-8, and infiltration of macrophages, neutrophils, and T cells. We next developed a novel therapeutic strategy for AKI by blocking the endogenous MIF with an MIF inhibitor, ribosomal protein S19 (RPS19). Similar to the MIF-knockout mice, treatment with RPS19, but not the mutant RPS19, suppressed cisplatin-induced AKI. Mechanistically, we found that both genetic knockout and pharmacological inhibition of MIF protected against AKI by inactivating the CD74-nuclear factor κB (NF-κB) signaling. In conclusion, MIF is pathogenic in cisplatin-induced AKI. Targeting MIF with an MIF inhibitor RPS19 could be a promising therapeutic potential for AKI.
Collapse
Affiliation(s)
- Jinhong Li
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Ying Tang
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Patrick M K Tang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Lv
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Christine Carlsson-Skwirut
- Department of Woman and Child Health, Paediatric Endocrinology Unit, Astrid Lindgren Children's Hospital, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Lydie Da Costa
- AP-HP, Service d'Hématologie Biologique, Hôpital R. Debré, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; INSERM U1149, CRI, Faculté de Médecine Bichat-Claude Bernard, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Anna Aspesi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy; Interdepartmental Center for Studies on Asbestos and Other Toxic Particulates "G. Scansetti," University of Turin, Turin, Italy
| | - Suada Fröhlich
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Pawel Szczęśniak
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Philipp Lacher
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Jörg Klug
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig-University, Giessen, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, University Hospital Cologne and Center for Integrated Oncology Köln-Bonn, Cologne, Germany
| | - Rujun Gong
- Division of Kidney Diseases and Hypertension, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, USA
| | - Zhihua Zheng
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Anping Xu
- Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Department of Anatomical and Cellular Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
22
|
Wang D, Yang D, Wang Q, Zhao Y, Li C, Wei Q, Han Y, Zhao J. Two macrophage migration inhibitory factors (MIFs) from the clam Ruditapes philippinarum: Molecular characterization, localization and enzymatic activities. FISH & SHELLFISH IMMUNOLOGY 2018; 78:158-168. [PMID: 29679760 DOI: 10.1016/j.fsi.2018.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/24/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an evolutionarily ancient cytokine-like factor and plays a critical role in both innate and adaptive immunity. In the present study, two MIFs (designed as RpMIF-1 and RpMIF-2, respectively) were identified and characterized from the clam Ruditapes philippinarum by rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of RpMIF-1 and RpMFI-2 consisted of 531 and 722 nucleotides, encoding a polypeptide of 113 and 114 amino acid residues, respectively. Multiple alignments and phylogenetic analysis revealed that both RpMIF-1 and RpMIF-2 belonged to the MIF family. The conserved catalytic-site Pro2 for tautomerase activity was identified in the deduced amino acid sequences of RpMIFs. Both RpMIF-1 and RpMIF-2 transcripts were constitutively expressed in examined tissues of R. philippinarum with dominant expression in hepatopancreas, gills and hemocytes. Immunolocalization analysis showed that RpMIF-1 and RpMIF-2 proteins were expressed in examined tissues with the exception of adductor muscle and foot. After Vibrio anguillarum and Micrococcus luteus challenge, the mRNA expression of RpMIFs was significantly modulated in hemocytes, gills and hepatopancreas. Recombinant RpMIF-1 and RpMIF-2 proteins possessed significant tautomerase activity and oxidoreductase activity, indicating that these two proteins was perhaps involved in inflammatory responses. In summary, our results suggested that RpMIF-1 and RpMIF-2 played an important role in the innate immunity of R. philippinarum.
Collapse
Affiliation(s)
- Dan Wang
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Dinglong Yang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China
| | - Qing Wang
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| | - Ye Zhao
- Ocean School, Yantai University, Yantai, 264005, PR China
| | - Chenghua Li
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Qianyu Wei
- Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yijing Han
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianmin Zhao
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, 264003, PR China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China.
| |
Collapse
|
23
|
Cavaillon JM. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 2018; 149:45-53. [PMID: 29056305 DOI: 10.1016/j.toxicon.2017.10.016] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022]
Abstract
Endotoxins and exotoxins are among the most potent bacterial inducers of cytokines. During infectious processes, the production of inflammatory cytokines including tumor necrosis factor (TNF), interleukin-1β (IL-1β), gamma interferon (IFNγ) and chemokines orchestrates the anti-infectious innate immune response. However, an overzealous production, leading up to a cytokine storm, can be deleterious and contributes to mortality consecutive to sepsis or toxic shock syndrome. Endotoxins of Gram-negative bacteria (lipopolysaccharide, LPS) are particularly inflammatory because they generate auto-amplificatory loops after activation of monocytes/macrophages. LPS and numerous pore-forming exotoxins also activate the inflammasome, the molecular platform that allows the release of mature IL-1β and IL-18. Among exotoxins, some behave as superantigens, and as such activate the release of cytokines by T-lymphocytes. In most cases, pre-exposure to exotoxins enhances the cytokine production induced by LPS and its lethality, whereas pre-exposure to endotoxin usually results in tolerance. In this review we recall the various steps, which, from the very early discovery of pyrogenicity induced by bacterial products, ended to the discovery of the endogenous pyrogen. Furthermore, we compare the specific characteristics of endotoxins and exotoxins in their capacity to induce inflammatory cytokines.
Collapse
Affiliation(s)
- Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 Rue Dr. Roux, 75015, Paris, France.
| |
Collapse
|
24
|
Trivedi-Parmar V, Jorgensen WL. Advances and Insights for Small Molecule Inhibition of Macrophage Migration Inhibitory Factor. J Med Chem 2018; 61:8104-8119. [PMID: 29812929 DOI: 10.1021/acs.jmedchem.8b00589] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is an upstream regulator of the immune response whose dysregulation is tied to a broad spectrum of inflammatory and proliferative disorders. As its complex signaling pathways and pleiotropic nature have been elucidated, it has become an attractive target for drug discovery. Remarkably, MIF is both a cytokine and an enzyme that functions as a keto-enol tautomerase. Strategies including in silico modeling, virtual screening, high-throughput screening, and screening of anti-inflammatory natural products have led to a large and diverse catalogue of MIF inhibitors as well as some understanding of the structure-activity relationships for compounds binding MIF's tautomerase active site. With possible clinical trials of some MIF inhibitors on the horizon, it is an opportune time to review the literature to seek trends, address inconsistencies, and identify promising new avenues of research.
