1
|
Bothamley G. Xpert Ultra for diagnosing tuberculosis at bronchoscopy: thoughts on practical applications. Thorax 2024; 79:799-800. [PMID: 38977372 DOI: 10.1136/thorax-2024-221571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 07/10/2024]
Affiliation(s)
- Graham Bothamley
- Homerton University Hospital NHS Foundation Trust, London, UK
- Faculty of Medicine and Dentistry, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Facuty of Infectious and Tropical Diseaes, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Wang J, Zou Z, Hu M, Shan X, Zhang Y, Miao Y, Zhang X, Islam N, Hu Q. Riemerella anatipestifer UvrC is required for iron utilization, biofilm formation and virulence. Avian Pathol 2024; 53:247-256. [PMID: 38420684 DOI: 10.1080/03079457.2024.2317431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
UvrC is a subunit of excinuclease ABC, which mediates nucleotide excision repair (NER) in bacteria. Our previous studies showed that transposon Tn4531 insertion in the UvrC encoding gene Riean_1413 results in reduced biofilm formation by Riemerella anatipestifer strain CH3 and attenuates virulence of strain YZb1. In this study, whether R. anatipestifer UvrC has some biological functions other than NER was investigated. Firstly, the uvrC of R. anatipestifer strain Yb2 was in-frame deleted by homologous recombination, generating deletion mutant ΔuvrC, and its complemented strain cΔuvrC was constructed based on Escherichia coli - R. anatipestifer shuttle plasmid pRES. Compared to the wild-type (WT) R. anatipestifer strain Yb2, uvrC deleted mutant ΔuvrC significantly reduced biofilm formation, tolerance to H2O2- and HOCl-induced oxidative stress, iron utilization, and adhesion to and invasion of duck embryonic hepatocytes, but not its growth curve and proteolytic activity. In addition, animal experiments showed that the LD50 value of ΔuvrC in ducklings was about 13-fold higher than that of the WT, and the bacterial loads in ΔuvrC infected ducklings were significantly lower than those in Yb2-infected ducklings, indicating uvrC deletion in R. anatipestifer attenuated virulence. Taken together, the results of this study indicate that R. anatipestifer UvrC is required for iron utilization, biofilm formation, oxidative stress tolerance and virulence of strain Yb2, demonstrating multiple functions of UvrC.RESEARCH HIGHLIGHTSDeletion of uvrC in R. anatipestfer Yb2 significantly reduced its biofilm formation.uvrC deletion led to reduced tolerance to H2O2- and HOCl-induced oxidative stress.The iron utilization of uvrC deleted mutant was significantly reduced.The uvrC deletion in R. anatipestifer Yb2 attenuated its virulence.
Collapse
Affiliation(s)
- Jialing Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Zuocheng Zou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Mengmeng Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Xinggen Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Ying Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yiqin Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - XiaoYing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Nazrul Islam
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qinghai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Park HE, Kim KM, Shin JI, Choi JG, An WJ, Trinh MP, Kang KM, Yoo JW, Byun JH, Jung MH, Lee KH, Kang HL, Baik SC, Lee WK, Shin MK. Prominent transcriptomic changes in Mycobacterium intracellulare under acidic and oxidative stress. BMC Genomics 2024; 25:376. [PMID: 38632539 PMCID: PMC11022373 DOI: 10.1186/s12864-024-10292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mycobacterium avium complex (MAC), including Mycobacterium intracellulare is a member of slow-growing mycobacteria and contributes to a substantial proportion of nontuberculous mycobacterial lung disease in humans affecting immunocompromised and elderly populations. Adaptation of pathogens in hostile environments is crucial in establishing infection and persistence within the host. However, the sophisticated cellular and molecular mechanisms of stress response in M. intracellulare still need to be fully explored. We aimed to elucidate the transcriptional response of M. intracellulare under acidic and oxidative stress conditions. RESULTS At the transcriptome level, 80 genes were shown [FC] ≥ 2.0 and p < 0.05 under oxidative stress with 10 mM hydrogen peroxide. Specifically, 77 genes were upregulated, while 3 genes were downregulated. In functional analysis, oxidative stress conditions activate DNA replication, nucleotide excision repair, mismatch repair, homologous recombination, and tuberculosis pathways. Additionally, our results demonstrate that DNA replication and repair system genes, such as dnaB, dinG, urvB, uvrD2, and recA, are indispensable for resistance to oxidative stress. On the contrary, 878 genes were shown [FC] ≥ 2.0 and p < 0.05 under acidic stress with pH 4.5. Among these genes, 339 were upregulated, while 539 were downregulated. Functional analysis highlighted nitrogen and sulfur metabolism pathways as the primary responses to acidic stress. Our findings provide evidence of the critical role played by nitrogen and sulfur metabolism genes in the response to acidic stress, including narGHIJ, nirBD, narU, narK3, cysND, cysC, cysH, ferredoxin 1 and 2, and formate dehydrogenase. CONCLUSION Our results suggest the activation of several pathways potentially critical for the survival of M. intracellulare under a hostile microenvironment within the host. This study indicates the importance of stress responses in M. intracellulare infection and identifies promising therapeutic targets.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Gyu Choi
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Jun An
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Minh Phuong Trinh
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyeong-Min Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Myung Hwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kon-Ho Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Cheol Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea.
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
4
|
Lanza A, Kimura S, Hirono I, Yoshitake K, Kinoshita S, Asakawa S. Transcriptome analysis of Edwardsiella piscicida during intracellular infection reveals excludons are involved with the activation of a mitochondrion-like energy generation program. mBio 2024; 15:e0352623. [PMID: 38349189 PMCID: PMC10936155 DOI: 10.1128/mbio.03526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024] Open
Abstract
Phylogenetic evidence suggests a shared ancestry between mitochondria and modern Proteobacteria, a phylum including several genera of intracellular pathogens. Studying these diverse pathogens, particularly during intracellular infection of their hosts, can reveal characteristics potentially representative of the mitochondrial-Proteobacterial ancestor by identifying traits shared with mitochondria. While transcriptomic approaches can provide global insights into intracellular acclimatization by pathogens, they are often limited by excess host RNAs in extracts. Here, we developed a method employing magnetic nanoparticles to enrich RNA from an intracellular Gammaproteobacterium, Edwardsiella piscicida, within zebrafish, Danio rerio, fin fibroblasts, enabling comprehensive exploration of the bacterial transcriptome. Our findings revealed that the intracellular E. piscicida transcriptome reflects a mitochondrion-like energy generation program characterized by the suppression of glycolysis and sugar transport, coupled with upregulation of the tricarboxylic acid (TCA) cycle and alternative import of simple organic acids that directly flux into TCA cycle intermediates or electron transport chain donors. Additionally, genes predicted to be members of excludons, loci of gene pairs antagonistically co-regulated by overlapping antisense transcription, are significantly enriched in the set of all genes with perturbed sense and antisense transcription, suggesting a general but important involvement of excludons with intracellular acclimatization. Notably, genes involved with the activation of the mitochondrion-like energy generation program, specifically with metabolite import and glycolysis, are also members of predicted excludons. Other intracellular Proteobacterial pathogens appear to employ a similar mitochondrion-like energy generation program, suggesting a potentially conserved mechanism for optimized energy acquisition from hosts centered around the TCA cycle.IMPORTANCEPhylogenetic evidence suggests that mitochondria and Proteobacteria, a phylum encompassing various intracellular pathogens, share a common ancestral lineage. In this study, we developed a novel method employing magnetic nanoparticles to explore the transcriptome of an aquatic Gammaproteobacterium, Edwardsiella piscicida, during intracellular infection of host cells. We show that the strategy E. piscicida uses to generate energy strikingly mirrors the function of mitochondria-energy generators devoid of glycolytic processes. Notably, several implicated genes are members of excludons-gene pairs antagonistically co-regulated by overlapping antisense transcription. Other intracellular Proteobacterial pathogens appear to adopt a similar mitochondrion-like energy generation program, indicating a possibly conserved strategy for optimized energy acquisition from hosts centered around the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Andre Lanza
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Oh Y, Oh JI. The RsfSR two-component system regulates SigF function by monitoring the state of the respiratory electron transport chain in Mycobacterium smegmatis. J Biol Chem 2024; 300:105764. [PMID: 38367670 PMCID: PMC10950880 DOI: 10.1016/j.jbc.2024.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
In Mycobacterium smegmatis, the transcriptional activity of the alternative sigma factor SigF is posttranslationally regulated by the partner switching system consisting of SigF, the anti-SigF RsbW1, and three anti-SigF antagonists (RsfA, RsfB, and RsbW3). We previously demonstrated that expression of the SigF regulon is strongly induced in the Δaa3 mutant of M. smegmatis lacking the aa3 cytochrome c oxidase, the major terminal oxidase in the respiratory electron transport chain. Here, we identified and characterized the RsfSR two-component system involved in regulating the phosphorylation state of the major anti-SigF antagonist RsfB. RsfS (MSMEG_6130) is a histidine kinase with the cyclase/histidine kinase-associated sensing extracellular 3 domain at its N terminus, and RsfR (MSMEG_6131) is a receiver domain-containing protein phosphatase 2C-type phosphatase that can dephosphorylate phosphorylated RsfB. We demonstrated that phosphorylation of RsfR on Asp74 by RsfS reduces the phosphatase activity of RsfR toward phosphorylated RsfB and that the cellular abundance of the active unphosphorylated RsfB is increased in the Δaa3 mutant relative to the WT strain. We also demonstrated that the RsfSR two-component system is required for induction of the SigF regulon under respiration-inhibitory conditions such as inactivation of the cytochrome bcc1 complex and aa3 cytochrome c oxidase, as well as hypoxia, electron donor-limiting, high ionic strength, and low pH conditions. Collectively, our results reveal a key regulatory element involved in regulating the SigF signaling system by monitoring the state of the respiratory electron transport chain.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Korea; Microbiological Resource Research Institute, Pusan National University, Busan, Korea.
