1
|
Diener C, Thüre K, Engel A, Hart M, Keller A, Meese E, Fischer U. Paving the way to a neural fate - RNA signatures in naive and trans-differentiating mesenchymal stem cells. Eur J Cell Biol 2024; 103:151458. [PMID: 39341198 DOI: 10.1016/j.ejcb.2024.151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal Stem Cells (MSCs) derived from the embryonic mesoderm persist as a viable source of multipotent cells in adults and have a crucial role in tissue repair. One of the most promising aspects of MSCs is their ability to trans-differentiate into cell types outside of the mesodermal lineage, such as neurons. This characteristic positions MSCs as potential therapeutic tools for neurological disorders. However, the definition of a clear MSC signature is an ongoing topic of debate. Likewise, there is still a significant knowledge gap about functional alterations of MSCs during their transition to a neural fate. In this study, our focus is on the dynamic expression of RNA in MSCs as they undergo trans-differentiation compared to undifferentiated MSCs. To track and correlate changes in cellular signaling, we conducted high-throughput RNA expression profiling during the early time-course of human MSC neurogenic trans-differentiation. The expression of synapse maturation markers, including NLGN2 and NPTX1, increased during the first 24 h. The expression of neuron differentiation markers, such as GAP43 strongly increased during 48 h of trans-differentiation. Neural stem cell marker NES and neuron differentiation marker, including TUBB3 and ENO1, were highly expressed in mesenchymal stem cells and remained so during trans-differentiation. Pathways analyses revealed early changes in MSCs signaling that can be linked to the acquisition of neuronal features. Furthermore, we identified microRNAs (miRNAs) as potential drivers of the cellular trans-differentiation process. We also determined potential risk factors related to the neural trans-differentiation process. These factors include the persistence of stemness features and the expression of factors involved in neurofunctional abnormalities and tumorigenic processes. In conclusion, our findings contribute valuable insights into the intricate landscape of MSCs during neural trans-differentiation. These insights can pave the way for the development of safer treatments of neurological disorders.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Konstantin Thüre
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Annika Engel
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Martin Hart
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Ulrike Fischer
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany.
| |
Collapse
|
2
|
Lai S, Guo Z. Stem cell therapies for chronic obstructive pulmonary disease: mesenchymal stem cells as a promising treatment option. Stem Cell Res Ther 2024; 15:312. [PMID: 39300523 DOI: 10.1186/s13287-024-03940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Chronic obstructive pulmonary disease(COPD) is an inflammatory disease characterized by the progressive and irreversible structural and functional damage of lung tissue. Although COPD is a significant global disease burden, the available treatments only ameliorate the symptoms, but cannot reverse lung damage. Researchers in regenerative medicine have examined the use of stem cell transplantation for treatment of COPD and other diseases because these cells have the potential for unlimited self-renewal and the ability to undergo directed differentiation. Stem cells are typically classified as embryonic stem cells, induced pluripotent stem cells, and adult stem cells (which includes mesenchymal stem cells [MSCs]), each with its own advantages and disadvantages regarding applications in regenerative medicine. Although the heterogeneity and susceptibility to senescence of MSCs make them require careful consideration for clinical applications. However, the low tumourigenicity and minimal ethical concerns of MSCs make them appear to be excellent candidates. This review summarizes the characteristics of various stem cell types and describes their therapeutic potential in the treatment of COPD, with a particular emphasis on MSCs. We aim to facilitate subsequent in-depth research and preclinical applications of MSCs by providing a comprehensive overview.
Collapse
Affiliation(s)
- Sumei Lai
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Zhifeng Guo
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Zhang X, Kuang Q, Xu J, Lin Q, Chi H, Yu D. MSC-Based Cell Therapy in Neurological Diseases: A Concise Review of the Literature in Pre-Clinical and Clinical Research. Biomolecules 2024; 14:538. [PMID: 38785945 PMCID: PMC11117494 DOI: 10.3390/biom14050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells with the ability to self-renew and multi-directional differentiation potential. Exogenously administered MSCs can migrate to damaged tissue sites and participate in the repair of damaged tissues. A large number of pre-clinical studies and clinical trials have demonstrated that MSCs have the potential to treat the abnormalities of congenital nervous system and neurodegenerative diseases. Therefore, MSCs hold great promise in the treatment of neurological diseases. Here, we summarize and highlight current progress in the understanding of the underlying mechanisms and strategies of MSC application in neurological diseases.
Collapse
Affiliation(s)
- Xiaorui Zhang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qihong Kuang
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianguang Xu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qing Lin
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haoming Chi
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daojin Yu
- University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province/Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Jiang M, Zhu D, Zhao D, Liu Y, Li J, Zheng Z. Integrated Analysis of Clinical Outcome of Mesenchymal Stem Cell-related Genes in Pan-cancer. Curr Genomics 2024; 25:298-315. [PMID: 39156727 PMCID: PMC11327807 DOI: 10.2174/0113892029291247240422060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 08/20/2024] Open
Abstract
Background Although the application of mesenchymal stem cells (MSCs) in engineered medicine, such as tissue regeneration, is well known, new evidence is emerging that shows that MSCs can also promote cancer progression, metastasis, and drug resistance. However, no large-scale cohort analysis of MSCs has been conducted to reveal their impact on the prognosis of cancer patients. Objectives We propose the MSC score as a novel surrogate for poor prognosis in pan-cancer. Methods We used single sample gene set enrichment analysis to quantify MSC-related genes into a signature score and identify the signature score as a potential independent prognostic marker for cancer using multivariate Cox regression analysis. TIDE algorithm and neural network were utilized to assess the predictive accuracy of MSC-related genes for immunotherapy. Results MSC-related gene expression significantly differed between normal and tumor samples across the 33 cancer types. Cox regression analysis suggested the MSC score as an independent prognostic marker for kidney renal papillary cell carcinoma, mesothelioma, glioma, and stomach adenocarcinoma. The abundance of fibroblasts was also more representative of the MSC score than the stromal score. Our findings supported the combined use of the TIDE algorithm and neural network to predict the accuracy of MSC-related genes for immunotherapy. Conclusion We comprehensively characterized the transcriptome, genome, and epigenetics of MSCs in pan-cancer and revealed the crosstalk of MSCs in the tumor microenvironment, especially with cancer-related fibroblasts. It is suggested that this may be one of the key sources of resistance to cancer immunotherapy.
Collapse
Affiliation(s)
- Mingzhe Jiang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dantong Zhu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yongye Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
5
|
Bueno C, García-Bernal D, Martínez S, Blanquer M, Moraleda JM. The nuclei of human adult stem cells can move within the cell and generate cellular protrusions to contact other cells. Stem Cell Res Ther 2024; 15:32. [PMID: 38321563 PMCID: PMC10848534 DOI: 10.1186/s13287-024-03638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The neuronal transdifferentiation of adult bone marrow cells (BMCs) is still considered an artifact based on an alternative explanation of experimental results supporting this phenomenon obtained over decades. However, recent studies have shown that following neural induction, BMCs enter an intermediate cellular state before adopting neural-like morphologies by active neurite extension and that binucleated BMCs can be formed independent of any cell fusion events. These findings provide evidence to reject the idea that BMC neural transdifferentiation is merely an experimental artifact. Therefore, understanding the intermediate states that cells pass through during transdifferentiation is crucial given their potential application in regenerative medicine and disease modelling. METHODS In this study, we examined the functional significance of the variety of morphologies and positioning that cell nuclei of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can adopt during neural-like differentiation using live-cell nuclear fluorescence labelling, time-lapse microscopy, and confocal microscopy analysis. RESULTS Here, we showed that after neural induction, hBM-MSCs enter an intermediate cellular state in which the nuclei are able to move within the cells, switching shapes and positioning and even generating cellular protrusions as they attempt to contact the cells around them. These findings suggest that changes in nuclear positioning occur because human cell nuclei somehow sense their environment. In addition, we showed the process of direct interactions between cell nuclei, which opens the possibility of a new level of intercellular interaction. CONCLUSIONS The present study advances the understanding of the intermediate stage through which hBM-MSCs pass during neural transdifferentiation, which may be crucial to understanding the mechanisms of these cell conversion processes and eventually harness them for use in regenerative medicine. Importantly, our study provides for the first time evidence that the nuclei of hBM-MSC-derived intermediate cells somehow sense their environment, generating cellular protrusions to contact other cells. In summary, human mesenchymal stromal cells could not only help to increase our understanding of the mechanisms underlying cellular plasticity but also facilitate the exact significance of nuclear positioning in cellular function and in tissue physiology.
Collapse
Affiliation(s)
- Carlos Bueno
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain.
| | - David García-Bernal
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
- Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550, San Juan, Alicante, Spain
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, 28029, Madrid, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010, Alicante, Spain
| | - Miguel Blanquer
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| | - José M Moraleda
- Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Faculty of Medicine, Institute of Biomedical Research (IMIB), University of Murcia, 30120, Murcia, Spain
| |
Collapse
|
6
|
Mehta JM, Hiremath SC, Chilimba C, Ghasemi A, Weaver JD. Translation of cell therapies to treat autoimmune disorders. Adv Drug Deliv Rev 2024; 205:115161. [PMID: 38142739 PMCID: PMC10843859 DOI: 10.1016/j.addr.2023.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Autoimmune diseases are a diverse and complex set of chronic disorders with a substantial impact on patient quality of life and a significant global healthcare burden. Current approaches to autoimmune disease treatment comprise broadly acting immunosuppressive drugs that lack disease specificity, possess limited efficacy, and confer undesirable side effects. Additionally, there are limited treatments available to restore organs and tissues damaged during the course of autoimmune disease progression. Cell therapies are an emergent area of therapeutics with the potential to address both autoimmune disease immune dysfunction as well as autoimmune disease-damaged tissue and organ systems. In this review, we discuss the pathogenesis of common autoimmune disorders and the state-of-the-art in cell therapy approaches to (1) regenerate or replace autoimmune disease-damaged tissue and (2) eliminate pathological immune responses in autoimmunity. Finally, we discuss critical considerations for the translation of cell products to the clinic.
Collapse
Affiliation(s)
- Jinal M Mehta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Park A, Choi S, Do J, Kim Y, Kim KS, Koh E, Park KS. ZO-1 regulates the migration of mesenchymal stem cells in cooperation with α-catenin in response to breast tumor cells. Cell Death Discov 2024; 10:19. [PMID: 38212369 PMCID: PMC10784548 DOI: 10.1038/s41420-023-01793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Mesenchymal stem cells are recruited from the bone marrow into breast tumors, contributing to the creation of a tumor microenvironment that fosters tropism for breast tumors. However, the intrinsic mechanisms underlying the recruitment of bone marrow-derived mesenchymal stem cells (MSCs) into the breast tumor microenvironment are still under investigation. Our discoveries identified zonula occludens-1 (ZO-1) as a specific intrinsic molecule that plays a vital role in mediating the collective migration of MSCs towards breast tumor cells and transforming growth factor beta (TGF-β), which is a crucial factor secreted by breast tumor cells. Upon migration in response to MDA-MB-231 cells and TGF-β, MSCs showed increased formation of adherens junction-like structures (AJs) expressing N-cadherin and α-catenin at their cell-cell contacts. ZO-1 was found to be recruited into the AJs at the cell-cell contacts between MSCs. Additionally, ZO-1 collaborated with α-catenin to regulate AJ formation, dependently on the SH3 and GUK domains of the ZO-1 protein. ZO-1 knockdown led to the impaired migration of MSCs in response to the stimuli and subsequent downregulation of AJs formation at the cell-cell contacts during MSCs migration. Overall, our study highlights the novel role of ZO-1 in guiding MSC migration towards breast tumor cells, suggesting its potential as a new strategy for controlling and re-engineering the breast tumor microenvironment.