Collapse
Affiliation(s)
- Vinay Trivedi-Parmar
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| | - William L Jorgensen
- Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States
| |
Collapse
|
25
|
Kim JH, Lee J, Bae SJ, Kim Y, Park BJ, Choi JW, Kwon J, Cha GH, Yoo HJ, Jo EK, Bae YS, Lee YH, Yuk JM. NADPH oxidase 4 is required for the generation of macrophage migration inhibitory factor and host defense against Toxoplasma gondii infection. Sci Rep 2017; 7:6361. [PMID: 28743960 PMCID: PMC5526938 DOI: 10.1038/s41598-017-06610-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/14/2017] [Indexed: 12/31/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) are an important family of catalytic enzymes that generate reactive oxygen species (ROS), which mediate the regulation of diverse cellular functions. Although phagocyte Nox2/gp91phox is closely associated with the activation of host innate immune responses, the roles of Nox family protein during Toxoplasma gondii (T. gondii) infection have not been fully investigated. Here, we found that T. gondii-mediated ROS production was required for the upregulation of macrophage migration inhibitory factor (MIF) mRNA and protein levels via activation of mitogen-activated protein kinase and nuclear factor-κB signaling in macrophages. Interestingly, MIF knockdown led to a significant increase in the survival of intracellular T. gondii in bone marrow-derived macrophages (BMDMs). Moreover, Nox4 deficiency, but not Nox2/gp91phox and the cytosolic subunit p47phox, resulted in enhanced survival of the intracellular T. gondii RH strain and impaired expression of T. gondii-mediated MIF in BMDMs. Additionally, Nox4-deficient mice showed increased susceptibility to virulent RH strain infection and increased cyst burden in brain tissues and low levels of MIF expression following infection with the avirulent ME49 strain. Collectively, our findings indicate that Nox4-mediated ROS generation plays a central role in MIF production and resistance to T. gondii infection.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jina Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Su-Jin Bae
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yeeun Kim
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Byung-Joon Park
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jae-Won Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jaeyul Kwon
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Education, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Guang-Ho Cha
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Heon Jong Yoo
- Department of Obstetrics and Gynecology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Young-Ha Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea. .,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.
| | - Jae-Min Yuk
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon, South Korea. .,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
26
|
MIF-driven activation of macrophages induces killing of intracellular Trypanosoma cruzi dependent on endogenous production of tumor necrosis factor, nitric oxide and reactive oxygen species. Immunobiology 2017; 222:423-431. [DOI: 10.1016/j.imbio.2016.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/08/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
|
27
|
Roger T, Glauser MP, Calandra T. Macrophage migration inhibitory factor (MIF) modulates innate immune responses induced by endotoxin and Gram-negative bacteria. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070061101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Discovered in the early 1960s as a T-cell cytokine, MIF has emerged to be an important mediator of the innate immune system. MIF was identified recently to be released by a vast array of cells, including monocytes/macrophages, T-cells, B-cells, endocrine cells and epithelial cells in response to infection and stress. Bacteria, microbial toxins and cytokines have been shown to be powerful inducers of MIF secretion by macrophages. MIF stimulates the expression of pro-inflammatory mediators by immune cells and functions to counterbalance the anti-inflammatory and immunosuppressive effects of glucocorticoids. Like TNF and IL-1, MIF plays an important role in host responses to infection. Recombinant MIF was found to exacerbate lethal endotoxemia or bacterial sepsis when co-injected with LPS or Escherichia coli in mice. Conversely, MIF knockout mice or mice treated with anti-MIF antibodies were protected from shock induced by LPS, staphylococcal exotoxins or bacterial peritonitis, even when anti-MIF therapy was started after the onset of infection. Given the central role played by MIF in innate immune responses against microbial pathogens and in the regulation of inflammatory responses, pharmacological modulation of MIF production or neutralization of MIF activity could have broad clinical applications and may offer new treatment options for the management of patients with severe sepsis or septic shock.
Collapse
Affiliation(s)
- Thierry Roger
- Department of Internal Medicine, Division of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michel P. Glauser
- Department of Internal Medicine, Division of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thierry Calandra
- Department of Internal Medicine, Division of Infectious Diseases, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland,
| |
Collapse
|
28
|
Roger T, Froidevaux C, Martin C, Calandra T. Macrophage migration inhibitory factor (MIF) regulates host responses to endotoxin through modulation of Toll-like receptor 4 (TLR4). ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090020801] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cytokine macrophage migration inhibitory factor (MIF) has emerged recently as an important mediator of inflammation and innate immunity. MIF is rapidly released by macrophages after stimulation with microbial products and pro-inflammatory cytokines and, in turn, stimulates the production of pro-inflammatory mediators by immune cells. Immunoneutralization of MIF or deletion of the Mif gene was shown to protect animals from lethal endotoxemia, staphylococcal toxic shock and septic shock in experimental models of bacterial peritonitis. To investigate the function of MIF in innate immunity, we studied the response of macrophages expressing reduced levels of MIF to microbial products. These cells were generated by transduction of an antisense MIF adenovirus or by stable transfection with an antisense MIF plasmid or were obtained from MIFknockout mice. MIF-deficient macrophages were shown to be hyporesponsive to stimulation with LPS and Gram-negative bacteria. The defect was associated with a down-regulation of Toll-like receptor 4 (TLR4), the signal transducing molecule of the LPS receptor complex. Immunoneutralization of extracellular MIF decreased TLR4 expression and responses of macrophages to LPS, indicating that MIF may exert autocrine effects. These findings identify an important role for MIF in innate immunity and provide a rationale for the development of anti-MIF strategy for the treatment of patients with Gram-negative septic shock.
