1
|
Qiu P, Li D, Xiao C, Xu F, Chen X, Chang Y, Liu L, Zhang L, Zhao Q, Chen Y. The Eph/ephrin system symphony of gut inflammation. Pharmacol Res 2023; 197:106976. [PMID: 38032293 DOI: 10.1016/j.phrs.2023.106976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
The extent of gut inflammation depends largely on the gut barrier's integrity and enteric neuroimmune interactions. However, the factors and molecular mechanisms that regulate inflammation-related changes in the enteric nervous system (ENS) remain largely unexplored. Eph/ephrin signaling is critical for inflammatory response, neuronal activation, and synaptic plasticity in the brain, but its presence and function in the ENS have been largely unknown to date. This review discusses the critical role of Eph/ephrin in regulating gut homeostasis, inflammation, neuroimmune interactions, and pain pathways. Targeting the Eph/ephrin system offers innovative treatments for gut inflammation disorders, offering hope for enhanced patient prognosis, pain management, and overall quality of life.
Collapse
Affiliation(s)
- Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Daojiang Li
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Cong Xiao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Xiaoyu Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| | - Yuhua Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan 430071, China.
| |
Collapse
|
2
|
Kouroupis D, Kaplan LD, Huard J, Best TM. CD10-Bound Human Mesenchymal Stem/Stromal Cell-Derived Small Extracellular Vesicles Possess Immunomodulatory Cargo and Maintain Cartilage Homeostasis under Inflammatory Conditions. Cells 2023; 12:1824. [PMID: 37508489 PMCID: PMC10377825 DOI: 10.3390/cells12141824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The onset and progression of human inflammatory joint diseases are strongly associated with the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived mesenchymal stem/stromal cells (IFP-MSC) acquire a potent immunomodulatory phenotype and actively degrade substance P (SP) via neutral endopeptidase CD10 (neprilysin). Our hypothesis is that IFP-MSC robust immunomodulatory therapeutic effects are largely exerted via their CD10-bound small extracellular vesicles (IFP-MSC sEVs) by attenuating synoviocyte pro-inflammatory activation and articular cartilage degradation. Herein, IFP-MSC sEVs were isolated from CD10High- and CD10Low-expressing IFP-MSC cultures and their sEV miRNA cargo was assessed using multiplex methods. Functionally, we interrogated the effect of CD10High and CD10Low sEVs on stimulated by inflammatory/fibrotic cues synoviocyte monocultures and cocultures with IFP-MSC-derived chondropellets. Finally, CD10High sEVs were tested in vivo for their therapeutic capacity in an animal model of acute synovitis/fat pad fibrosis. Our results showed that CD10High and CD10Low sEVs possess distinct miRNA profiles. Reactome analysis of miRNAs highly present in sEVs showed their involvement in the regulation of six gene groups, particularly those involving the immune system. Stimulated synoviocytes exposed to IFP-MSC sEVs demonstrated significantly reduced proliferation and altered inflammation-related molecular profiles compared to control stimulated synoviocytes. Importantly, CD10High sEV treatment of stimulated chondropellets/synoviocyte cocultures indicated significant chondroprotective effects. Therapeutically, CD10High sEV treatment resulted in robust chondroprotective effects by retaining articular cartilage structure/composition and PRG4 (lubricin)-expressing cartilage cells in the animal model of acute synovitis/IFP fibrosis. Our study suggests that CD10High sEVs possess immunomodulatory miRNA attributes with strong chondroprotective/anabolic effects for articular cartilage in vivo. The results could serve as a foundation for sEV-based therapeutics for the resolution of detrimental aspects of immune-mediated inflammatory joint changes associated with conditions such as osteoarthritis (OA).
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA;
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
| |
Collapse
|
3
|
Rizzo MG, Best TM, Huard J, Philippon M, Hornicek F, Duan Z, Griswold AJ, Kaplan LD, Hare JM, Kouroupis D. Therapeutic Perspectives for Inflammation and Senescence in Osteoarthritis Using Mesenchymal Stem Cells, Mesenchymal Stem Cell-Derived Extracellular Vesicles and Senolytic Agents. Cells 2023; 12:1421. [PMID: 37408255 PMCID: PMC10217382 DOI: 10.3390/cells12101421] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 07/07/2023] Open
Abstract
Osteoarthritis (OA) is the most common cause of disability worldwide among the elderly. Alarmingly, the incidence of OA in individuals less than 40 years of age is rising, likely due to the increase in obesity and post-traumatic osteoarthritis (PTOA). In recent years, due to a better understanding of the underlying pathophysiology of OA, several potential therapeutic approaches targeting specific molecular pathways have been identified. In particular, the role of inflammation and the immune system has been increasingly recognized as important in a variety of musculoskeletal diseases, including OA. Similarly, higher levels of host cellular senescence, characterized by cessation of cell division and the secretion of a senescence-associated secretory phenotype (SASP) within the local tissue microenvironments, have also been linked to OA and its progression. New advances in the field, including stem cell therapies and senolytics, are emerging with the goal of slowing disease progression. Mesenchymal stem/stromal cells (MSCs) are a subset of multipotent adult stem cells that have demonstrated the potential to modulate unchecked inflammation, reverse fibrosis, attenuate pain, and potentially treat patients with OA. Numerous studies have demonstrated the potential of MSC extracellular vesicles (EVs) as cell-free treatments that comply with FDA regulations. EVs, including exosomes and microvesicles, are released by numerous cell types and are increasingly recognized as playing a critical role in cell-cell communication in age-related diseases, including OA. Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of SASP. This article highlights the encouraging potential for MSC or MSC-derived products alone or in combination with senolytics to control patient symptoms and potentially mitigate the progression of OA. We will also explore the application of genomic principles to the study of OA and the potential for the discovery of OA phenotypes that can motivate more precise patient-driven treatments.
Collapse
Affiliation(s)
- Michael G. Rizzo
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Thomas M. Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Marc Philippon
- Center for Regenerative and Personalized Medicine (CRPM), Steadman Philippon Research Institute, Vail, CO 81657, USA (M.P.)
| | - Francis Hornicek
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Zhenfeng Duan
- Department of Orthopedics, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (F.H.); (Z.D.)
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Lee D. Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA; (M.G.R.); (T.M.B.)
- Diabetes Research Institute, Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
4
|
Lo SW, Segal JP, Lubel JS, Garg M. What do we know about the renin angiotensin system and inflammatory bowel disease? Expert Opin Ther Targets 2022; 26:897-909. [PMID: 36484415 DOI: 10.1080/14728222.2022.2157261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The renin-angiotensin system (RAS) is an important homeostatic pathway, with emerging evidence for the impact of its components on inflammation and fibrosis in gastrointestinal tissues. This review aims to review current knowledge of the physiological mechanism of RAS in inflammatory bowel disease (IBD), and potential therapeutic implications. AREAS COVERED An extensive online literature review including Pubmed, Medline, and Google Scholar was undertaken. Discussion on the components of the RAS, localization, and physiological functions in the gastrointestinal tract, preclinical, and clinical data in IBD, and the relation with SARS-Cov-2 are covered in this review. EXPERT OPINION RAS inhibition may have a role as anti-fibrotic adjunct therapy. Targeting the local gastrointestinal RAS with novel modes of delivery may be a target for future therapeutics for IBD, given the widespread availability and safety of current options as utilized in other diseases. Further insight into the mechanism and downstream effects of gastrointestinal ACE2 may lead to a better understanding of the pathogenesis of IBD.
Collapse
Affiliation(s)
- Sheng Wei Lo
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia
| | - Jonathan P Segal
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| | - John S Lubel
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, Monash University
| | - Mayur Garg
- Department of Gastroenterology, Northern Hospital, 3076 Melbourne, Australia.,Department of Medicine, University of Melbourne, Australia
| |
Collapse
|
5
|
Kouroupis D, Kaplan LD, Best TM. Human infrapatellar fat pad mesenchymal stem cells show immunomodulatory exosomal signatures. Sci Rep 2022; 12:3609. [PMID: 35246587 PMCID: PMC8897449 DOI: 10.1038/s41598-022-07569-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Within the human knee infrapatellar fat pad (IFP) and synovium, resident synoviocytes and macrophages contribute to the onset and progression of inflammatory joint diseases. Our hypothesis is that IFP-derived mesenchymal stem cells (IFP-MSC) robust immunomodulatory therapeutic effects are largely exerted via their exosomal (IFP-MSC EXOs) secretome by attenuating synoviocytes and macrophages pro-inflammatory activation. IFP-MSC EXOs showed distinct miRNA and protein immunomodulatory profiles. Reactome analysis of 24 miRNAs highly present in exosomes showed their involvement in the regulation of six gene groups, including immune system. Exosomes were enriched for immunomodulatory and reparative proteins that are involved in positive regulation of cell proliferation, response to stimulus, signal transduction, signal receptor activity, and protein phosphorylation. Stimulated synoviocytes or macrophages exposed to IFP-MSC EXOs demonstrated significantly reduced proliferation, altered inflammation-related molecular profiles, and reduced secretion of pro-inflammatory molecules compared to stimulated alone. In an acute synovial/IFP inflammation rat model, IFP-MSC EXOs therapeutic treatment resulted in robust macrophage polarization towards an anti-inflammatory therapeutic M2 phenotype within the synovium/IFP tissues. Based on these findings, we propose a viable cell-free alternative to MSC-based therapeutics as an alternative approach to treating synovitis and IFP fibrosis.
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA. .,Diabetes Research Institute & Cell Transplantation Center, University of Miami, Miller School of Medicine, Miami, FL, USA. .,Department of Orthopaedics, Division of Sports Medicine, Diabetes Research Institute, Cell Transplant Center, University of Miami, Miller School of Medicine, 1450NW 10th Ave, Room 3014, Miami, FL, 33136, USA.
| | - Lee D Kaplan
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Thomas M Best
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
6
|
Arciniega-Martínez IM, Reséndiz Albor AA, Cárdenas Jaramillo LM, Gutiérrez-Meza JM, Falfán-Valencia R, Mendoza Arroyo B, Yépez-Ortega M, Pacheco-Yépez J, Abarca-Rojano E. CD4 +/IL‑4 + lymphocytes of the lamina propria and substance P promote colonic protection during acute stress. Mol Med Rep 2022; 25:63. [PMID: 34958108 PMCID: PMC8767552 DOI: 10.3892/mmr.2021.12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
Life stress may influence symptom onset and severity in certain gastrointestinal disorders in association with a dysregulated intestinal barrier. It has been widely accepted that stress triggers the hypothalamus‑pituitary‑adrenal (HPA) axis, releasing corticosterone, which promotes intestinal permeability. In response, colonic inflammation alters mucosal immune homeostasis and destroys the colonic architecture, leading to severe intestinal diseases. Endogenous substance P (SP) does not inhibit the initial extent of the HPA axis response to restraint stress, but it reduces the duration of the stress, suggesting that SP plays an important role in the transition between acute and chronic stress. The present study aimed to investigate the effect of two groups of mice exposed to stress, including acute and chronic stress. The corticosterone was evaluated by ELISA, colon samples were obtained to detected polymorphonuclear cells by hematoxylin and eosin staining, goblet and mast cells were identified by immunocytochemistry and cytokine‑producing CD4+ T cells were analyzed by flow cytometry assays, adhesion proteins in the colon epithelium by western blotting and serum SP levels by ELISA. The results demonstrated an increase in the number of polymorphonuclear, goblet and mast cells, a decrease in claudin‑1 expression and an elevation in E‑cadherin expression during acute stress. Increased E‑cadherin expression was also detected during chronic stress. Moreover, it was found that acute stress caused a shift towards a predominantly anti‑inflammatory immune response (T helper 2 cells), as shown by the increase in the percentage of CD4+/IL‑6+ and CD4+/IL4+ lymphocytes in the lamina propria and the increase in serum SP. In conclusion, this response promoted colonic protection during acute stress.