Collapse
Affiliation(s)
- Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jungbeom Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Youngjae Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Kyung-Sup Kim
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Eunjin Koh
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea.
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
8
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
9
|
Buonocore M, Grimaldi M, Santoro A, Covelli V, Marino C, Napolitano E, Novi S, Tecce MF, Ciaglia E, Montella F, Lopardo V, Perugini V, Santin M, D’Ursi AM. Exploiting the Features of Short Peptides to Recognize Specific Cell Surface Markers. Int J Mol Sci 2023; 24:15610. [PMID: 37958593 PMCID: PMC10650159 DOI: 10.3390/ijms242115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Antibodies are the macromolecules of choice to ensure specific recognition of biomarkers in biological assays. However, they present a range of shortfalls including a relatively high production cost and limited tissue penetration. Peptides are relatively small molecules able to reproduce sequences of highly specific paratopes and, although they have less biospecificity than antibodies, they offer advantages like ease of synthesis, modifications of their amino acid sequences and tagging with fluorophores and other molecules required for detection. This work presents a strategy to design peptide sequences able to recognize the CD44 hyaluronic acid receptor present in the plasmalemma of a range of cells including human bone marrow stromal mesenchymal cells. The protocol of identification of the optimal amino acid sequence was based on the combination of rational design and in silico methodologies. This protocol led to the identification of two peptide sequences which were synthesized and tested on human bone marrow mesenchymal stromal cells (hBM-MSCs) for their ability to ensure specific binding to the CD44 receptor. Of the two peptides, one binds CD44 with sensitivity and selectivity, thus proving its potential to be used as a suitable alternative to this antibody in conventional immunostaining. In the context of regenerative medicine, the availability of this peptide could be harnessed to functionalize tissue engineering scaffolds to anchor stem cells as well as to be integrated into systems such as cell sorters to efficiently isolate MSCs from biological samples including various cell subpopulations. The data here reported can represent a model for developing peptide sequences able to recognize hBM-MSCs and other types of cells and for their integration in a range of biomedical applications.
Collapse
Affiliation(s)
- Michela Buonocore
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Department of Chemical Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| | - Angelo Santoro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Scuola di Specializzazione in Farmacia Ospedaliera, University of Salerno, 84084 Fisciano, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Enza Napolitano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Sara Novi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Valeria Perugini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton BN2 4AT, UK; (V.P.); (M.S.)
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton BN2 4AT, UK; (V.P.); (M.S.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| |
Collapse
|
10
|
Aerts-Kaya F, van Til NP. Gene and Cellular Therapies for Leukodystrophies. Pharmaceutics 2023; 15:2522. [PMID: 38004502 PMCID: PMC10675548 DOI: 10.3390/pharmaceutics15112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Leukodystrophies are a heterogenous group of inherited, degenerative encephalopathies, that if left untreated, are often lethal at an early age. Although some of the leukodystrophies can be treated with allogeneic hematopoietic stem cell transplantation, not all patients have suitable donors, and new treatment strategies, such as gene therapy, are rapidly being developed. Recent developments in the field of gene therapy for severe combined immune deficiencies, Leber's amaurosis, epidermolysis bullosa, Duchenne's muscular dystrophy and spinal muscular atrophy, have paved the way for the treatment of leukodystrophies, revealing some of the pitfalls, but overall showing promising results. Gene therapy offers the possibility for overexpression of secretable enzymes that can be released and through uptake, allow cross-correction of affected cells. Here, we discuss some of the leukodystrophies that have demonstrated strong potential for gene therapy interventions, such as X-linked adrenoleukodystrophy (X-ALD), and metachromatic leukodystrophy (MLD), which have reached clinical application. We further discuss the advantages and disadvantages of ex vivo lentiviral hematopoietic stem cell gene therapy, an approach for targeting microglia-like cells or rendering cross-correction. In addition, we summarize ongoing developments in the field of in vivo administration of recombinant adeno-associated viral (rAAV) vectors, which can be used for direct targeting of affected cells, and other recently developed molecular technologies that may be applicable to treating leukodystrophies in the future.
Collapse
Affiliation(s)
- Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Center for Stem Cell Research and Development, Hacettepe University, 06100 Ankara, Turkey;
- Advanced Technologies Application and Research Center, Hacettepe University, 06800 Ankara, Turkey
| | - Niek P. van Til
- Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
11
|
Yang H, Chen J, Li J. Isolation, culture, and delivery considerations for the use of mesenchymal stem cells in potential therapies for acute liver failure. Front Immunol 2023; 14:1243220. [PMID: 37744328 PMCID: PMC10513107 DOI: 10.3389/fimmu.2023.1243220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Acute liver failure (ALF) is a high-mortality syndrome for which liver transplantation is considered the only effective treatment option. A shortage of donor organs, high costs and surgical complications associated with immune rejection constrain the therapeutic effects of liver transplantation. Recently, mesenchymal stem cell (MSC) therapy was recognized as an alternative strategy for liver transplantation. Bone marrow mesenchymal stem cells (BMSCs) have been used in clinical trials of several liver diseases due to their ease of acquisition, strong proliferation ability, multipotent differentiation, homing to the lesion site, low immunogenicity and anti-inflammatory and antifibrotic effects. In this review, we comprehensively summarized the harvest and culture expansion strategies for BMSCs, the development of animal models of ALF of different aetiologies, the critical mechanisms of BMSC therapy for ALF and the challenge of clinical application.
Collapse
Affiliation(s)
| | | | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Suliman M, Al-Hawary SIS, Al-Dolaimy F, Hjazi A, Almalki SG, Alkhafaji AT, Alawadi AH, Alsaalamy A, Bijlwan S, Mustafa YF. Inflammatory diseases: Function of LncRNAs in their emergence and the role of mesenchymal stem cell secretome in their treatment. Pathol Res Pract 2023; 249:154758. [PMID: 37660657 DOI: 10.1016/j.prp.2023.154758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
One of the best treatments for inflammatory diseases such as COVID-19, respiratory diseases and brain diseases is treatment with stem cells. Here we investigate the effect of stem cell therapy in the treatment of brain diseases.Preclinical studies have shown promising results, including improved functional recovery and tissue repair in animal models of neurodegenerative diseases, strokes,and traumatic brain injuries. However,ethical implications, safety concerns, and regulatory frameworks necessitate thorough evaluation before transitioning to clinical applications. Additionally, the complex nature of the brain and its intricate cellular environment present unique obstacles that must be overcome to ensure the successful integration and functionality of genetically engineered MSCs. The careful navigation of this path will determine whether the application of genetically engineered MSCs in brain tissue regeneration ultimately lives up to the hype surrounding it.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | | | - Ahmed Hussien Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| | - Sheela Bijlwan
- Uttaranchal School of Computing Sciences, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
13
|
Zhang W, Wang T, Xue Y, Zhan B, Lai Z, Huang W, Peng X, Zhou Y. Research progress of extracellular vesicles and exosomes derived from mesenchymal stem cells in the treatment of oxidative stress-related diseases. Front Immunol 2023; 14:1238789. [PMID: 37646039 PMCID: PMC10461809 DOI: 10.3389/fimmu.2023.1238789] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
There is growing evidence that mesenchymal stem cell-derived extracellular vesicles and exosomes can significantly improve the curative effect of oxidative stress-related diseases. Mesenchymal stem cell extracellular vesicles and exosomes (MSC-EVs and MSC-Exos) are rich in bioactive molecules and have many biological regulatory functions. In this review, we describe how MSC-EVs and MSC-Exos reduce the related markers of oxidative stress and inflammation in various systemic diseases, and the molecular mechanism of MSC-EVs and MSC-Exos in treating apoptosis and vascular injury induced by oxidative stress. The results of a large number of experimental studies have shown that both local and systemic administration can effectively inhibit the oxidative stress response in diseases and promote the survival and regeneration of damaged parenchymal cells. The mRNA and miRNAs in MSC-EVs and MSC-Exos are the most important bioactive molecules in disease treatment, which can inhibit the apoptosis, necrosis and oxidative stress of lung, heart, kidney, liver, bone, skin and other cells, and promote their survive and regenerate.
Collapse
Affiliation(s)
- Wenwen Zhang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Tingyu Wang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Yuanye Xue
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Bingbing Zhan
- School of Pharmaceutical Sciences, Guangdong Medical University, Dongguan, China
| | - Zengjie Lai
- The Second Clinical Medical College of Guangdong Medical University, Dongguan, China
| | - Wenjie Huang
- School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, China
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Yanfang Zhou
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, Guangdong, China
- Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
14
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
16
|
Devi A, Pahuja I, Singh SP, Verma A, Bhattacharya D, Bhaskar A, Dwivedi VP, Das G. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases. Cell Mol Immunol 2023; 20:600-612. [PMID: 37173422 PMCID: PMC10176304 DOI: 10.1038/s41423-023-01028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play diverse roles ranging from regeneration and wound healing to immune signaling. Recent investigations have indicated the crucial role of these multipotent stem cells in regulating various aspects of the immune system. MSCs express unique signaling molecules and secrete various soluble factors that play critical roles in modulating and shaping immune responses, and in some other cases, MSCs can also exert direct antimicrobial effects, thereby helping with the eradication of invading organisms. Recently, it has been demonstrated that MSCs are recruited at the periphery of the granuloma containing Mycobacterium tuberculosis and exert "Janus"-like functions by harboring pathogens and mediating host protective immune responses. This leads to the establishment of a dynamic balance between the host and the pathogen. MSCs function through various immunomodulatory factors such as nitric oxide (NO), IDO, and immunosuppressive cytokines. Recently, our group has shown that M.tb uses MSCs as a niche to evade host protective immune surveillance mechanisms and establish dormancy. MSCs also express a large number of ABC efflux pumps; therefore, dormant M.tb residing in MSCs are exposed to a suboptimal dose of drugs. Therefore, it is highly likely that drug resistance is coupled with dormancy and originates within MSCs. In this review, we discussed various immunomodulatory properties of MSCs, their interactions with important immune cells, and soluble factors. We also discussed the possible roles of MSCs in the outcome of multiple infections and in shaping the immune system, which may provide insight into therapeutic approaches using these cells in different infection models.