Collapse
Affiliation(s)
- Thierry Roger
- Division of Infectious Diseases, Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland,
| | - Céline Froidevaux
- Division of Infectious Diseases, Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Christian Martin
- Division of Infectious Diseases, Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thierry Calandra
- Division of Infectious Diseases, Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
29
|
Xie B, Fu M, Zhao C, Shi J, Shi G, Jiao Z, Qiu L. Cloning, characterization, and expression of the macrophage migration inhibitory factor gene from the black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2016; 56:489-495. [PMID: 27514787 DOI: 10.1016/j.fsi.2016.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/19/2016] [Accepted: 08/07/2016] [Indexed: 06/06/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is an ancient cytokine that engages in innate immune system of vertebrates and invertebrates. In this study, the MIF gene homologue (PmMIF) was cloned from the black tiger shrimp, Penaeus monodon. The full-length cDNA sequence of PmMIF was 838 bp and contained 78 bp 5' untranslated region (UTR) and 397 bp 3' UTR, and an open reading frame (ORF) of 363 bp which coded 120 amino acids (aa). Multiple alignment analysis showed that the deduced amino acid sequence shared 98% identities with MIF from closely related species of Litopenaeus vannamei. Quantitative real-time PCR (qRT-PCR) analysis indicated that PmMIF was highly expression observed in hepatotpancreas and gills. After Vibrio harveyi challenge, PmMIF mRNA level in hepatopancreas and gills were sharply up-regulated at 6 h post-injection, and reached the maximum at 12 h. PmMIF expression level in the hepatopancreas and gills were up-regulated markedly under low (2.3%) and high (4.3%) salinity exposure, respectively. PmMIF expression level in gills increased significantly at 12 h and reached peak values (2.5- fold, 6.4-fold and 1.8-fold compared with the control) at 12 h, 48 h and 12 h after zinc, cadmium and copper exposure, respectively. In the hepatopancreas, the expression of PmMIF reached maximum levels (8.5- fold, 6.2-fold and 2.1-fold compared with the control) at 24 h, 6 h and 48 h after zinc, cadmium and copper exposure, respectively. All the results indicate that PmMIF plays an important role in responding in the innate immune system of shrimps.
Collapse
Affiliation(s)
- Bobo Xie
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Mingjun Fu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Chao Zhao
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Jinxuan Shi
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Gongfang Shi
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; College of Aqua-life Science and Technology, Shanghai Ocean University, Shanghai, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China
| | - Zongyao Jiao
- Guangzhou Marine Engineering Vocational and Technical School, Guangzhou, 510320, PR China
| | - Lihua Qiu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou, PR China; Tropical Aquaculture Research and Development Center of South China Sea Fisheries Research Institute, Sanya, PR China.
| |
Collapse
|
30
|
Calan M, Kume T, Yilmaz O, Arkan T, Kocabas GU, Dokuzlar O, Aygün K, Oktan MA, Danıs N, Temur M. A possible link between luteinizing hormone and macrophage migration inhibitory factor levels in polycystic ovary syndrome. Endocr Res 2016; 41:261-9. [PMID: 26913980 DOI: 10.3109/07435800.2015.1135442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that plays a role in metabolic and inflammatory processes. Increasing evidence suggests that there is a link between MIF and ovulation. We aimed to evaluate plasma MIF levels in women with polycystic ovary syndrome (PCOS) and to determine whether MIF levels differ between the follicular phase and mid-cycle of the menstrual cycle in eumenorrheic women. METHODS Ninety women with PCOS and 80 age- and BMI-matched healthy eumenorrheic women were consecutively recruited into this prospective observational study. For all subjects, plasma MIF levels in the early follicular phase were measured by ELISA; for the 40 healthy controls, MIF levels were also measured during mid-cycle of the same menstrual cycle. RESULTS Plasma MIF levels were significantly higher in women with PCOS than in eumenorrheic women (14.16 ± 1.59 vs. 10.39 ± 0.70 ng/ml; p < 0.001). MIF levels were significantly higher at mid-cycle than in the follicular phase in eumenorrheic women (11.15 ± 0.61 vs. 10.56 ± 0.82 ng/ml; p < 0.001). MIF was positively correlated with BMI, high sensitivity C-reactive protein (hs-CRP), and homeostasis model assessment of insulin resistance (HOMA-IR) in both groups. MIF was positively correlated with luteinizing hormone (LH) and free-testosterone only in the PCOS group. Binary logistic regression analyses revealed that the odds ratio (OR) for PCOS independently increases linearly with elevated MIF (OR = 1.385, 95% CI = 1.087-1.764, p = 0.017). CONCLUSION MIF may play a crucial role in the reproductive system in women, including the development of PCOS and normal ovulation.
Collapse
Affiliation(s)
- Mehmet Calan
- a Division of Endocrinology and Metabolism, Department of Internal Medicine , Dokuz Eylul University Medical School , Izmir , Turkey
| | - Tuncay Kume
- b Department of Medical Biochemistry , Dokuz Eylul University Medical School , Izmir , Turkey
| | - Ozgur Yilmaz
- c Department of Obstetrics and Gynecology , Manisa Merkezefendi Hospital , Manisa , Turkey
| | - Tugba Arkan
- a Division of Endocrinology and Metabolism, Department of Internal Medicine , Dokuz Eylul University Medical School , Izmir , Turkey
| | - Gokcen Unal Kocabas
- d Division of Endocrinology and Metabolism, Department of Internal Medicine , Izmir Bozyaka Training and Research Hospital , Izmir , Turkey
| | - Ozge Dokuzlar
- e Department of Internal Medicine , Dokuz Eylul University Medical School , Izmir , Turkey
| | - Kemal Aygün
- e Department of Internal Medicine , Dokuz Eylul University Medical School , Izmir , Turkey
| | - Mehmet Asi Oktan
- e Department of Internal Medicine , Dokuz Eylul University Medical School , Izmir , Turkey
| | - Nilay Danıs
- e Department of Internal Medicine , Dokuz Eylul University Medical School , Izmir , Turkey
| | - Muzaffer Temur
- c Department of Obstetrics and Gynecology , Manisa Merkezefendi Hospital , Manisa , Turkey
| |
Collapse
|
31
|
Park M, Kim S, Fetterer RH, Dalloul RA. Functional characterization of the turkey macrophage migration inhibitory factor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 61:198-207. [PMID: 27062968 DOI: 10.1016/j.dci.2016.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characterize its basic function. The full-length TkMIF gene was amplified from total RNA extracted from turkey spleen, followed by cloning into a prokaryotic (pET11a) expression vector. Sequence analysis revealed that TkMIF consists of 115 amino acids with 12.5 kDa molecular weight. Multiple sequence alignment revealed 100%, 65%, 95% and 92% identity with chicken, duck, eagle and zebra finch MIFs, respectively. Recombinant TkMIF (rTkMIF) was expressed in Escherichia coli and purified through HPLC and endotoxin removal. SDS-PAGE analysis revealed an approximately 13.5 kDa of rTkMIF monomer containing T7 tag in soluble form. Western blot analysis showed that anti-chicken MIF (ChMIF) polyclonal antisera detected a monomer form of TkMIF at approximately 13.5 kDa size. Further functional analysis revealed that rTkMIF inhibits migration of both mononuclear cells and splenocytes in a dose-dependent manner, but was abolished by the addition of anti-ChMIF polyclonal antisera. qRT-PCR analysis revealed elevated transcripts of pro-inflammatory cytokines by rTkMIF in LPS-stimulated monocytes. rTkMIF also led to increased levels of IFN-γ and IL-17F transcripts in Con A-activated splenocytes, while IL-10 and IL-13 transcripts were decreased. Overall, the sequences of both the turkey and chicken MIF have high similarity and comparable biological functions with respect to migration inhibitory activities of macrophages and enhancement of pro-inflammatory cytokine expression, suggesting that turkey and chicken MIFs would be biologically cross-reactive.