Collapse
Affiliation(s)
- Ivonne Maciel Arciniega-Martínez
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Aldo Arturo Reséndiz Albor
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Luz María Cárdenas Jaramillo
- Morphology Coordination, Department of Basic Disciplinary Training, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Juan Manuel Gutiérrez-Meza
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
- Morphology Coordination, Department of Basic Disciplinary Training, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Ramcés Falfán-Valencia
- HLA Laboratory, National Institute of Respiratory Diseases Ismael Cosío Villegas, 14080 Mexico City, México
| | - Belen Mendoza Arroyo
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Mariazell Yépez-Ortega
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Judith Pacheco-Yépez
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| | - Edgar Abarca-Rojano
- Postgraduate Studies and Research Section, Superior School of Medicine, National Polytechnic Institute, 11340 Mexico City, México
| |
Collapse
|
7
|
Maigler KC, Buhr TJ, Park CS, Miller SA, Kozlowski DA, Marr RA. Assessment of the Effects of Altered Amyloid-Beta Clearance on Behavior following Repeat Closed-Head Brain Injury in Amyloid-Beta Precursor Protein Humanized Mice. J Neurotrauma 2021; 38:665-676. [PMID: 33176547 DOI: 10.1089/neu.2020.6989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) increases the risk for dementias including Alzheimer's disease (AD) and chronic traumatic encephalopathy. Further, both human and animal model data indicate that amyloid-beta (Aβ) peptide accumulation and its production machinery are upregulated by TBI. Considering the clear link between chronic Aβ elevation and AD as well as tau pathology, the role(s) of Aβ in TBI is of high importance. Endopeptidases, including the neprilysin (NEP)-like enzymes, are key mediators of Aβ clearance and may affect susceptibility to pathology post-TBI. Here, we use a "humanized" mouse model of Aβ production, which expresses normal human amyloid-beta precursor protein (APP) under its natural transcriptional regulation and exposed them to a more clinically relevant repeated closed-head TBI paradigm. These transgenic mice also were crossed with mice deficient for the Aβ degrading enzymes NEP or NEP2 to assess models of reduced cerebral Aβ clearance in our TBI model. Our results show that the presence of the human form of Aβ did not exacerbate motor (Rotarod) and spatial learning/memory deficits (Morris water maze) post-injuries, while potentially reduced anxiety (Open Field) was observed. NEP and NEP2 deficiency also did not exacerbate these deficits post-injuries and was associated with protection from motor (NEP and NEP2) and spatial learning/memory deficits (NEP only). These data suggest that normally regulated expression of wild-type human APP/Aβ does not contribute to deficits acutely after TBI and may be protective at this stage of injury.
Collapse
Affiliation(s)
- Kathleen C Maigler
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Trevor J Buhr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Christopher S Park
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Steven A Miller
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Dorothy A Kozlowski
- Department of Biological Sciences and Neuroscience Program, DePaul University, Chicago, Illinois, USA
| | - Robert A Marr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
8
|
Derosa G, Maffioli P, D’Angelo A, Cipolla G, Moro E, Crema F. Effects of experimental colitis in rats on incretin levels, inflammatory markers, and enteric neuronal function. Arch Med Sci 2021; 17:1087-1092. [PMID: 34336036 PMCID: PMC8314401 DOI: 10.5114/aoms.2019.86704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/02/2018] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The aim of the study was to assess the effects of chronic inflammation on incretin levels, inflammatory markers, and enteric neuronal function measured in isolated preparations of smooth muscle of rat. MATERIAL AND METHODS We induced experimental colitis using 2,4-dinitrobenzenesulfonic acid (DNBS) in 17 Albino male Sprague-Dawley rats, while 16 rats were used as a control. They were housed in temperature-controlled rooms in a 12-h light/dark cycle at 22-24°C and 50 to 60% humidity. We evaluated in both inflamed and healthy rats: fasting plasma glucose concentration, fasting plasma insulin, myeloperoxidase, active glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), and GLP-2 levels, adiponectin, and C-reactive protein (CRP). We also evaluated colonic longitudinal smooth muscle contractile activity. RESULTS Intrarectal administration of DNBS reduced body weight gain in inflamed rats. We recorded higher levels of fasting plasma glucose, and insulin in inflamed rats. We observed higher levels of myeloperoxidase and CRP, and lower levels of ADN in inflamed rats. We recorded higher levels of GIP, GLP-1, and GLP-2 in inflamed rats compared to the healthy ones. Regarding functional response of colon intestinal smooth muscle after electrical stimulation, we recorded a lower functional response of colon intestinal smooth muscle after electrical stimulation in inflamed rats. CONCLUSIONS We can conclude that chronic inflammation leads to an increase of incretin levels and to a decrease of functional response of colon intestinal smooth muscle after electrical stimulation.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, PAVIA, Italy
- Center for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- Center for the Study of Endocrine-Metabolic Pathophysiology and Clinical Research, University of Pavia, Pavia, Italy
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, PAVIA, Italy
- Center for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Angela D’Angelo
- Centre of Diabetes and Metabolic Diseases, Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico S. Matteo, PAVIA, Italy
- Center for Prevention, Surveillance, Diagnosis and Treatment of Rare Diseases, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giovanna Cipolla
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Mohammed El Tabaa M, Mohammed El Tabaa M. Targeting Neprilysin (NEP) pathways: A potential new hope to defeat COVID-19 ghost. Biochem Pharmacol 2020; 178:114057. [PMID: 32470547 PMCID: PMC7250789 DOI: 10.1016/j.bcp.2020.114057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 is an ongoing viral pandemic disease that is caused by SARS-CoV2, inducing severe pneumonia in humans. However, several classes of repurposed drugs have been recommended, no specific vaccines or effective therapeutic interventions for COVID-19 are developed till now. Viral dependence on ACE-2, as entry receptors, drove the researchers into RAS impact on COVID-19 pathogenesis. Several evidences have pointed at Neprilysin (NEP) as one of pulmonary RAS components. Considering the protective effect of NEP against pulmonary inflammatory reactions and fibrosis, it is suggested to direct the future efforts towards its potential role in COVID-19 pathophysiology. Thus, the review aimed to shed light on the potential beneficial effects of NEP pathways as a novel target for COVID-19 therapy by summarizing its possible molecular mechanisms. Additional experimental and clinical studies explaining more the relationships between NEP and COVID-19 will greatly benefit in designing the future treatment approaches.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute, University of Sadat City, Egypt.
| | | |
Collapse
|
10
|
Graykowski D, Kasparian K, Caniglia J, Gritsaeva Y, Cudaback E. Neuroinflammation drives APOE genotype-dependent differential expression of neprilysin. J Neuroimmunol 2020; 346:577315. [PMID: 32682137 DOI: 10.1016/j.jneuroim.2020.577315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/04/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by the deposition of amyloid-beta (Aβ) plaques and widespread neuroinflammation. While the cause of AD remains unknown, multiple factors likely contribute to the disease, including heart disease, diabetes, previous head injury, as well as a number of genetic determinants. Inheritance of the apolipoprotein (APOE) ε4 allele represents the strongest genetic risk factor for development of AD, driving pathogenesis and increasing overall disease severity. APOE has long been recognized as a key regulator of cholesterol homeostasis, although a greater appreciation now exists for its role in various innate immune system processes. Indeed, APOE modulates inflammatory environments in brain in large part by altering gene expression profiles in glia, important mediators of immunity in the CNS. While the association between APOE and AD was first observed nearly three decades ago, the mechanism by which APOE ε4 influences the etiology and pathophysiology of AD is not well characterized. Overwhelming data supports the hypothesis that APOE ε4 dysregulates central amyloid metabolism by an undetermined molecular mechanism, thus laying the foundation for disease. A host of amyloid-degrading enzymes (ADEs) regulate Aβ accumulation in brain, and therefore represent valuable therapeutic targets. Neprilysin (NEP), a metalloendopeptidase expressed by activated microglia and astrocytes, is a broad-spectrum ADE able to degrade a variety of Aβ species. Here we describe in vivo and in vitro experiments designed to investigate the potential for APOE genotype to differentially regulate glial NEP in brain under neuroinflammatory conditions. Our results provide a novel mechanism by which APOE genotype-dependent differential expression of NEP by glia during neuroinflammation may contribute to AD pathogenesis.
Collapse
Affiliation(s)
- David Graykowski
- Department of Health Sciences, DePaul University, Chicago, IL 60614, USA
| | - Kyle Kasparian
- Department of Health Sciences, DePaul University, Chicago, IL 60614, USA
| | - John Caniglia
- Department of Health Sciences, DePaul University, Chicago, IL 60614, USA
| | - Yelena Gritsaeva
- Department of Health Sciences, DePaul University, Chicago, IL 60614, USA
| | - Eiron Cudaback
- Department of Health Sciences, DePaul University, Chicago, IL 60614, USA.
| |
Collapse
|
11
|
Rapa SF, Waltenberger B, Di Paola R, Adesso S, Siracusa R, Peritore AF, D'Amico R, Autore G, Cuzzocrea S, Stuppner H, Marzocco S. Plumericin prevents intestinal inflammation and oxidative stress in vitro and in vivo. FASEB J 2020; 34:1576-1590. [PMID: 31914614 DOI: 10.1096/fj.201902040r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by an inflammatory and oxidative stress condition in the intestinal tissue. In this study, we evaluated the effect of plumericin, one of the main bioactive components of Himatanthus sucuuba (Woodson) bark, on intestinal inflammation and oxidative stress, both in vitro and in vivo. The effect of plumericin (0.5-2 µM) in vitro was evaluated in rat intestinal epithelial cells (IEC-6) treated with lipopolysaccharides from E. coli (10 μg/mL) plus interferon-γ (10 U/mL). Moreover, a 2,4,6-dinitrobenzene sulfonic acid (DNBS)-induced colitis model was used to evaluate the anti-inflammatory and antioxidant activity of plumericin (3 mg/kg) in vivo. The results showed that plumericin significantly reduces intestinal inflammatory factors such as tumor necrosis factor-α, cyclooxygenase-2 and inducible nitric oxide synthase expression, and nitrotyrosine formation. Plumericin also inhibited nuclear factor-κB translocation, reactive oxygen species (ROS) release, and inflammasome activation. Moreover, plumericin activated the nuclear factor erythroid-derived 2 pathway in IEC-6. Using the DNBS-induced colitis model, a significant reduction in the weight loss and in the development of the macroscopic and histologic signs of colon injury, together with a reduced inflammatory and oxidative stress state, were observed in plumericin-treated mice. These results indicate that plumericin exerts a strong anti-inflammatory and antioxidant activity. Thus, it might be a candidate for the development of a new pharmacologic approach for IBDs treatment.