Collapse
Affiliation(s)
- Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akanksha Verma
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
17
|
Ishiuchi N, Nakashima A, Maeda S, Miura Y, Miyasako K, Sasaki K, Uchiki T, Sasaki A, Nagamatsu S, Nakao N, Nagao M, Masaki T. Comparison of therapeutic effects of mesenchymal stem cells derived from superficial and deep subcutaneous adipose tissues. Stem Cell Res Ther 2023; 14:121. [PMID: 37143086 PMCID: PMC10161523 DOI: 10.1186/s13287-023-03350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Fibrosis is a common histological feature in the process from chronic organ injury to organ failure. Chronic tissue injury causes inflammatory cell infiltration into the injured tissue. The persistence of this inflammatory cell infiltration leads to fibrosis and organ failure. Adipose-derived mesenchymal stem cells (ASCs) have received much attention as a regenerative therapeutic tool to prevent progression from organ injury to failure. Subcutaneous abdominal adipose tissue is divided into superficial and deep layers by a superficial fascia. Adipose tissue easily collected by liposuction is usually obtained from a deep layer, so ASCs derived from a deep layer are generally used for regenerative medicine. However, no research has been conducted to investigate differences in the therapeutic effects of ASCs from the superficial and deep layers (Sup-ASCs and Deep-ASCs, respectively). Therefore, we compared the therapeutic potencies of Sup-ASCs and Deep-ASCs. METHODS ASCs were isolated from superficial and deep subcutaneous abdominal adipose tissues collected from patients who underwent breast reconstruction. We first compared cell characteristics, such as morphology, cell proliferation, cell surface markers, adipogenic and osteogenic differentiation, cell senescence markers, and expression of coagulation and anticoagulant factors between Sup-ASCs and Deep-ASCs. Furthermore, we compared their ability to promote polarization of M2 macrophages and to inhibit transforming growth factor (TGF)-β/Smad signaling using THP-1 cells and TGF-β1 stimulated HK-2 cells incubated with conditioned media from Sup-ASCs or Deep-ASCs. In in vivo experiments, after renal ischemia-reperfusion injury (IRI) procedure, Sup-ASCs or Deep-ASCs were injected through the abdominal aorta. At 21 days post-injection, the rats were sacrificed and their left kidneys were collected to evaluate fibrosis. Finally, we performed RNA-sequencing analysis of Sup-ASCs and Deep-ASCs. RESULTS Sup-ASCs had greater proliferation and adipogenic differentiation compared with Deep-ASCs, whereas both ASC types had similar morphology, cell surface markers, senescence markers, and expression of coagulation and anticoagulant factors. Conditioned media from Sup-ASCs and Deep-ASCs equally promoted polarization of M2 macrophages and suppressed TGF-β/Smad signaling. Moreover, administration of Sup-ASCs and Deep-ASCs equally ameliorated renal fibrosis induced by IRI in rats. RNA-sequencing analysis revealed no significant difference in the expression of genes involved in anti-inflammatory and anti-fibrotic effects between Sup-ASCs and Deep-ASCs. CONCLUSIONS These results indicate that both Sup-ASCs and Deep-ASCs can be used effectively and safely as an intravascular ASC therapy for organ injury.
Collapse
Affiliation(s)
- Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
- Center for Cause of Death Investigation Research, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Satoshi Maeda
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Yoshie Miura
- Department of Stem Cell Biology and Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- TWOCELLS Company, Limited, 16-35 Hijiyama-honmachi, Minami-ku, Hiroshima, 732-0816, Japan
| | - Kisho Miyasako
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Toshio Uchiki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayano Sasaki
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shogo Nagamatsu
- Department of Plastic and Reconstructive Surgery, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoki Nakao
- Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Masataka Nagao
- Center for Cause of Death Investigation Research, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- Department of Forensic Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
18
|
Cecerska-Heryć E, Pękała M, Serwin N, Gliźniewicz M, Grygorcewicz B, Michalczyk A, Heryć R, Budkowska M, Dołęgowska B. The Use of Stem Cells as a Potential Treatment Method for Selected Neurodegenerative Diseases: Review. Cell Mol Neurobiol 2023:10.1007/s10571-023-01344-6. [PMID: 37027074 DOI: 10.1007/s10571-023-01344-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Stem cells have been the subject of research for years due to their enormous therapeutic potential. Most neurological diseases such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) are incurable or very difficult to treat. Therefore new therapies are sought in which autologous stem cells are used. They are often the patient's only hope for recovery or slowing down the progress of the disease symptoms. The most important conclusions arise after analyzing the literature on the use of stem cells in neurodegenerative diseases. The effectiveness of MSC cell therapy has been confirmed in ALS and HD therapy. MSC cells slow down ALS progression and show early promising signs of efficacy. In HD, they reduced huntingtin (Htt) aggregation and stimulation of endogenous neurogenesis. MS therapy with hematopoietic stem cells (HSCs) inducted significant recalibration of pro-inflammatory and immunoregulatory components of the immune system. iPSC cells allow for accurate PD modeling. They are patient-specific and therefore minimize the risk of immune rejection and, in long-term observation, did not form any tumors in the brain. Extracellular vesicles derived from bone marrow mesenchymal stromal cells (BM-MSC-EVs) and Human adipose-derived stromal/stem cells (hASCs) cells are widely used to treat AD. Due to the reduction of Aβ42 deposits and increasing the survival of neurons, they improve memory and learning abilities. Despite many animal models and clinical trial studies, cell therapy still needs to be refined to increase its effectiveness in the human body.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland.
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Gliźniewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, PowstancowWielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
19
|
Zhen F, Zou T, Wang T, Zhou Y, Dong S, Zhang H. Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Front Neurosci 2023; 17:1132179. [PMID: 37077319 PMCID: PMC10106759 DOI: 10.3389/fnins.2023.1132179] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Rhodopsin is a light-sensitive G protein-coupled receptor that initiates the phototransduction cascade in rod photoreceptors. Mutations in the rhodopsin-encoding gene RHO are the leading cause of autosomal dominant retinitis pigmentosa (ADRP). To date, more than 200 mutations have been identified in RHO. The high allelic heterogeneity of RHO mutations suggests complicated pathogenic mechanisms. Here, we discuss representative RHO mutations as examples to briefly summarize the mechanisms underlying rhodopsin-related retinal dystrophy, which include but are not limited to endoplasmic reticulum stress and calcium ion dysregulation resulting from protein misfolding, mistrafficking, and malfunction. Based on recent advances in our understanding of disease mechanisms, various treatment methods, including adaptation, whole-eye electrical stimulation, and small molecular compounds, have been developed. Additionally, innovative therapeutic treatment strategies, such as antisense oligonucleotide therapy, gene therapy, optogenetic therapy, and stem cell therapy, have achieved promising outcomes in preclinical disease models of rhodopsin mutations. Successful translation of these treatment strategies may effectively ameliorate, prevent or rescue vision loss related to rhodopsin mutations.
Collapse
Affiliation(s)
- Fangyuan Zhen
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Tongdan Zou
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ting Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yongwei Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
| | - Shuqian Dong
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Provincial Ophthalmic Hospital, Zhengzhou, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| | - Houbin Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- *Correspondence: Shuqian Dong, ; Houbin Zhang,
| |
Collapse
|
20
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
21
|
Bueno C, Blanquer M, García-Bernal D, Martínez S, Moraleda JM. Binucleated human bone marrow-derived mesenchymal cells can be formed during neural-like differentiation with independence of any cell fusion events. Sci Rep 2022; 12:20615. [PMID: 36450873 PMCID: PMC9712539 DOI: 10.1038/s41598-022-24996-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/23/2022] [Indexed: 12/09/2022] Open
Abstract
Although it has been reported that bone marrow-derived cells (BMDCs) can transdifferentiate into neural cells, the findings are considered unlikely. It has been argued that the rapid neural transdifferentiation of BMDCs reported in culture studies is actually due to cytotoxic changes induced by the media. While transplantation studies indicated that BMDCs can form new neurons, it remains unclear whether the underlying mechanism is transdifferentiation or BMDCs-derived cell fusion with the existing neuronal cells. Cell fusion has been put forward to explain the presence of gene-marked binucleated neurons after gene-marked BMDCs transplantation. In the present study, we demostrated that human BMDCs can rapidly adopt a neural-like morphology through active neurite extension and binucleated human BMDCs can form with independence of any cell fusion events. We also showed that BMDCs neural-like differentiation involves the formation of intermediate cells which can then redifferentiate into neural-like cells, redifferentiate back to the mesenchymal fate or even repeatedly switch lineages without cell division. Furthermore, we have discovered that nuclei from intermediate cells rapidly move within the cell, adopting different morphologies and even forming binucleated cells. Therefore, our results provide a stronger basis for rejecting the idea that BMDCs neural transdifferentiation is merely an artefact.
Collapse
Affiliation(s)
- Carlos Bueno
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - Miguel Blanquer
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain ,grid.10586.3a0000 0001 2287 8496Biochemistry, Molecular Biology and Immunology Department, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Salvador Martínez
- grid.26811.3c0000 0001 0586 4893Instituto de Neurociencias de Alicante (UMH-CSIC), Universidad Miguel Hernandez, 03550 San Juan, Alicante, Spain
| | - José M. Moraleda
- grid.10586.3a0000 0001 2287 8496Medicine Department and Hematopoietic Transplant and Cellular Therapy Unit, Institute of Biomedical Research (IMIB), Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
22
|
González-Cubero E, González-Fernández ML, Rodríguez-Díaz M, Palomo-Irigoyen M, Woodhoo A, Villar-Suárez V. Application of adipose-derived mesenchymal stem cells in an in vivo model of peripheral nerve damage. Front Cell Neurosci 2022; 16:992221. [PMID: 36159399 PMCID: PMC9493127 DOI: 10.3389/fncel.2022.992221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuropathic pain is one of the most difficult to treat chronic pain syndromes. It has significant effects on patients’ quality of life and substantially adds to the burden of direct and indirect medical costs. There is a critical need to improve therapies for peripheral nerve regeneration. The aim of this study is to address this issue by performing a detailed analysis of the therapeutic benefits of two treatment options: adipose tissue derived-mesenchymal stem cells (ASCs) and ASC-conditioned medium (CM). Methods To this end, we used an in vivo rat sciatic nerve damage model to investigate the molecular mechanisms involved in the myelinating capacity of ASCs and CM. Furthermore, effect of TNF and CM on Schwann cells (SCs) was evaluated. For our in vivo model, biomaterial surgical implants containing TNF were used to induce peripheral neuropathy in rats. Damaged nerves were also treated with either ASCs or CM and molecular methods were used to collect evidence of nerve regeneration. Post-operatively, rats were subjected to walking track analysis and their sciatic functional index was evaluated. Morphological data was gathered through transmission electron microscopy (TEM) of sciatic nerves harvested from the experimental rats. We also evaluated the effect of TNF on Schwann cells (SCs) in vitro. Genes and their correspondent proteins associated with nerve regeneration were analyzed by qPCR, western blot, and confocal microscopy. Results Our data suggests that both ASCs and CM are potentially beneficial treatments for promoting myelination and axonal regeneration. After TNF-induced nerve damage we observed an upregulation of c-Jun along with a downregulation of Krox-20 myelin-associated transcription factor. However, when CM was added to TNF-treated nerves the opposite effect occurred and also resulted in increased expression of myelin-related genes and their corresponding proteins. Conclusion Findings from our in vivo model showed that both ASCs and CM aided the regeneration of axonal myelin sheaths and the remodeling of peripheral nerve morphology.