Collapse
Affiliation(s)
- Myeongseon Park
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Sungwon Kim
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Raymond H Fetterer
- Animal Parasitic Diseases Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
32
|
Functional polymorphisms of macrophage migration inhibitory factor as predictors of morbidity and mortality of pneumococcal meningitis. Proc Natl Acad Sci U S A 2016; 113:3597-602. [PMID: 26976591 DOI: 10.1073/pnas.1520727113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pneumococcal meningitis is the most frequent and critical type of bacterial meningitis. Because cytokines play an important role in the pathogenesis of bacterial meningitis, we examined whether functional polymorphisms of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) were associated with morbidity and mortality of pneumococcal meningitis. Two functional MIF promoter polymorphisms, a microsatellite (-794 CATT5-8; rs5844572) and a single-nucleotide polymorphism (-173 G/C; rs755622) were genotyped in a prospective, nationwide cohort of 405 patients with pneumococcal meningitis and in 329 controls matched for age, gender, and ethnicity. Carriages of the CATT7 and -173 C high-expression MIF alleles were associated with unfavorable outcome (P= 0.005 and 0.003) and death (P= 0.03 and 0.01). In a multivariate logistic regression model, shock [odds ratio (OR) 26.0, P= 0.02] and carriage of the CATT7 allele (OR 5.12,P= 0.04) were the main predictors of mortality. MIF levels in the cerebrospinal fluid were associated with systemic complications and death (P= 0.0002). Streptococcus pneumoniae strongly up-regulated MIF production in whole blood and transcription activity of high-expression MIF promoter Luciferase reporter constructs in THP-1 monocytes. Consistent with these findings, treatment with anti-MIF immunoglogulin G (IgG) antibodies reduced bacterial loads and improved survival in a mouse model of pneumococcal pneumonia and sepsis. The present study provides strong evidence that carriage of high-expression MIF alleles is a genetic marker of morbidity and mortality of pneumococcal meningitis and also suggests a potential role for MIF as a target of immune-modulating adjunctive therapy.
Collapse
|
33
|
Abdallah AM, Al-Mazroea AH, Al-Harbi WN, Al-Harbi NA, Eldardear AE, Almohammadi Y, Al-Harbi KM. Impact of MIF Gene Promoter Variations on Risk of Rheumatic Heart Disease and Its Age of Onset in Saudi Arabian Patients. Front Immunol 2016; 7:98. [PMID: 27014277 PMCID: PMC4790191 DOI: 10.3389/fimmu.2016.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
Although macrophage migration inhibitory factor (MIF) has consistently been shown to be an important immune modulator, data on the association between MIF promoter variations and the risk of developing rheumatic heart disease (RHD) remain inconclusive. RHD is an important complication of streptococcal infections in the Middle East, not least in Saudi Arabia, and identifying risk markers is an important priority. Therefore, we investigated the association between two functional MIF promoter variations and RHD susceptibility and severity in Saudi patients: the MIF-173G > C substitution (rs755622) and the MIF-794 CATT5-8 tetranucleotide repeat (rs5844572). Three hundred twenty-six individuals (124 RHD patients and 202 age-, sex-, and ethnically matched healthy controls) were genotyped using allelic discrimination and fragment analysis. Data were analyzed with respect to disease susceptibility, severity, sex, and age of onset. There was a significantly lower frequency of 173C allele carriage in RHD patients compared to controls [odds ratio (OR) = 0.47; 95% confidence intervals (CIs) = 0.28-0.77; p = 0.003]. Interestingly, the 173C allele was associated with late disease onset (p = 0.001). The 794 5-repeat allele was associated with decreased RHD risk (OR = 0.56; 95% CIs = 0.38-0.82; p = 0.003). In contrast, the 794 6-repeat allele was associated with increased risk of RHD (OR = 1.7; 95% CIs = 1.2-2.5; p = 0.002). MIF promoter variations appear to have a dual role in RHD, with 173C allele non-carriers at higher risk of developing RHD at a younger age. These results require further validation in larger multi-ethnic cohorts, and functional studies are necessary to understand the underlying molecular mechanisms driving the at-risk phenotype.