Collapse
Affiliation(s)
- Shara F Rapa
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Simona Adesso
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio F Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
12
|
Neuroimmune Interactions in the Gut and Their Significance for Intestinal Immunity. Cells 2019; 8:cells8070670. [PMID: 31269754 PMCID: PMC6679154 DOI: 10.3390/cells8070670] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) have a complex, multifactorial pathophysiology with an unmet need for effective treatment. This calls for novel strategies to improve disease outcome and quality of life for patients. Increasing evidence suggests that autonomic nerves and neurotransmitters, as well as neuropeptides, modulate the intestinal immune system, and thereby regulate the intestinal inflammatory processes. Although the autonomic nervous system is classically divided in a sympathetic and parasympathetic branch, both play a pivotal role in the crosstalk with the immune system, with the enteric nervous system acting as a potential interface. Pilot clinical trials that employ vagus nerve stimulation to reduce inflammation are met with promising results. In this paper, we review current knowledge on the innervation of the gut, the potential of cholinergic and adrenergic systems to modulate intestinal immunity, and comment on ongoing developments in clinical trials.
Collapse
|
13
|
Canals M, Poole DP, Veldhuis NA, Schmidt BL, Bunnett NW. G-Protein-Coupled Receptors Are Dynamic Regulators of Digestion and Targets for Digestive Diseases. Gastroenterology 2019; 156:1600-1616. [PMID: 30771352 PMCID: PMC6508858 DOI: 10.1053/j.gastro.2019.01.266] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins. In the gastrointestinal tract, GPCRs expressed by epithelial cells sense contents of the lumen, and GPCRs expressed by epithelial cells, myocytes, neurons, and immune cells participate in communication among cells. GPCRs control digestion, mediate digestive diseases, and coordinate repair and growth. GPCRs are the target of more than one third of therapeutic drugs, including many drugs used to treat digestive diseases. Recent advances in structural, chemical, and cell biology research have shown that GPCRs are not static binary switches that operate from the plasma membrane to control a defined set of intracellular signals. Rather, GPCRs are dynamic signaling proteins that adopt distinct conformations and subcellular distributions when associated with different ligands and intracellular effectors. An understanding of the dynamic nature of GPCRs has provided insights into the mechanism of activation and signaling of GPCRs and has shown opportunities for drug discovery. We review the allosteric modulation, biased agonism, oligomerization, and compartmentalized signaling of GPCRs that control digestion and digestive diseases. We highlight the implications of these concepts for the development of selective and effective drugs to treat diseases of the gastrointestinal tract.
Collapse
Affiliation(s)
- Meritxell Canals
- Centre for Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Daniel P. Poole
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A. Veldhuis
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia,Columbia University College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
14
|
Masotti M, Delprete C, Dothel G, Donadio V, Rimondini R, Politei JM, Liguori R, Caprini M. Altered globotriaosylceramide accumulation and mucosal neuronal fiber density in the colon of the Fabry disease mouse model. Neurogastroenterol Motil 2019; 31:e13529. [PMID: 30609268 DOI: 10.1111/nmo.13529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/24/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Fabry disease (FD) is a hereditary X-linked metabolic storage disorder characterized by deficient or absent lysosomal α-galactosidase A (α-Gal A) activity. This deficiency causes progressive accumulation of glycosphingolipids, primarily globotriaosylceramide (Gb3), in nearly all organ systems. Gastrointestinal (GI) symptoms can be very debilitating and are among the most frequent and earliest of the disease. As the pathophysiology of these symptoms is poorly understood, we carried out a morphological and molecular characterization of the GI tract in α-Gal A knockout mice colon in order to reveal the underlying mechanisms. METHODS Here, we performed the first morphological and biomolecular characterization of the colon wall structure in the GI tract of the α-Gal A knock-out mouse (α-Gal A -/0), a murine model of FD. KEY RESULTS Our data show a greater thickness of the gastrointestinal wall in α-Gal A (-/0) mice due to enlarged myenteric plexus' ganglia. This change is paralleled by a marked Gb3 accumulation in the gastrointestinal wall and a decreased and scattered pattern of mucosal nerve fibers. CONCLUSIONS AND INFERENCES The observed alterations are likely to be a leading cause of gut motor dysfunctions experienced by FD patients and imply that the α-Gal A (-/0) male mouse represents a reliable model for translational studies on enteropathic pain and GI symptoms in FD.
Collapse
Affiliation(s)
- Martina Masotti
- Department of Pharmacy and Biotechnology (FaBiT), Laboratory of Human and General Physiology, University of Bologna, Bologna, Italy
| | - Cecilia Delprete
- Department of Pharmacy and Biotechnology (FaBiT), Laboratory of Human and General Physiology, University of Bologna, Bologna, Italy
| | - Giovanni Dothel
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Juan Manuel Politei
- Fundation for the Study of Neurometabolic Diseases, FESEN, Buenos Aires, Argentina
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBiT), Laboratory of Human and General Physiology, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Di Paola R, Fusco R, Gugliandolo E, D'Amico R, Cordaro M, Impellizzeri D, Perretti M, Cuzzocrea S. Formyl peptide receptor 1 signalling promotes experimental colitis in mice. Pharmacol Res 2019; 141:591-601. [PMID: 30711419 DOI: 10.1016/j.phrs.2019.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease is characterised by intricate immune cell interactions with tissue cells and such cross-talks can become deregulated. The formyl peptide receptor 1 (Fpr1) is expressed by both immune and stromal cells including epithelial cells. We evaluated the development of the physiopathology of the DNBS induced colitis in Fpr1 KO mice on the C57BL/6 genetic background compared to C57BL/6 genetic background animals. We have assessed both macroscopic and histological markers of the diseased, together with the immunohistochemical and molecular changes. DNBS-treated Fpr1 KO mice showed a i) reduction in weight loss, ii) lower extent of colon injury and iii) an increase in MPO activity. Molecular analyses indicated that in absence of Fpr1 there was reduced NF-κB translocation into the nucleus, cytokines levels, FOXP3 and GATA3, CD4, CD8 and CD45 expression as well as a dysregulation of TGF-β signalling. In addition, the colon of DNBS-injected Fpr1 KO mice displayed a lower degree of expression of Bax and higher expression of Bcl-2 compared correspondent WT mice. Finally, intravital microscopy investigation of the microcirculation post-DNBS instillation revealed a lower degree of neutrophil-endothelial cell rolling and adhesion - mediated by P-selectin and ICAM-1 - in Fpr1 KO mice. All the main outcome in the study have a P-value, statistical significance of evidence, less than 0.05. We provide evidence for an important pathogenic role of mouse Fpr1 in experimental colitis, an outcome effected through modulation of immune cell recruitment together with a modulation of local cellular activation and survival.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mauro Perretti
- The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
16
|
Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R. Inflammation: the link between comorbidities, genetics, and Alzheimer's disease. J Neuroinflammation 2018; 15:276. [PMID: 30249283 PMCID: PMC6154824 DOI: 10.1186/s12974-018-1313-3] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, most cases of which lack a clear causative event. This has made the disease difficult to characterize and, thus, diagnose. Although some cases are genetically linked, there are many diseases and lifestyle factors that can lead to an increased risk of developing AD, including traumatic brain injury, diabetes, hypertension, obesity, and other metabolic syndromes, in addition to aging. Identifying common factors and trends between these conditions could enhance our understanding of AD and lead to the development of more effective treatments. Although the immune system is one of the body’s key defense mechanisms, chronic inflammation has been increasingly linked with several age-related diseases. Moreover, it is now well accepted that chronic inflammation has an important role in the onset and progression of AD. In this review, the different inflammatory signals associated with AD and its risk factors will be outlined to demonstrate how chronic inflammation may be influencing individual susceptibility to AD. Our goal is to bring attention to potential shared signals presented by the immune system during different conditions that could lead to the development of successful treatments.
Collapse
Affiliation(s)
- Estella A Newcombe
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.
| | - Judith Camats-Perna
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia
| | - Mallone L Silva
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia
| | - Nicholas Valmas
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Tee Jong Huat
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.,Centre for Stem Cell Ageing and Regenerative Engineering, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Rodrigo Medeiros
- Neurula Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Building 79, Brisbane, 4072, QLD, Australia.
| |
Collapse
|
17
|
Filpa V, Bistoletti M, Caon I, Moro E, Grimaldi A, Moretto P, Baj A, Giron MC, Karousou E, Viola M, Crema F, Frigo G, Passi A, Giaroni C, Vigetti D. Changes in hyaluronan deposition in the rat myenteric plexus after experimentally-induced colitis. Sci Rep 2017; 7:17644. [PMID: 29247178 PMCID: PMC5732300 DOI: 10.1038/s41598-017-18020-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022] Open
Abstract
Myenteric plexus alterations hamper gastrointestinal motor function during intestinal inflammation. Hyaluronan (HA), an extracellular matrix glycosaminoglycan involved in inflammatory responses, may play a role in this process. In the colon of control rats, HA-binding protein (HABP), was detected in myenteric neuron soma, perineuronal space and ganglia surfaces. Prominent hyaluronan synthase 2 (HAS2) staining was found in myenteric neuron cytoplasm, suggesting that myenteric neurons produce HA. In the myenteric plexus of rats with 2, 4-dinitrobenzene sulfonic (DNBS)-induced colitis HABP staining was altered in the perineuronal space, while both HABP staining and HA levels increased in the muscularis propria. HAS2 immunopositive myenteric neurons and HAS2 mRNA and protein levels also increased. Overall, these observations suggest that inflammation alters HA distribution and levels in the gut neuromuscular compartment. Such changes may contribute to alterations in the myenteric plexus.
Collapse
Affiliation(s)
- Viviana Filpa
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Gianmario Frigo
- Department of Internal Medicine and Therapeutics, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy.