| |
Collapse
|
6
|
Wani SR, Jain V. Deciphering the molecular mechanism and regulation of formaldehyde detoxification in Mycobacterium smegmatis. Appl Environ Microbiol 2024; 90:e0203923. [PMID: 38259108 PMCID: PMC10880627 DOI: 10.1128/aem.02039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
The build-up of formaldehyde, a highly reactive molecule is cytotoxic and must be eliminated for the organism's survival. Formaldehyde detoxification system is found in nearly all organisms including both pathogenic and non-pathogenic mycobacteria. MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis (Msm), is an indispensable part of this system and forms a bicistronic operon with its downstream uncharacterized gene, fmh. We here show that Fmh, a putative metallo-beta-lactamase, is essential in tolerating higher amounts of formaldehyde when co-overexpressed with mscR in vivo. Our NMR studies indicate that MscR, along with Fmh, enhances formate production through a mycothiol (MSH)-dependent pathway, emphasizing the importance of Fmh in detoxifying formaldehyde. Although another aldehyde dehydrogenase, MSMEG_1543, induces upon formaldehyde addition, it is not involved in its detoxification. We also show that the expression of the mscR operon is constitutive and remains unchanged upon formaldehyde addition, as displayed by the promoter activity of PmscR and by the transcript and protein levels of MscR. Furthermore, we establish the role of a thiol-responsive sigma factor SigH in formaldehyde detoxification. We show that SigH, and not SigE, is crucial for formaldehyde detoxification, even though it does not directly regulate mscR operon expression. In addition, sensitivity to formaldehyde in sigH-knockout could be alleviated by overexpression of mscR. Taken together, our data demonstrate the importance of MSH-dependent pathways in detoxifying formaldehyde in a mycobacterial system. An absence of such MSH-dependent proteins in eukaryotes and its complete conservation in M. tuberculosis, the causative agent of tuberculosis, further unravel new drug targets for this pathogen.IMPORTANCEExtensive research has been done on formaldehyde detoxification in different bacteria. However, our current understanding of the mechanisms underlying this process in mycobacteria remains exceedingly little. We previously showed that MscR, a formaldehyde dehydrogenase from Mycobacterium smegmatis, plays a pivotal role in this detoxification pathway. Here, we present a potential S-formyl-mycothiol hydrolase named Fmh, thought to be a metallo-beta-lactamase, which functions along with mycothiol (MSH) and MscR to enhance formate production within this detoxification pathway. Co-expression of Fmh with MscR significantly enhances the efficiency of formaldehyde detoxification in M. smegmatis. Our experiments establish that Fmh catalyzes the final step of this detoxification pathway. Although an alternative sigma factor SigH was found to be involved in formaldehyde detoxification, it did not directly regulate the expression of mscR. Since formaldehyde detoxification is essential for bacterial survival, we envisage this process to be a potential drug target for M. tuberculosis eradication.
Collapse
Affiliation(s)
- Saloni Rajesh Wani
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
7
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
8
|
Yi L, Fan Q, Wang H, Fan H, Zuo J, Wang Y, Wang Y. Establishment of Streptococcus suis Biofilm Infection Model In Vivo and Comparative Analysis of Gene Expression Profiles between In Vivo and In Vitro Biofilms. Microbiol Spectr 2023; 11:e0268622. [PMID: 36507687 PMCID: PMC9927446 DOI: 10.1128/spectrum.02686-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that continuously threatens animal husbandry and public health worldwide. Studies have shown that S. suis can cause persistent infection by forming biofilms. In this study, a model of S. suis biofilm-related infection was successfully constructed for the first time by simulating the natural infection of S. suis, and biofilm of S. suis in vivo was successfully observed in the lung tissue of infected pigs by a variety of detection methods. Subsequently, selective capture of transcribed sequences (SCOTS) was used to identify genes expressed by S. suis in vivo biofilms. Sixty-nine genes were captured in in vivo biofilms formed by S. suis for the first time by SCOTS; they were mainly involved in metabolism, cell replication, and division, transport, signal transduction, cell wall, etc. Genes related to S. suis in vitro biofilm formation were also identified by SCOTS and RNA sequencing. Approximately half of the genes captured by SCOTS in the in vivo and in vitro biofilms were found to be different. In summary, our study provides powerful clues for future exploration of the mechanisms of S. suis biofilm formation. IMPORTANCE Streptococcus suis is considered an important zoonotic pathogen, and persistent infection caused by biofilm is currently considered to be the reason why S. suis is difficult to control in swine. However, to date, a model of the biofilm of S. suis in vivo has not been successfully constructed. Here, we successfully detected biofilms of S. suis in vivo in lung tissues of piglets infected with S. suis. Selective capture of transcribed sequences and the transcriptome were used to obtain gene profiles of S. suis in vivo and in vitro biofilms, and the results showed large differences between them. Such data are of importance for future experimental studies exploring the mechanism of biofilm formation by S. suis in vivo.
Collapse
Affiliation(s)
- Li Yi
- College of Life Science, Luoyang Normal University, Luoyang, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haoran Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Jing Zuo
- College of Life Science, Luoyang Normal University, Luoyang, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| |
Collapse
|
9
|
Thakur M, Muniyappa K. Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 138:102284. [PMID: 36459831 DOI: 10.1016/j.tube.2022.102284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression. This review focuses on present published knowledge about the crucial roles of Mtb NER proteins in the survival and multiplication of the pathogen within the macrophages and as potential targets for drug discovery.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
10
|
Cioetto-Mazzabò L, Boldrin F, Beauvineau C, Speth M, Marina A, Namouchi A, Segafreddo G, Cimino M, Favre-Rochex S, Balasingham S, Trastoy B, Munier-Lehmann H, Griffiths G, Gicquel B, Guerin M, Manganelli R, Alonso-Rodríguez N. SigH stress response mediates killing of Mycobacterium tuberculosis by activating nitronaphthofuran prodrugs via induction of Mrx2 expression. Nucleic Acids Res 2022; 51:144-165. [PMID: 36546765 PMCID: PMC9841431 DOI: 10.1093/nar/gkac1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/17/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis strains highlights the need to discover anti-tuberculosis drugs with novel mechanisms of action. Here we discovered a mycobactericidal strategy based on the prodrug activation of selected chemical derivatives classified as nitronaphthofurans (nNFs) mediated by the coordinated action of the sigH and mrx2 genes. The transcription factor SigH is a key regulator of an extensive transcriptional network that responds to oxidative, nitrosative, and heat stresses in M. tuberculosis. The nNF action induced the SigH stress response which in turn induced the mrx2 overexpression. The nitroreductase Mrx2 was found to activate nNF prodrugs, killing replicating, non-replicating and intracellular forms of M. tuberculosis. Analysis of SigH DNA sequences obtained from spontaneous nNF-resistant M. tuberculosis mutants suggests disruption of SigH binding to the mrx2 promoter site and/or RNA polymerase core, likely promoting the observed loss of transcriptional control over Mrx2. Mutations found in mrx2 lead to structural defects in the thioredoxin fold of the Mrx2 protein, significantly impairing the activity of the Mrx2 enzyme against nNFs. Altogether, our work brings out the SigH/Mrx2 stress response pathway as a promising target for future drug discovery programs.
Collapse
Affiliation(s)
| | | | - Claire Beauvineau
- Chemical Library Institut Curie/CNRS, CNRS UMR9187, INSERM U1196 and CNRS UMR3666, INSERM U1193, Université Paris-Saclay, Orsay 91405, France
| | - Martin Speth
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0371, Norway
| | - Alberto Marina
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160 Spain
| | - Amine Namouchi
- Génétique Mycobactérienne, Institute Pasteur, Paris 75015, France,Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo 0371, Norway
| | - Greta Segafreddo
- Department of Molecular Medicine, University of Padova, Padova 35122, Italy
| | - Mena Cimino
- Génétique Mycobactérienne, Institute Pasteur, Paris 75015, France
| | | | | | - Beatriz Trastoy
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160 Spain,Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Bizkaia 48903, Spain
| | - Hélène Munier-Lehmann
- Département de Biologie Structurale et Chimie, Institut Pasteur, CNRS UMR3523, Université de Paris, Paris 75015, France
| | - Gareth Griffiths
- Department Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo 0371, Norway
| | - Brigitte Gicquel
- Génétique Mycobactérienne, Institute Pasteur, Paris 75015, France,Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen 518054, China
| | - Marcelo E Guerin
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio 48160 Spain,Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Bizkaia 48903, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
| | - Riccardo Manganelli
- Correspondence may also be addressed to Riccardo Manganelli. Tel: +39 049 827 2366; Fax: +39 049 827 2355;
| | | |
Collapse
|
11
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
12
|
Rohaun SK, Imlay JA. The vulnerability of radical SAM enzymes to oxidants and soft metals. Redox Biol 2022; 57:102495. [PMID: 36240621 PMCID: PMC9576991 DOI: 10.1016/j.redox.2022.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Radical S-adenosylmethionine enzymes (RSEs) drive diverse biological processes by catalyzing chemically difficult reactions. Each of these enzymes uses a solvent-exposed [4Fe-4S] cluster to coordinate and cleave its SAM co-reactant. This cluster is destroyed during oxic handling, forcing investigators to work with these enzymes under anoxic conditions. Analogous substrate-binding [4Fe-4S] clusters in dehydratases are similarly sensitive to oxygen in vitro; they are also extremely vulnerable to reactive oxygen species (ROS) in vitro and in vivo. These observations suggested that ROS might similarly poison RSEs. This conjecture received apparent support by the observation that when E. coli experiences hydrogen peroxide stress, it induces a cluster-free isozyme of the RSE HemN. In the present study, surprisingly, the purified RSEs viperin and HemN proved quite resistant to peroxide and superoxide in vitro. Furthermore, pathways that require RSEs remained active inside E. coli cells that were acutely stressed by hydrogen peroxide and superoxide. Viperin, but not HemN, was gradually poisoned by molecular oxygen in vitro, forming an apparent [3Fe-4S]+ form that was readily reactivated. The modest rate of damage, and the known ability of cells to repair [3Fe-4S]+ clusters, suggest why these RSEs remain functional inside fully aerated organisms. In contrast, copper(I) damaged HemN and viperin in vitro as readily as it did fumarase, a known target of copper toxicity inside E. coli. Excess intracellular copper also impaired RSE-dependent biosynthetic processes. These data indicate that RSEs may be targets of copper stress but not of reactive oxygen species.