Collapse
Affiliation(s)
- Elsa González-Cubero
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | | | - María Rodríguez-Díaz
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
| | - Marta Palomo-Irigoyen
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Genes and Disease Group, Department of Dermatology, Medical University of Vienna, Anna Spiegel Center of Translational Research, Vienna, Austria
| | - Ashwin Woodhoo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gene Regulatory Control in Disease Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Vega Villar-Suárez
- Department of Anatomy, Faculty of Veterinary Sciences, University of León-Universidad de León, León, Spain
- Institute of Biomedicine (IBIOMED), University of León-Universidad de León, León, Spain
- *Correspondence: Vega Villar-Suárez,
| |
Collapse
|
23
|
Azizi Z, Abbaszadeh R, Sahebnasagh R, Norouzy A, Motevaseli E, Maedler K. Bone marrow mesenchymal stromal cells for diabetes therapy: touch, fuse, and fix? Stem Cell Res Ther 2022; 13:348. [PMID: 35883121 PMCID: PMC9327419 DOI: 10.1186/s13287-022-03028-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM-MSCs) have anti-inflammatory and pro-survival properties. Naturally, they do not express human leukocyte antigen class II surface antigens and have immunosuppressive capabilities. Together with their relatively easy accessibility and expansion, they are an attractive tool for organ support in transplantation and regenerative therapy. Autologous BM-MSC transplantation alone or together with transplanted islets improves β-cell function, graft survival, and glycemic control in diabetes. Albeit MSCs’ capacity to transdifferentiate into β-cell is limited, their protective effects are mediated mainly by paracrine mechanisms through BM-MSCs circulating through the body. Direct cell–cell contact and spontaneous fusion of BM-MSCs with injured cells, although at a very low rate, are further mechanisms of their supportive effect and for tissue regeneration. Diabetes is a disease of long-term chronic inflammation and cell therapy requires stable, highly functional cells. Several tools and protocols have been developed by mimicking natural fusion events to induce and accelerate fusion in vitro to promote β-cell-specific gene expression in fused cells. BM-MSC-islet fusion before transplantation may be a strategy for long-term islet survival and improved function. This review discusses the cell-protective and anti-inflammatory characteristics of BM-MSCs to boost highly functional insulin-producing cells in vitro and in vivo, and the efficacy of their fusion with β-cells as a path to promote β-cell regeneration.
Collapse
Affiliation(s)
- Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran.
| | - Roya Abbaszadeh
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Roxana Sahebnasagh
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran
| | - Amir Norouzy
- Department of Energy & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 88, Italia St, Keshavarz Blvd., Tehran, Iran
| | - Kathrin Maedler
- Islet Biology Laboratory, Centre for Biomolecular Interactions Bremen, University of Bremen,, Leobener Straße 5, NW2, 28359, Bremen, Germany.
| |
Collapse
|
24
|
Solimando AG, Da Vià MC, Bolli N, Steinbrunn T. The Route of the Malignant Plasma Cell in Its Survival Niche: Exploring “Multiple Myelomas”. Cancers (Basel) 2022; 14:cancers14133271. [PMID: 35805041 PMCID: PMC9265748 DOI: 10.3390/cancers14133271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic outcomes. Nevertheless, some subgroups of patients include those with particularly unfavorable prognoses. Biological stratification can be used to categorize patient-, disease- or therapy-related factors, or alternatively, these biological determinants can be included in a dynamic model that customizes a given treatment to a specific patient. Genetic heterogeneity and current knowledge enforce a systematic and comprehensive bench-to-bedside approach. Given the increasing role of cancer stem cells (CSCs) in better characterizing the pathogenesis of solid and hematological malignancies, disease relapse, and drug resistance, identifying and describing CSCs is of paramount importance in the management of MM. Even though the function of CSCs is well-known in other cancer types, their role in MM remains elusive. With this review, we aim to provide an update on MM homing and resilience in the bone marrow micro milieu. These data are particularly interesting for clinicians facing unmet medical needs while designing novel treatment approaches for MM.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| | - Matteo Claudio Da Vià
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
| | - Niccolò Bolli
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Torsten Steinbrunn
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| |
Collapse
|
25
|
Borah R, Das JM, Upadhyay J. Surface Functionalized Polyaniline Nanofibers:Chitosan Nanocomposite for Promoting Neuronal-like Differentiation of Primary Adipose Derived Mesenchymal Stem Cells and Urease Activity. ACS APPLIED BIO MATERIALS 2022; 5:3193-3211. [PMID: 35775198 DOI: 10.1021/acsabm.2c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bioscaffolds having electrically conducting polymers (CPs) have become increasingly relevant in tissue engineering (TE) because of their ability to regulate conductivity and promote biological function. With this in mind, the current study shows a conducting polyaniline nanofibers (PNFs) dispersed chitosan (Ch) nanocomposites scaffold with a simple one-step surface functionalization approach using glutaraldehyde for potential neural regeneration applications. According to the findings, 4 wt % PNFs dispersion in Ch matrix is an optimal concentration for achieving desirable biological functions while maintaining required physicochemical properties as evidenced by SEM, XRD, current-voltage (I-V) measurement, mechanical strength test, and in vitro biodegradability test. Surface chemical compositional analysis using XPS and ATR FT-IR confirms the incorporation of aldehyde functionality after functionalization, which is corroborated by surface energy calculations following the Van Oss-Chaudhury-Good method. Surface functionalization induced enhancement in surface hydrophilicity in terms of the polar component of surface energy (γiAB) from 6.35 to 12.54 mN m-1 along with an increase in surface polarity from 13.61 to 22.54%. Functionalized PNF:Ch scaffolds demonstrated improvement in enzyme activity from 67 to 94% and better enzyme kinetics with a reduction of Michaelis constants (Km) from 21.55 to 13.81 mM, indicating favorable protein-biomaterial interactions and establishing them as biologically perceptible materials. Surface functionalization mediated improved cell-biomaterial interactions led to improved viability, adhesion, and spreading of primary adipose derived mesenchymal stem cells (ADMSCs) as well as improved immunocompatibility. Cytoskeletal architecture assessment under differentiating media containing 10 ng/mL of each basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) revealed significant actin remodeling with neurite-like projections on the functionalized scaffolds after 14 days. Immunocytochemistry results showed that more than 85% of cells expressed early neuron specific β III tubulin protein on the functionalized scaffolds, whereas glial fibrillary acidic protein (GFAP) expression was limited to approximately 40% of cells. The findings point to the functionalized nanocomposites' potential as a smart scaffold for electrically stimulated neural regeneration, as they are flexible enough to be designed into microchanneled or conduit-like structures that mimic the microstructures and mechanical properties of peripheral nerves.
Collapse
Affiliation(s)
- Rajiv Borah
- Seri-Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati 781035, India
| | - Jitu Mani Das
- Seri-Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati 781035, India
| | - Jnanendra Upadhyay
- Department of Physics, Dakshin Kamrup College, Kamrup, Assam 781125, India
| |
Collapse
|
26
|
Yang G, Fan X, Mazhar M, Yang S, Xu H, Dechsupa N, Wang L. Mesenchymal Stem Cell Application and Its Therapeutic Mechanisms in Intracerebral Hemorrhage. Front Cell Neurosci 2022; 16:898497. [PMID: 35769327 PMCID: PMC9234141 DOI: 10.3389/fncel.2022.898497] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH), a common lethal subtype of stroke accounting for nearly 10–15% of the total stroke disease and affecting two million people worldwide, has a high mortality and disability rate and, thus, a major socioeconomic burden. However, there is no effective treatment available currently. The role of mesenchymal stem cells (MSCs) in regenerative medicine is well known owing to the simplicity of acquisition from various sources, low immunogenicity, adaptation to the autogenic and allogeneic systems, immunomodulation, self-recovery by secreting extracellular vesicles (EVs), regenerative repair, and antioxidative stress. MSC therapy provides an increasingly attractive therapeutic approach for ICH. Recently, the functions of MSCs such as neuroprotection, anti-inflammation, and improvement in synaptic plasticity have been widely researched in human and rodent models of ICH. MSC transplantation has been proven to improve ICH-induced injury, including the damage of nerve cells and oligodendrocytes, the activation of microglia and astrocytes, and the destruction of blood vessels. The improvement and recovery of neurological functions in rodent ICH models were demonstrated via the mechanisms such as neurogenesis, angiogenesis, anti-inflammation, anti-apoptosis, and synaptic plasticity. Here, we discuss the pathological mechanisms following ICH and the therapeutic mechanisms of MSC-based therapy to unravel new cues for future therapeutic strategies. Furthermore, some potential strategies for enhancing the therapeutic function of MSC transplantation have also been suggested.
Collapse
Affiliation(s)
- Guoqiang Yang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Acupuncture and Rehabilitation, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Xuehui Fan
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- First Department of Medicine, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Nathupakorn Dechsupa,
| | - Li Wang
- Research Center for Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
- Li Wang,
| |
Collapse
|
27
|
Xie JL, Wang XR, Li MM, Tao ZH, Teng WW, Saijilafu. Mesenchymal Stromal Cell Therapy in Spinal Cord Injury: Mechanisms and Prospects. Front Cell Neurosci 2022; 16:862673. [PMID: 35722621 PMCID: PMC9204037 DOI: 10.3389/fncel.2022.862673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) often leads to severe motor, sensory, and autonomic dysfunction in patients and imposes a huge economic cost to individuals and society. Due to its complicated pathophysiological mechanism, there is not yet an optimal treatment available for SCI. Mesenchymal stromal cells (MSCs) are promising candidate transplant cells for use in SCI treatment. The multipotency of MSCs, as well as their rich trophic and immunomodulatory abilities through paracrine signaling, are expected to play an important role in neural repair. At the same time, the simplicity of MSCs isolation and culture and the bypassing of ethical barriers to stem cell transplantation make them more attractive. However, the MSCs concept has evolved in a specific research context to encompass different populations of cells with a variety of biological characteristics, and failure to understand this can undermine the quality of research in the field. Here, we review the development of the concept of MSCs in order to clarify misconceptions and discuss the controversy in MSCs neural differentiation. We also summarize a potential role of MSCs in SCI treatment, including their migration and trophic and immunomodulatory effects, and their ability to relieve neuropathic pain, and we also highlight directions for future research.