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, via H. Dunant 5, Varese, Italy
| |
Collapse
|
18
|
Polidoro G, Giancola F, Fracassi F, Pietra M, Bettini G, Asti M, Chiocchetti R. Substance P and the neurokinin-1 receptor expression in dog ileum with and without inflammation. Res Vet Sci 2017. [PMID: 28628846 DOI: 10.1016/j.rvsc.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the gastrointestinal tract, the tachykinin Substance P (SP) is involved in motility, fluid and electrolyte secretion, and blood flow and regulation of immunoinflammatory response. SP exerts its biological activity on target cells by interacting mainly with the neurokinin-1 receptor (NK1R). The present study aims to quantify the percentage of SP-immunoreactive (SP-IR) enteric neurons and the density of SP-IR nerve fibers in the ileum of control dogs (CTRL-dogs; n=7) vs dogs with spontaneous ileal inflammation (INF-dogs; n=8). In addition, the percentage of enteric neurons bearing NK1R, and nitrergic neurons (nNOS-IR) expressing NK1R immunoreactivity were evaluated in both groups. The percentages of SP-IR neurons were similar in CTRL- and INF-dogs, in either the myenteric (MP) (15±8% vs. 16±7%, respectively) and submucosal plexus (SMP) (26±7% vs. 24±14%, respectively). In INF-dogs, the density of SP-IR mucosal nerve fibers showed a trend to decrease (P=0.07). Myenteric neurons of CTRL- and INF-dogs expressed similar percentages of NK1R-immunoreactivity (39±5% vs. 38±20%, respectively). Submucosal NK1R-IR neurons were occasionally observed in a CTRL-dog. MP nitrergic neurons bearing NK1R showed a trend to decrease in INF-dogs vs. CTRL- dogs (41±22% vs. 65±10%, respectively; P=0.11). In INF-dogs, muscle cells and immune cells overexpressed NK1R immunoreactivity. These findings should be taken as a warning for possible intestinal motility disorders, which might occur during administration of NK1R-antagonist drugs. Conversely, the strong expression of NK1R immunoreactivity observed in muscle and mucosal immune cells of inflamed tissues may provide a rationale for the use of NK1R antagonist drugs in the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Giulia Polidoro
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Federico Fracassi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Giuliano Bettini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Martina Asti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy.
| |
Collapse
|
19
|
Fusco R, Cirmi S, Gugliandolo E, Di Paola R, Cuzzocrea S, Navarra M. A flavonoid-rich extract of orange juice reduced oxidative stress in an experimental model of inflammatory bowel disease. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Sargın ZG, Erin N, Tazegul G, Elpek GÖ, Yıldırım B. Profound loss of neprilysin accompanied by decreased levels of neuropeptides and increased CRP in ulcerative colitis. PLoS One 2017; 12:e0189526. [PMID: 29232715 PMCID: PMC5726735 DOI: 10.1371/journal.pone.0189526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/27/2017] [Indexed: 02/05/2023] Open
Abstract
Neprilysin (NEP, CD10) acts to limit excessive inflammation partly by hydrolyzing neuropeptides. Although deletion of NEP exacerbates intestinal inflammation in animal models, its role in ulcerative colitis (UC) is not well explored. Herein, we aimed to demonstrate changes in NEP and associated neuropeptides at the same time in colonic tissue. 72 patients with UC and 27 control patients were included. Patients' demographic data and laboratory findings, five biopsy samples from active colitis sites and five samples from uninvolved mucosa were collected. Substance P (SP), calcitonin gene related peptide (CGRP) and vasoactive intestinal peptide (VIP) were extracted from freshly frozen tissues and measured using ELISA. Levels of NEP expression were determined using immunohistochemistry and immunoreactivity scores were calculated. GEBOES grading system was also used. We demonstrated a profound loss (69.4%) of NEP expression in UC, whereas all healthy controls had NEP expression. Patients with UC had lower neuronal SP; however non-neuronal SP remained similar. UC patients had also lower neuronal and non-neuronal VIP levels. CGRP were low in general and no significant changes were observed. Additionally, CRP positive patients with UC had higher rates of NEP loss (80% vs 51.9%) and lower SP levels when compared with CRP negative patients with UC. Concurrent decreases in SP and VIP with profound loss of NEP expression observed in UC is likely to be one of the factors in pathogenesis. Further studies are required to define the role of neuropeptides and NEP in UC.
Collapse
Affiliation(s)
- Zeynep Gök Sargın
- Department of Internal Medicine, Division of Gastroenterology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Nuray Erin
- Department of Medical Pharmacology, Akdeniz University Faculty of Medicine, Antalya, Turkey
- * E-mail:
| | - Gokhan Tazegul
- Department of Internal Medicine, Division of Gastroenterology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Gülsüm Özlem Elpek
- Department of Pathology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Bülent Yıldırım
- Department of Internal Medicine, Division of Gastroenterology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|
21
|
Abstract
Neprilysin has a major role in both the generation and degradation of bioactive peptides. LCZ696 (valsartan/sacubitril, Entresto), the first of the new ARNI (dual-acting angiotensin-receptor-neprilysin inhibitor) drug class, contains equimolar amounts of valsartan, an angiotensin-receptor blocker, and sacubitril, a prodrug for the neprilysin inhibitor LBQ657. LCZ696 reduced blood pressure more than valsartan alone in patients with hypertension. In the PARADIGM-HF study, LCZ696 was superior to the angiotensin-converting enzyme inhibitor enalapril for the treatment of heart failure with reduced ejection fraction, and LCZ696 was approved by the FDA for this purpose in 2015. This approval was the first for chronic neprilysin inhibition. The many peptides metabolized by neprilysin suggest many potential consequences of chronic neprilysin inhibitor therapy, both beneficial and adverse. Moreover, LBQ657 might inhibit enzymes other than neprilysin. Chronic neprilysin inhibition might have an effect on angio-oedema, bronchial reactivity, inflammation, and cancer, and might predispose to polyneuropathy. Additionally, inhibition of neprilysin metabolism of amyloid-β peptides might have an effect on Alzheimer disease, age-related macular degeneration, and cerebral amyloid angiopathy. Much of the evidence for possible adverse consequences of chronic neprilysin inhibition comes from studies in animal models, and the relevance of this evidence to humans is unknown. This Review summarizes current knowledge of neprilysin function and possible consequences of chronic neprilysin inhibition that indicate a need for vigilance in the use of neprilysin inhibitor therapy.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.,University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
22
|
Mashaghi A, Marmalidou A, Tehrani M, Grace PM, Pothoulakis C, Dana R. Neuropeptide substance P and the immune response. Cell Mol Life Sci 2016; 73:4249-4264. [PMID: 27314883 PMCID: PMC5056132 DOI: 10.1007/s00018-016-2293-z] [Citation(s) in RCA: 300] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Anna Marmalidou
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Mohsen Tehrani
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| | - Peter M. Grace
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO 80309 USA
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, Inflammatory Bowel Disease Center, University of California, Los Angeles, Los Angeles, CA USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
23
|
Wick MJ, Loomis ZL, Harral JW, Le M, Wehling CA, Miller YE, Dempsey EC. Protection against vascular leak in neprilysin transgenic mice with complex overexpression pattern. Transgenic Res 2016; 25:773-784. [PMID: 27369050 DOI: 10.1007/s11248-016-9969-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Neprilysin (NEP) is a cell surface metallopeptidase found in many tissues. Based mostly on pharmacological manipulations, NEP has been thought to protect blood vessels from plasma extravasation. We have suggested that NEP may protect against pulmonary vascular injury. However, these prior studies did not utilize mice which overexpress NEP. The aims of the present investigation were to develop and characterize doubly transgenic (DT) mice that overexpress NEP universally and conditionally, and to investigate the protective effect that overexpressed NEP may have against plasma extravasation in the vasculature. The duodenum, which is often used to assess vascular permeability, and in which the NEP protein was overexpressed in our DT mice two-fold, was selected as our experimental preparation. We found that substance P-induced plasma extravasation was decreased substantially (3.5-fold) in the duodenums of our doxycycline-treated DT mice, giving independent evidence of NEP's protective effects against plasma extravasation. Transgenic lung NEP protein was not stably expressed in the DT mice, so we were not able to test the effect of NEP overexpression in the lung. Although initially overexpressed nearly nine-fold at that site, pulmonary NEP protein overexpression eventually dissipated. Surprisingly, at a time when there was no lung transgenic NEP protein overexpression, lung NEP mRNA expression was still increased 23-fold, indicating that the expression defect probably is not transcriptional. These studies help to characterize our complex transgenic model of NEP overexpression and further demonstrate NEP's protective effects against plasma extravasation.
Collapse
Affiliation(s)
- Marilee J Wick
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA. .,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.
| | - Zoe L Loomis
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Julie W Harral
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Mysan Le
- Denver VA Medical Center, Denver, CO, 80220, USA
| | | | - York E Miller
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.,Denver VA Medical Center, Denver, CO, 80220, USA
| | - Edward C Dempsey
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Denver, RC-2, Box B-133, 12700 E. 19th Ave., Aurora, CO, 80045, USA.,Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, 80045, USA.,Denver VA Medical Center, Denver, CO, 80220, USA
| |
Collapse
|
24
|
Casili G, Cordaro M, Impellizzeri D, Bruschetta G, Paterniti I, Cuzzocrea S, Esposito E. Dimethyl Fumarate Reduces Inflammatory Responses in Experimental Colitis. J Crohns Colitis 2016; 10:472-83. [PMID: 26690241 PMCID: PMC4946754 DOI: 10.1093/ecco-jcc/jjv231] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Fumaric acid esters have been proven to be effective for the systemic treatment of psoriasis and multiple sclerosis. We aimed to develop a new treatment for colitis. METHODS We investigated the effect of dimethylfumarate [DMF, 10-30-100mg/kg] on an experimental model of colitis induced by dinitrobenzene sulphuric acid [DNBS]. We also evaluated the therapeutic activity of 7 weeks' treatment with DMF [30mg/kg] on 9-week-old IL-10KO mice that spontaneously develop a T helper-1 [Th1]-dependent chronic enterocolitis after birth, that is fully established at 8-10 weeks of age. The mechanism of this pharmacological potential of DMF [10 μM] was investigated in colonic epithelial cell monolayers [Caco-2] exposed to H2O2. The barrier function was evaluated by the tight junction proteins. RESULTS The treatment with DMF significantly reduced the degree of haemorrhagic diarrhoea and weight loss caused by administration of DNBS. DMF [30 and 100mg/kg] also caused a substantial reduction in the degree of colon injury, in the rise in myeloperoxidase [MPO] activity, and in the increase in tumour necrosis factor [TNF]-α expression, as well as in the up-regulation of ICAM-1 caused by DNBS in the colon. Molecular studies demonstrated that DMF impaired NF-κB signalling via reduced p65 nuclear translocalisation. DMF induced a stronger antioxidant response as evidenced by a higher expression of Mn-superoxide dismutase. Moreover, DMF protected human intestinal epithelial cells against H2O2-induced barrier dysfunction, restoring ZO-1 occludin expression, via the HO-1 pathway. CONCLUSIONS DMF treatment reduces the degree of colitis caused by DNBS. We propose that DMF treatment may be useful in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy,Department of Pharmacological and Physiological Science, St Louis University School of Medicine, St Louis, MO, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Di Giovangiulio M, Verheijden S, Bosmans G, Stakenborg N, Boeckxstaens GE, Matteoli G. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease. Front Immunol 2015; 6:590. [PMID: 26635804 PMCID: PMC4653294 DOI: 10.3389/fimmu.2015.00590] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
One of the main tasks of the immune system is to discriminate and appropriately react to “danger” or “non-danger” signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.