Collapse
Affiliation(s)
| | - James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
13
|
Thakur M, Parulekar RS, Barale SS, Sonawane KD, Muniyappa K. Interrogating the substrate specificity landscape of UvrC reveals novel insights into its non-canonical function. Biophys J 2022; 121:3103-3125. [PMID: 35810330 PMCID: PMC9463653 DOI: 10.1016/j.bpj.2022.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/23/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Although it is relatively unexplored, accumulating data highlight the importance of tripartite crosstalk between nucleotide excision repair (NER), DNA replication, and recombination in the maintenance of genome stability; however, elucidating the underlying mechanisms remains challenging. While Escherichia coli uvrA and uvrB can fully complement polAΔ cells in DNA replication, uvrC attenuates this alternative DNA replication pathway, but the exact mechanism by which uvrC suppresses DNA replication is unknown. Furthermore, the identity of bona fide canonical and non-canonical substrates for UvrCs are undefined. Here, we reveal that Mycobacterium tuberculosis UvrC (MtUvrC) strongly binds to, and robustly cleaves, key intermediates of DNA replication/recombination as compared with the model NER substrates. Notably, inactivation of MtUvrC ATPase activity significantly attenuated its endonuclease activity, thus suggesting a causal link between these two functions. We built an in silico model of the interaction of MtUvrC with the Holliday junction (HJ), using a combination of homology modeling, molecular docking, and molecular dynamic simulations. The model predicted residues that were potentially involved in HJ binding. Six of these residues were mutated either singly or in pairs, and the resulting MtUvrC variants were purified and characterized. Among them, residues Glu595 and Arg597 in the helix-hairpin-helix motif were found to be crucial for the interaction between MtUvrC and HJ; consequently, mutations in these residues, or inhibition of ATP hydrolysis, strongly abrogated its DNA-binding and endonuclease activities. Viewed together, these findings expand the substrate specificity landscape of UvrCs and provide crucial mechanistic insights into the interplay between NER and DNA replication/recombination.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| | | | - Sagar S Barale
- Structural Bioinformatics Unit, Shivaji University, Kolhapur, India
| | - Kailas D Sonawane
- Department of Microbiology, Shivaji University, Kolhapur, India; Structural Bioinformatics Unit, Shivaji University, Kolhapur, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
14
|
Molecular Connectivity between Extracytoplasmic Sigma Factors and PhoP Accounts for Coupled Mycobacterial Stress Response. J Bacteriol 2022; 204:e0011022. [PMID: 35608366 DOI: 10.1128/jb.00110-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis encounters numerous stress conditions within the host, but how it is able to mount a coupled stress response remains unknown. Growing evidence suggests that under acidic pH, M. tuberculosis modulates redox homeostasis. In an attempt to dissect the mechanistic details of responses to multiple stress conditions, here we studied the significance of connectivity of extracytoplasmic sigma factors with PhoP. We show that PhoP impacts the mycothiol redox state, and the H37Rv ΔphoP deletion mutant strain displays a significantly higher susceptibility to redox stress than the wild-type bacilli. To probe how the two regulators PhoP and redox-active sigma factor SigH contribute to redox homeostasis, we show that SigH controls expression of redox-active thioredoxin genes, a major mycobacterial antioxidant system, and under redox stress, SigH, but not PhoP, is recruited at the target promoters. Consistent with these results, interaction between PhoP and SigH fails to impact redox-dependent gene expression. This is in striking contrast to our previous results showing PhoP-dependent SigE recruitment within acid-inducible mycobacterial promoters to maintain pH homeostasis. Our subsequent results demonstrate reduced PhoP-SigH interaction in the presence of diamide and enhanced PhoP-SigE interaction under low pH. These contrasting results uncover the underlying mechanism of the mycobacterial adaptive program, coupling low pH with maintenance of redox homeostasis. IMPORTANCE M. tuberculosis encounters reductive stress under acidic pH. To investigate the mechanism of coupled stress response, we show that PhoP plays a major role in mycobacterial redox stress response. We observed a strong correlation of phoP-dependent redox-active expression of thioredoxin genes, a major mycobacterial antioxidant system. Further probing of functioning of regulators revealed that while PhoP controls pH homeostasis via its interaction with SigE, direct recruitment of SigH, but not PhoP-SigH interaction, controls expression of thioredoxin genes. These strikingly contrasting results showing enhanced PhoP-SigE interaction under acidic pH and reduced PhoP-SigH interaction under redox conditions uncover the underlying novel mechanism of the mycobacterial adaptive program, coupling low pH with maintenance of redox homeostasis.
Collapse
|
15
|
Sengupta S, Bhawsinghka N, Shaw R, Patra MM, Das Gupta SK. Mycobacteriophage D29 induced association of Mycobacterial RNA polymerase with ancillary factors leads to increased transcriptional activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35353035 DOI: 10.1099/mic.0.001158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacteriophage D29 infects species belonging to the genus Mycobacterium including the deadly pathogen Mycobacterium tuberculosis. D29 is a lytic phage, although, related to the lysogenic mycobacteriophage L5. This phage is unable to lysogenize in mycobacteria as it lacks the gene encoding the phage repressor. Infection by many mycobacteriophages cause various changes in the host that ultimately leads to inactivation of the latter. One of the host targets often modified in the process is RNA polymerase. During our investigations with phage D29 infected Mycobacterium smegmatis (Msm) we observed that the promoters from both phage, and to a lesser extent those of the host were found to be more active in cells that were exposed to D29, as compared to the unexposed. Further experiments indicate that the RNA polymerase purified from phage infected cells possessed higher affinity for promoters particularly those that were phage derived. Comparison of the purified RNA polymerase preparations from infected and uninfected cells showed that several ancillary transcription factors, Sigma factor F, Sigma factor H, CarD and RbpA are prominently associated with the RNA polymerase from infected cells. Based on our observations we conclude that the higher activity of RNA polymerase observed in D29 infected cells is due to its increased association with ancillary transcription factors.
Collapse
Affiliation(s)
- Shreya Sengupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Niketa Bhawsinghka
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India.,Present address: Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Rahul Shaw
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Madhu Manti Patra
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| |
Collapse
|
16
|
Virieux-Petit M, Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Romano-Bertrand S. From Copper Tolerance to Resistance in Pseudomonas aeruginosa towards Patho-Adaptation and Hospital Success. Genes (Basel) 2022; 13:genes13020301. [PMID: 35205346 PMCID: PMC8872213 DOI: 10.3390/genes13020301] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
The hospital environment constitutes a reservoir of opportunistic pathogens responsible for healthcare-associated infections (HCAI) such as Pseudomonas aeruginosa (Pa). Pa persistence within technological niches, the increasing emergence of epidemic high-risk clones in HCAI, the epidemiological link between plumbing strains and clinical strains, make it a major nosocomial pathogen. Therefore, understanding the mechanisms of Pa adaptation to hospital water systems would be useful in preventing HCAI. This review deciphers how copper resistance contributes to Pa adaptation and persistence in a hospital environment, especially within copper water systems, and ultimately to its success as a causative agent of HCAI. Numerous factors are involved in copper homeostasis in Pa, among which active efflux conferring copper tolerance, and copper-binding proteins regulating the copper compartmentalization between periplasm and cytoplasm. The functional harmony of copper homeostasis is regulated by several transcriptional regulators. The genomic island GI-7 appeared as especially responsible for the copper resistance in Pa. Mechanisms of copper and antibiotic cross-resistance and co-resistance are also identified, with potential co-regulation processes between them. Finally, copper resistance of Pa confers selective advantages in colonizing and persisting in hospital environments but also appears as an asset at the host/pathogen interface that helps in HCAI occurrence.
Collapse
Affiliation(s)
- Maxine Virieux-Petit
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Florence Hammer-Dedet
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Fabien Aujoulat
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
| | - Sara Romano-Bertrand
- HydroSciences Montpellier, IRD, CNRS, Montpellier University, 34093 Montpellier, France; (M.V.-P.); (F.H.-D.); (F.A.); (E.J.-B.)
