1
|
Meeusen B, Ambjørn SM, Veis J, Riley RC, Vit G, Brauer BL, Møller MH, Greiner EC, Chan CB, Weisser MB, Garvanska DH, Zhu H, Davey NE, Kettenbach AN, Ogris E, Nilsson J. A functional map of phosphoprotein phosphatase regulation identifies an evolutionary conserved reductase for the catalytic metal ions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637884. [PMID: 39990307 PMCID: PMC11844454 DOI: 10.1101/2025.02.12.637884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Serine/Threonine phosphoprotein phosphatases (PPPs, PP1-PP7) are conserved metalloenzymes and central to intracellular signaling in eukaryotes, but the details of their regulation is poorly understood. To address this, we performed genome-wide CRISPR knockout and focused base editor screens in PPP perturbed conditions to establish a high-resolution functional map of PPP regulation that pinpoints novel regulatory mechanisms. Through this, we identify the orphan reductase CYB5R4 as an evolutionarily conserved activator of PP4 and PP6, but not the closely related PP2A. Heme binding is essential for CYB5R4 function and mechanistically involves the reduction of the metal ions in the active site. Importantly, CYB5R4-mediated activation of PP4 is critical for cell viability when cells are treated with DNA damage-inducing agents known to cause oxidative stress. The discovery of a dedicated PPP reductase points to shared regulatory principles with protein tyrosine phosphatases, where specific enzymes dictate activity by regulating the active site redox state. In sum, our work provides a resource for understanding PPP function and the regulation of intracellular signaling.
Collapse
Affiliation(s)
- Bob Meeusen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, DK
| | - Sara M. Ambjørn
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, DK
| | - Jiri Veis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030, Vienna, Austria. Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030, Vienna, Austria
| | - Rachel C. Riley
- Department of Biochemistry and Cell Biology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Gianmatteo Vit
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, DK
| | - Brooke L. Brauer
- Department of Biochemistry and Cell Biology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Mads H. Møller
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, DK
| | - Elora C. Greiner
- Department of Biochemistry and Cell Biology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Camilla B. Chan
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, DK
| | - Melanie B. Weisser
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, DK
| | - Dimitriya H. Garvanska
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, DK
| | - Hao Zhu
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
| | - Egon Ogris
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030, Vienna, Austria. Medical University of Vienna, Max Perutz Labs, Dr.-Bohr-Gasse 9 / Vienna Biocenter 5, 1030, Vienna, Austria
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, DK
| |
Collapse
|
2
|
Benson DR, Deng B, Kashipathy MM, Lovell S, Battaile KP, Cooper A, Gao P, Fenton AW, Zhu H. The N-terminal intrinsically disordered region of Ncb5or docks with the cytochrome b 5 core to form a helical motif that is of ancient origin. Proteins 2024; 92:554-566. [PMID: 38041394 PMCID: PMC10932899 DOI: 10.1002/prot.26647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
NADH cytochrome b5 oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b5 (b5 ) and cytochrome b5 reductase (b5 R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme. While full-length human Ncb5or has proven resistant to crystallization, we have succeeded in obtaining high-resolution atomic structures of the b5 domain and a construct containing the CS and b5 R domains (CS/b5 R). Ncb5or also contains an N-terminal intrinsically disordered region of 50 residues that has no homologs in other protein families in animals but features a distinctive, conserved L34 MDWIRL40 motif also present in reduced lateral root formation (RLF) protein in rice and increased recombination center 21 in baker's yeast, all attaching to a b5 domain. After unsuccessful attempts at crystallizing a human Ncb5or construct comprising the N-terminal region naturally fused to the b5 domain, we were able to obtain a high-resolution atomic structure of a recombinant rice RLF construct corresponding to residues 25-129 of human Ncb5or (52% sequence identity; 74% similarity). The structure reveals Trp120 (corresponding to invariant Trp37 in Ncb5or) to be part of an 11-residue α-helix (S116 QMDWLKLTRT126 ) packing against two of the four helices in the b5 domain that surround heme (α2 and α5). The Trp120 side chain forms a network of interactions with the side chains of four highly conserved residues corresponding to Tyr85 and Tyr88 (α2), Cys124 (α5), and Leu47 in Ncb5or. Circular dichroism measurements of human Ncb5or fragments further support a key role of Trp37 in nucleating the formation of the N-terminal helix, whose location in the N/b5 module suggests a role in regulating the function of this multi-domain redox enzyme. This study revealed for the first time an ancient origin of a helical motif in the N/b5 module as reflected by its existence in a class of cytochrome b5 proteins from three kingdoms among eukaryotes.