Collapse
Affiliation(s)
- Ji-Le Xie
- Department of Orthopaedics, The First Affiliated Hospital, Soochow University, Suzhou, China,Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Xing-Ran Wang
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Mei-Mei Li
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Zi-Han Tao
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Wen-Wen Teng
- Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China
| | - Saijilafu
- Department of Orthopaedics, The First Affiliated Hospital, Soochow University, Suzhou, China,Orthopaedic Institute, School of Medicine, Soochow University, Suzhou, China,*Correspondence: Saijilafu,
| |
Collapse
|
28
|
Hamid HA, Ramasamy R, Mustafa MK, Hosseinpour Sarmadi V, Miskon A. Magnetic exposure using Samarium Cobalt (SmC O5) increased proliferation and stemness of human Umbilical Cord Mesenchymal Stem Cells (hUC-MSCs). Sci Rep 2022; 12:8904. [PMID: 35618759 PMCID: PMC9135697 DOI: 10.1038/s41598-022-12653-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the extensive reports on the potential hazard of magnetic field (MF) exposures on humans, there are also concurrently reported on the improved proliferative property of stem cells at optimum exposure. However, the effect on mesenchymal stem cells (MSCs) remains unknown. Therefore, we aimed to investigate the impact of induced static MF (SMF) on human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) using Samarium Cobalt (SmCO5). At passage 3, hUC-MSCs (1 × 104) were exposed to 21.6 mT SMF by a direct exposure (DE) showed a significantly higher cell count (p < 0.05) in the growth kinetics assays with the shortest population doubling time relative to indirect exposure and negative control. The DE group was committed into the cell cycle with increased S phase (55.18 ± 1.38%) and G2/M phase (21.75 ± 1.38%) relative to the NC group [S-phase (13.54 ± 2.73%); G2/M phase (8.36 ± 0.28%)]. Although no significant changes were observed in the immunophenotype, the DE group showed an elevated expression of pluripotency-associated markers (OCT4, SOX2, NANOG, and REX1). These results suggest that the MFs could potentially induce proliferation of MSCs, a promising approach to promote stem cells propagation for clinical therapy and research without compromising the stemness of hUC-MSCs.
Collapse
Affiliation(s)
- Haslinda Abdul Hamid
- Bio Artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - Rajesh Ramasamy
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Malaysia.,Department of Dental Radiology, Faculty of Dental Medicine, Airlangga University, Surabaya, 60132, Indonesia
| | - Mohd Kamarulzaki Mustafa
- Department of Physics, Faculty of Applied Sciences and Technology, University Tun Hussein Onn Malaysia, Pagoh Campus, KM1, Jalan Panchor, Hub Pendidikan Tinggi Pagoh, 84600, Muar, Johor, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Azizi Miskon
- Bio Artificial Organ and Regenerative Medicine Unit, National Defense University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
29
|
Villarreal-Martinez L, MartÍnez-Garza LE, Rodriguez-Sanchez IP, Alvarez-Villalobos N, Guzman-Gallardo F, Pope-Salazar S, Salinas-Silva C, Cepeda-Cepeda MG, Garza-Bedolla A, Dominguez-Varela IA, Villarreal-Martinez DZ, Treviño-Villarreal JH, Gomez-Almaguer D. Correlation Between CD133+ Stem Cells and Clinical Improvement in Patients with Autism Spectrum Disorders Treated with Intrathecal Bone Marrow-derived Mononuclear Cells. INNOVATIONS IN CLINICAL NEUROSCIENCE 2022; 19:78-86. [PMID: 35958968 PMCID: PMC9341312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental pathologies characterized by social and communication deficits, for which treatments are limited. Cell therapies, including intrathecal (IT) administration of bone marrow (BM) mononuclear cells (BM-MNC), improves symptoms in patients with ASD. Twenty-four patients diagnosed with ASD, according to the Diagnostic and Statistical Manual of Mental Disorders Text Revision Fourth Edition (DSM-IV-TR) criteria, were autologously treated with IT BM-MNC, and the clinical effect was evaluated using the Childhood Autism Rating Scale (CARS) on Days 30 (n=24) and 180 (n=14) post-treatment. IT BM-MNC improved clinical outcomes by Day 30 (p=0.0039), and those benefits remained and were further accentuated by Day 180 post-treatment (n=14; p=<0.0001). Clinical benefit at Days 30 (p=0.001; r= -0.51) and 180 (p=0.01; r= -0.60) posttreatment positively correlated with the enrichment of a putative BM stem cell population expressing the cluster of differentiation 133+ (CD133+) surface marker.
Collapse
Affiliation(s)
- Laura Villarreal-Martinez
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Laura Elia MartÍnez-Garza
- Drs. Martínez-Garza and Rodriguez-Sanchez are with the Genetics Department, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Iram Pablo Rodriguez-Sanchez
- Drs. Martínez-Garza and Rodriguez-Sanchez are with the Genetics Department, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Neri Alvarez-Villalobos
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Fernando Guzman-Gallardo
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Sulia Pope-Salazar
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Cynthia Salinas-Silva
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Maria Guadalupe Cepeda-Cepeda
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Alejandra Garza-Bedolla
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Irving Armando Dominguez-Varela
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Daniel Zacarias Villarreal-Martinez
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - Jose Humberto Treviño-Villarreal
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| | - David Gomez-Almaguer
- Drs. L Villarreal-Martinez, Alvarez-Villalobos, Guzman-Gallardo, Pope-Salazar, Salinas-Silva, Cepeda-Cepeda, Garza-Bedolla, Dominguez-Varela, DZ Villarreal-Martinez, Treviño-Villarreal, and Gomez-Almaguer are with Hematology Service, Hospital Universitario "Dr. José Eleuterio González" in Monterrey, Mexico
| |
Collapse
|
30
|
Henriques-Pons A, Beghini DG, Silva VDS, Iwao Horita S, da Silva FAB. Pulmonary Mesenchymal Stem Cells in Mild Cases of COVID-19 Are Dedicated to Proliferation; In Severe Cases, They Control Inflammation, Make Cell Dispersion, and Tissue Regeneration. Front Immunol 2022; 12:780900. [PMID: 35095855 PMCID: PMC8793136 DOI: 10.3389/fimmu.2021.780900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have potent self-renewal capacity and differentiate into multiple cell types. For many reasons, these cells are a promising therapeutic alternative to treat patients with severe COVID-19 and pulmonary post-COVID sequelae. These cells are not only essential for tissue regeneration; they can also alter the pulmonary environment through the paracrine secretion of several mediators. They can control or promote inflammation, induce other stem cells differentiation, restrain the virus load, and much more. In this work, we performed single-cell RNA-seq data analysis of MSCs in bronchoalveolar lavage samples from control individuals and COVID-19 patients with mild and severe clinical conditions. When we compared samples from mild cases with control individuals, most genes transcriptionally upregulated in COVID-19 were involved in cell proliferation. However, a new set of genes with distinct biological functions was upregulated when we compared severely affected with mild COVID-19 patients. In this analysis, the cells upregulated genes related to cell dispersion/migration and induced the γ-activated sequence (GAS) genes, probably triggered by IFNGR1 and IFNGR2. Then, IRF-1 was upregulated, one of the GAS target genes, leading to the interferon-stimulated response (ISR) and the overexpression of many signature target genes. The MSCs also upregulated genes involved in the mesenchymal-epithelial transition, virus control, cell chemotaxis, and used the cytoplasmic RNA danger sensors RIG-1, MDA5, and PKR. In a non-comparative analysis, we observed that MSCs from severe cases do not express many NF-κB upstream receptors, such as Toll-like (TLRs) TLR-3, -7, and -8; tumor necrosis factor (TNFR1 or TNFR2), RANK, CD40, and IL-1R1. Indeed, many NF-κB inhibitors were upregulated, including PPP2CB, OPTN, NFKBIA, and FHL2, suggesting that MSCs do not play a role in the "cytokine storm" observed. Therefore, lung MSCs in COVID-19 sense immune danger and act protectively in concert with the pulmonary environment, confirming their therapeutic potential in cell-based therapy for COVID-19. The transcription of MSCs senescence markers is discussed.
Collapse
Affiliation(s)
- Andrea Henriques-Pons
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | - Daniela Gois Beghini
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | | | - Samuel Iwao Horita
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | | |
Collapse
|
31
|
Su Y, Chen X, Zhou H, Shaw S, Chen J, Isales CM, Zhao J, Shi X. Expression of long noncoding RNA Xist is induced by glucocorticoids. Front Endocrinol (Lausanne) 2022; 13:1005944. [PMID: 36187119 PMCID: PMC9516292 DOI: 10.3389/fendo.2022.1005944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive agents. However, their clinical usage is limited by severe multisystemic side effects. Glucocorticoid induced osteoporosis results in significant morbidity and mortality but the cellular and molecular mechanisms underlying GC-induced bone loss are not clear. GC use results in decreased osteoblast differentiation with increased marrow adiposity through effects on bone marrow stem cells. GC effects are transduced through its receptor (GR). To identify novel GR regulated genes, we performed RNA sequencing (RNA-Seq) analysis comparing conditional GR knockout mouse made by crossing the floxed GR animal with the Col I promoter-Cre, versus normal floxed GR without Cre, and that testing was specific for Col I promoter active cells, such as bone marrow mesenchymal stem/osteoprogenitor cells (MSCs) and osteoblasts. Results showed 15 upregulated genes (3- to 10-fold) and 70 downregulated genes (-2.7- to -10-fold), with the long noncoding RNA X-inactive specific transcript (Xist) downregulated the most. The differential expression of genes measured by RNA-Seq was validated by qRT-PCR analysis of selected genes and the GC/GR signaling-dependent expression of Xist was further demonstrated by GC (dexamethasone) treatment of GR-deficient MSCs in vitro and by GC injection of C57BL/6 mice (wild-type males and females) in vivo. Our data revealed that the long noncoding RNA Xist is a GR regulated gene and its expression is induced by GC both in vitro and in vivo. To our knowledge, this is the first evidence showing that Xist is transcriptionally regulated by GC/GR signaling.
Collapse
Affiliation(s)
- Yun Su
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Xing Chen
- Department of Mathematics, Logistical Engineering University, Chongqing, China
| | - Hongyan Zhou
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Sean Shaw
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Jie Chen
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Augusta University, Augusta, GA, United States
| | - Carlos M. Isales
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, United States
| | - Jing Zhao
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingming Shi
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, United States
- *Correspondence: Xingming Shi,
| |
Collapse
|
32
|
Neurophysiological outcomes following mesenchymal stem cell therapy in multiple sclerosis. Clin Neurophysiol 2022; 136:69-81. [DOI: 10.1016/j.clinph.2022.01.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
|
33
|
Tan TT, Toh WS, Lai RC, Lim SK. Practical considerations in transforming MSC therapy for neurological diseases from cell to EV. Exp Neurol 2021; 349:113953. [PMID: 34921846 DOI: 10.1016/j.expneurol.2021.113953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Cell-based therapy using Mesenchymal Stromal Cell (MSC) has generally been efficacious in treating a myriad of diseases in animal models and clinical trials. The rationale for MSC therapy was predicated on the potential of MSC to differentiate and form new replacement cells in the diseased tissue. However, pre-clinical animal and clinical data were more consistent with a secretion- and not a differentiation-based rationale. Analysis of MSC secretion led to the identification of small extracellular vesicles (sEVs) as therapeutically active, secretory agents. MSC-sEVs are defined as bi-lipid membrane vesicles of 50-200 nm in diameter that are secreted by MSCs. They reportedly exert similar therapeutic efficacy as MSCs in many diseases including neurological diseases. MSC-sEVs being small and non-living are intrinsically safer than living MSCs. Manufacturing of MSC-sEVs may also be less complex. Nevertheless, realising the therapeutic potential of MSC-sEVs will require exacting scientific rigor and robustness, as well as compliance to regulatory oversight. This review summarises the scientific rationale for the transition of MSC therapy from a cell- to an EV-based therapy and discusses critical scientific issues in the development of MSC-sEVs therapy.