- Hospital Hygiene and Infection Control Team, University Hospital of Montpellier, 34093 Montpellier, France
- UMR 5151 HSM, Equipe Pathogènes Hydriques Santé et Environnements, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université Montpellier, 15, Avenue Charles Flahault, BP 14491, CEDEX 5, 34093 Montpellier, France
- Correspondence: ; Tel.: +33-4-11-75-94-30
| |
Collapse
|
17
|
López-Agudelo VA, Baena A, Barrera V, Cabarcas F, Alzate JF, Beste DJV, Ríos-Estepa R, Barrera LF. Dual RNA Sequencing of Mycobacterium tuberculosis-Infected Human Splenic Macrophages Reveals a Strain-Dependent Host-Pathogen Response to Infection. Int J Mol Sci 2022; 23:ijms23031803. [PMID: 35163725 PMCID: PMC8836425 DOI: 10.3390/ijms23031803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb), leading to pulmonary and extrapulmonary TB, whereby Mtb is disseminated to many other organs and tissues. Dissemination occurs early during the disease, and bacteria can be found first in the lymph nodes adjacent to the lungs and then later in the extrapulmonary organs, including the spleen. The early global gene expression response of human tissue macrophages and intracellular clinical isolates of Mtb has been poorly studied. Using dual RNA-seq, we have explored the mRNA profiles of two closely related clinical strains of the Latin American and Mediterranean (LAM) family of Mtb in infected human splenic macrophages (hSMs). This work shows that these pathogens mediate a distinct host response despite their genetic similarity. Using a genome-scale host–pathogen metabolic reconstruction to analyze the data further, we highlight that the infecting Mtb strain also determines the metabolic response of both the host and pathogen. Thus, macrophage ontogeny and the genetic-derived program of Mtb direct the host–pathogen interaction.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
| | - Vianey Barrera
- Programa de Ingeniería Biológica, Universidad Nacional de Colombia, Sede Medellín, Medellín 050010, Colombia;
| | - Felipe Cabarcas
- Grupo Sistemas Embebidos e Inteligencia Computacional (SISTEMIC), Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Dany J. V. Beste
- Department of Microbial Sciences, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7XH, UK;
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Correspondence:
| |
Collapse
|
18
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. Lipid larceny: channelizing host lipids for establishing successful pathogenesis by bacteria. Virulence 2021; 12:195-216. [PMID: 33356849 PMCID: PMC7808437 DOI: 10.1080/21505594.2020.1869441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Lipids are complex organic compounds made up of carbon, oxygen, and hydrogen. These play a diverse and intricate role in cellular processes like membrane trafficking, protein sorting, signal transduction, and bacterial infections. Both Gram-positive bacteria (Staphylococcus sp., Listeria monocytogenes, etc.) and Gram-negative bacteria (Chlamydia sp., Salmonella sp., E. coli, etc.) can hijack the various host-lipids and utilize them structurally as well as functionally to mount a successful infection. The pathogens can deploy with various arsenals to exploit host membrane lipids and lipid-associated receptors as an attachment for toxins' landing or facilitate their entry into the host cellular niche. Bacterial species like Mycobacterium sp. can also modulate the host lipid metabolism to fetch its carbon source from the host. The sequential conversion of host membrane lipids into arachidonic acid and prostaglandin E2 due to increased activity of cPLA-2 and COX-2 upon bacterial infection creates immunosuppressive conditions and facilitates the intracellular growth and proliferation of bacteria. However, lipids' more debatable role is that they can also be a blessing in disguise. Certain host-lipids, especially sphingolipids, have been shown to play a crucial antibacterial role and help the host in combating the infections. This review shed light on the detailed role of host lipids in bacterial infections and the current understanding of the lipid in therapeutics. We have also discussed potential prospects and the need of the hour to help us cope in this race against deadly pathogens and their rapidly evolving stealthy virulence strategies.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
19
|
Joshi H, Kandari D, Bhatnagar R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021; 12:2721-2749. [PMID: 34637683 PMCID: PMC8565819 DOI: 10.1080/21505594.2021.1990660] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
The establishment of persistent infections and the reactivation of persistent bacteria to active bacilli are the two hurdles in effective tuberculosis treatment. Mycobacterium tuberculosis, an etiologic tuberculosis agent, adapts to numerous antibiotics and resists the host immune system causing a disease of public health concern. Extensive research has been employed to combat this disease due to its sheer ability to persist in the host system, undetected, waiting for the opportunity to declare itself. Persisters are a bacterial subpopulation that possesses transient tolerance to high doses of antibiotics. There are certain inherent mechanisms that facilitate the persister cell formation in Mycobacterium tuberculosis, some of those had been characterized in the past namely, stringent response, transcriptional regulators, energy production pathways, lipid metabolism, cell wall remodeling enzymes, phosphate metabolism, and proteasome protein degradation. This article reviews the recent advancements made in various in vitro persistence models that assist to unravel the mechanisms involved in the persister cell formation and to hunt for the possible preventive or treatment measures. To tackle the persister population the immunodominant proteins that express specifically at the latent phase of infection can be used for diagnosis to distinguish between the active and latent tuberculosis, as well as to select potential drug or vaccine candidates. In addition, we discuss the genes engaged in the persistence to get more insights into resuscitation and persister cell formation. The in-depth understanding of persistent cells of mycobacteria can certainly unravel novel ways to target the pathogen and tackle its persistence.
Collapse
Affiliation(s)
- Hemant Joshi
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Amity University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
20
|
Regulation of the icl1 Gene Encoding the Major Isocitrate Lyase in Mycobacterium smegmatis. J Bacteriol 2021; 203:e0040221. [PMID: 34516281 DOI: 10.1128/jb.00402-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium smegmatis has two isocitrate lyase (ICL) isozymes (MSMEG_0911 and MSMEG_3706). We demonstrated that ICL1 (MSMEG_0911) is the predominantly expressed ICL in M. smegmatis and plays a major role in growth on acetate or fatty acid as the sole carbon and energy source. Expression of the icl1 gene in M. smegmatis was demonstrated to be strongly upregulated during growth on acetate relative to that in M. smegmatis grown on glucose. Expression of icl1 was shown to be positively regulated by the RamB activator, and three RamB-binding sites (RamBS1, RamBS2, and RamBS3) were identified in the upstream region of icl1 using DNase I footprinting analysis. Succinyl coenzyme A (succinyl-CoA) was shown to increase the affinity of binding of RamB to its binding sites and enable RamB to bind to RamBS2, which is the most important site for RamB-mediated induction of icl1 expression. These results suggest that succinyl-CoA serves as a coinducer molecule for RamB. Our study also showed that cAMP receptor protein (Crp1; MSMEG_6189) represses icl1 expression in M. smegmatis grown in the presence of glucose. Therefore, the strong induction of icl1 expression during growth on acetate as the sole carbon source relative to the weak expression of icl1 during growth on glucose is likely to result from combined effects of RamB-mediated induction of icl1 in the presence of acetate and Crp-mediated repression of icl1 in the presence of glucose. IMPORTANCE Carbon flux through the glyoxylate shunt has been suggested to affect virulence, persistence, and antibiotic resistance of Mycobacterium tuberculosis. Therefore, it is important to understand the precise mechanism underlying the regulation of the icl gene encoding the key enzyme of the glyoxylate shunt. Using Mycobacterium smegmatis, this study revealed the regulation mechanism underlying induction of icl1 expression in M. smegmatis when the glyoxylate shunt is required. The conservation of the cis- and trans-acting regulatory elements related to icl1 regulation in both M. smegmatis and M. tuberculosis implies that a similar regulatory mechanism operates for the regulation of icl1 expression in M. tuberculosis.
Collapse
|
21
|
Abo-Kadoum M, Dai Y, Asaad M, Hamdi I, Xie J. Differential Isoniazid Response Pattern Between Active and Dormant Mycobacterium tuberculosis. Microb Drug Resist 2021; 27:768-775. [DOI: 10.1089/mdr.2020.0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- M.A. Abo-Kadoum
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, P.R. China
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assuit Branch, Assuit, Egypt
| | - Yongdong Dai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, P.R. China
| | - Mohammed Asaad
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, P.R. China
| | - Insaf Hamdi
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, P.R. China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, P.R. China
| |
Collapse
|
22
|
Oh Y, Song SY, Kim HJ, Han G, Hwang J, Kang HY, Oh JI. The Partner Switching System of the SigF Sigma Factor in Mycobacterium smegmatis and Induction of the SigF Regulon Under Respiration-Inhibitory Conditions. Front Microbiol 2020; 11:588487. [PMID: 33304334 PMCID: PMC7693655 DOI: 10.3389/fmicb.2020.588487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The partner switching system (PSS) of the SigF regulatory pathway in Mycobacterium smegmatis has been previously demonstrated to include the anti-sigma factor RsbW (MSMEG_1803) and two anti-sigma factor antagonists RsfA and RsfB. In this study, we further characterized two additional RsbW homologs and revealed the distinct roles of three RsbW homologs [RsbW1 (MSMEG_1803), RsbW2 (MSMEG_6129), and RsbW3 (MSMEG_1787)] in the SigF PSS. RsbW1 and RsbW2 serve as the anti-sigma factor of SigF and the protein kinase phosphorylating RsfB, respectively, while RsbW3 functions as an anti-SigF antagonist through its protein interaction with RsbW1. Using relevant mutant strains, RsfB was demonstrated to be the major anti-SigF antagonist in M. smegmatis. The phosphorylation state of Ser-63 was shown to determine the functionality of RsfB as an anti-SigF antagonist. RsbW2 was demonstrated to be the only protein kinase that phosphorylates RsfB in M. smegmatis. Phosphorylation of Ser-63 inactivates RsfB to render it unable to interact with RsbW1. Our comparative RNA sequencing analysis of the wild-type strain of M. smegmatis and its isogenic Δaa3 mutant strain lacking the aa3 cytochrome c oxidase of the respiratory electron transport chain revealed that expression of the SigF regulon is strongly induced under respiration-inhibitory conditions in an RsfB-dependent way.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Su-Yeon Song
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hye-Jun Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Ho-Young Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
23
|
Hamidieh F, Farnia P, Nowroozi J, Farnia P, Velayati AA. An Overview of Genetic Information of Latent Mycobacterium tuberculosis. Tuberc Respir Dis (Seoul) 2020; 84:1-12. [PMID: 33121230 PMCID: PMC7801807 DOI: 10.4046/trd.2020.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Mycobacterium tuberculosis has infected more than two billion individuals worldwide, of whom 5%–10% have clinically active disease and 90%–95% remain in the latent stage with a reservoir of viable bacteria in the macrophages for extended periods of time. The tubercle bacilli at this stage are usually called dormant, non-viable, and/or non-culturable microorganisms. The patients with latent bacilli will not have clinical pictures and are not infectious. The infections in about 2%–23% of the patients with latent status become reactivated for various reasons such as cancer, human immunodeficiency virus infection, diabetes, and/or aging. Many studies have examined the mechanisms involved in the latent state of Mycobacterium and showed that latency modified the expression of many genes. Therefore, several mechanisms will change in this bacterium. Hence, this study aimed to briefly examine the genes involved in the latent state as well as the changes that are caused by Mycobacterium tuberculosis. The study also evaluated the relationship between the functions of these genes.