Collapse
Affiliation(s)
- David R. Benson
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, U.S.A
| | - Bin Deng
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| | - Maithri M. Kashipathy
- Department of Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Scott Lovell
- Department of Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Kevin P. Battaile
- Department of NYX, New York Structural Biology Center, Upton, NY, 11973, USA
| | - Anne Cooper
- Department of Protein Production Group, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Philip Gao
- Department of Protein Production Group, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Aron W. Fenton
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| | - Hao Zhu
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, U.S.A
| |
Collapse
|
3
|
Hall R, Yuan S, Wood K, Katona M, Straub AC. Cytochrome b5 reductases: Redox regulators of cell homeostasis. J Biol Chem 2022; 298:102654. [PMID: 36441026 PMCID: PMC9706631 DOI: 10.1016/j.jbc.2022.102654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The cytochrome-b5 reductase (CYB5R) family of flavoproteins is known to regulate reduction-oxidation (redox) balance in cells. The five enzyme members are highly compartmentalized at the subcellular level and function as "redox switches" enabling the reduction of several substrates, such as heme and coenzyme Q. Critical insight into the physiological and pathophysiological significance of CYB5R enzymes has been gleaned from several human genetic variants that cause congenital disease and a broad spectrum of chronic human diseases. Among the CYB5R genetic variants, CYB5R3 is well-characterized and deficiency in expression and activity is associated with type II methemoglobinemia, cancer, neurodegenerative disorders, diabetes, and cardiovascular disease. Importantly, pharmacological and genetic-based strategies are underway to target CYB5R3 to circumvent disease onset and mitigate severity. Despite our knowledge of CYB5R3 in human health and disease, the other reductases in the CYB5R family have been understudied, providing an opportunity to unravel critical function(s) for these enzymes in physiology and disease. In this review, we aim to provide the broad scientific community an up-to-date overview of the molecular, cellular, physiological, and pathophysiological roles of CYB5R proteins.
Collapse
Affiliation(s)
- Robert Hall
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Katherine Wood
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mate Katona
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C Straub
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Microvascular Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
4
|
Jamabo M, Bentley SJ, Macucule-Tinga P, Tembo P, Edkins AL, Boshoff A. In silico analysis of the HSP90 chaperone system from the African trypanosome, Trypanosoma brucei. Front Mol Biosci 2022; 9:947078. [PMID: 36213128 PMCID: PMC9538636 DOI: 10.3389/fmolb.2022.947078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomiasis is a neglected tropical disease caused by Trypanosoma brucei (T. brucei) and spread by the tsetse fly in sub-Saharan Africa. The trypanosome relies on heat shock proteins for survival in the insect vector and mammalian host. Heat shock protein 90 (HSP90) plays a crucial role in the stress response at the cellular level. Inhibition of its interactions with chaperones and co-chaperones is being explored as a potential therapeutic target for numerous diseases. This study provides an in silico overview of HSP90 and its co-chaperones in both T. brucei brucei and T. brucei gambiense in relation to human and other trypanosomal species, including non-parasitic Bodo saltans and the insect infecting Crithidia fasciculata. A structural analysis of T. brucei HSP90 revealed differences in the orientation of the linker and C-terminal domain in comparison to human HSP90. Phylogenetic analysis displayed the T. brucei HSP90 proteins clustering into three distinct groups based on subcellular localizations, namely, cytosol, mitochondria, and endoplasmic reticulum. Syntenic analysis of cytosolic HSP90 genes revealed that T. b. brucei encoded for 10 tandem copies, while T. b. gambiense encoded for three tandem copies; Leishmania major (L. major) had the highest gene copy number with 17 tandem copies. The updated information on HSP90 from recently published proteomics on T. brucei was examined for different life cycle stages and subcellular localizations. The results show a difference between T. b. brucei and T. b. gambiense with T. b. brucei encoding a total of twelve putative HSP90 genes, while T. b. gambiense encodes five HSP90 genes. Eighteen putative co-chaperones were identified with one notable absence being cell division cycle 37 (Cdc37). These results provide an updated framework on approaching HSP90 and its interactions as drug targets in the African trypanosome.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | | | | | - Praise Tembo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Adrienne Lesley Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Unit (BioBRU), Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- *Correspondence: Aileen Boshoff,
| |
Collapse
|
5
|
Cui J, Chen H, Tang X, Zhang H, Chen YQ, Chen W. Characterization and Molecular Mechanism of a Novel Cytochrome b5 Reductase with NAD(P)H Specificity from Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5186-5196. [PMID: 35416034 DOI: 10.1021/acs.jafc.1c08108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electron-transfer capabilities of cytochrome b5 reductase (Cyt b5R) and NADPH supply have been shown to be critical factors in microbial fatty acid synthesis. Unfortunately, Cyt b5R substrate specificity is limited to the coenzyme NADH. In this study, we discovered that a novel Cyt b5R from Mortierella alpina (MaCytb5RII) displays affinity for NADPH and NADH. The enzymatic characteristics of high-purity MaCytb5RII were determined with the Km,NADPH and Km,NADH being 0.42 and 0.07 mM, respectively. MaCytb5RII shows high specific activity at 4 °C and pH 9.0. We anchored the residues that interacted with the coenzymes using the homology models of MaCytb5Rs docking NAD(P)H and FAD. The enzyme activity analysis of the purified mutants MaCytb5RII[S230N], MaCytb5RII[Y242F], and MaCytb5RII[S272A] revealed that Ser230 is essential for MaCytb5RII to have dual NAD(P)H dependence, whereas Tyr242 influences MaCytb5RII's NADPH affinity and Ala272 greatly decreases MaCytb5RII's NADH affinity.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, P. R. China