Collapse
Affiliation(s)
- Martina Di Giovangiulio
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Simon Verheijden
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Goele Bosmans
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Nathalie Stakenborg
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Guy E Boeckxstaens
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| | - Gianluca Matteoli
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven , Leuven , Belgium
| |
Collapse
|
26
|
Geppetti P, Veldhuis N, Lieu T, Bunnett N. G Protein-Coupled Receptors: Dynamic Machines for Signaling Pain and Itch. Neuron 2015; 88:635-49. [DOI: 10.1016/j.neuron.2015.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Poole DP, Lieu T, Pelayo JC, Eriksson EM, Veldhuis NA, Bunnett NW. Inflammation-induced abnormalities in the subcellular localization and trafficking of the neurokinin 1 receptor in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2015; 309:G248-59. [PMID: 26138465 PMCID: PMC4537929 DOI: 10.1152/ajpgi.00118.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/24/2015] [Indexed: 01/31/2023]
Abstract
Activated G protein-coupled receptors traffic to endosomes and are sorted to recycling or degradative pathways. Endosomes are also a site of receptor signaling of sustained and pathophysiologically important processes, including inflammation. However, the mechanisms of endosomal sorting of receptors and the impact of disease on trafficking have not been fully defined. We examined the effects of inflammation on the subcellular distribution and trafficking of the substance P (SP) neurokinin 1 receptor (NK1R) in enteric neurons. We studied NK1R trafficking in enteric neurons of the mouse colon using immunofluorescence and confocal microscopy. The impact of inflammation was studied in IL10(-/-)-piroxicam and trinitrobenzenesulfonic acid colitis models. NK1R was localized to the plasma membrane of myenteric and submucosal neurons of the uninflamed colon. SP evoked NK1R endocytosis and recycling. Deletion of β-arrestin2, which associates with the activated NK1R, accelerated recycling. Inhibition of endothelin-converting enzyme-1 (ECE-1), which degrades endosomal SP, prevented recycling. Inflammation was associated with NK1R endocytosis in myenteric but not submucosal neurons. Whereas the NK1R in uninflamed neurons recycled within 60 min, NK1R recycling in inflamed neurons was delayed for >120 min, suggesting defective recycling machinery. Inflammation was associated with β-arrestin2 upregulation and ECE-1 downregulation, which may contribute to the defective NK1R recycling. We conclude that inflammation evokes redistribution of NK1R from the plasma membrane to endosomes of myenteric neurons through enhanced SP release and defective NK1R recycling. Defective recycling may be secondary to upregulation of β-arrestin2 and downregulation of ECE-1. Internalized NK1R may generate sustained proinflammatory signals that disrupt normal neuronal functions.
Collapse
Affiliation(s)
- Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia;
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Juan Carlos Pelayo
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Emily M Eriksson
- Population Health & Immunity, Walter and Eliza Hall Institute, Parkville, Victoria, Australia; and Department of Laboratory Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia; Department of Genetics, The University of Melbourne, Parkville, Victoria, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia; ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Anaesthesia and Peri-operative Medicine, Monash University, Victoria, Australia
| |
Collapse
|
28
|
Gharedaghi MH, Rahimian R, Dehpour AR, Yousefzadeh-Fard Y, Mohammadi-Farani A. Dinitrobenzene sulphonic acid-induced colitis impairs spatial recognition memory in mice: roles of N-methyl D-aspartate receptors and nitric oxide. Psychopharmacology (Berl) 2015; 232:3081-90. [PMID: 25971874 DOI: 10.1007/s00213-015-3950-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 04/22/2015] [Indexed: 12/21/2022]
Abstract
RATIONALE Many peripheral diseases are associated with a decline in cognitive function. In this regard, there have been reports of patients with inflammatory bowel disease and an otherwise unexplained memory impairment. OBJECTIVES We sought to assess the memory performance of mice with colitis. We also investigated the roles of N-methyl D-aspartate (NMDA) receptors and nitric oxide (NO) as possible mediators of colitis-induced amnesia. METHODS To induce colitis, male NMRI mice were intrarectally injected with a solution containing dinitrobenzene sulfonic acid (DNBS; 4 mg in 100 μl) under anesthesia. Three days after intrarectal DNBS instillation, spatial recognition and associative memories were assessed by the Y-maze and passive avoidance tasks, respectively. The NMDA antagonists, MK-801 and memantine, and the inducible NO synthase (iNOS) inhibitor, aminoguanidine, were injected intraperitoneally 45 min before the Y-maze task. RESULTS Induction of colitis by DNBS impaired spatial recognition memory in the Y-maze task but had no effect on step through latencies in the passive avoidance test. Colitis-induced amnesia was reversed by administering specific doses of MK-801 and memantine (30 μg/kg and 1 mg/kg, respectively) suggesting dysregulated NMDA receptor activation as an underlying mechanism. No effect was seen with lower and higher doses of these drugs, resulting in a bell-shaped dose response curve. Colitis-induced amnesia was also inhibited by aminoguanidine (50 mg/kg), implicating a role for iNOS activation and neuroinflammation in this phenomenon. CONCLUSION DNBS-induced colitis impairs memory through NMDA receptor overstimulation and NO overproduction.
Collapse
Affiliation(s)
- Mohammad Hadi Gharedaghi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, PO Box 13145-784, Tehran, Iran
| | | | | | | | | |
Collapse
|
29
|
Impellizzeri D, Campolo M, Di Paola R, Bruschetta G, de Stefano D, Esposito E, Cuzzocrea S. Ultramicronized palmitoylethanolamide reduces inflammation an a Th1-mediated model of colitis. EUR J INFLAMM 2015. [DOI: 10.1177/1721727x15575869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammatory bowel diseases are idiopathic relapsing disorders characterized by chronic inflammation of the intestinal tract. The aim of the present study was to examine the effect of ultramicronized palmitoylethanolamide (PEAultra), underlining its correlation with PPARα and TLR4; in particular, we aimed at evaluating its anti-inflammatory effect in mice subjected to experimental colitis. Colitis was induced in mice by intracolonic instillation of dinitrobenzene sulfonic acid (DNBS), PEAultra was administered daily intraperitoneally (10 mg/kg) for 4 days. On day 4, animals were sacrificed and tissues were taken for histological and biochemical analysis. Four days after DNBS administration, TNF-α and IL-1β productions were increased in association with colon damage. Neutrophil infiltration, evaluated by MPO activity, in the mucosa was associated with upregulation of ICAM-1 and P-selectin. Immunohistochemistry for nitrotyrosine and PARP showed an intense staining in the inflamed colon. Treatment with PEAultra significantly reduced the appearance of colon damage and the loss of body weight. These effects were associated with a remarkable amelioration in the disruption of the colonic architecture and reduction in colonic MPO activity. PEAultra also reduced the pro-inflammatory cytokine release, the appearance of nitrotyrosine and PARP immunoreactivity as well as the upregulation of ICAM-1 and P-selectin; moreover, pro-MMP-9 and MMP-2 expressions were significantly inhibited in the colon of DNBS-treated mice. Furthermore, we studied PEAultra correlation with PPARα and TLR4, demonstrating that PEAultra inhibited TLR4 pathway through a PPARα independent pathway. Taken together, our results clearly show that this new formulation of PEA may be considered as a possible therapeutic approach against Th1-induced colitis.
Collapse
Affiliation(s)
- D Impellizzeri
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - M Campolo
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - R Di Paola
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - G Bruschetta
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - D de Stefano
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - E Esposito
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - S Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
- Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Weinstock JV. Substance P and the regulation of inflammation in infections and inflammatory bowel disease. Acta Physiol (Oxf) 2015; 213:453-61. [PMID: 25424746 DOI: 10.1111/apha.12428] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/07/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
Substance P (SP) and its natural analogue hemokinin-1 (HK1) are produced by lymphocytes and macrophages, and at times B cells. These peptides are an important component of the immune response during several infections and in inflammatory bowel disease (IBD). The synthesis of SP and HK1 in leucocytes is subject to immune regulation. IL12 and IL23 stimulate T cells and macrophages to make SP respectively. The cytokines driving HK1 production are not presently defined. These peptides act through a shared receptor called neurokinin-1. T cells, macrophages and probably other immune cell types can express this receptor. Several cytokines IL12, IL18 and TNFα as well as T-cell antigen receptor activation induce neurokinin-1 receptor expression on T cells, while IL10 blocks receptor display. TGFβ delays internalization of the SP/neurokine-1R complex on T cells resulting in stronger receptor signalling. One of the functions of SP and neurokinin-1 receptor is to enhance T cell IFNγ and IL17 production, amplifying the proinflammatory response. Thus, SP and HK1 have overlapping functions and are part of a sophisticated immune regulatory circuit aimed at amplifying inflammation at mucosal surfaces and in other regions of the body as shown in animal models of infection and IBD.
Collapse
Affiliation(s)
- J. V. Weinstock
- Division of Gastroenterology; Tufts Medical Center; Boston MA USA
| |
Collapse
|
31
|
The anti-inflammatory and antioxidant effects of bergamot juice extract (BJe) in an experimental model of inflammatory bowel disease. Clin Nutr 2014; 34:1146-54. [PMID: 25491246 DOI: 10.1016/j.clnu.2014.11.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 11/05/2014] [Accepted: 11/22/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND & AIMS The beneficial properties of the flavonoid fraction of bergamot juice (BJe) have been raising interest and have been the subject of recent studies, considering the potentiality of its health promoting substances. Flavonoids have demonstrated radical-scavenging and anti-inflammatory activities. The aim of the present study was to examine the effects of BJe in mice subjected to experimental colitis. METHODS Colitis was induced in mice by intracolonic instillation of dinitrobenzene sulfonic acid (DNBS). BJe was administered daily orally (at 5, 10 and 20 mg/kg). RESULTS Four days after DNBS administration, colon nuclear factor NF-κB translocation and MAP kinase phospho-JNK activation were increased as well as cytokine production such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Neutrophil infiltration, by myeloperoxidase (MPO) activity, in the mucosa was associated with up-regulation of adhesion molecules (ICAM-1 and P-selectin). Immunohistochemistry for nitrotyrosine and poly ADP-ribose (PAR) also showed an intense staining in the inflamed colon. Treatment with BJe decreased the appearance of diarrhea and body weight loss. This was associated with a reduction in colonic MPO activity. BJe reduced nuclear NF-κB translocation, p-JNK activation, the pro-inflammatory cytokines release, the appearance of nitrotyrosine and PAR in the colon and reduced the up-regulation of ICAM-1 and P-selectin. In addition, colon inflammation was also associated with apoptotic damage. Treatment with BJe caused a decrease of pro-apoptotic Bax expression and an increase of anti-apoptotic Bcl-2 expression. CONCLUSIONS The results of this study suggested that administration of BJe induced, partly specified, anti-inflammatory mechanisms, which potentially may be beneficial for the treatment of IBD in humans.