Collapse
Affiliation(s)
- Thong Teck Tan
- Institute of Molecular and Cellular Biology, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Wei Seong Toh
- Faculty of Dentistry, National University of Singapore, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ruenn Chai Lai
- Institute of Molecular and Cellular Biology, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Sai Kiang Lim
- Institute of Molecular and Cellular Biology, A*STAR, 8A Biomedical Grove, Singapore 138648, Singapore; Department of Surgery, YLL School of Medicine, National University of Singapore (NUS) Lower Kent Ridge Road, Singapore 119074, Singapore.
| |
Collapse
|
34
|
Mesenchymal Stem Cells in the Treatment of COVID-19, a Promising Future. Cells 2021; 10:cells10102588. [PMID: 34685567 PMCID: PMC8533906 DOI: 10.3390/cells10102588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/11/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have a potent self-renewal capacity and can differentiate into multiple cell types. They also affect the ambient tissue by the paracrine secretion of numerous factors in vivo, including the induction of other stem cells’ differentiation. In vitro, the culture media supernatant is named secretome and contains soluble molecules and extracellular vesicles that retain potent biological function in tissue regeneration. MSCs are considered safe for human treatment; their use does not involve ethical issues, as embryonic stem cells do not require genetic manipulation as induced pluripotent stem cells, and after intravenous injection, they are mainly found in the lugs. Therefore, these cells are currently being tested in various preclinical and clinical trials for several diseases, including COVID-19. Several affected COVID-19 patients develop induced acute respiratory distress syndrome (ARDS) associated with an uncontrolled inflammatory response. This condition causes extensive damage to the lungs and may leave serious post-COVID-19 sequelae. As the disease may cause systemic alterations, such as thromboembolism and compromised renal and cardiac function, the intravenous injection of MSCs may be a therapeutic alternative against multiple pathological manifestations. In this work, we reviewed the literature about MSCs biology, focusing on their function in pulmonary regeneration and their use in COVID-19 treatment.
Collapse
|
35
|
Hassanshahi G, Roohi MA, Esmaeili SA, Pourghadamyari H, Nosratabadi R. Involvement of various chemokine/chemokine receptor axes in trafficking and oriented locomotion of mesenchymal stem cells in multiple sclerosis patients. Cytokine 2021; 148:155706. [PMID: 34583254 DOI: 10.1016/j.cyto.2021.155706] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a specific type of chronic immune-mediated disease in which the immune responses are almost run against the central nervous system (CNS). Despite intensive research, a known treatment for MS disease yet to be introduced. Thus, the development of novel and safe medications needs to be considered for the disease management. Application of mesenchymal stem cells (MSCs) as an emerging approach was recruited forthe treatment of MS. MSCs have several sources and they can be derived from the umbilical cord, adipose tissue, and bone marrow. Chemokines are low molecular weight proteins that their functional activities are achieved by binding to the cell surface G protein-coupled receptors (GPCRs). Chemokine and chemokine receptors are of the most important and effective molecules in MSC trafficking within the different tissues in hemostatic and non-hemostatic circumstances. Chemokine/chemokine receptor axes play a pivotal role in the recruitment and oriented trafficking of immune cells both towards and within the CNS and it appears that chemokine/chemokine receptor signaling may be the most important leading mechanisms in the pathogenesis of MS. In this article, we hypothesized that the chemokine/chemokine receptor axes network have crucial and efficacious impacts on behavior of the MSCs, nonetheless, the exact responsibility of these axes on the targeted tropism of MSCs to the CNS of MS patients yet remained to be fully elucidated. Therefore, we reviewed the ability of MSCs to migrate and home into the CNS of MS patients via expression of various chemokine receptors in response to chemokines expressed by cells of CNS tissue, to provide a great source of knowledge.
Collapse
Affiliation(s)
- Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Amin Roohi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Nosratabadi
- Department of Medical Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
36
|
Murata M, Teshima T. Treatment of Steroid-Refractory Acute Graft- Versus-Host Disease Using Commercial Mesenchymal Stem Cell Products. Front Immunol 2021; 12:724380. [PMID: 34489977 PMCID: PMC8417106 DOI: 10.3389/fimmu.2021.724380] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Acute graft-versus-host disease (GVHD) is a life-threatening complication that can develop after allogeneic hematopoietic stem cell transplantation. In particular, the prognosis of patients with steroid-refractory acute GVHD is extremely poor. Ryoncil™ (remestemcel-L), a human bone marrow-derived mesenchymal stem cell (MSC) product, failed to show superiority over placebo in patients with steroid-refractory acute GVHD, but it was approved for use in pediatric patients in Canada and New Zealand based on the results of a subgroup analysis. Temcell®, an equivalent manufactured MSC product to remestemcel-L, was approved in Japan based on small single-arm studies by using a regulation for regenerative medicine in 2016. The efficacy of Temcell was evaluated in 381 consecutive patients treated with Temcell during the initial 3 years after its approval. Interestingly, its real-world efficacy was found to be equivalent to that observed in a prospective study of remestemcel-L with strict eligibility criteria. In this article, the potential of MSC therapy in the treatment of acute GVHD is discussed. A meticulous comparison of studies of remestemcel-L and Temcell, remestemcel-L/Temcell and ruxolitinib, and remestemcel-L/Temcell and thymoglobulin showed that the precise position of remestemcel-L/Temcell therapy in the treatment of acute GVHD remains to be determined.
Collapse
Affiliation(s)
- Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
37
|
Yao D, Qiao F, Song C, Lv Y. Matrix stiffness regulates bone repair by modulating 12-lipoxygenase-mediated early inflammation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112359. [PMID: 34474906 DOI: 10.1016/j.msec.2021.112359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Lipid metabolism in macrophages has been increasingly emphasized in exerting an anti-inflammatory effect and accelerating fracture healing. 12-lipoxygenase (12-LOX) is expressed in several cell types, including macrophages, and oxidizes polyunsaturated fatty acids (PUFAs) to generate both pro- and anti-inflammatory lipid mediators, of which the n-3 PUFAs play an important part in tissue homeostasis/fibrosis. Although mechanical factor regulates the lipid metabolic axis of inflammatory cells, specifically matrix stiffness influences macrophages metabolic responses, little is known about how matrix stiffness affects the 12-LOX-mediated early inflammation in bone repair. In the present study, demineralized bone matrix (DBM) scaffolds with different matrix stiffness were constructed by controlling the duration of decalcification (0 h (control), 1 h (high), 12 h (medium), and 5 d (low)) to repair the defected rat skull. The expression of inflammatory cytokines and macrophages polarization were analyzed. The lipid metabolites and lipid mediators' biosynthesis by matrix stiffness-regulated were further detected. The results showed that the low matrix stiffness could polarize macrophages into an anti-inflammatory phenotype, promote the expression of anti-inflammatory cytokines and specialized pro-resolving lipid mediators (SPMs) biosynthesis beneficial for the osteogenesis of mesenchymal stem cells (MSCs). After treated with ML355, the expression of anti-inflammatory cytokines/proteins and SPMs biosynthesis in macrophages cultured on low-matrix stiffness scaffolds were repressed, and there were almost no statistical differences among all groups. Findings from this study support that matrix stiffness regulates bone repair by modulating 12-LOX-mediated early inflammation, which suggest a direct mechanical impact of matrix stiffness on macrophages lipid metabolism and provide a new insight into the clinical application of SPMs for bone regeneration.
Collapse
Affiliation(s)
- Dongdong Yao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Fangyu Qiao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Chenchen Song
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
38
|
Xin WQ, Wei W, Pan YL, Cui BL, Yang XY, Bähr M, Doeppner TR. Modulating poststroke inflammatory mechanisms: Novel aspects of mesenchymal stem cells, extracellular vesicles and microglia. World J Stem Cells 2021; 13:1030-1048. [PMID: 34567423 PMCID: PMC8422926 DOI: 10.4252/wjsc.v13.i8.1030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammation plays an important role in the pathological process of ischemic stroke, and systemic inflammation affects patient prognosis. As resident immune cells in the brain, microglia are significantly involved in immune defense and tissue repair under various pathological conditions, including cerebral ischemia. Although the differentiation of M1 and M2 microglia is certainly oversimplified, changing the activation state of microglia appears to be an intriguing therapeutic strategy for cerebral ischemia. Recent evidence indicates that both mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (EVs) regulate inflammation and modify tissue repair under preclinical stroke conditions. However, the precise mechanisms of these signaling pathways, especially in the context of the mutual interaction between MSCs or MSC-derived EVs and resident microglia, have not been sufficiently unveiled. Hence, this review summarizes the state-of-the-art knowledge on MSC- and MSC-EV-mediated regulation of microglial activity under ischemic stroke conditions with respect to various signaling pathways, including cytokines, neurotrophic factors, transcription factors, and microRNAs.
Collapse
Affiliation(s)
- Wen-Qiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Yong-Li Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Bao-Long Cui
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Xin-Yu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen 37075, Germany
| |
Collapse
|
39
|
Made to Measure: Patient-Tailored Treatment of Multiple Sclerosis Using Cell-Based Therapies. Int J Mol Sci 2021; 22:ijms22147536. [PMID: 34299154 PMCID: PMC8304207 DOI: 10.3390/ijms22147536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and neurodegenerative disease of the central nervous system. Treatment options predominantly consist of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity. A broad range of possible cell-based therapeutic options are being explored in the treatment of autoimmune diseases, including MS. This review aims to provide an overview of recent and future advances in the development of cell-based treatment options for the induction of tolerance in MS. Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues regarding the depicted therapies and highlight the major challenges that lie ahead to successfully reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based therapies are well known and used in the treatment of several cancers, cell-based treatment options hold promise for the future treatment of autoimmune diseases in general, and MS in particular.