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27127, United States
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
6
|
Penjweini R, Roarke B, Alspaugh G, Link KA, Andreoni A, Mori MP, Hwang PM, Sackett DL, Knutson JR. Intracellular imaging of metmyoglobin and oxygen using new dual purpose probe EYFP-Myoglobin-mCherry. JOURNAL OF BIOPHOTONICS 2022; 15:e202100166. [PMID: 34689421 PMCID: PMC8901566 DOI: 10.1002/jbio.202100166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The biological relevance of nitric oxide (NO) and reactive oxygen species (ROS) in signaling, metabolic regulation, and disease treatment has become abundantly clear. The dramatic change in NO/ROS processing that accompanies a changing oxygen landscape calls for new imaging tools that can provide cellular details about both [O2 ] and the production of reactive species. Myoglobin oxidation to the met state by NO/ROS is a known sensor with absorbance changes in the visible range. We previously employed Förster resonance energy transfer to read out the deoxygenation/oxygenation of myoglobin, creating the subcellular [O2 ] sensor Myoglobin-mCherry. We now add the fluorescent protein EYFP to this sensor to create a novel probe that senses both met formation, a proxy for ROS/NO exposure, and [O2 ]. Since both proteins are present in the construct, it can also relieve users from the need to measure fluorescence lifetime, making [O2 ] sensing available to a wider group of laboratories.
Collapse
Affiliation(s)
- Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Branden Roarke
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Greg Alspaugh
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Katie A. Link
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| | - Alessio Andreoni
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
- Laboratory of Optical Neurophysiology, Department of Biochemistry and Molecular Medicine, University of California Davis, Tupper Hall, Davis, CA 95616
| | - Mateus P. Mori
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Paul M. Hwang
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Dan L. Sackett
- Cytoskeletal Dynamics Group, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda MD, 20892-0924
| | - Jay R. Knutson
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892-1412
| |
Collapse
|
7
|
Bohnacker S, Hartung F, Henkel F, Quaranta A, Kolmert J, Priller A, Ud-Dean M, Giglberger J, Kugler LM, Pechtold L, Yazici S, Lechner A, Erber J, Protzer U, Lingor P, Knolle P, Chaker AM, Schmidt-Weber CB, Wheelock CE, Esser-von Bieren J. Mild COVID-19 imprints a long-term inflammatory eicosanoid- and chemokine memory in monocyte-derived macrophages. Mucosal Immunol 2022; 15:515-524. [PMID: 35288643 PMCID: PMC9038526 DOI: 10.1038/s41385-021-00482-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023]
Abstract
Monocyte-derived macrophages (MDM) drive the inflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and they are a major source of eicosanoids in airway inflammation. Here we report that MDM from SARS-CoV-2-infected individuals with mild disease show an inflammatory transcriptional and metabolic imprint that lasts for at least 5 months after SARS-CoV-2 infection. MDM from convalescent SARS-CoV-2-infected individuals showed a downregulation of pro-resolving factors and an increased production of pro-inflammatory eicosanoids, particularly 5-lipoxygenase-derived leukotrienes. Leukotriene synthesis was further enhanced by glucocorticoids and remained elevated at 3–5 months, but had returned to baseline at 12 months post SARS-CoV-2 infection. Stimulation with SARS-CoV-2 spike protein or LPS triggered exaggerated prostanoid-, type I IFN-, and chemokine responses in post COVID-19 MDM. Thus, SARS-CoV-2 infection leaves an inflammatory imprint in the monocyte/ macrophage compartment that drives aberrant macrophage effector functions and eicosanoid metabolism, resulting in long-term immune aberrations in patients recovering from mild COVID-19.
Collapse
Affiliation(s)
- Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Fiona Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Alessandro Quaranta
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Johan Kolmert
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- The Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Alina Priller
- Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Minhaz Ud-Dean
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
| | - Johanna Giglberger
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Luisa M Kugler
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Lisa Pechtold
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Sarah Yazici
- Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Johanna Erber
- Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich (TUM), School of Medicine and Helmholtz Zentrum München, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Paul Lingor
- Department of Neurology, University Hospital rechts der Isar, Technical University Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| | - Adam M Chaker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, 81675, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
- German Center of Lung Research (DZL), Munich partner site, Munich, Germany
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 141-86, Stockholm, Sweden
- Gunma Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany.