Collapse
|
32
|
Munyaka P, Rabbi MF, Pavlov VA, Tracey KJ, Khafipour E, Ghia JE. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis. PLoS One 2014; 9:e109272. [PMID: 25295619 PMCID: PMC4190311 DOI: 10.1371/journal.pone.0109272] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/01/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway (CAP) is based on vagus nerve (VN) activity that regulates macrophage and dendritic cell responses in the spleen through alpha-7 nicotinic acetylcholine receptor (a7nAChR) signaling. Inflammatory bowel disease (IBD) patients present dysautonomia with decreased vagus nerve activity, dendritic cell and T cell over-activation. The aim of this study was to investigate whether central activation of the CAP alters the function of dendritic cells (DCs) and sequential CD4+/CD25-T cell activation in the context of experimental colitis. METHODS The dinitrobenzene sulfonic acid model of experimental colitis in C57BL/6 mice was used. Central, intracerebroventricular infusion of the M1 muscarinic acetylcholine receptor agonist McN-A-343 was used to activate CAP and vagus nerve and/or splenic nerve transection were performed. In addition, the role of α7nAChR signaling and the NF-kB pathway was studied. Serum amyloid protein (SAP)-A, colonic tissue cytokines, IL-12p70 and IL-23 in isolated splenic DCs, and cytokines levels in DC-CD4+CD25-T cell co-culture were determined. RESULTS McN-A-343 treatment reduced colonic inflammation associated with decreased pro-inflammatory Th1/Th17 colonic and splenic cytokine secretion. Splenic DCs cytokine release was modulated through α7nAChR and the NF-kB signaling pathways. Cholinergic activation resulted in decreased CD4+CD25-T cell priming. The anti-inflammatory efficacy of central cholinergic activation was abolished in mice with vagotomy or splenic neurectomy. CONCLUSIONS Suppression of splenic immune cell activation and altered interaction between DCs and T cells are important aspects of the beneficial effect of brain activation of the CAP in experimental colitis. These findings may lead to improved therapeutic strategies in the treatment of IBD.
Collapse
Affiliation(s)
- Peris Munyaka
- University of Manitoba, Department of Immunology and Internal Medicine section of Gastroenterology, Winnipeg, Manitoba, Canada
| | - Mohammad F. Rabbi
- University of Manitoba, Department of Immunology and Internal Medicine section of Gastroenterology, Winnipeg, Manitoba, Canada
| | - Valentin A. Pavlov
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Kevin J. Tracey
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ehsan Khafipour
- University of Manitoba, Department of Animal Sciences, Winnipeg, Manitoba, Canada
| | - Jean-Eric Ghia
- University of Manitoba, Department of Immunology and Internal Medicine section of Gastroenterology, Winnipeg, Manitoba, Canada
- University of Manitoba, Inflammatory Bowel Disease Clinical and Research Centre, Winnipeg, Manitoba, Canada
| |
Collapse
|
33
|
Jensen DD, Halls ML, Murphy JE, Canals M, Cattaruzza F, Poole DP, Lieu T, Koon HW, Pothoulakis C, Bunnett NW. Endothelin-converting enzyme 1 and β-arrestins exert spatiotemporal control of substance P-induced inflammatory signals. J Biol Chem 2014; 289:20283-94. [PMID: 24898255 DOI: 10.1074/jbc.m114.578179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the intracellular trafficking of G protein-coupled receptors controls specific signaling events, it is unclear how the spatiotemporal control of signaling contributes to complex pathophysiological processes such as inflammation. By using bioluminescence resonance energy transfer and superresolution microscopy, we found that substance P (SP) induces the association of the neurokinin 1 receptor (NK1R) with two classes of proteins that regulate SP signaling from plasma and endosomal membranes: the scaffolding proteins β-arrestin (βARRs) 1 and 2 and the transmembrane metallopeptidases ECE-1c and ECE-1d. In HEK293 cells and non-transformed human colonocytes, we observed that G protein-coupled receptor kinase 2 and βARR1/2 terminate plasma membrane Ca(2+) signaling and initiate receptor trafficking to endosomes that is necessary for sustained activation of ERKs in the nucleus. βARRs deliver the SP-NK1R endosomes, where ECE-1 associates with the complex, degrades SP, and allows the NK1R, freed from βARRs, to recycle. Thus, both ECE-1 and βARRs mediate the resensitization of NK1R Ca(2+) signaling at the plasma membrane. Sustained exposure of colonocytes to SP activates NF-κB and stimulates IL-8 secretion. This proinflammatory signaling is unaffected by inhibition of the endosomal ERK pathway but is suppressed by ECE-1 inhibition or βARR2 knockdown. Inhibition of protein phosphatase 2A, which also contributes to sustained NK1R signaling at the plasma membrane, similarly attenuates IL-8 secretion. Thus, the primary function of βARRs and ECE-1 in SP-dependent inflammatory signaling is to promote resensitization, which allows the sustained NK1R signaling from the plasma membrane that drives inflammation.
Collapse
Affiliation(s)
- Dane D Jensen
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Murphy
- the Department of Surgery, University of California, San Francisco, California 94143
| | - Meritxell Canals
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Fiore Cattaruzza
- the Department of Surgery, University of California, San Francisco, California 94143
| | - Daniel P Poole
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, the Departments of Anatomy and Neuroscience and
| | - TinaMarie Lieu
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Hon-Wai Koon
- the Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Charalabos Pothoulakis
- the Inflammatory Bowel Disease Research Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Nigel W Bunnett
- From the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, Pharmacology, University of Melbourne, Melbourne 3010, Australia, and
| |
Collapse
|
34
|
Cassidy MR, Sheldon HK, Gainsbury ML, Gillespie E, Kosaka H, Heydrick S, Stucchi AF. The neurokinin 1 receptor regulates peritoneal fibrinolytic activity and postoperative adhesion formation. J Surg Res 2014; 191:12-8. [PMID: 24836694 DOI: 10.1016/j.jss.2014.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/01/2014] [Accepted: 04/15/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intra-abdominal adhesions are a common source of postoperative morbidity. Previous studies in our laboratory have shown that a neurokinin 1 receptor antagonist (NK-1RA) reduces abdominal adhesion formation and increases peritoneal fibrinolytic activity. However, the cellular pathway by which the antagonist exerts its effects is unclear, as cultured peritoneal mesothelial cells exposed to the NK-1RA show increases in fibrinolytic activity despite having very low expression of neurokinin 1 receptor (NK-1R) messenger RNA and protein. Our aim was to determine whether the NK-1R plays an essential role in the adhesion-reducing effects of the NK-1RA, or if the NK-1RA is acting independently of the receptor. METHODS Homozygous NK-1R knockout mice and age matched wild-type mice underwent laparotomy with cecal cautery to induce adhesions. At the time of surgery, mice received a single intraperitoneal dose of either NK-1RA (25 mg/kg) or saline alone. Adhesion severity at the site of cecal cautery was assessed on postoperative day 7. In a separate experiment, peritoneal fluid was collected from wild type and NK-1R knockout mice 24 h after laparotomy with cecal cautery and administration of either NK-1RA or saline. Tissue plasminogen activator levels, representative of total fibrinolytic activity, were then measured in peritoneal fluid. RESULTS In wild-type mice, NK-1RA administration significantly decreased adhesion formation compared with saline controls. Among the NK-1R knockout mice, there was no significant reduction in adhesion formation by the NK-1RA. Fibrinolytic activity increased 244% in wild-type mice administered NK-1RA compared with saline controls; however, the NK-1RA did not raise fibrinolytic activity above saline controls in NK-1R knockout mice. CONCLUSIONS These data indicate that the NK-1R mediates the adhesion-reducing effects of the NK-1RA, in part, by the upregulation of peritoneal fibrinolysis, and suggest that the NK-1R is a promising therapeutic target for adhesion prevention.
Collapse
Affiliation(s)
- Michael R Cassidy
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Holly K Sheldon
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Melanie L Gainsbury
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Earl Gillespie
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Hisashi Kosaka
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Stanley Heydrick
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Arthur F Stucchi
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
35
|
Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW. Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 2014; 94:265-301. [PMID: 24382888 DOI: 10.1152/physrev.00031.2013] [Citation(s) in RCA: 450] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists.
Collapse
|
36
|
Arresting inflammation: contributions of plasma membrane and endosomal signalling to neuropeptide-driven inflammatory disease. Biochem Soc Trans 2013; 41:137-43. [PMID: 23356273 DOI: 10.1042/bst20120343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
GPCR (G-protein-coupled receptor) signalling at the plasma membrane is under tight control. In the case of neuropeptides such as SP (substance P), plasma membrane signalling is regulated by cell-surface endopeptidases (e.g. neprilysin) that degrade extracellular neuropeptides, and receptor interaction with β-arrestins, which uncouple receptors from heterotrimeric G-proteins and mediate receptor endocytosis. By recruiting GPCRs, kinases and phosphatases to endocytosed GPCRs, β-arrestins assemble signalosomes that can mediate a second wave of signalling by internalized receptors. Endosomal peptidases, such as ECE-1 (endothelin-converting enzyme-1), can degrade SP in acidified endosomes, which destabilizes signalosomes and allows receptors, freed from β-arrestins, to recycle and resensitize. By disassembling signalosomes, ECE-1 terminates β-arrestin-mediated endosomal signalling. These mechanisms have been studied in model cell systems, and the relative importance of plasma membrane and endosomal signalling to complex pathophysiological processes, such as inflammation, pain and proliferation, is unclear. However, deletion or inhibition of metalloendopeptidases that control neuropeptide signalling at the plasma membrane and in endosomes has marked effects on inflammation. Neprilysin deletion exacerbates inflammation because of diminished degradation of pro-inflammatory SP. Conversely, inhibition of ECE-1 attenuates inflammation by preventing receptor recycling/resensitization, which is required for sustained pro-inflammatory signals from the plasma membrane. β-Arrestin deletion also affects inflammation because of the involvement of β-arrestins in pro-inflammatory signalling and migration of inflammatory cells. Knowledge of GPCR signalling in specific subcellular locations provides insights into pathophysiological processes, and can provide new opportunities for therapy. Selective targeting of β-arrestin-mediated endosomal signalling or of mechanisms of receptor recycling/resensitization may offer more effective and selective treatments than global targeting of cell-surface signalling.