Collapse
Affiliation(s)
- Faezeh Hamidieh
- Departement of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parissa Farnia
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamileh Nowroozi
- Departement of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Poopak Farnia
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Mycobacteriology Research (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Mondino S, Vázquez CL, Cabruja M, Sala C, Cazenave-Gassiot A, Blanco FC, Wenk MR, Bigi F, Cole ST, Gramajo H, Gago G. FasR Regulates Fatty Acid Biosynthesis and Is Essential for Virulence of Mycobacterium tuberculosis. Front Microbiol 2020; 11:586285. [PMID: 33193236 PMCID: PMC7652896 DOI: 10.3389/fmicb.2020.586285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is the world's leading cause of death from an infectious disease. One of the main features of this pathogen is the complex and dynamic lipid composition of the cell envelope, which adapts to the variable host environment and defines the fate of infection by actively interacting with and modulating immune responses. However, while much has been learned about the enzymes of the numerous lipid pathways, little knowledge is available regarding the proteins and metabolic signals regulating lipid metabolism during M. tuberculosis infection. In this work, we constructed and characterized a FasR-deficient mutant in M. tuberculosis and demonstrated that FasR positively regulates fas and acpS expression. Lipidomic analysis of the wild type and mutant strains revealed complete rearrangement of most lipid components of the cell envelope, with phospholipids, mycolic acids, sulfolipids, and phthiocerol dimycocerosates relative abundance severely altered. As a consequence, replication of the mutant strain was impaired in macrophages leading to reduced virulence in a mouse model of infection. Moreover, we show that the fasR mutant resides in acidified cellular compartments, suggesting that the lipid perturbation caused by the mutation prevented M. tuberculosis inhibition of phagolysosome maturation. This study identified FasR as a novel factor involved in regulation of mycobacterial virulence and provides evidence for the essential role that modulation of lipid homeostasis plays in the outcome of M. tuberculosis infection.
Collapse
Affiliation(s)
- Sonia Mondino
- Laboratory of Physiology and Genetics of Actinomycetes, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Matías Cabruja
- Laboratory of Physiology and Genetics of Actinomycetes, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudia Sala
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Markus R. Wenk
- Singapore Lipidomics Incubator (SLING), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabiana Bigi
- Instituto de Biotecnología-IABIMO (INTA-CONICET), Hurlingham, Argentina
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
25
|
Hackett EE, Sheedy FJ. An Army Marches on Its Stomach: Metabolic Intermediates as Antimicrobial Mediators in Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2020; 10:446. [PMID: 32984072 PMCID: PMC7477320 DOI: 10.3389/fcimb.2020.00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The cells of the immune system are reliant on their metabolic state to launch effective responses to combat mycobacterial infections. The bioenergetic profile of the cell determines the molecular fuels and metabolites available to the host, as well as to the bacterial invader. How cells utilize the nutrients in their microenvironment—including glucose, lipids and amino acids—to sustain their functions and produce antimicrobial metabolites, and how mycobacteria exploit this to evade the immune system is of great interest. Changes in flux through metabolic pathways alters the intermediate metabolites present. These intermediates are beginning to be recognized as key modulators of immune signaling as well as direct antimicrobial effectors, and their impact on tuberculosis infection is becoming apparent. A better understanding of how metabolism impacts immunity to Mycobacterium tuberculosis and how it is regulated and thus can be manipulated will open the potential for novel therapeutic interventions and vaccination strategies.
Collapse
Affiliation(s)
- Emer E Hackett
- Macrophage Homeostasis, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Frederick J Sheedy
- Macrophage Homeostasis, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Allen PE, Martinez JJ. Modulation of Host Lipid Pathways by Pathogenic Intracellular Bacteria. Pathogens 2020; 9:pathogens9080614. [PMID: 32731350 PMCID: PMC7460438 DOI: 10.3390/pathogens9080614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Lipids are a broad group of molecules required for cell maintenance and homeostasis. Various intracellular pathogens have developed mechanisms of modulating and sequestering host lipid processes for a large array of functions for both bacterial and host cell survival. Among the host cell lipid functions that intracellular bacteria exploit for infection are the modulation of host plasma membrane microdomains (lipid rafts) required for efficient bacterial entry; the recruitment of specific lipids for membrane integrity of intracellular vacuoles; and the utilization of host lipid droplets for the regulation of immune responses and for energy production through fatty acid β-oxidation and oxidative phosphorylation. The majority of published studies on the utilization of these host lipid pathways during infection have focused on intracellular bacterial pathogens that reside within a vacuole during infection and, thus, have vastly different requirements for host lipid metabolites when compared to those intracellular pathogens that are released into the host cytosol upon infection. Here we summarize the mechanisms by which intracellular bacteria sequester host lipid species and compare the modulation of host lipid pathways and metabolites during host cell infection by intracellular pathogens residing in either a vacuole or within the cytosol of infected mammalian cells. This review will also highlight common and unique host pathways necessary for intracellular bacterial growth that could potentially be targeted for therapeutic intervention.
Collapse
|
27
|
Thakur M, Agarwal A, Muniyappa K. The intrinsic ATPase activity of Mycobacterium tuberculosis UvrC is crucial for its damage-specific DNA incision function. FEBS J 2020; 288:1179-1200. [PMID: 32602194 DOI: 10.1111/febs.15465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/04/2020] [Accepted: 06/24/2020] [Indexed: 11/28/2022]
Abstract
To ensure genome stability, bacteria have evolved a network of DNA repair mechanisms; among them, the UvrABC-dependent nucleotide excision repair (NER) pathway is essential for the incision of a variety of bulky adducts generated by exogenous chemicals, UV radiation and by-products of cellular metabolism. However, very little is known about the enzymatic properties of Mycobacterium tuberculosis UvrABC excinuclease complex. Furthermore, the biochemical properties of Escherichia coli UvrC (EcUvrC) are not well understood (compared to UvrA and UvrB), perhaps due to its limited availability and/or activity instability in vitro. In addition, homology modelling of M. tuberculosis UvrC (MtUvrC) revealed the presence of a putative ATP-binding pocket, although its function remains unknown. To elucidate the biochemical properties of UvrC, we constructed and purified wild-type MtUvrC and its eight variants harbouring mutations within the ATP-binding pocket. The data from DNA-binding studies suggest that MtUvrC exhibits high-affinity for duplex DNA containing a bubble or fluorescein-dT moiety, over fluorescein-adducted single-stranded DNA. Most notably, MtUvrC has an intrinsic UvrB-independent ATPase activity, which drives dual incision of the damaged DNA strand. In contrast, EcUvrC is devoid of ATPase activity; however, it retains the ability to bind ATP at levels comparable to that of MtUvrC. The ATPase-deficient variants map to residues lining the MtUvrC ATP-binding pocket. Further analysis of these variants revealed separation of function between ATPase and DNA-binding activities in MtUvrC. Altogether, these findings reveal functional diversity of the bacterial NER machinery and a paradigm for the evolution of a catalytic scaffold in UvrC.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Ankit Agarwal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
28
|
Sachdeva K, Goel M, Sudhakar M, Mehta M, Raju R, Raman K, Singh A, Sundaramurthy V. Mycobacterium tuberculosis ( Mtb) lipid mediated lysosomal rewiring in infected macrophages modulates intracellular Mtb trafficking and survival. J Biol Chem 2020; 295:9192-9210. [PMID: 32424041 PMCID: PMC7335774 DOI: 10.1074/jbc.ra120.012809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/14/2020] [Indexed: 12/24/2022] Open
Abstract
Intracellular pathogens commonly manipulate the host lysosomal system for their survival. However, whether this pathogen-induced alteration affects the organization and functioning of the lysosomal system itself is not known. Here, using in vitro and in vivo infections and quantitative image analysis, we show that the lysosomal content and activity are globally elevated in Mycobacterium tuberculosis (Mtb)-infected macrophages. We observed that this enhanced lysosomal state is sustained over time and defines an adaptive homeostasis in the infected macrophage. Lysosomal alterations are caused by mycobacterial surface components, notably the cell wall-associated lipid sulfolipid-1 (SL-1), which functions through the mTOR complex 1 (mTORC1)-transcription factor EB (TFEB) axis in the host cells. An Mtb mutant lacking SL-1, MtbΔpks2, shows attenuated lysosomal rewiring compared with the WT Mtb in both in vitro and in vivo infections. Exposing macrophages to purified SL-1 enhanced the trafficking of phagocytic cargo to lysosomes. Correspondingly, MtbΔpks2 exhibited a further reduction in lysosomal delivery compared with the WT. Reduced trafficking of this mutant Mtb strain to lysosomes correlated with enhanced intracellular bacterial survival. Our results reveal that global alteration of the host lysosomal system is a defining feature of Mtb-infected macrophages and suggest that this altered lysosomal state protects host cell integrity and contributes to the containment of the pathogen.