Collapse
Affiliation(s)
- Atiyeh M Abdallah
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust , Birmingham , UK
| | - Abdulhadi H Al-Mazroea
- Pediatric Department, Maternity and Children Hospital, Ministry of Health, College of Medicine, Taibah University , Al-Madinah , Saudi Arabia
| | - Waleed N Al-Harbi
- Pediatric Department, Maternity and Children Hospital, Ministry of Health, College of Medicine, Taibah University , Al-Madinah , Saudi Arabia
| | - Nabeeh A Al-Harbi
- Pediatric Department, Maternity and Children Hospital, Ministry of Health, College of Medicine, Taibah University , Al-Madinah , Saudi Arabia
| | - Amr E Eldardear
- Pediatric Department, Maternity and Children Hospital, Ministry of Health, College of Medicine, Taibah University , Al-Madinah , Saudi Arabia
| | | | - Khalid M Al-Harbi
- Pediatric Department, Maternity and Children Hospital, Ministry of Health, College of Medicine, Taibah University , Al-Madinah , Saudi Arabia
| |
Collapse
|
34
|
High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates. Proc Natl Acad Sci U S A 2016; 113:E997-1005. [PMID: 26858459 DOI: 10.1073/pnas.1514018113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.
Collapse
|
35
|
Djudjaj S, Lue H, Rong S, Papasotiriou M, Klinkhammer BM, Zok S, Klaener O, Braun GS, Lindenmeyer MT, Cohen CD, Bucala R, Tittel AP, Kurts C, Moeller MJ, Floege J, Ostendorf T, Bernhagen J, Boor P. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74. J Am Soc Nephrol 2015; 27:1650-64. [PMID: 26453615 DOI: 10.1681/asn.2015020149] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow-derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN.
Collapse
Affiliation(s)
- Sonja Djudjaj
- Department of Pathology, Department of Nephrology and Immunology, and
| | - Hongqi Lue
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Song Rong
- Department of Nephrology and Immunology, and
| | | | | | | | - Ole Klaener
- Department of Pathology, Department of Nephrology and Immunology, and
| | | | - Maja T Lindenmeyer
- Division of Nephrology and Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Clemens D Cohen
- Division of Nephrology and Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andre P Tittel
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; and
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; and
| | | | | | | | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany;
| | - Peter Boor
- Department of Pathology, Department of Nephrology and Immunology, and Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
36
|
Sauler M, Bucala R, Lee PJ. Role of macrophage migration inhibitory factor in age-related lung disease. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1-10. [PMID: 25957294 DOI: 10.1152/ajplung.00339.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/05/2015] [Indexed: 12/25/2022] Open
Abstract
The prevalence of many common respiratory disorders, including pneumonia, chronic obstructive lung disease, pulmonary fibrosis, and lung cancer, increases with age. Little is known of the host factors that may predispose individuals to such diseases. Macrophage migration inhibitory factor (MIF) is a potent upstream regulator of the immune system. MIF is encoded by variant alleles that occur commonly in the population. In addition to its role as a proinflammatory cytokine, a growing body of literature demonstrates that MIF influences diverse molecular processes important for the maintenance of cellular homeostasis and may influence the incidence or clinical manifestations of a variety of chronic lung diseases. This review highlights the biological properties of MIF and its implication in age-related lung disease.
Collapse
Affiliation(s)
- Maor Sauler
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| | - Richard Bucala
- Section of Rheumatology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
37
|
Das R, LaRose MI, Hergott CB, Leng L, Bucala R, Weiser JN. Macrophage migration inhibitory factor promotes clearance of pneumococcal colonization. THE JOURNAL OF IMMUNOLOGY 2014; 193:764-72. [PMID: 24928996 DOI: 10.4049/jimmunol.1400133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human genetic polymorphisms associated with decreased expression of macrophage migration inhibitory factor (MIF) have been linked to the risk of community-acquired pneumonia. Because Streptococcus pneumoniae is the leading cause of community-acquired pneumonia and nasal carriage is a precursor to invasive disease, we explored the role of MIF in the clearance of pneumococcal colonization in a mouse model. MIF-deficient mice (Mif(-/-)) showed prolonged colonization with both avirulent (23F) and virulent (6A) pneumococcal serotypes compared with wild-type animals. Pneumococcal carriage led to both local upregulation of MIF expression and systemic increase of the cytokine. Delayed clearance in the Mif(-/-) mice was correlated with reduced numbers of macrophages in upper respiratory tract lavages as well as impaired upregulation of MCP-1/CCL2. We found that primary human monocyte-derived macrophages as well as THP-1 macrophages produced MIF upon pneumococcal infection in a pneumolysin-dependent manner. Pneumolysin-induced MIF production required its pore-forming activity and phosphorylation of p38-MAPK in macrophages, with sustained p38-MAPK phosphorylation abrogated in the setting of MIF deficiency. Challenge with pneumolysin-deficient bacteria demonstrated reduced MIF upregulation, decreased numbers of macrophages in the nasopharynx, and less effective clearance. Mif(-/-) mice also showed reduced Ab response to pneumococcal colonization and impaired ability to clear secondary carriage. Finally, local administration of MIF was able to restore bacterial clearance and macrophage accumulation in Mif(-/-) mice. Our work suggests that MIF is important for innate and adaptive immunity to pneumococcal colonization and could be a contributing factor in genetic differences in pneumococcal disease susceptibility.