Collapse
|
37
|
Karoor V, Oka M, Walchak SJ, Hersh LB, Miller YE, Dempsey EC. Neprilysin regulates pulmonary artery smooth muscle cell phenotype through a platelet-derived growth factor receptor-dependent mechanism. Hypertension 2013; 61:921-30. [PMID: 23381789 DOI: 10.1161/hypertensionaha.111.199588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates proinflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells results in increased migration and proliferation. Pulmonary artery smooth muscle cells isolated from NEP(-/-) mice exhibited enhanced migration and proliferation in response to serum and platelet-derived growth factor, which was attenuated by NEP replacement. Inhibition of NEP by overexpression of a peptidase dead mutant or knockdown by small interfering RNA in NEP(+/+) cells increased migration and proliferation. Loss of NEP led to an increase in Src kinase activity and phosphorylation of PTEN, resulting in activation of the platelet-derived growth factor receptor (PDGFR). Knockdown of Src kinase with small interfering RNA or inhibition with PP2, a src kinase inhibitor, decreased PDGFR(Y751) phosphorylation and attenuated migration and proliferation in NEP(-/-) smooth muscle cells. NEP substrates, endothelin 1 or fibroblast growth factor 2, increased activation of Src and PDGFR in NEP(+/+) cells, which was decreased by an endothelin A receptor antagonist, neutralizing antibody to fibroblast growth factor 2 and Src inhibitor. Similar to the observations in pulmonary artery smooth muscle cells, levels of phosphorylated PDGFR, Src, and PTEN were elevated in NEP(-/-) lungs. Endothelin A receptor antagonist also attenuated the enhanced responses in NEP(-/-) pulmonary artery smooth muscle cells and lungs. Taken together our results suggest a novel mechanism for the regulation of PDGFR signaling by NEP substrates involving Src and PTEN. Strategies that increase lung NEP activity/expression or target key downstream effectors, like Src, PTEN, or PDGFR, may be of therapeutic benefit in pulmonary vascular disease.
Collapse
Affiliation(s)
- Vijaya Karoor
- Cardiovascular Pulmonary Research Laboratory, RC-2 Room 8118, University of Colorado Anschutz Medical Campus, 12700 E 19th Ave, RC-2, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Dayton MT, Dempsey DT, Larson GM, Posner AR. New paradigms in the treatment of small bowel obstruction. Curr Probl Surg 2012; 49:642-717. [PMID: 23057861 DOI: 10.1067/j.cpsurg.2012.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Merril T Dayton
- Department of Surgery, SUNY Buffalo, Kaleida Health System, Buffalo, NY, USA
| | | | | | | |
Collapse
|
39
|
Thanasupawat T, Hammje K, Adham I, Ghia JE, Del Bigio MR, Krcek J, Hoang-Vu C, Klonisch T, Hombach-Klonisch S. INSL5 is a novel marker for human enteroendocrine cells of the large intestine and neuroendocrine tumours. Oncol Rep 2012; 29:149-54. [PMID: 23128569 DOI: 10.3892/or.2012.2119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/19/2012] [Indexed: 11/05/2022] Open
Abstract
We report for the first time the distribution of human INSL5 and its cognate leucine rich G-protein coupled receptor RXFP4 in the large intestine and in neuroendocrine/carcinoid tissues. Immunoreactive INSL5 was uniquely expressed by enteroendocrine cells (EECs) located within the colonic mucosa, whereas colonocytes were immunopositive for RXFP4. INSL5+ and RXFP4+ cells were also detected in human neuroendocrine/carcinoid tissues. We employed a recently described Insl5 knockout mouse model and 2 mouse models of induced colitis to address the relevance of Insl5 in EEC development and in acute inflammation of the colon. We identified INSL5 as a specific marker for synaptophysin+ EECs in the mucosa of the normal human and mouse colon. Insl5 was not essential for the development of mouse synaptophysin+ EECs. The mouse models of chemically induced colitis (dextran sulfate sodium and dinitrobenzene-sulfonic acid) failed to show changes in the numbers of Insl5+ EECs at inflammatory sites during the acute phase of colitis. In conclusion, we showed that INSL5 is a novel marker of colorectal EECs and provide first evidence for the presence of a potentially autocrine/paracrine INSL5-RXFP4 signaling system in the normal human and mouse colon and in rare human neuroendocrine tumours.
Collapse
Affiliation(s)
- Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Feng B, La JH, Schwartz ES, Gebhart GF. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Neural and neuro-immune mechanisms of visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1085-98. [PMID: 22403791 PMCID: PMC3362095 DOI: 10.1152/ajpgi.00542.2011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is characterized as functional because a pathobiological cause is not readily apparent. Considerable evidence, however, documents that sensitizing proinflammatory and lipotoxic lipids, mast cells and their products, tryptases, enteroendocrine cells, and mononuclear phagocytes and their receptors are increased in tissues of IBS patients with colorectal hypersensitivity. It is also clear from recordings in animals of the colorectal afferent innervation that afferents exhibit long-term changes in models of persistent colorectal hypersensitivity. Such changes in afferent excitability and responses to mechanical stimuli are consistent with relief of discomfort and pain in IBS patients, including relief of referred abdominal hypersensitivity, upon intra-rectal instillation of local anesthetic. In the aggregate, these experimental outcomes establish the importance of afferent drive in IBS, consistent with a larger literature with respect to other chronic conditions in which pain is a principal complaint (e.g., neuropathic pain, painful bladder syndrome, fibromyalgia). Accordingly, colorectal afferents and the environment in which these receptive endings reside constitute the focus of this review. That environment includes understudied and incompletely understood contributions from immune-competent cells resident in and recruited into the colorectum. We close this review by highlighting deficiencies in existing knowledge and identifying several areas for further investigation, resolution of which we anticipate would significantly advance our understanding of neural and neuro-immune contributions to IBS pain and hypersensitivity.
Collapse
Affiliation(s)
- Bin Feng
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jun Ho La
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erica S. Schwartz
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - G. F. Gebhart
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Garg M, Angus PW, Burrell LM, Herath C, Gibson PR, Lubel JS. Review article: the pathophysiological roles of the renin-angiotensin system in the gastrointestinal tract. Aliment Pharmacol Ther 2012; 35:414-28. [PMID: 22221317 PMCID: PMC7159631 DOI: 10.1111/j.1365-2036.2011.04971.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND The renin-angiotensin system (RAS) is a homeostatic pathway widely known to regulate cardiovascular and renal physiology; however, little is known about its influence in gastrointestinal tissues. AIM To elicit the anatomical distribution and physiological significance of the components of the RAS in the gastrointestinal tract. METHODS An extensive online literature review including Pubmed and Medline. RESULTS There is evidence for RAS involvement in gastrointestinal physiology and pathophysiology, with all the components required for autonomous regulation identified throughout the gastrointestinal tract. The RAS is implicated in the regulation of glucose, amino acid, fluid and electrolyte absorption and secretion, motility, inflammation, blood flow and possibly malignant disease within the gastrointestinal tract. Animal studies investigating the effects of RAS blockade in a range of conditions including inflammatory bowel disease, functional gut disorders, gastrointestinal malignancy and even intestinal ischaemia have been encouraging to date. Given the ready availability of drugs that modify the RAS and their excellent safety profile, an opportunity exists for investigation of their possible therapeutic role in a variety of human gastrointestinal diseases. CONCLUSIONS The gastrointestinal renin-angiotensin system appears to be intricately involved in a number of physiological processes, and provides a possible target for novel investigative and therapeutic approaches.
Collapse
Affiliation(s)
- M. Garg
- Department of Gastroenterology & HepatologyEastern HealthVic., Australia,Eastern Health Clinical SchoolMonash UniversityVic., Australia
| | - P. W. Angus
- Department of MedicineMelbourne UniversityVic., Australia,Gastroenterology and Liver Transplant UnitAustin HospitalVic., Australia
| | - L. M. Burrell
- Department of MedicineMelbourne UniversityVic., Australia
| | - C. Herath
- Department of MedicineMelbourne UniversityVic., Australia
| | - P. R. Gibson
- Department of Gastroenterology & HepatologyEastern HealthVic., Australia,Eastern Health Clinical SchoolMonash UniversityVic., Australia
| | - J. S. Lubel
- Department of Gastroenterology & HepatologyEastern HealthVic., Australia,Gastroenterology and Liver Transplant UnitAustin HospitalVic., Australia,Eastern Health Clinical SchoolMonash UniversityVic., Australia
| |
Collapse
|
42
|
Barbara G, Cremon C, De Giorgio R, Dothel G, Zecchi L, Bellacosa L, Carini G, Stanghellini V, Corinaldesi R. Mechanisms underlying visceral hypersensitivity in irritable bowel syndrome. Curr Gastroenterol Rep 2011; 13:308-15. [PMID: 21537962 DOI: 10.1007/s11894-011-0195-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Visceral hypersensitivity is currently considered a key pathophysiological mechanism involved in pain perception in large subgroups of patients with functional gastrointestinal disorders, including irritable bowel syndrome (IBS). In IBS, visceral hypersensitivity has been described in 20%-90% of patients. The contribution of the central nervous system and psychological factors to visceral hypersensitivity in patients with IBS may be significant, although still debated. Peripheral factors have gained increasing attention following the recognition that infectious enteritis may trigger the development of persistent IBS symptoms, and the identification of mucosal immune, neural, endocrine, microbiological, and intestinal permeability abnormalities. Growing evidence suggests that these factors play an important role in pain transmission from the periphery to the brain via sensory nerve pathways in large subsets of patients with IBS. In this review, we will report on recent data on mechanisms involved in visceral hypersensitivity in IBS, with particular attention paid to peripheral mechanisms.
Collapse
Affiliation(s)
- Giovanni Barbara
- Department of Clinical Medicine and Center for Applied Biomedical Research, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Koh YH, Moochhala S, Bhatia M. The role of neutral endopeptidase in caerulein-induced acute pancreatitis. THE JOURNAL OF IMMUNOLOGY 2011; 187:5429-39. [PMID: 22013111 DOI: 10.4049/jimmunol.1102011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Substance P (SP) is well known to promote inflammation in acute pancreatitis (AP) by interacting with neurokinin-1 receptor. However, mechanisms that terminate SP-mediated responses are unclear. Neutral endopeptidase (NEP) is a cell-surface enzyme that degrades SP in the extracellular fluid. In this study, we examined the expression and the role of NEP in caerulein-induced AP. Male BALB/c mice (20-25 g) subjected to 3-10 hourly injections of caerulein (50 μg/kg) exhibited reduced NEP activity and protein expression in the pancreas and lungs. Additionally, caerulein (10(-7) M) also downregulated NEP activity and mRNA expression in isolated pancreatic acinar cells. The role of NEP in AP was examined in two opposite ways: inhibition of NEP (phosphoramidon [5 mg/kg] or thiorphan [10 mg/kg]) followed by 6 hourly caerulein injections) or supplementation with exogenous NEP (10 hourly caerulein injections, treatment of recombinant mouse NEP [1 mg/kg] during second caerulein injection). Inhibition of NEP raised SP levels and exacerbated inflammatory conditions in mice. Meanwhile, the severity of AP, determined by histological examination, tissue water content, myeloperoxidase activity, and plasma amylase activity, was markedly better in mice that received exogenous NEP treatment. Our results suggest that NEP is anti-inflammatory in caerulein-induced AP. Acute inhibition of NEP contributes to increased SP levels in caerulein-induced AP, which leads to augmented inflammatory responses in the pancreas and associated lung injury.