Collapse
Affiliation(s)
- Kuldeep Sachdeva
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Manisha Goel
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Malvika Sudhakar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India; Initiative for Biological Systems Engineering, Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India
| | - Mansi Mehta
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Rajmani Raju
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Karthik Raman
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India; Initiative for Biological Systems Engineering, Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India
| | - Amit Singh
- Center for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
29
|
Bah A, Sanicas M, Nigou J, Guilhot C, Astarie-Dequeker C, Vergne I. The Lipid Virulence Factors of Mycobacterium tuberculosis Exert Multilayered Control over Autophagy-Related Pathways in Infected Human Macrophages. Cells 2020; 9:cells9030666. [PMID: 32182946 PMCID: PMC7140614 DOI: 10.3390/cells9030666] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy is an important innate immune defense mechanism that controls Mycobacterium tuberculosis (Mtb) growth inside macrophages. Autophagy machinery targets Mtb-containing phagosomes via xenophagy after damage to the phagosomal membrane due to the Type VII secretion system Esx-1 or via LC3-associated phagocytosis without phagosomal damage. Conversely, Mtb restricts autophagy-related pathways via the production of various bacterial protein factors. Although bacterial lipids are known to play strategic functions in Mtb pathogenesis, their role in autophagy manipulation remains largely unexplored. Here, we report that the lipid virulence factors sulfoglycolipids (SLs) and phthiocerol dimycocerosates (DIMs) control autophagy-related pathways through distinct mechanisms in human macrophages. Using knock-out and knock-in mutants of Mtb and Mycobacterium bovis BCG (Bacille Calmette Guerin) and purified lipids, we found that (i) Mtb mutants with DIM and SL deficiencies promoted functional autophagy via an MyD88-dependent and phagosomal damage-independent pathway in human macrophages; (ii) SLs limited this pathway by acting as TLR2 antagonists; (iii) DIMs prevented phagosomal damage-independent autophagy while promoting Esx-1-dependent xenophagy; (iv) and DIMs, but not SLs, limited the acidification of LC3-positive Mtb compartments. In total, our study reveals an unexpected and intricate role for Mtb lipid virulence factors in controlling autophagy-related pathways in human macrophages, thus providing further insight into the autophagy manipulation tactics deployed by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Aïcha Bah
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
| | - Merlin Sanicas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
- University of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
| | - Catherine Astarie-Dequeker
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
- Correspondence: (C.A.-D.); (I.V.)
| | - Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077 Toulouse, France; (A.B.); (M.S.); (J.N.); (C.G.)
- Correspondence: (C.A.-D.); (I.V.)
| |
Collapse
|
30
|
Gutti G, Arya K, Singh SK. Latent Tuberculosis Infection (LTBI) and Its Potential Targets: An Investigation into Dormant Phase Pathogens. Mini Rev Med Chem 2019; 19:1627-1642. [PMID: 31241015 DOI: 10.2174/1389557519666190625165512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/06/2018] [Accepted: 05/28/2018] [Indexed: 11/22/2022]
Abstract
One-third of the world's population harbours the latent tuberculosis infection (LTBI) with a lifetime risk of reactivation. Although, the treatment of LTBI relies significantly on the first-line therapy, identification of novel drug targets and therapies are the emerging focus for researchers across the globe. The current review provides an insight into the infection, diagnostic methods and epigrammatic explanations of potential molecular targets of dormant phase bacilli. This study also includes current preclinical and clinical aspects of tubercular infections and new approaches in antitubercular drug discovery.
Collapse
Affiliation(s)
- Gopichand Gutti
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi-221005 (U.P.), India
| | - Karan Arya
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi-221005 (U.P.), India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi-221005 (U.P.), India
| |
Collapse
|
31
|
Behra PRK, Pettersson BMF, Ramesh M, Dasgupta S, Kirsebom LA. Insight into the biology of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members. Sci Rep 2019; 9:19259. [PMID: 31848383 PMCID: PMC6917791 DOI: 10.1038/s41598-019-55464-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Nontuberculous mycobacteria, NTM, are of growing concern and among these members of the Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clades can cause infections in humans and they are resistant to first-line anti-tuberculosis drugs. They can be isolated from different ecological niches such as soil, tap water and ground water. Mycobacteria, such as Mmuc and Mneo, are classified as rapid growing mycobacteria, RGM, while the most familiar, Mycobacterium tuberculosis, belongs to the slow growing mycobacteria, SGM. Modern “omics” approaches have provided new insights into our understanding of the biology and evolution of this group of bacteria. Here we present comparative genomics data for seventeen NTM of which sixteen belong to the Mmuc- and Mneo-clades. Focusing on virulence genes, including genes encoding sigma/anti-sigma factors, serine threonine protein kinases (STPK), type VII (ESX genes) secretion systems and mammalian cell entry (Mce) factors we provide insight into their presence as well as phylogenetic relationship in the case of the sigma/anti-sigma factors and STPKs. Our data further suggest that these NTM lack ESX-5 and Mce2 genes, which are known to affect virulence. In this context, Mmuc- and Mneo-clade members lack several of the genes in the glycopeptidolipid (GLP) locus, which have roles in colony morphotype appearance and virulence. For the M. mucogenicum type strain, MmucT, we provide RNASeq data focusing on mRNA levels for sigma factors, STPK, ESX proteins and Mce proteins. These data are discussed and compared to in particular the SGM and fish pathogen Mycobacterium marinum. Finally, we provide insight into as to why members of the Mmuc- and Mneo-clades show resistance to rifampin and isoniazid, and why MmucT forms a rough colony morphotype.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
32
|
Structure-function insights into elusive Mycobacterium tuberculosis protein Rv1916. Int J Biol Macromol 2019; 141:927-936. [PMID: 31505209 DOI: 10.1016/j.ijbiomac.2019.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is one of the leading causes of death worldwide. Long duration of TB therapy, results in the persistence and development of drug resistant strains of causative organism Mycobacterium tuberculosis (Mtb). Novel drug targets against persistent Mtb is an immediate need for overcoming this global menace. Isocitrate lyase (ICL), the first enzyme of glyoxylate pathway, is essential for persistent Mtb and absent in humans, hence a propitious target for drug development. Pathogenic Mtb H37Rv, have two types of ICLs - ICL1 encoded by icl (Rv0467) is well characterized and homologous to eubacterial enzyme whereas ICL2 encoded by aceA is more related to eukaryotic isocitrate lyase. To compound it, the aceA gene is split into two ORFs namely rv1915/aceAa and rv1916/aceAb. No translational product has been reported for the later and therefore, in vivo existence of Rv1916/ICL2b is debatable. This study reports recombinant production of Rv1916 in heterologous host E. coli BL21 (DE3) for structure function studies. The studies categorically demonstrate that akin to Mtb ICL1, recombinant Rv1916 also possess dual ICL and methylisocitrate lyase (MICL) activities in vitro. Based on in silico analysis, a putative function linked to secondary metabolite synthesis is assigned to unique mycobacterial domain IV.
Collapse
|
33
|
Khan MT, Kaushik AC, Bhatti AI, Zhang YJ, Zhang S, Wei AJ, Malik SI, Wei DQ. Marine Natural Products and Drug Resistance in Latent Tuberculosis. Mar Drugs 2019; 17:md17100549. [PMID: 31561525 PMCID: PMC6836121 DOI: 10.3390/md17100549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
Pyrazinamide (PZA) is the only drug for the elimination of latent Mycobacterium tuberculosis (MTB) isolates. However, due to the increased number of PZA-resistance, the chances of the success of global TB elimination seems to be more prolonged. Recently, marine natural products (MNPs) as an anti-TB agent have received much attention, where some compounds extracted from marine sponge, Haliclona sp. exhibited strong activity under aerobic and hypoxic conditions. In this study, we screened articles from 1994 to 2019 related to marine natural products (MNPs) active against latent MTB isolates. The literature was also mined for the major regulators to map them in the form of a pathway under the dormant stage. Five compounds were found to be more suitable that may be applied as an alternative to PZA for the better management of resistance under latent stage. However, the mechanism of actions behind these compounds is largely unknown. Here, we also applied synthetic biology to analyze the major regulatory pathway under latent TB that might be used for the screening of selective inhibitors among marine natural products (MNPs). We identified key regulators of MTB under latent TB through extensive literature mining and mapped them in the form of regulatory pathway, where SigH is negatively regulated by RshA. PknB, RshA, SigH, and RNA polymerase (RNA-pol) are the major regulators involved in MTB survival under latent stage. Further studies are needed to screen MNPs active against the main regulators of dormant MTB isolates. To reduce the PZA resistance burden, understanding the regulatory pathways may help in selective targets of MNPs from marine natural sources.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan; (M.T.K.); (S.I.M.)
| | - Aman Chandra Kaushik
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Aamer Iqbal Bhatti
- Department of Electrical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan;
| | - Yu-Juan Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| | - Shulin Zhang
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (S.Z.)
| | - Amie Jinghua Wei
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (S.Z.)
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan; (M.T.K.); (S.I.M.)
| | - Dong Qing Wei
- The State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Correspondence: ; Tel.: +86-21-3420-4573
| |
Collapse
|
34
|
Minias A, Brzostek A, Dziadek J. Targeting DNA Repair Systems in Antitubercular Drug Development. Curr Med Chem 2019; 26:1494-1505. [DOI: 10.2174/0929867325666180129093546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
35
|
Peterson EJ, Bailo R, Rothchild AC, Arrieta-Ortiz ML, Kaur A, Pan M, Mai D, Abidi AA, Cooper C, Aderem A, Bhatt A, Baliga NS. Path-seq identifies an essential mycolate remodeling program for mycobacterial host adaptation. Mol Syst Biol 2019; 15:e8584. [PMID: 30833303 PMCID: PMC6398593 DOI: 10.15252/msb.20188584] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The success of Mycobacterium tuberculosis (MTB) stems from its ability to remain hidden from the immune system within macrophages. Here, we report a new technology (Path-seq) to sequence miniscule amounts of MTB transcripts within up to million-fold excess host RNA Using Path-seq and regulatory network analyses, we have discovered a novel transcriptional program for in vivo mycobacterial cell wall remodeling when the pathogen infects alveolar macrophages in mice. We have discovered that MadR transcriptionally modulates two mycolic acid desaturases desA1/desA2 to initially promote cell wall remodeling upon in vitro macrophage infection and, subsequently, reduces mycolate biosynthesis upon entering dormancy. We demonstrate that disrupting MadR program is lethal to diverse mycobacteria making this evolutionarily conserved regulator a prime antitubercular target for both early and late stages of infection.