| |
Collapse
|
8
|
Penjweini R, Mori MP, Hwang PM, Sackett DL, Knutson JR. Fluorescence lifetime imaging of metMyoglobin formation due to nitric oxide stress. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11965:119650H. [PMID: 35463920 PMCID: PMC9022600 DOI: 10.1117/12.2608888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Myoglobin is a protein that is expressed quite unevenly among different cell types. Nevertheless, it has been widely acknowledged that the Fe3+ state of myoglobin, metmyoglobin (metMb) has a broad functional role in metabolism, oxidative/nitrative regulation and gene networks. Accordingly, real-time monitoring of oxygenated, deoxygenated and metMb proportions- or, more broadly, of the mechanisms by which metMb is formed, presents a promising line of research. We had previously introduced a Förster resonance energy transfer (FRET) method to read out the deoxygenation/oxygenation states of myoglobin, by creating the targetable oxygen (O2) sensor Myoglobin-mCherry. In this sensor, changes in myoglobin absorbance features that occur with lost O2 occupancy -or upon metMb production- control the FRET rate from the fluorescent protein to myoglobin. When O2 is bound, mCherry fluorescence is only slightly quenched, but if either O2 is released or met is produced, FRET will increase- and this rate competing with emission reduces both emission yield and lifetime. Nitric oxide (NO) is an important signal (but also a toxic molecule) that can oxidize myoglobin to metMb with absorbance increases in the red visible range. mCherry thus senses both met and deoxygenated myoglobin, which cannot be easily separated at hypoxia. In order to dissect this, we treat cells with NO and investigate how the Myoglobin-mCherry lifetime is affected by generating metMb. More discriminatory power is then achieved when the fluorescent protein EYFP is added to Myoglobin-mCherry, creating a sandwich probe whose lifetime can selectively respond to metMb while being indifferent to O2 occupancy.
Collapse
Affiliation(s)
- Rozhin Penjweini
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD 20892-1412
| | - Mateus P Mori
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Paul M Hwang
- Laboratory of Cardiovascular and Cancer Genetics, NHLBI, NIH, Bethesda, MD 20892-1412
| | - Dan L Sackett
- Cytoskeletal Dynamics Group, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Building 9, Room 1E129, Bethesda MD, 20892-0924
| | - Jay R Knutson
- Laboratory of Advanced Microscopy and Biophotonics, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Building 10, Room 5D14, Bethesda, MD 20892-1412
| |
Collapse
|
9
|
Zámbó V, Simon-Szabó L, Sarnyai F, Mátyási J, Gór-Nagy Z, Somogyi A, Szelényi P, Kereszturi É, Tóth B, Csala M. Investigation of the putative rate-limiting role of electron transfer in fatty acid desaturation using transfected HEK293T cells. FEBS Lett 2019; 594:530-539. [PMID: 31557308 DOI: 10.1002/1873-3468.13622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 11/09/2022]
Abstract
Elevated fatty acid (FA) levels contribute to severe metabolic diseases. Unbalanced oversupply of saturated FAs is particularly damaging, which renders stearoyl-CoA desaturase (SCD1) activity an important factor of resistance. A SCD1-related oxidoreductase protects cells against palmitate toxicity, so we aimed to test whether desaturase activity is limited by SCD1 itself or by the associated electron supply. Unsaturated/saturated FA ratio was markedly elevated by SCD1 overexpression while it remained unaffected by the overexpression of SCD1-related electron transfer proteins in HEK293T cells. Electron supply was not rate-limiting either in palmitate-treated cells or in cells with enhanced SCD1 expression. Our findings indicate the rate-limiting role of SCD1 itself, and that FA desaturation cannot be facilitated by reinforcing the electron supply of the enzyme.
Collapse
Affiliation(s)
- Veronika Zámbó
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Laura Simon-Szabó
- Pathobiochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University (MTA-SE), Budapest, Hungary
| | - Farkas Sarnyai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Zsófia Gór-Nagy
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Hungary
| | - Anna Somogyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Péter Szelényi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Éva Kereszturi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Hungary
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
10
|
Benson DR, Lovell S, Mehzabeen N, Galeva N, Cooper A, Gao P, Battaile KP, Zhu H. Crystal structures of the naturally fused CS and cytochrome b 5 reductase (b 5R) domains of Ncb5or reveal an expanded CS fold, extensive CS-b 5R interactions and productive binding of the NAD(P) + nicotinamide ring. Acta Crystallogr D Struct Biol 2019; 75:628-638. [PMID: 31282472 PMCID: PMC6718094 DOI: 10.1107/s205979831900754x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/23/2019] [Indexed: 01/19/2023] Open
Abstract
Ncb5or (NADH-cytochrome b5 oxidoreductase), a cytosolic ferric reductase implicated in diabetes and neurological diseases, comprises three distinct domains, cytochrome b5 (b5) and cytochrome b5 reductase (b5R) domains separated by a CHORD-Sgt1 (CS) domain, and a novel 50-residue N-terminal region. Understanding how interdomain interactions in Ncb5or facilitate the shuttling of electrons from NAD(P)H to heme, and how the process compares with the microsomal b5 (Cyb5A) and b5R (Cyb5R3) system, is of interest. A high-resolution structure of the b5 domain (PDB entry 3lf5) has previously been reported, which exhibits substantial differences in comparison to Cyb5A. The structural characterization of a construct comprising the naturally fused CS and b5R domains with bound FAD and NAD+ (PDB entry 6mv1) or NADP+ (PDB entry 6mv2) is now reported. The structures reveal that the linker between the CS and b5R cores is more ordered than predicted, with much of it extending the β-sandwich motif of the CS domain. This limits the flexibility between the two domains, which recognize one another via a short β-sheet motif and a network of conserved side-chain hydrogen bonds, salt bridges and cation-π interactions. Notable differences in FAD-protein interactions in Ncb5or and Cyb5R3 provide insight into the selectivity for docking of their respective b5 redox partners. The structures also afford a structural explanation for the unusual ability of Ncb5or to utilize both NADH and NADPH, and represent the first examples of native, fully oxidized b5R family members in which the nicotinamide ring of NAD(P)+ resides in the active site. Finally, the structures, together with sequence alignments, show that the b5R domain is more closely related to single-domain Cyb5R proteins from plants, fungi and some protists than to Cyb5R3 from animals.