Collapse
Affiliation(s)
- Yung-Hua Koh
- Department of Pharmacology, National University of Singapore, Singapore
| | | | | |
Collapse
|
44
|
Pelayo JC, Poole DP, Steinhoff M, Cottrell GS, Bunnett NW. Endothelin-converting enzyme-1 regulates trafficking and signalling of the neurokinin 1 receptor in endosomes of myenteric neurones. J Physiol 2011; 589:5213-30. [PMID: 21878523 DOI: 10.1113/jphysiol.2011.214452] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by β-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by β-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and β-arrestin at the plasma membrane, and the SP-NK(1)R-β-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-β-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating β-arrestin-mediated endosomal signalling.
Collapse
Affiliation(s)
- Juan-Carlos Pelayo
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143-0660, USA
| | | | | | | | | |
Collapse
|
45
|
Mandalari G, Bisignano C, Genovese T, Mazzon E, Wickham MSJ, Paterniti I, Cuzzocrea S. Natural almond skin reduced oxidative stress and inflammation in an experimental model of inflammatory bowel disease. Int Immunopharmacol 2011; 11:915-24. [PMID: 21354356 DOI: 10.1016/j.intimp.2011.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/13/2011] [Accepted: 02/01/2011] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to examine the effects of natural almond skin (NS) powder in mice subjected to experimental colitis. Colitis was induced in mice by intracolonic instillation of dinitrobenzene sulfonic acid (DNBS). NS powder was administered daily orally (30 mg/kg). Four days after DNBS administration, colon NF-κB and p-JNK activation was increased as well as TNF-α and IL-1β productions. Neutrophil infiltration, by myeloperoxidase (MPO) activity, in the mucosa was associated with up-regulation of ICAM-1 and P-selectin. Immunohistochemistry for i-NOS, nitrotyrosine and poly (ADP-ribose) polymerase (PARP) showed an intense staining in the inflamed colon. Treatment with NS powder significantly reduced the appearance of diarrhea and body weight loss. This was associated with a significant reduction in colonic MPO activity. NS powder also reduced NF-κB and p-JNK activation, the pro-inflammatory cytokines release, the appearance of i-NOS, nitrotyrosine and PARP in the colon and reduced the up-regulation of ICAM-1 and the expression of P-selectin. The results of this study suggested that administration of NS powder may be beneficial for treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Giuseppina Mandalari
- Pharmaco-Biological Department, University of Messina, Vill. SS: Annunziata 98168, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Cunin P, Caillon A, Corvaisier M, Garo E, Scotet M, Blanchard S, Delneste Y, Jeannin P. The Tachykinins Substance P and Hemokinin-1 Favor the Generation of Human Memory Th17 Cells by Inducing IL-1β, IL-23, and TNF-Like 1A Expression by Monocytes. THE JOURNAL OF IMMUNOLOGY 2011; 186:4175-82. [DOI: 10.4049/jimmunol.1002535] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Xie L, Takahara M, Nakahara T, Oba J, Uchi H, Takeuchi S, Moroi Y, Furue M. CD10-bearing fibroblasts may inhibit skin inflammation by down-modulating substance P. Arch Dermatol Res 2011; 303:49-55. [PMID: 21076839 DOI: 10.1007/s00403-010-1093-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 10/27/2010] [Accepted: 10/29/2010] [Indexed: 11/27/2022]
Abstract
Substance P (SP) is a multipotent neuropeptide that affects the proliferation, activation and motility of keratinocytes and fibroblasts (Fbs). SP in pulmonary and synovial cells is degraded by CD10, a 90- to 110-kDa cell surface zinc-dependent metalloprotease. However, the expression and function of CD10 in human dermal Fbs have not yet been investigated in vivo and in vitro specifically with reference to SP. Our immunohistologic study revealed moderate to strong fibroblastic CD10 expression in the majority of psoriasis vulgaris (16/16), chronic eczema (15/16), lichen planus (18/20) and atopic dermatitis (4/5). Keratinocytes showed no CD10 expression in vivo and in vitro. Cultured Fbs constitutively expressed CD10 and SP. CD10 expression was augmented by external interleukin (IL)-1β and IL-22, but not by IL-8 and IL-17A in Fbs. SP production was enhanced in CD10 knockdown-Fbs (CD10ND-Fbs) compared with control-Fbs. In the presence of IL-1β or IL-22, the enhancement of SP production was more prominent in CD10ND-Fbs than in control-Fbs, suggesting the down-modulating activity of CD10 on SP in cytokine-mediated inflammation. In conclusion, fibroblastic CD10 expression may down-regulate skin inflammation by degrading SP or reducing its level in the dermal microenvironment.
Collapse
Affiliation(s)
- Lining Xie
- Department of Dermatology, Kyushu University, Higashiku, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Harnett KM, Rieder F, Behar J, Biancani P. Viewpoints on Acid-induced inflammatory mediators in esophageal mucosa. J Neurogastroenterol Motil 2010; 16:374-88. [PMID: 21103419 PMCID: PMC2978390 DOI: 10.5056/jnm.2010.16.4.374] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 08/18/2010] [Accepted: 08/21/2010] [Indexed: 12/13/2022] Open
Abstract
We have focused on understanding the onset of gastroesophageal reflux disease by examining the mucosal response to the presence of acid in the esophageal lumen. Upon exposure to HCl, inflammation of the esophagus begins with activation of the transient receptor potential channel vanilloid subfamily member-1 (TRPV1) in the mucosa, and production of IL-8, substance P (SP), calcitonin gene related peptide (CGRP) and platelet activating factor (PAF). Production of SP and CGRP, but not PAF, is abolished by the neural blocker tetrodotoxin suggesting that SP and CGRP are neurally released and that PAF arises from non neural pathways. Epithelial cells contain TRPV1 receptor mRNA and protein and respond to HCl and to the TRPV1 agonist capsaicin with production of PAF. PAF, SP and IL-8 act as chemokines, inducing migration of peripheral blood leukocytes. PAF and SP activate peripheral blood leukocytes inducing the production of H2O2. In circular muscle, PAF causes production of IL-6, and IL-6 causes production of additional H2O2, through activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Among these, NADPH oxidase 5 cDNA is significantly up-regulated by exposure to PAF; H2O2 content of esophageal and lower esophageal sphincter circular muscle is elevated in human esophagitis, causing dysfunction of esophageal circular muscle contraction and reduction in esophageal sphincter tone. Thus esophageal keratinocytes, that constitute the first barrier to the refluxate, may also serve as the initiating cell type in esophageal inflammation, secreting inflammatory mediators and pro-inflammatory cytokines and affecting leukocyte recruitment and activity.
Collapse
Affiliation(s)
- Karen M Harnett
- Department of Medicine, Rhode Island Hospital and Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
49
|
Becker M, Siems WE, Kluge R, Gembardt F, Schultheiss HP, Schirner M, Walther T. New function for an old enzyme: NEP deficient mice develop late-onset obesity. PLoS One 2010; 5. [PMID: 20862277 PMCID: PMC2940827 DOI: 10.1371/journal.pone.0012793] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 08/18/2010] [Indexed: 12/12/2022] Open
Abstract
Background According to the World Health Organization (WHO) there is a pandemic of obesity with approximately 300 million people being obese. Typically, human obesity has a polygenetic causation. Neutral endopeptidase (NEP), also known as neprilysin, is considered to be one of the key enzymes in the metabolism of many active peptide hormones. Methodology/Principal Findings An incidental observation in NEP-deficient mice was a late-onset excessive gain in body weight exclusively from a ubiquitous accumulation of fat tissue. In accord with polygenetic human obesity, mice were characterized by deregulation of lipid metabolism, higher blood glucose levels, with impaired glucose tolerance. The key role of NEP in determining body mass was confirmed by the use of the NEP inhibitor candoxatril in wild-type mice that increased body weight due to increased food intake. This is a peripheral and not a central NEP action on the switch for appetite control, since candoxatril cannot cross the blood-brain barrier. Furthermore, we demonstrated that inhibition of NEP in mice with cachexia delayed rapid body weight loss. Thus, lack in NEP activity, genetically or pharmacologically, leads to a gain in body fat. Conclusions/Significance In the present study, we have identified NEP to be a crucial player in the development of obesity. NEP-deficient mice start to become obese under a normocaloric diet in an age of 6–7 months and thus are an ideal model for the typical human late-onset obesity. Therefore, the described obesity model is an ideal tool for research on development, molecular mechanisms, diagnosis, and therapy of the pandemic obesity.
Collapse
Affiliation(s)
- Matthias Becker
- Department for Biochemical Neurobiology, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Wolf-Eberhard Siems
- Department for Biochemical Neurobiology, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Reinhart Kluge
- Max-Rubner-Laboratorium, Deutsches Institut für Ernährungsforschung, Potsdam-Rehbrücke, Germany
| | - Florian Gembardt
- Centre for Biomedical Research, Hull York Medical School, University of Hull, Hull, United Kingdom
- Department for Experimental Cardiology, Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | | | - Thomas Walther
- Centre for Biomedical Research, Hull York Medical School, University of Hull, Hull, United Kingdom
- Department for Experimental Cardiology, Excellence Cluster Cardio-Pulmonary System, Justus-Liebig-Universität Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
50
|
PPAR-alpha Contributes to the Anti-Inflammatory Activity of Verbascoside in a Model of Inflammatory Bowel Disease in Mice. PPAR Res 2010; 2010:917312. [PMID: 20671911 PMCID: PMC2910492 DOI: 10.1155/2010/917312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/11/2010] [Indexed: 12/14/2022] Open
Abstract
The previous results suggest that peroxisome proliferator-activated receptor-alpha (PPAR)-α, an intracellular transcription factor activated by fatty acids, plays a role in control of inflammation. There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. In this regard, it has been demonstrated that verbascoside (VB) functions as intracellular radical scavenger and reduces the microscopic and macroscopic signs of experimental colitis. With the aim to characterize the role of PPAR-α in VB-mediated anti-inflammatory activity, we tested the efficacy of VB in an experimental model of inflammatory bowel disease induced by dinitrobenzene sulfonic acid, comparing mice lacking PPAR-α (PPAR-αKO) with wild type (WT) mice. Results indicate that VB-mediated anti-inflammatory activity is weakened in PPAR-αKO mice, compared to WT controls, especially in the inhibition of neutrophil infiltration, intestinal permeability and colon injury. These results indicate that PPAR-α can contribute to the anti-inflammatory activity of VB in inflammatory bowel disease.
Collapse
|