Collapse
Affiliation(s)
| | - Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Alissa C Rothchild
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Charlotte Cooper
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Molecular and Cellular Biology Program, Departments of Microbiology and Biology, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Laboratories, Berkeley, CA, USA
| |
Collapse
|
36
|
Early J, Ollinger J, Darby C, Alling T, Mullen S, Casey A, Gold B, Ochoada J, Wiernicki T, Masquelin T, Nathan C, Hipskind PA, Parish T. Identification of Compounds with pH-Dependent Bactericidal Activity against Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:272-280. [PMID: 30501173 PMCID: PMC6371205 DOI: 10.1021/acsinfecdis.8b00256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
To find new inhibitors of Mycobacterium tuberculosis that have novel mechanisms of
action, we miniaturized a high throughput
screen to identify compounds that disrupt pH homeostasis. We adapted
and validated a 384-well format assay to determine intrabacterial
pH using a ratiometric green fluorescent protein. We screened 89000
small molecules under nonreplicating conditions and confirmed 556
hits that reduced intrabacterial pH (below pH 6.5). We selected five
compounds that disrupt intrabacterial pH homeostasis and also showed
some activity against nonreplicating bacteria in a 4-stress model,
but with no (or greatly reduced) activity against replicating bacteria.
The compounds selected were two benzamide sulfonamides, a benzothiadiazole,
a bissulfone, and a thiadiazole, none of which are known antibacterial
agents. All of these five compounds demonstrated bactericidal activity
against nonreplicating bacteria in buffer. Four of the five compounds
demonstrated increased activity under low pH conditions. None of the
five compounds acted as ionophores or as general disrupters of membrane
potential. These compounds are useful starting points for work to
elucidate their mechanism of action and their utility for drug discovery.
Collapse
Affiliation(s)
- Julie Early
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Juliane Ollinger
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Crystal Darby
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Torey Alling
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Steven Mullen
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Allen Casey
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Jason Ochoada
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Todd Wiernicki
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Thierry Masquelin
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Philip A. Hipskind
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| |
Collapse
|
37
|
You D, Xu Y, Yin BC, Ye BC. Nitrogen Regulator GlnR Controls Redox Sensing and Lipids Anabolism by Directly Activating the whiB3 in Mycobacterium smegmatis. Front Microbiol 2019; 10:74. [PMID: 30761112 PMCID: PMC6361795 DOI: 10.3389/fmicb.2019.00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/15/2019] [Indexed: 11/30/2022] Open
Abstract
WhiB3 is a conserved cytoplasmic redox sensor which is required in the infection and lipid anabolism of Mycobacterium tuberculosis. The response of WhiB3 to environmental nutrient and its regulatory cascades are crucial during the persistent infection, while little is known about the relationship between WhiB3 and emergence of nutrient stress in this process. Here, we found that nitrogen regulator GlnR directly interacted with the WhiB3 promoter region and activated its transcription in response to nitrogen availability. In whiB3 promoter region, the typical GlnR-box was also identified. Moreover, GlnR controlled cell resistance to redox stress and SL-1 lipid anabolism by directly activating whiB3 expression. These results demonstrated that GlnR regulated redox sensor WhiB3 at the transcriptional level and mediated the interplay among nitrogen metabolism, redox sensing, and lipid anabolism.
Collapse
Affiliation(s)
- Di You
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ying Xu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin-Cheng Yin
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
38
|
Abhishek S, Saikia UN, Gupta A, Bansal R, Gupta V, Singh N, Laal S, Verma I. Transcriptional Profile of Mycobacterium tuberculosis in an in vitro Model of Intraocular Tuberculosis. Front Cell Infect Microbiol 2018; 8:330. [PMID: 30333960 PMCID: PMC6175983 DOI: 10.3389/fcimb.2018.00330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Intraocular tuberculosis (IOTB), an extrapulmonary manifestation of tuberculosis of the eye, has unique and varied clinical presentations with poorly understood pathogenesis. As it is a significant cause of inflammation and visual morbidity, particularly in TB endemic countries, it is essential to study the pathogenesis of IOTB. Clinical and histopathologic studies suggest the presence of Mycobacterium tuberculosis in retinal pigment epithelium (RPE) cells. Methods: A human retinal pigment epithelium (ARPE-19) cell line was infected with a virulent strain of M. tuberculosis (H37Rv). Electron microscopy and colony forming units (CFU) assay were performed to monitor the M. tuberculosis adherence, invasion, and intracellular replication, whereas confocal microscopy was done to study its intracellular fate in the RPE cells. To understand the pathogenesis, the transcriptional profile of M. tuberculosis in ARPE-19 cells was studied by whole genome microarray. Three upregulated M. tuberculosis transcripts were also examined in human IOTB vitreous samples. Results: Scanning electron micrographs of the infected ARPE-19 cells indicated adherence of bacilli, which were further observed to be internalized as monitored by transmission electron microscopy. The CFU assay showed that 22.7 and 8.4% of the initial inoculum of bacilli adhered and invaded the ARPE-19 cells, respectively, with an increase in fold CFU from 1 dpi (0.84) to 5dpi (6.58). The intracellular bacilli were co-localized with lysosomal-associated membrane protein-1 (LAMP-1) and LAMP-2 in ARPE-19 cells. The transcriptome study of intracellular bacilli showed that most of the upregulated transcripts correspond to the genes encoding the proteins involved in the processes such as adherence (e.g., Rv1759c and Rv1026), invasion (e.g., Rv1971 and Rv0169), virulence (e.g., Rv2844 and Rv0775), and intracellular survival (e.g., Rv1884c and Rv2450c) as well as regulators of various metabolic pathways. Two of the upregulated transcripts (Rv1971, Rv1230c) were also present in the vitreous samples of the IOTB patients. Conclusions:M. tuberculosis is phagocytosed by RPE cells and utilizes these cells for intracellular multiplication with the involvement of late endosomal/lysosomal compartments and alters its transcriptional profile plausibly for its intracellular adaptation and survival. The findings of the present study could be important to understanding the molecular pathogenesis of IOTB with a potential role in the development of diagnostics and therapeutics for IOTB.
Collapse
Affiliation(s)
- Sudhanshu Abhishek
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amod Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reema Bansal
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishali Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nirbhai Singh
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suman Laal
- Department of Pathology, New York University Langone Medical Center, New York, NY, United States
- Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
39
|
Maarsingh JD, Haydel SE. Mycobacterium smegmatis PrrAB two-component system influences triacylglycerol accumulation during ammonium stress. Microbiology (Reading) 2018; 164:1276-1288. [DOI: 10.1099/mic.0.000705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Jason D. Maarsingh
- 1School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Shelley E. Haydel
- 2Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA
- 1School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
40
|
Rameshwaram NR, Singh P, Ghosh S, Mukhopadhyay S. Lipid metabolism and intracellular bacterial virulence: key to next-generation therapeutics. Future Microbiol 2018; 13:1301-1328. [DOI: 10.2217/fmb-2018-0013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolism is thought to play a key role in the pathogenicity of several intracellular bacteria. Bacterial lipolytic enzymes hydrolyze lipids from the host cell to release free fatty acids which are used as an energy source and building blocks for the synthesis of cell envelope and also to modulate host immune responses. In this review, we discussed the role of lipid metabolism and lipolytic enzymes in the life cycle and virulence of Mycobacterium tuberculosis and other intracellular bacteria. The lipolytic enzymes appear to be potential candidates for developing novel therapeutics by targeting lipid metabolism for controlling M. tuberculosis and other intracellular pathogenic bacteria. [Formula: see text]
Collapse
Affiliation(s)
- Nagender Rao Rameshwaram
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| | - Parul Singh
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
- Graduate Studies, Manipal University, Manipal, Karnataka, India. 576 104
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition (ICMR), Jamai-Osmania PO, Hyderabad, India. 500 007
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India. 500 039
| |
Collapse
|
41
|
Comparative study of Salmonella enterica serovar Enteritidis genes expressed within avian and murine macrophages via selective capture of transcribed sequences (SCOTS). Appl Microbiol Biotechnol 2018; 102:6567-6579. [PMID: 29799087 DOI: 10.1007/s00253-018-9067-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 10/16/2022]
Abstract
Salmonella enterica serovar Enteritidis (SE) is a communicable zoonotic bacterium. Macrophages are essential for Salmonella survival, transmission, and infection. In this study, selective capture of transcribed sequences (SCOTS) was used to screen genes preferentially expressed by SE during contact with macrophages from different hosts. We found 57 predicted genes and 52 genes expressed by SE during interaction with avian HD-11 and murine RAW264.7 cells, respectively. These expressed genes were involved in virulence, metabolism, stress response, transport, regulation, and other functions. Although genes related to survival or metabolic pathways were needed during SE infection, different gene expression profiles of SE occurred in the two macrophage cell lines. qRT-PCR results confirmed that most screened genes were upregulated during infection in contrast to the observation during in vitro cultivation, with different expression levels in infected avian macrophages at 2-h and 7-h post-infection. In addition, in vitro and in vivo competition assays confirmed that SEN3610 (a putative deoR family regulator) and rfaQ (related to LPS synthesis) were closely related to SE virulence in both mice and chickens. Three putative transcriptional regulators, SEN2967, SEN4299, and rtcR, were related to SE colonization in mice, while the ycaM mutation caused decreased infection and survival of SE in HD-11 cells without influencing virulence in mice or chicken. Genes showing differential expression between SE-infected avian and murine macrophages indicate specific pathogen adaptation to enable infection of various hosts.