Collapse
Affiliation(s)
- David R. Benson
- Department of Chemistry, The University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045, USA
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Nadezhda Galeva
- Analytical Proteomics Laboratory, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Anne Cooper
- Protein Production Group, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Kevin P. Battaile
- IMCA-CAT, APS, Argonne National Laboratory, 9700 South Cass Avenue, Building 435A, Argonne, IL 60439, USA
| | - Hao Zhu
- Department of Clinical Laboratory Sciences, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
11
|
Stroh MA, Winter MK, McCarson KE, Thyfault JP, Zhu H. NCB5OR Deficiency in the Cerebellum and Midbrain Leads to Dehydration and Alterations in Thirst Response, Fasted Feeding Behavior, and Voluntary Exercise in Mice. THE CEREBELLUM 2019; 17:152-164. [PMID: 28887630 DOI: 10.1007/s12311-017-0880-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytosolic NADH-cytochrome-b5-oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues. We have previously reported that global ablation of NCB5OR in mice results in early-onset lean diabetes with decreased serum leptin levels and increased metabolic and feeding activities. The conditional deletion of NCB5OR in the mouse cerebellum and midbrain (conditional knock out, CKO mice) results in local iron dyshomeostasis and altered locomotor activity. It has been established that lesion to or removal of the cerebellum leads to changes in nutrient organization, visceral response, feeding behavior, and body weight. This study assessed whether loss of NCB5OR in the cerebellum and midbrain altered feeding or metabolic activity and had an effect on serum T3, cortisol, prolactin, and leptin levels. Metabolic cage data revealed that 16 week old male CKO mice had elevated respiratory quotients and decreased respiratory water expulsion, decreased voluntary exercise, and altered feeding and drinking behavior compared to wild-type littermate controls. Most notably, male CKO mice displayed higher consumption of food during refeeding after a 48-h fast. Echo MRI revealed normal body composition but decreased total water content and hydration ratios in CKO mice. Increased serum osmolality measurements confirmed the dehydration status of male CKO mice. Serum leptin levels were significantly elevated in male CKO mice while prolactin, T3, and cortisol levels remain unchanged relative to wild-type controls, consistent with elevated transcript levels for leptin receptors (short form) in the male CKO mouse cerebellum. Taken together, these findings suggest altered feeding response post starvation as a result of NCB5OR deficiency in the cerebellum.
Collapse
Affiliation(s)
- Matthew A Stroh
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John P Thyfault
- Department of Molecular Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Research Service, Kansas City VA Medical Center, Kansas City, MO, 64128, USA
| | - Hao Zhu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 4048G-Eaton, Kansas City, KS, 66160, USA.
| |
Collapse
|
12
|
Kawaguchi F, Kigoshi H, Fukushima M, Iwamoto E, Kobayashi E, Oyama K, Mannen H, Sasazaki S. Whole-genome resequencing to identify candidate genes for the QTL for oleic acid percentage in Japanese Black cattle. Anim Sci J 2019; 90:467-472. [PMID: 30780197 DOI: 10.1111/asj.13179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/12/2018] [Accepted: 12/27/2018] [Indexed: 01/25/2023]
Abstract
In our previous study, we detected a QTL for the oleic acid percentage (C18:1) on BTA9 in Japanese Black cattle through a genome-wide association study (GWAS). In this study, we performed whole-genome resequencing on eight animals with higher and lower C18:1 to identify candidate polymorphisms for the QTL. A total of 39,658 polymorphisms were detected in the candidate region, which were narrowed to 1993 polymorphisms within 23 genes based on allele differences between the high and low C18:1 groups. We subsequently selected three candidate genes, that is, CYB5R4, MED23, and VNN1, among the 23 genes based on their function in fatty acid metabolism. In each candidate gene, three SNPs, that is, CYB5R4 c.*349G > T, MED23 c.3700G > A, and VNN1 c.197C > T, were selected as candidate SNPs to verify their effect on C18:1 in a Japanese Black cattle population (n = 889). The statistical analysis showed that these SNPs were significantly associated with C18:1 (p < 0.05), suggesting that they were candidates for the QTL. In conclusion, we successfully narrowed the candidates for the QTL by detecting possible polymorphisms located within the candidate region. It is expected that the responsible polymorphism can be identified by demonstrating their effect on the gene's function.