Collapse
|
40
|
Osteogenic effects of microRNA-335-5p/lipidoid nanoparticles coated on titanium surface. Arch Oral Biol 2021; 129:105207. [PMID: 34273868 DOI: 10.1016/j.archoralbio.2021.105207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE In this study, we aimed to investigate the therapeutic potential of miR-335-5p lipidoid nanocomplexes coated on Titanium (Ti) SLActive surface by lyophilization. DESIGN In our model, we coated miR-335-5p/Lipidoid nanoparticles on titanium implant, seeded GFP-labelled mouse bone marrow stromal cells (BMSCs) onto the functionalized Ti implant surface, and analyzed the transfection efficiency, cell adhesion, proliferation, and osteogenic activity of the bone-implant interface. RESULTS The Ti SLActive surface displayed a suitable hydrophilicity ability and provided a large surface area for miRNA loading, enabling spatial retention of the miRNAs within the nanopores until cellular delivery. We demonstrated a high transfection efficiency of miR-335-5p lipidoid nanoparticles in BMSCs seeded onto the Ti SLActive surface, even after 14 days. Alkaline phosphatase (ALP) activity and cell vitality were significantly increased in BMSCs transfected with miR-335-5p at 7 and 14 days as opposed to cells transfected with negative controls. When miR-335-5p transfected BMSCs were induced to undergo osteogenic differentiation, we detected increased mRNA expression of osteogenic markers including Alkaline phosphatase (ALP), collagen I (COL1), osteocalcin (OCN) and bone sialoprotein (BSP) at 7 and 14 days as compared with negative controls. CONCLUSION MiR-335-5p lipidoid nanoparticles could be used as a new cost-effective methodology to increase the osteogenic capacity of biomedical Ti implants.
Collapse
|
41
|
Shi X, Jiang N, Mao J, Luo D, Liu Y. Mesenchymal stem cell‐derived exosomes for organ development and cell‐free therapy. NANO SELECT 2021. [DOI: 10.1002/nano.202000286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xin Shi
- Center and School of Stomatology Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan P.R. China
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| | - Nan Jiang
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
- Central Laboratory National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| | - Jing Mao
- Center and School of Stomatology Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan P.R. China
| | - Dan Luo
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro‐nano Energy and Sensor Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing P.R. China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials Department of Orthodontics National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology Beijing P.R. China
| |
Collapse
|
42
|
Hur JW, Kim MS, Oh SY, Kang HY, Bae J, Kim H, Lee H, Lee SW, Park DH. Label-Free Quantitative Proteome Profiling of Cerebrospinal Fluid from a Rat Stroke Model with Stem Cell Therapy. Cell Transplant 2021; 30:9636897211023474. [PMID: 34176333 PMCID: PMC8239959 DOI: 10.1177/09636897211023474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human adipose-derived mesenchymal stem cells (hAMSCs) are capable of immunomodulation and regeneration after neural injury. For these reasons, hAMSCs have been investigated as a promising stem cell candidate for stroke treatment. However, noninvasive experiments studying the effects of grafted stem cells in the host brain have not yet been reported. Cerebrospinal fluid (CSF), which can be collected without sacrificing the subject, is involved in physiological control of the brain and reflects the pathophysiology of various neurological disorders of the central nervous system (CNS). Following stem cell transplantation in a stroke model, quantitative analysis of CSF proteome changes can potentially reveal the therapeutic effect of stem cells on the host CNS. We examined hAMSC-secreted proteins obtained from serum-free culture medium by liquid chromatography-tandem mass spectrometry (LC-MS/MS), which identified several extracellular matrix proteins, supporting the well-known active paracrine function of hAMSCs. Subsequently, we performed label-free quantitative proteomic analysis on CSF samples from rat stroke models intravenously injected with hAMSC (experimental) or phosphate buffered saline (control). In total, 524 proteins were identified; among them, 125 and 91 proteins were increased and decreased with hAMSC treatment, respectively. Furthermore, gene set enrichment analysis revealed three proteins, 14-3-3 theta, MAG, and neurocan, that showed significant increases in the hAMSC-treated model; these proteins are core members of neurotrophin signaling, nerve growth factor (NGF) signaling, and glycosaminoglycan metabolism, respectively. Subsequent histological and neurologic function experiments validated proliferative neurogenesis in the hAMSC-treated stroke model. We conclude that (i) intravenous injection of hAMSCs can induce neurologic recovery in a rat stroke model and (ii) CSF may reflect the therapeutic effect of hAMSCs. Additionally, proteins as 14-3-3 theta, MAG, and neurocan could be considered as potential CSF biomarkers of neuroregeneration. These CSF proteome profiling results would be utilized as valuable resource in further stroke studies.
Collapse
Affiliation(s)
- Junseok W Hur
- Department of Neurosurgery, College of Medicine, 36899Korea University, Seoul, South Korea
| | - Min-Sik Kim
- Department of New Biology, 235496DGIST, Daegu, South Korea
| | - Se-Yeon Oh
- Department of Chemistry, Center for Proteogenome Research, 36899Korea University, Seoul, South Korea
| | - Ho-Young Kang
- Department of Neurosurgery, College of Medicine, 36899Korea University, Seoul, South Korea
| | - Jingi Bae
- Department of Chemistry, Center for Proteogenome Research, 36899Korea University, Seoul, South Korea
| | - Hokeun Kim
- Department of Chemistry, Center for Proteogenome Research, 36899Korea University, Seoul, South Korea
| | - Hangyeore Lee
- Department of Chemistry, Center for Proteogenome Research, 36899Korea University, Seoul, South Korea
| | - Sang-Won Lee
- Department of Chemistry, Center for Proteogenome Research, 36899Korea University, Seoul, South Korea
| | - Dong-Hyuk Park
- Department of Neurosurgery, College of Medicine, 36899Korea University, Seoul, South Korea.,Center of Innovative Cell Therapy and Research, Anam Hospital, 36899Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
43
|
Progress in Mesenchymal Stem Cell Therapy for Ischemic Stroke. Stem Cells Int 2021; 2021:9923566. [PMID: 34221026 PMCID: PMC8219421 DOI: 10.1155/2021/9923566] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke (IS) is a serious cerebrovascular disease with high morbidity and disability worldwide. Despite the great efforts that have been made, the prognosis of patients with IS remains unsatisfactory. Notably, recent studies indicated that mesenchymal stem cell (MSCs) therapy is becoming a novel research hotspot with large potential in treating multiple human diseases including IS. The current article is aimed at reviewing the progress of MSC treatment on IS. The mechanism of MSCs in the treatment of IS involved with immune regulation, neuroprotection, angiogenesis, and neural circuit reconstruction. In addition, nutritional cytokines, mitochondria, and extracellular vesicles (EVs) may be the main mediators of the therapeutic effect of MSCs. Transplantation of MSCs-derived EVs (MSCs-EVs) affords a better neuroprotective against IS when compared with transplantation of MSCs alone. MSC therapy can prolong the treatment time window of ischemic stroke, and early administration within 7 days after stroke may be the best treatment opportunity. The deliver routine consists of intraventricular, intravascular, intranasal, and intraperitoneal. Furthermore, several methods such as hypoxic preconditioning and gene technology could increase the homing and survival ability of MSCs after transplantation. In addition, MSCs combined with some drugs or physical therapy measures also show better neurological improvement. These data supported the notion that MSC therapy might be a promising therapeutic strategy for IS. And the application of new technology will promote MSC therapy of IS.
Collapse
|
44
|
Nitahara-Kasahara Y, Kuraoka M, Oda Y, Hayashita-Kinoh H, Takeda S, Okada T. Enhanced cell survival and therapeutic benefits of IL-10-expressing multipotent mesenchymal stromal cells for muscular dystrophy. Stem Cell Res Ther 2021; 12:105. [PMID: 33541428 PMCID: PMC7860619 DOI: 10.1186/s13287-021-02168-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multipotent mesenchymal stromal cells (MSCs) are potentially therapeutic for muscle disease because they can accumulate at the sites of injury and act as immunosuppressants. MSCs are attractive candidates for cell-based strategies that target diseases with chronic inflammation, such as Duchenne muscular disease (DMD). We focused on the anti-inflammatory properties of IL-10 and hypothesized that IL-10 could increase the typically low survival of MSCs by exerting a paracrine effect after transplantation. METHODS We developed a continuous IL-10 expression system of MSCs using an adeno-associated virus (AAV) vector. To investigate the potential benefits of IL-10 expressing AAV vector-transduced MSCs (IL-10-MSCs), we examined the cell survival rates in the skeletal muscles after intramuscular injection into mice and dogs. Systemic treatment with IL-10-MSCs derived from dental pulp (DPSCs) was comprehensively analyzed using the canine X-linked muscular dystrophy model in Japan (CXMDJ), which has a severe phenotype similar to that of DMD patients. RESULTS In vivo bioluminescence imaging analysis revealed higher retention of IL-10-MSCs injected into the hindlimb muscle of mice. In the muscles of dogs, myofiber-like tissue was formed after the stable engraftment of IL-10-MSCs. Repeated systemic administration of IL-10-DPSCs into the CXMDJ model resulted in long-term engraftment of cells and slightly increased the serum levels of IL-10. IL-10-hDPSCs showed significantly reduced expression of pro-inflammatory MCP-1 and upregulation of stromal-derived factor-1 (SDF-1). MRI and histopathology of the hDPSC-treated CXMDJ indicated the regulation of inflammation in the muscles, but not myogenic differentiation from treated cells. hDPSC-treated CXMDJ showed improved running capability and recovery in tetanic force with concomitant increase in physical activity. Serum creatine kinase levels, which increased immediately after exercise, were suppressed in IL-10-hDPSC-treated CXMDJ. CONCLUSIONS In case of local injection, IL-10-MSCs could maintain the long-term engraftment status and facilitate associated tissue repair. In case of repeated systemic administration, IL-10-MSCs facilitated the long-term retention of the cells in the skeletal muscle and also protected muscles from physical damage-induced injury, which improved muscle dysfunction in DMD. We can conclude that the local and systemic administration of IL-10-producing MSCs offers potential benefits for DMD therapy through the beneficial paracrine effects of IL-10 involving SDF-1.
Collapse
Affiliation(s)
- Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Mutsuki Kuraoka
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Yuki Oda
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan
| | - Hiromi Hayashita-Kinoh
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan.,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo City, Tokyo, Japan.,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Division of Cell and Gene Therapy, Nippon Medical School, Bunkyo City, Tokyo, Japan. .,Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
45
|
Therapeutic Effects of Conditioned Medium of Neural Differentiated Human Bone Marrow-Derived Stem Cells on Rotenone-Induced Alpha-Synuclein Aggregation and Apoptosis. Stem Cells Int 2021; 2021:6658271. [PMID: 33552161 PMCID: PMC7847328 DOI: 10.1155/2021/6658271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used against several diseases. Their potential mainly appears from its secreted biomolecules. Human bone marrow-derived stem cells (hBMSC) displayed neuronal functional characteristics after differentiation by basic fibroblast growth factor (bFGF) and forskolin. PD is a chronic age-related neurodegenerative disease (NDD) characterized by loss of dopaminergic neurons in the substantia nigra (SN) and abnormal accumulation of α-synuclein (α-syn) aggregations. In this present study, we evaluated the therapeutic effects of neural differentiated hBMSC (NI-hBMSC) conditioned medium (NI-hBMSC-CM) to a rotenone- (ROT-) induced Parkinson's disease (PD) model in SH-SY5Y cells. NI-hBMSC-CM treatment (50% diluted) in the last 24 h of 48 h ROT (0.5 μM) toxicity showed a significant increase in cell survival. The decreased tyrosine hydroxylase (TH) expression as a hallmark of PD was increased by NI-hBMSC-CM. The Triton X-100-soluble and Triton X-100-insoluble cell lysate fractions were used in Western blotting. The oligomeric, dimeric, and monomeric phosphorylated serine129 (p-S129) α-syn and total monomeric α-syn were decreased during ROT toxicity in the Triton X-100-soluble fraction. The Triton X-100-insoluble fraction revealed that ROT toxicity significantly increased the oligomeric but decreased the dimeric and monomeric p-S129 α-syn expressions while all forms of total α-syn were increased in SH-SY5Y cells. NI-hBMSC-CM stabilized the physiological α-syn monomers and reduced aggregated insoluble p-S129 α-syn against ROT. The cytoskeletal proteins, neurofilament-H (NF-H), β3-tubulin (Tuj1), neuronal nuclei (NeuN), and synaptophysin (SYP) were significantly decreased during ROT toxicity. In addition, proapoptotic Bax was increased by ROT with decreased antiapoptotic Bcl-2 and Mcl-1 as well as proforms of caspase-9, caspase-3, caspase-7, and PARP-1. NI-hBMSC-CM ameliorated the neurotrophic protein expressions, controlled the Bax/Bcl-2 ratio, upregulated procaspases, and inactivated PARP-1. From our results, we conclude that NI-hBMSC-CM containing released biomolecules during neural differentiation employs regenerative effects on the ROT model of PD in SH-SY5Y cells.