Collapse
|
42
|
Gago G, Diacovich L, Gramajo H. Lipid metabolism and its implication in mycobacteria-host interaction. Curr Opin Microbiol 2018; 41:36-42. [PMID: 29190491 PMCID: PMC5862736 DOI: 10.1016/j.mib.2017.11.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
The complex lipids present in the cell wall of Mycobacterium tuberculosis (Mtb) act as major effector molecules that actively interact with the host, modulating its metabolism and stimulating the immune response, which in turn affects the physiology of both, the host cell and the bacilli. Lipids from the host are also nutrient sources for the pathogen and define the fate of the infection by modulating lipid homeostasis. Although new technologies and experimental models of infection have greatly helped understanding the different aspects of the host-pathogen interactions at the lipid level, the impact of this interaction in the Mtb lipid regulation is still incipient, mainly because of the low background knowledge in this area of research.
Collapse
Affiliation(s)
- Gabriela Gago
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Lautaro Diacovich
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
43
|
Singh A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2017; 163:1740-1758. [PMID: 29171825 DOI: 10.1099/mic.0.000578] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic integrity of Mycobacterium tuberculosis is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the M. tuberculosis genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in E. coli, were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in M. tuberculosis are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in M. tuberculosis.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
44
|
Mishra SK, Tripathi G, Kishore N, Singh RK, Singh A, Tiwari VK. Drug development against tuberculosis: Impact of alkaloids. Eur J Med Chem 2017. [DOI: 10.1016/j.ejmech.2017.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Shukla H, Shukla R, Sonkar A, Tripathi T. Alterations in conformational topology and interaction dynamics caused by L418A mutation leads to activity loss of Mycobacterium tuberculosis isocitrate lyase. Biochem Biophys Res Commun 2017; 490:276-282. [DOI: 10.1016/j.bbrc.2017.06.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 11/17/2022]
|
46
|
Abstract
The interaction between Mycobacterium tuberculosis and its host cell is highly complex and extremely intimate. Were it not for the disease, one might regard this interaction at the cellular level as an almost symbiotic one. The metabolic activity and physiology of both cells are shaped by this coexistence. We believe that where this appreciation has greatest significance is in the field of drug discovery. Evolution rewards efficiency, and recent data from many groups discussed in this review indicate that M. tuberculosis has evolved to utilize the environmental cues within its host to control large genetic programs or regulons. But these regulons may represent chinks in the bacterium's armor because they include off-target effects, such as the constraint of the metabolic plasticity of M. tuberculosis. A prime example is how the presence of cholesterol within the host cell appears to limit the ability of M. tuberculosis to fully utilize or assimilate other carbon sources. And that is the reason for the title of this review. We believe firmly that, to understand the physiology of M. tuberculosis and to identify new drug targets, it is imperative that the bacterium be interrogated within the context of its host cell. The constraints induced by the environmental cues present within the host cell need to be preserved and exploited. The M. tuberculosis-infected macrophage truly is the "minimal unit of infection."
Collapse
|
47
|
Kumar V, Tomar AK, Sahu V, Dey S, Yadav S. Structural insights of Mycobacterium GTPase-Obg and anti-sigma-F factor Usfx interaction. J Mol Recognit 2017; 30. [PMID: 28470740 DOI: 10.1002/jmr.2636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/30/2016] [Accepted: 03/26/2017] [Indexed: 11/08/2022]
Abstract
An essential protein for bacterial growth, GTPase-Obg (Obg), is known to play an unknown but crucial role in stress response as its expression increases in Mycobacterium under stress conditions. It is well reported that Obg interacts with anti-sigma-F factor Usfx; however, a detailed analysis and structural characterization of their physical interaction remain undone. In view of above-mentioned points, this study was conceptualized for performing binding analysis and structural characterization of Obg-Usfx interaction. The binding studies were performed by surface plasmon resonance, while in silico docking analysis was done to identify crucial residues responsible for Obg-Usfx interaction. Surface plasmon resonance results clearly suggest that N-terminal and G domains of Obg mainly contribute to Usfx binding. Also, binding constants display strong affinity that was further evident by intermolecular hydrogen bonds and hydrophobic interactions in the predicted complex. Strong interaction between Obg and Usfx supports the view that Obg plays an important role in stress response, essentially required for Mycobacterium survival. As concluded by various studies that Obg is crucial for Mycobacterium survival under stress, this structural information may help us in designing novel and potential inhibitors against resistant Mycobacterium strains.
Collapse
Affiliation(s)
- Vikrant Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Vishal Sahu
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
48
|
Shukla H, Shukla R, Sonkar A, Pandey T, Tripathi T. Distant Phe345 mutation compromises the stability and activity of Mycobacterium tuberculosis isocitrate lyase by modulating its structural flexibility. Sci Rep 2017; 7:1058. [PMID: 28432345 PMCID: PMC5430663 DOI: 10.1038/s41598-017-01235-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Isocitrate lyase (ICL), a potential anti-tubercular drug target, catalyzes the first step of the glyoxylate shunt. In the present investigation, we studied the conformational flexibility of MtbICL to better understand its stability and catalytic activity. Our biochemical results showed that a point mutation at Phe345, which is topologically distant (>10 Å) to the active site signature sequence (189KKCGH193), completely abolishes the activity of the enzyme. In depth computational analyses were carried out for understanding the structural alterations using molecular dynamics, time-dependent secondary structure and principal component analysis. The results showed that the mutated residue increased the structural flexibility and induced conformational changes near the active site (residues 170–210) and in the C-terminal lid region (residues 411–428). Both these regions are involved in the catalytic activity of MtbICL. Upon mutation, the residual mobility of the enzyme increased, resulting in a decrease in the stability, which was confirmed by the lower free energy of stabilization in the mutant enzyme suggesting the destabilization in the structure. Our results have both biological importance and chemical novelty. It reveals internal dynamics of the enzyme structure and also suggests that regions other than the active site should be exploited for targeting MtbICL inhibition and development of novel anti-tuberculosis compounds.
Collapse
Affiliation(s)
- Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Amit Sonkar
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Tripti Pandey
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
49
|
Bi J, Wang Y, Yu H, Qian X, Wang H, Liu J, Zhang X. Modulation of Central Carbon Metabolism by Acetylation of Isocitrate Lyase in Mycobacterium tuberculosis. Sci Rep 2017; 7:44826. [PMID: 28322251 PMCID: PMC5359664 DOI: 10.1038/srep44826] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/14/2017] [Indexed: 11/18/2022] Open
Abstract
Several enzymes involved in central carbon metabolism such as isocitrate lyase and phosphoenolpyruvate carboxykinase are key determinants of pathogenesis of Mycobacterium tuberculosis (M. tb). In this study, we found that lysine acetylation plays an important role in the modulation of central carbon metabolism in M. tb. Mutant of M. tb defective in sirtuin deacetylase exhibited improved growth in fatty acid-containing media. Global analysis of lysine acetylome of M. tb identified three acetylated lysine residues (K322, K331, and K392) of isocitrate lyase (ICL1). Using a genetically encoding system, we demonstrated that acetylation of K392 increased the enzyme activity of ICL1, whereas acetylation of K322 decreased its activity. Antibodies that specifically recognized acetyllysine at 392 and 322 of ICL1 were used to monitor the levels of ICL1 acetylation in M. tb cultures. The physiological significance of ICL1 acetylation was demonstrated by the observation that M. tb altered the levels of acetylated K392 in response to changes of carbon sources, and that acetylation of K392 affected the abundance of ICL1 protein. Our study has uncovered another regulatory mechanism of ICL1.
Collapse
Affiliation(s)
- Jing Bi
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Yihong Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Heguo Yu
- NPFPC Key Laboratory of Contraceptives and Devices, Shanghai Institute of Planned Parenthood Research, Institutes of Reproduction and Development, Shanghai, China
| | - Xiaoyan Qian
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China.,Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xuelian Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Bent ZW, Poorey K, LaBauve AE, Hamblin R, Williams KP, Meagher RJ. A Rapid Spin Column-Based Method to Enrich Pathogen Transcripts from Eukaryotic Host Cells Prior to Sequencing. PLoS One 2016; 11:e0168788. [PMID: 28002481 PMCID: PMC5176299 DOI: 10.1371/journal.pone.0168788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/06/2016] [Indexed: 02/04/2023] Open
Abstract
When analyzing pathogen transcriptomes during the infection of host cells, the signal-to-background (pathogen-to-host) ratio of nucleic acids (NA) in infected samples is very small. Despite the advancements in next-generation sequencing, the minute amount of pathogen NA makes standard RNA-seq library preps inadequate for effective gene-level analysis of the pathogen in cases with low bacterial loads. In order to provide a more complete picture of the pathogen transcriptome during an infection, we developed a novel pathogen enrichment technique, which can enrich for transcripts from any cultivable bacteria or virus, using common, readily available laboratory equipment and reagents. To evenly enrich for pathogen transcripts, we generate biotinylated pathogen-targeted capture probes in an enzymatic process using the entire genome of the pathogen as a template. The capture probes are hybridized to a strand-specific cDNA library generated from an RNA sample. The biotinylated probes are captured on a monomeric avidin resin in a miniature spin column, and enriched pathogen-specific cDNA is eluted following a series of washes. To test this method, we performed an in vitro time-course infection using Klebsiella pneumoniae to infect murine macrophage cells. K. pneumoniae transcript enrichment efficiency was evaluated using RNA-seq. Bacterial transcripts were enriched up to ~400-fold, and allowed the recovery of transcripts from ~2000–3600 genes not observed in untreated control samples. These additional transcripts revealed interesting aspects of K. pneumoniae biology including the expression of putative virulence factors and the expression of several genes responsible for antibiotic resistance even in the absence of drugs.
Collapse
Affiliation(s)
- Zachary W. Bent
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail: (ZWB); (RJM)
| | - Kunal Poorey
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Annette E. LaBauve
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Rachelle Hamblin
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Kelly P. Williams
- Systems Biology Department, Sandia National Laboratories, Livermore, California, United States of America
| | - Robert J. Meagher
- Biotechnology and Bioengineering Department, Sandia National Laboratories, Livermore, California, United States of America
- * E-mail: (ZWB); (RJM)
| |
Collapse
|