Collapse
Affiliation(s)
- Fuki Kawaguchi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Hiroto Kigoshi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Moriyuki Fukushima
- Northern Center of Agricultural Technology, General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery, Asago, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center for Agriculture, Forestry and Fisheries, Kasai, Japan
| | - Eiji Kobayashi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kenji Oyama
- Food Resources Education & Research Center, Kobe University, Kasai, Japan
| | - Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shinji Sasazaki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
13
|
Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:233-258. [PMID: 30419202 DOI: 10.1016/j.bbabio.2018.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or NADH to final electron acceptor follows a linear pathway: NAD(P)H → flavin → one-electron carrier → metal containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the catalytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems. Therefore, this review summarizes the roles of redox cofactors in the metabolic ET systems on the basis of one-electron redox potentials. In final Section, evolutionary aspects of NAD(P)H-dependent multi-domain ET systems will be discussed.
Collapse
|
14
|
Pinsino A, Bergami E, Della Torre C, Vannuccini ML, Addis P, Secci M, Dawson KA, Matranga V, Corsi I. Amino-modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos. Nanotoxicology 2017; 11:201-209. [PMID: 28091127 DOI: 10.1080/17435390.2017.1279360] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Polystyrene nanoparticles have been shown to pose serious risk to marine organisms including sea urchin embryos based on their surface properties and consequently behaviour in natural sea water. The aim of this study is to investigate the toxicity pathways of amino polystyrene nanoparticles (PS-NH2, 50 nm) in Paracentrotus lividus embryos in terms of development and signalling at both protein and gene levels. Two sub-lethal concentrations of 3 and 4 μg/mL of PS-NH2 were used to expose sea urchin embryos in natural sea water (PS-NH2 as aggregates of 143 ± 5 nm). At 24 and 48 h post-fertilisation (hpf) embryonic development was monitored and variations in the levels of key proteins involved in stress response and development (Hsp70, Hsp60, MnSOD, Phospho-p38 Mapk) as well as the modulation of target genes (Pl-Hsp70, Pl-Hsp60, Pl-Cytochrome b, Pl-p38 Mapk, Pl-Caspase 8, Pl-Univin) were measured. At 48 hpf various striking teratogenic effects were observed such as the occurrence of cells/masses randomly distributed, severe skeletal defects and delayed development. At 24 hpf a significant up-regulation of Pl-Hsp70, Pl-p38 Mapk, Pl-Univin and Pl-Cas8 genes was found, while at 48 hpf only for Pl-Univin was observed. Protein profile showed different patterns as a significant increase of Hsp70 and Hsp60 only after 48 hpf compared to controls. Conversely, P-p38 Mapk protein significantly increased at 24 hpf and decreased at 48 hpf. Our findings highlight that PS-NH2 are able to disrupt sea urchin embryos development by modulating protein and gene profile providing new understandings into the signalling pathways involved.