Collapse
|
46
|
Singh M, Jain M, Bose S, Halder A, Nag TC, Dinda AK, Mohanty S. 22(R)-hydroxycholesterol for dopaminergic neuronal specification of MSCs and amelioration of Parkinsonian symptoms in rats. Cell Death Dis 2021; 7:13. [PMID: 33454721 PMCID: PMC7811530 DOI: 10.1038/s41420-020-00351-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Oxysterols play vital roles in the human body, ranging from cell cycle regulation and progression to dopaminergic neurogenesis. While naïve human mesenchymal stem cells (hMSCs) have been explored to have neurogenic effect, there is still a grey area to explore their regenerative potential after in vitro differentiation. Hence, in the current study, we have investigated the neurogenic effect of 22(R)-hydroxycholesterol (22-HC) on hMSCs obtained from bone marrow, adipose tissue and dental pulp. Morphological and morphometric analysis revealed physical differentiation of stem cells into neuronal cells. Detailed characterization of differentiated cells affirmed generation of neuronal cells in culture. The percentage of generation of non-DA cells in the culture confirmed selective neurogenic potential of 22-HC. We substantiated the efficacy of these cells in neuro-regeneration by transplanting them into Parkinson's disease Wistar rat model. MSCs from dental pulp had maximal regenerative effect (with 80.20 ± 1.5% in vitro differentiation efficiency) upon transplantation, as shown by various behavioural examinations and immunohistochemical tests. Subsequential analysis revealed that 22-HC yields a higher percentage of functional DA neurons and has differential effect on various tissue-specific primary human MSCs. 22-HC may be used for treating Parkinson's disease in future with stem cells.
Collapse
Affiliation(s)
- Manisha Singh
- grid.413618.90000 0004 1767 6103Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, 110029 India ,grid.21107.350000 0001 2171 9311The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Manish Jain
- grid.413618.90000 0004 1767 6103Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Samrat Bose
- grid.413618.90000 0004 1767 6103Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Ashutosh Halder
- grid.413618.90000 0004 1767 6103Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Tapas Chandra Nag
- grid.413618.90000 0004 1767 6103Sophisticated Analytical Instrumentation Facility, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Amit Kumar Dinda
- grid.413618.90000 0004 1767 6103Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sujata Mohanty
- grid.413618.90000 0004 1767 6103Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, 110029 India
| |
Collapse
|
47
|
Gene Profiles in the Early Stage of Neuronal Differentiation of Mouse Bone Marrow Stromal Cells Induced by Basic Fibroblast Growth Factor. Stem Cells Int 2021; 2020:8857057. [PMID: 33424980 PMCID: PMC7775150 DOI: 10.1155/2020/8857057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 11/20/2022] Open
Abstract
A stably established population of mouse bone marrow stromal cells (BMSCs) with self-renewal and multilineage differentiation potential was expanded in vitro for more than 50 passages. These cells express high levels of mesenchymal stem cell markers and can be differentiated into adipogenic, chondrogenic, and osteogenic lineages in vitro. Subjected to basic fibroblast growth factor (bFGF) treatment, a typical neuronal phenotype was induced in these cells, as supported by neuronal morphology, induction of neuronal markers, and relevant electrophysiological excitability. To identify the genes regulating neuronal differentiation, cDNA microarray analysis was conducted using mRNAs isolated from cells differentiated for different time periods (0, 4, 24, and 72 h) after bFGF treatment. Various expression patterns of neuronal genes were stimulated by bFGF. These gene profiles were shown to be involved in developmental, functional, and structural integration of the nervous system. The expression of representative genes stimulated by bFGF in each group was verified by RT-PCR. Amongst proneural genes, the mammalian achate-schute homolog 1 (Mash-1), a basic helix-loop-helix transcriptional factor, was further demonstrated to be significantly upregulated. Overexpression of Mash-1 in mouse BMSCs was shown to induce the expression of neuronal specific enolase (NSE) and terminal neuronal morphology, suggesting that Mash-1 plays an important role in the induction of neuronal differentiation of mouse BMSCs.
Collapse
|
48
|
Wang M, Xin Y, Cao H, Li W, Hua Y, Webster TJ, Zhang C, Tang W, Liu Z. Recent advances in mesenchymal stem cell membrane-coated nanoparticles for enhanced drug delivery. Biomater Sci 2020; 9:1088-1103. [PMID: 33332490 DOI: 10.1039/d0bm01164a] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Studies of nanomedicine have achieved dramatic progress in recent decades. However, the main challenges that traditional nanomedicine has to overcome include low accumulation at target sites and rapid clearance from the blood circulation. An interesting approach using cell membrane coating technology has emerged as a possible way to overcome these limitations, owing to the enhanced targeted delivery and reduced immunogenicity of cell membrane moieties. Mesenchymal stem cell (MSC) therapy has been investigated for treating various diseases, ranging from inflammatory diseases to tissue damage. Recent studies with engineered modified MSCs or MSC membranes have focused on enhancing cell therapeutic efficacy. Therefore, bioengineering strategies that couple synthetic nanoparticles with MSC membranes have recently received much attention due to their homing ability and tumor tropism. Given the various membrane receptors on their surfaces, MSC membrane-coated nanoparticles are an effective method with selective targeting properties, allowing entry into specific cells. Here, we review recent progress on the use of MSC membrane-coated nanoparticles for biomedical applications, particularly in the two main antitumor and anti-inflammatory fields. The combination of a bioengineered cell membrane and synthesized nanoparticles presents a wide range of possibilities for the further development of targeted drug delivery, showing the potential to enhance the therapeutic efficacy for treating various diseases.
Collapse
Affiliation(s)
- Mian Wang
- Department of Cardiology, Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sun Y, Liu J, Xu Z, Lin X, Zhang X, Li L, Li Y. Matrix stiffness regulates myocardial differentiation of human umbilical cord mesenchymal stem cells. Aging (Albany NY) 2020; 13:2231-2250. [PMID: 33318310 PMCID: PMC7880396 DOI: 10.18632/aging.202244] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/20/2020] [Indexed: 05/07/2023]
Abstract
Myocardial infarction is a cardiovascular disease with high mortality. Human umbilical cord mesenchymal stem cells (hUC-MSCs) with strong self-renewal capacity and multipotency, provide the possibility of replacing injured cardiomyocytes. hUC-MSCs were cultured on polyacrylamide hydrogels with stiffnesses corresponding to Young's modulus of 13-16kPa and 62-68kPa which mimic the stiffnesses of healthy heart tissue and fibrotic myocardium. The expression of early myocardial markers Nkx2.5, GATA4, Mesp1 and the mature myocardial markers cTnT, cTnI, α-actin were detected by RT-PCR and Western Blot, which showed that soft matrix (13-16 kPa) tended to induce the differentiation of hUC-MSCs into myocardium, compared with stiff matrix (62-68 kPa). Piezos are mechanically sensitive non-selective cation channels. The expression of Piezo1 increased with the stiffness gradient of 1-10kPa, 13-16kPa, 35-38kPa and 62-68kPa on the 1st day, but Piezo2 expression was irregular. The expression of integrin β1 and calcium ions were also higher on stiff substrate than on soft substrate. hUC-MSCs tend to differentiate into myocardium on the matrix stiffness of 13-16 kPa. The relationship among matrix stiffness, Piezo1 and myocardial differentiation needs further validation.
Collapse
Affiliation(s)
- Yingying Sun
- Department of Stomatology, The First Hospital of Jilin University, Jilin University, Changchun, China
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingwei Liu
- College of Clinical Medicine, Jilin University, Changchun, China
| | - Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoxuan Lin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
50
|
Mesenchymal Stem Cell Therapy for Diabetic Kidney Disease: A Review of the Studies Using Syngeneic, Autologous, Allogeneic, and Xenogeneic Cells. Stem Cells Int 2020; 2020:8833725. [PMID: 33505469 PMCID: PMC7812547 DOI: 10.1155/2020/8833725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication of diabetes mellitus (DM) and comprises multifactorial pathophysiologic mechanisms. Despite current treatment, around 30-40% of individuals with type 1 and type 2 DM (DM1 and DM2) have progressive DKD, which is the most common cause of end-stage chronic kidney disease worldwide. Mesenchymal stem cell- (MSC-) based therapy has important biological and therapeutic implications for curtailing DKD progression. As a chronic disease, DM may impair MSC microenvironment, but there is compelling evidence that MSC derived from DM1 individuals maintain their cardinal properties, such as potency, secretion of trophic factors, and modulation of immune cells, so that both autologous and allogeneic MSCs are safe and effective. Conversely, MSCs derived from DM2 individuals are usually dysfunctional, exhibiting higher rates of senescence and apoptosis and a decrease in clonogenicity, proliferation, and angiogenesis potential. Therefore, more studies in humans are needed to reach a conclusion if autologous MSCs from DM2 individuals are effective for treatment of DM-related complications. Importantly, the bench to bedside pathway has been constructed in the last decade for assessing the therapeutic potential of MSCs in the DM setting. Laboratory research set the basis for establishing further translation research including preclinical development and proof of concept in model systems. Phase I clinical trials have evaluated the safety profile of MSC-based therapy in humans, and phase II clinical trials (proof of concept in trial participants) still need to answer important questions for treating DKD, yet metabolic control has already been documented. Therefore, randomized and controlled trials considering the source, optimal cell number, and route of delivery in DM patients are further required to advance MSC-based therapy. Future directions include strategies to reduce MSC heterogeneity, standardized protocols for isolation and expansion of those cells, and the development of well-designed large-scale trials to show significant efficacy during a long follow-up, mainly in individuals with DKD.
Collapse
|