Collapse
Affiliation(s)
- Rituparna Das
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Meredith I LaRose
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Christopher B Hergott
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Lin Leng
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510
| | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510
| | - Jeffrey N Weiser
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| |
Collapse
|
38
|
Meza-Romero R, Benedek G, Yu X, Mooney JL, Dahan R, Duvshani N, Bucala R, Offner H, Reiter Y, Burrows GG, Vandenbark AA. HLA-DRα1 constructs block CD74 expression and MIF effects in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2014; 192:4164-73. [PMID: 24683185 DOI: 10.4049/jimmunol.1303118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
CD74, the cell-surface form of the MHC class II invariant chain, is a key inflammatory factor that is involved in various immune-mediated diseases as part of the macrophage migration inhibitory factor (MIF) binding complex. However, little is known about the natural regulators of CD74 in this context. In order to study the role of the HLA-DR molecule in regulating CD74, we used the HLA-DRα1 domain, which was shown to bind to and downregulate CD74 on CD11b(+) monocytes. We found that DRα1 directly inhibited binding of MIF to CD74 and blocked its downstream inflammatory effects in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). Potency of the DRα1 domain could be destroyed by trypsin digestion but enhanced by addition of a peptide extension (myelin oligodendrocyte glycoprotein [MOG]-35-55 peptide) that provided secondary structure not present in DRα1. These data suggest a conformationally sensitive determinant on DRα1-MOG that is responsible for optimal binding to CD74 and antagonism of MIF effects, resulting in reduced axonal damage and reversal of ongoing clinical and histological signs of EAE. These results demonstrate natural antagonist activity of DRα1 for MIF that was strongly potentiated by the MOG peptide extension, resulting in a novel therapeutic, DRα1-MOG-35-55, that within the limitations of the EAE model may have the potential to treat autoimmune diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Roberto Meza-Romero
- Neuroimmunology Research, Department of Veterans Affairs Medical Center, Portland, OR 97239
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Miyatake S, Manabe Y, Inagaki A, Furuichi Y, Takagi M, Taoka M, Isobe T, Hirota K, Fujii NL. Macrophage migration inhibitory factor diminishes muscle glucose transport induced by insulin and AICAR in a muscle type-dependent manner. Biochem Biophys Res Commun 2014; 444:496-501. [PMID: 24472542 DOI: 10.1016/j.bbrc.2014.01.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 01/21/2023]
Abstract
Skeletal muscle is a primary organ that uses blood glucose. Insulin- and 5'AMP-activated protein kinase (AMPK)-regulated intracellular signaling pathways are known as major mechanisms that regulate muscle glucose transport. It has been reported that macrophage migration inhibitory factor (MIF) is secreted from adipose tissue and heart, and affects these two pathways. In this study, we examined whether MIF is a myokine that is secreted from skeletal muscles and affects muscle glucose transport induced by these two pathways. We found that MIF is expressed in several different types of skeletal muscle. Its secretion was also confirmed in C2C12 myotubes, a skeletal muscle cell line. Next, the extensor digitorum longus (EDL) and soleus muscles were isolated from mice and treated with recombinant MIF in an in vitro muscle incubation system. MIF itself did not have any effect on glucose transport in both types of muscles. However, glucose transport induced by a submaximal dose of insulin was diminished by co-incubation with MIF in the soleus muscle. MIF also diminished glucose transport induced by a maximal dose of 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR), an AMPK activator, in the EDL muscle. These results suggest that MIF is a negative regulator of insulin- and AICAR-induced glucose transport in skeletal muscle. Since MIF secretion from C2C12 myotubes to the culture medium decreased during contraction evoked by electrical stimulations, MIF may be involved in the mechanisms underlying exercise-induced sensitization of glucose transport in skeletal muscle.
Collapse
Affiliation(s)
- Shouta Miyatake
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yasuko Manabe
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Akiko Inagaki
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yasuro Furuichi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Mayumi Takagi
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Sciences and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kiichi Hirota
- Department of Anesthesiology, Kansai Medical University, Hirakata, Osaka 573-1191, Japan
| | - Nobuharu L Fujii
- Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
40
|
Association of macrophage migration inhibitory factor and mannose-binding lectin-2 gene polymorphisms in acute rheumatic fever. Cardiol Young 2013; 23:486-90. [PMID: 22813781 DOI: 10.1017/s1047951112000972] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Macrophage migration inhibitory factor and mannose-binding lectin-2 play important roles in the pathogenesis of several acute and chronic inflammatory/autoimmune disorders. The aim of the study was to investigate any possible association between migration inhibitory factor and mannose-binding lectin-2 gene polymorphisms and acute rheumatic fever in children. Material and methods A total of 38 unrelated children with acute rheumatic fever and 40 age- and sex-matched healthy controls were analysed for codon 54 A/B polymorphism in mannose-binding lectin-2 gene and -173 G/C polymorphism in migration inhibitory factor gene by using the polymerase chain reaction method. RESULTS Frequency of BB genotype of mannose-binding lectin-2 gene was higher in the patient group. Interestingly, children with acute rheumatic fever with AA genotype tended to have chorea compared with children with BB genotype. There was a statistically significant increase in frequency of the migration inhibitory factor -173 CC genotype in patients compared with the control subjects. CONCLUSION The present study is the first to investigate the mannose-binding lectin-2 gene polymorphism in children with acute rheumatic fever. BB genotype of mannose-binding lectin-2 (codon 54) and CC genotype of migration inhibitory factor (-173) may have a role in the immunoinflammatory process of acute rheumatic fever.
Collapse
|
41
|
Kumar V, Sharma A. Innate Immunity in Sepsis Pathogenesis and Its Modulation: New Immunomodulatory Targets Revealed. J Chemother 2013; 20:672-83. [DOI: 10.1179/joc.2008.20.6.672] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Inflamm 2013; 2013:165974. [PMID: 23853427 PMCID: PMC3703895 DOI: 10.1155/2013/165974] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
Abstract
Sepsis and septic shock are among the leading causes of death in intensive care units worldwide. Numerous studies on their pathophysiology have revealed an imbalance in the inflammatory network leading to tissue damage, organ failure, and ultimately, death. Cytokines are important pleiotropic regulators of the immune response, which have a crucial role in the complex pathophysiology underlying sepsis. They have both pro- and anti-inflammatory functions and are capable of coordinating effective defense mechanisms against invading pathogens. On the other hand, cytokines may dysregulate the immune response and promote tissue-damaging inflammation. In this review, we address the current knowledge of the actions of pro- and anti-inflammatory cytokines in sepsis pathophysiology as well as how these cytokines and other important immunomodulating agents may be therapeutically targeted to improve the clinical outcome of sepsis.