Collapse
Affiliation(s)
- Annalisa Pinsino
- a CNR - Institute of Biomedicine and Molecular Immunology "A. Monroy" , Palermo , Italy
| | - Elisa Bergami
- b Department of Physical, Earth and Environmental Sciences , University of Siena , Siena , Italy
| | | | - Maria Luisa Vannuccini
- b Department of Physical, Earth and Environmental Sciences , University of Siena , Siena , Italy
| | - Piero Addis
- d Department of Environmental and Life Sciences , University of Cagliari , Cagliari , Italy
| | - Marco Secci
- d Department of Environmental and Life Sciences , University of Cagliari , Cagliari , Italy
| | - Kenneth A Dawson
- e Centre for BioNano Interactions, School of Chemistry and Chemical Biology , University College Dublin , Dublin , Ireland
| | - Valeria Matranga
- a CNR - Institute of Biomedicine and Molecular Immunology "A. Monroy" , Palermo , Italy
| | - Ilaria Corsi
- b Department of Physical, Earth and Environmental Sciences , University of Siena , Siena , Italy
| |
Collapse
|
15
|
Stroh MA, Winter MK, Swerdlow RH, McCarson KE, Zhu H. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice. Metab Brain Dis 2016; 31:951-64. [PMID: 27188291 PMCID: PMC5929129 DOI: 10.1007/s11011-016-9834-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/01/2016] [Indexed: 12/13/2022]
Abstract
Iron dyshomeostasis has been implicated in many diseases, including a number of neurological conditions. Cytosolic NADH cytochrome b5 oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues and is capable of reducing ferric iron in vitro. We previously reported that global gene ablation of NCB5OR resulted in early-onset diabetes and altered iron homeostasis in mice. To further investigate the specific effects of NCB5OR deficiency on neural tissue without contributions from known phenotypes, we generated a conditional knockout (CKO) mouse that lacks NCB5OR only in the cerebellum and midbrain. Assessment of molecular markers in the cerebellum of CKO mice revealed changes in pathways associated with cellular and mitochondrial iron homeostasis. (59)Fe pulse-feeding experiments revealed cerebellum-specific increased or decreased uptake of iron by 7 and 16 weeks of age, respectively. Additionally, we characterized behavioral changes associated with loss of NCB5OR in the cerebellum and midbrain in the context of dietary iron deprivation-evoked generalized iron deficiency. Locomotor activity was reduced and complex motor task execution was altered in CKO mice treated with an iron deficient diet. A sucrose preference test revealed that the reward response was intact in CKO mice, but that iron deficient diet consumption altered sucrose preference in all mice. Detailed gait analysis revealed locomotor changes in CKO mice associated with dysfunctional proprioception and locomotor activation independent of dietary iron deficiency. Finally, we demonstrate that loss of NCB5OR in the cerebellum and midbrain exacerbated harmaline-induced tremor activity. Our findings suggest an essential role for NCB5OR in maintaining both iron homeostasis and the proper functioning of various locomotor pathways in the mouse cerebellum and midbrain.
Collapse
Affiliation(s)
- Matthew A Stroh
- Landon Center on Aging, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 1005, Kansas City, KS, 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 3030, Kansas City, KS, 66160, USA
- Neuroscience Graduate Program, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 3038, Kansas City, KS, 66160, USA
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 3051, Kansas City, KS, 66160, USA
| | - Russell H Swerdlow
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 3030, Kansas City, KS, 66160, USA
- Neuroscience Graduate Program, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 3038, Kansas City, KS, 66160, USA
- Department of Neurology, University of Kansas Medical Center, 3599 Rainbow Blvd., MSN 2012, Kansas City, KS, 66160, USA
| | - Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 3051, Kansas City, KS, 66160, USA
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 1018, Kansas City, KS, 66160, USA
| | - Hao Zhu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 3030, Kansas City, KS, 66160, USA.
- Neuroscience Graduate Program, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 3038, Kansas City, KS, 66160, USA.
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 4048G-Eaton, Kansas City, KS, 66160, USA.
| |
Collapse
|
16
|
Zámbó V, Tóth M, Schlachter K, Szelényi P, Sarnyai F, Lotz G, Csala M, Kereszturi É. Cytosolic localization of NADH cytochrome b₅ oxidoreductase (Ncb5or). FEBS Lett 2016; 590:661-71. [PMID: 26878259 DOI: 10.1002/1873-3468.12097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 11/10/2022]
Abstract
Acyl-CoA desaturation in the endoplasmic reticulum (ER) membrane depends on cytosolic NADH or NADPH, whereas NADPH in the ER lumen is utilized by prereceptor glucocorticoid production. It was assumed that NADH cytochrome b5 oxidoreductase (Ncb5or) might connect Acyl-CoA desaturation to ER luminal redox. We aimed to clarify the ambiguous compartmentalization of Ncb5or and test the possible effect of stearoyl-CoA on microsomal NADPH level. Amino acid sequence analysis, fluorescence microscopy of GFP-tagged protein, immunocytochemistry, and western blot analysis of subcellular fractions unequivocally demonstrated that Ncb5or, either endogenous or exogenous, is localized in the cytoplasm and not in the ER lumen in cultured cells and liver tissue. Moreover, the involvement of ER-luminal reducing equivalents in stearoyl-CoA desaturation was excluded.
Collapse
Affiliation(s)
- Veronika Zámbó
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Mónika Tóth
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | - Péter Szelényi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Farkas Sarnyai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Gábor Lotz
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Éva Kereszturi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
17
|
Guo J, Thiess S, Johansson I, Mkrtchian S, Ingelman-Sundberg M. Membrane topology and search for potential redox partners of colon cancer-specific cytochrome P450 2W1. FEBS Lett 2016; 590:330-9. [PMID: 26787547 DOI: 10.1002/1873-3468.12063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 01/26/2023]
Abstract
Cytochrome P450 2W1 (CYP2W1) is a colon tumor-specific enzyme, suggested as a potential target for cancer therapy. In contrast to other endoplasmic reticulum P450s, we found completely inverted ER membrane topology of CYP2W1 using different approaches (redox sensitive luciferase assay and protease protection assay) and demonstrated that canonical CYP reductants, cytochrome P450 reductase, and cytochrome b5 cannot serve as electron donors for CYP2W1. Moreover, the reduced catalytic activity of the Asn177 mutant that is modified by glycan moieties in the wild-type enzyme indicates a functional relevance of CYP2W1 glycosylation.