Collapse
Affiliation(s)
- Wibke Schulte
- Department of Internal Medicine, Yale University School of Medicine, The Anlyan Center, S525, P.O. Box 208031, 300 Cedar Street, New Haven, CT 06520-8031, USA
- Institute of Biochemistry and Molecular Cell Biology, University Hospital of RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, University Hospital of RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, The Anlyan Center, S525, P.O. Box 208031, 300 Cedar Street, New Haven, CT 06520-8031, USA
| |
Collapse
|
43
|
Tillmann S, Bernhagen J, Noels H. Arrest Functions of the MIF Ligand/Receptor Axes in Atherogenesis. Front Immunol 2013; 4:115. [PMID: 23720662 PMCID: PMC3655399 DOI: 10.3389/fimmu.2013.00115] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/29/2013] [Indexed: 12/17/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) has been defined as an important chemokine-like function (CLF) chemokine with an essential role in monocyte recruitment and arrest. Adhesion of monocytes to the vessel wall and their transendothelial migration are critical in atherogenesis and many other inflammatory diseases. Chemokines carefully control all steps of the monocyte recruitment process. Those chemokines specialized in controlling arrest are typically immobilized on the endothelial surface, mediating the arrest of rolling monocytes by chemokine receptor-triggered pathways. The chemokine receptor CXCR2 functions as an important arrest receptor on monocytes. An arrest function has been revealed for the bona fide CXCR2 ligands CXCL1 and CXCL8, but genetic studies also suggested that additional arrest chemokines are likely to be involved in atherogenic leukocyte recruitment. While CXCR2 is known to interact with numerous CXC chemokine ligands, the CLF chemokine MIF, which structurally does not belong to the CXC chemokine sub-family, was surprisingly identified as a non-cognate ligand of CXCR2, responsible for critical arrest functions during the atherogenic process. MIF was originally identified as macrophage migration inhibitory factor (this function being eponymous), but is now known as a potent inflammatory cytokine with CLFs including chemotaxis and leukocyte arrest. This review will cover the mechanisms underlying these functions, including MIF’s effects on LFA1 integrin activity and signal transduction, and will discuss the structural similarities between MIF and the bona fide CXCR2 ligand CXCL8 while emphasizing the structural differences. As MIF also interacts with CXCR4, a chemokine receptor implicated in CXCL12-elicited lymphocyte arrest, the arrest potential of the MIF/CXCR4 axis will also be scrutinized as well as the recently identified role of pericyte MIF in attracting leukocytes exiting through venules as part of the pericyte “motility instruction program.”
Collapse
Affiliation(s)
- Sabine Tillmann
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University Aachen, Germany
| | | | | |
Collapse
|
44
|
Loftis JM, Wilhelm CJ, Vandenbark AA, Huckans M. Partial MHC/neuroantigen peptide constructs: a potential neuroimmune-based treatment for methamphetamine addiction. PLoS One 2013; 8:e56306. [PMID: 23460798 PMCID: PMC3584080 DOI: 10.1371/journal.pone.0056306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/09/2013] [Indexed: 12/31/2022] Open
Abstract
Relapse rates following current methamphetamine abuse treatments are very high (∼40-60%), and the neuropsychiatric impairments (e.g., cognitive deficits, mood disorders) that arise and persist during remission from methamphetamine addiction likely contribute to these high relapse rates. Pharmacotherapeutic development of medications to treat addiction has focused on neurotransmitter systems with only limited success, and there are no Food and Drug Administration approved pharmacotherapies for methamphetamine addiction. A growing literature shows that methamphetamine alters peripheral and central immune functions and that immune factors such as cytokines, chemokines, and adhesion molecules play a role in the development and persistence of methamphetamine induced neuronal injury and neuropsychiatric impairments. The objective of this study was to evaluate the efficacy of a new immunotherapy, partial MHC/neuroantigen peptide construct (RTL551; pI-A(b)/mMOG-35-55), in treating learning and memory impairments induced by repeated methamphetamine exposure. C57BL/6J mice were exposed to two different methamphetamine treatment regimens (using repeated doses of 4 mg/kg or 10 mg/kg, s.c.). Cognitive performance was assessed using the Morris water maze and CNS cytokine levels were measured by multiplex assay. Immunotherapy with RTL551 improved the memory impairments induced by repeated methamphetamine exposure in both mouse models of chronic methamphetamine addiction. Treatment with RTL551 also attenuated the methamphetamine induced increases in hypothalamic interleukin-2 (IL-2) levels. Collectively, these initial results indicate that neuroimmune targeted therapies, and specifically RTL551, may have potential as treatments for methamphetamine-induced neuropsychiatric impairments.
Collapse
Affiliation(s)
- Jennifer M Loftis
- Research and Development, Portland VA Medical Center, Portland, Oregon, United States of America.
| | | | | | | |
Collapse
|
45
|
Miska KB, Kim S, Fetterer RH, Dalloul RA, Jenkins MC. Macrophage migration inhibitory factor (MIF) of the protozoan parasite Eimeria influences the components of the immune system of its host, the chicken. Parasitol Res 2013; 112:1935-44. [PMID: 23435923 DOI: 10.1007/s00436-013-3345-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/08/2013] [Indexed: 11/30/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a soluble factor produced by sensitized T lymphocytes that inhibits the random migration of macrophages. Homologues of MIF from invertebrates have been identified, making it an interesting molecule from a functional perspective. In the present study, the localization of a parasite MIF protein as well as its effect on the host was characterized. Western blot analysis shows that Eimeria MIF (EMIF) is found during all parasite developmental stages tested. Transmission electron microscopy shows that MIF is distributed throughout cytosol and nucleus of Eimeria acervulina merozoites. Immunohistochemical analysis suggests that EMIF may be released into the surrounding tissues as early as 24 h after infection, while later during oocyst formation, MIF expression is localized to areas immediately surrounding the oocysts, as well as in wall-forming bodies. The chemotaxis assay revealed an inhibitory function of EMIF on chicken monocyte migration. Quantitative real-time PCR was performed to examine the effect of EMIF on host immune system by measuring the transcripts of inflammatory mediators. An ex vivo stimulation study showed that E. acervulina MIF (EaMIF) enhanced expression of pro-inflammatory cytokines and chemokines in the presence of lipopolysaccharide (LPS). Furthermore, sequential treatment of adherent peripheral blood mononuclear cells with EaMIF, chicken MIF, and LPS in 2-h intervals led to the highest levels of interleukin (IL)-1B, chemokine CCLi3, IL-18, and interferon-gamma mRNA expression. This study shows that parasite MIF is widely expressed and may have potential effects on the immune system of the host.
Collapse
Affiliation(s)
- Katarzyna B Miska
- Beltsville Agricultural Research Center, USDA/ARS, 10300 Baltimore Ave., Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
46
|
Yaddanapudi K, Putty K, Rendon BE, Lamont GJ, Faughn JD, Satoskar A, Lasnik A, Eaton JW, Mitchell RA. Control of tumor-associated macrophage alternative activation by macrophage migration inhibitory factor. THE JOURNAL OF IMMUNOLOGY 2013; 190:2984-93. [PMID: 23390297 DOI: 10.4049/jimmunol.1201650] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tumor stromal alternatively activated macrophages are important determinants of antitumor T lymphocyte responses, intratumoral neovascularization, and metastatic dissemination. Our recent efforts to investigate the mechanism of macrophage migration inhibitory factor (MIF) in antagonizing antimelanoma immune responses reveal that macrophage-derived MIF participates in macrophage alternative activation in melanoma-bearing mice. Both peripheral and tumor-associated macrophages (TAMs) isolated from melanoma bearing MIF-deficient mice display elevated proinflammatory cytokine expression and reduced anti-inflammatory, immunosuppressive, and proangiogenic gene products compared with macrophages from tumor-bearing MIF wild-type mice. Moreover, TAMs and myeloid-derived suppressor cells from MIF-deficient mice exhibit reduced T lymphocyte immunosuppressive activities compared with those from their wild-type littermates. Corresponding with reduced tumor immunosuppression and neo-angiogenic potential by TAMs, MIF deficiency confers protection against transplantable s.c. melanoma outgrowth and melanoma lung metastatic colonization. Finally, we report for the first time, to our knowledge, that our previously discovered MIF small molecule antagonist, 4-iodo-6-phenylpyrimidine, recapitulates MIF deficiency in vitro and in vivo, and attenuates tumor-polarized macrophage alternative activation, immunosuppression, neoangiogenesis, and melanoma tumor outgrowth. These studies describe an important functional contribution by MIF to TAM alternative activation and provide justification for immunotherapeutic targeting of MIF in melanoma patients.
Collapse
Affiliation(s)
- Kavitha Yaddanapudi
- Molecular Targets Group, J.G. Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Asare Y, Schmitt M, Bernhagen J. The vascular biology of macrophage migration inhibitory factor (MIF). Expression and effects in inflammation, atherogenesis and angiogenesis. Thromb Haemost 2013; 109:391-8. [PMID: 23329140 DOI: 10.1160/th12-11-0831] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/03/2012] [Indexed: 12/18/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine with chemokine-like functions. MIF is a critical mediator of the host immune and inflammatory response. Dysregulated MIF expression has been demonstrated to contribute to various acute and chronic inflammatory conditions as well as cancer development. More recently, MIF has been identified as an important pro-atherogenic factor. Its blockade could even aid plaque regression in advanced atherosclerosis. Promotion of atherogenic leukocyte recruitment processes has been recognised as a major underlying mechanism of MIF in vascular pathology. However, MIF's role in vascular biology is not limited to immune cell recruitment as recent evidence also points to a role for this mediator in neo-angiogenesis / vasculogenesis by endothelial cell activation and endothelial progenitor cell recruitment. On the basis of introducing MIF's chemokine-like functions, the current article focusses on MIF's role in vascular biology and pathology.
Collapse
Affiliation(s)
- Yaw Asare
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | | | | |
Collapse
|
48
|
Urinary macrophage migration inhibitory factor serves as a potential biomarker for acute kidney injury in patients with acute pyelonephritis. Mediators Inflamm 2012; 2012:381358. [PMID: 23319831 PMCID: PMC3540913 DOI: 10.1155/2012/381358] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 11/18/2022] Open
Abstract
Conventional markers of kidney function that are familiar to clinicians, including the serum creatinine and blood urea nitrogen levels, are unable to reveal genuine injury to the kidney, and their use may delay treatment. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine, and the predictive role and pathogenic mechanism of MIF deregulation during kidney infections involving acute kidney injury (AKI) are not currently known. In this study, we showed that elevated urinary MIF levels accompanied the development of AKI during kidney infection in patients with acute pyelonephritis (APN). In addition to the MIF level, the urinary levels of interleukin (IL)-1β and kidney injury molecule (KIM)-1 were also upregulated and were positively correlated with the levels of urinary MIF. An elevated urinary MIF level, along with elevated IL-1β and KIM-1 levels, is speculated to be a potential biomarker for the presence of AKI in APN patients.
Collapse
|
49
|
Roger T, Delaloye J, Chanson AL, Giddey M, Le Roy D, Calandra T. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis. J Infect Dis 2012; 207:331-9. [PMID: 23125447 DOI: 10.1093/infdis/jis673] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Collapse
Affiliation(s)
- Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Brain miffed by macrophage migration inhibitory factor. Int J Cell Biol 2012; 2012:139573. [PMID: 22973314 PMCID: PMC3438795 DOI: 10.1155/2012/139573] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/06/2012] [Accepted: 07/12/2012] [Indexed: 12/31/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine which also exhibits enzymatic properties like oxidoreductase and tautomerase. MIF plays a pivotal role in innate and acquired immunity as well as in the neuroendocrine axis. Since it is involved in the pathogenesis of acute and chronic inflammation, neoangiogenesis, and cancer, MIF and its signaling components are considered suitable targets for therapeutic intervention in several fields of medicine. In neurodegenerative and neurooncological diseases, MIF is a highly relevant, but still a hardly investigated mediator. MIF operates via intracellular protein-protein interaction as well as in CD74/CXCR2/CXCR4 receptor-mediated pathways to regulate essential cellular systems such as redox balance, HIF-1, and p53-mediated senescence and apoptosis as well as multiple signaling pathways. Acting as an endogenous glucocorticoid antagonist, MIF thus represents a relevant resistance gene in brain tumor therapies. Alongside this dual action, a functional homolog-annotated D-dopachrome tautomerase/MIF-2 has been uncovered utilizing the same cell surface receptor signaling cascade as MIF. Here we review MIF actions with respect to redox regulation in apoptosis and in tumor growth as well as its extracellular function with a focus on its potential role in brain diseases. We consider the possibility of MIF targeting in neurodegenerative processes and brain tumors by novel MIF-neutralizing approaches.
Collapse
|