Collapse
Affiliation(s)
- Jia Guo
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie Thiess
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Inger Johansson
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Kálmán FS, Lizák B, Nagy SK, Mészáros T, Zámbó V, Mandl J, Csala M, Kereszturi E. Natural mutations lead to enhanced proteasomal degradation of human Ncb5or, a novel flavoheme reductase. Biochimie 2013; 95:1403-10. [PMID: 23523930 DOI: 10.1016/j.biochi.2013.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/08/2013] [Indexed: 01/12/2023]
Abstract
NADH cytochrome b5 oxidoreductase (Ncb5or) protects β-cells against oxidative stress and lipotoxicity. The predominant phenotype of lean Ncb5or-null mouse is insulin-dependent diabetes due to β-cell death. This suggests the putative role of NCB5OR polymorphism in human diabetes. Therefore, we aimed to investigate the effect of natural missense mutations on the expression of human NCB5OR. Protein and mRNA levels of five non-synonymous coding variants were analyzed in transfected HEK293 and HepG2 cells. Although the mRNA levels were only slightly affected by the mutations, the amount of Ncb5or protein was largely reduced upon two Glu to Gly replacements in the third exon (p.E87G, p.E93G). These two mutations remarkably and synergistically shortened the half-life of Ncb5or and their effect could be attenuated by proteasome inhibitors. Our results strongly indicate that p.E87G, p.E93G mutations lead to enhanced proteasomal degradation due to manifest conformational alterations in the b5 domain. These data provide first evidence for natural mutations in NCB5OR gene resulting in decreased protein levels and hence having potential implications in human pathology.
Collapse
Affiliation(s)
- Fanni S Kálmán
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, POB 260, 1444 Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bunn HF. Practicing Biochemistry without a License. J Biol Chem 2013; 288:5062-71. [DOI: 10.1074/jbc.x113.451591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Mukherjee S, Sen Santara S, Das S, Bose M, Roy J, Adak S. NAD(P)H cytochrome b5 oxidoreductase deficiency in Leishmania major results in impaired linoleate synthesis followed by increased oxidative stress and cell death. J Biol Chem 2012; 287:34992-35003. [PMID: 22923617 DOI: 10.1074/jbc.m112.389338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
NAD(P)H cytochrome b(5) oxidoreductase (Ncb5or), comprising cytochrome b(5) and cytochrome b(5) reductase domains, is widely distributed in eukaryotic organisms. Although Ncb5or plays a crucial role in lipid metabolism of mice, so far no Ncb5or gene has been reported in the unicellular parasitic protozoa Leishmania species. We have cloned, expressed, and characterized Ncb5or gene from Leishmania major. Steady state catalysis and spectral studies show that NADH can quickly reduce the ferric state of the enzyme to the ferrous state and is able to donate an electron(s) to external acceptors. To elucidate its exact physiological role in Leishmania, we attempted to create NAD(P)H cytochrome b(5) oxidoreductase from L. major (LmNcb5or) knock-out mutants by targeted gene replacement technique. A free fatty acid profile in knock-out (KO) cells reveals marked deficiency in linoleate and linolenate when compared with wild type (WT) or overexpressing cells. KO culture has a higher percentage of dead cells compared with both WT and overexpressing cells. Increased O(2) uptake, uncoupling and ATP synthesis, and loss of mitochondrial membrane potential are evident in KO cells. Flow cytometric analysis reveals the presence of a higher concentration of intracellular H(2)O(2), indicative of increased oxidative stress in parasites lacking LmNcb5or. Cell death is significantly reduced when the KO cells are pretreated with BSA bound linoleate. Real time PCR studies demonstrate a higher Δ12 desaturase, superoxide dismutase, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA with a concomitant fall in Δ9 desaturase mRNA expression in LmNcb5or null cell line. Together these findings suggest that decreased linoleate synthesis, and increased oxidative stress and apoptosis are the major consequences of LmNcb5or deficiency in Leishmania.
Collapse
Affiliation(s)
- Supratim Mukherjee
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sumit Sen Santara
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Shantanabha Das
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Moumita Bose
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Jayasree Roy
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subrata Adak
- Division of Structural Biology and Bioinformatics, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
21
|
LEE CHANGYU, KIM YOUNGWOO, KIM EUNHYUN, MENG ZHIPENG, HUANG WENDONG, HWANG SEJIN, KIM SANGGEON. Farnesoid X receptor protects hepatocytes from injury by repressing miR-199a-3p, which increases levels of LKB1. Gastroenterology 2012; 142:1206-1217.e7. [PMID: 22265968 PMCID: PMC3578415 DOI: 10.1053/j.gastro.2012.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 12/27/2011] [Accepted: 01/07/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatocyte injury occurs during liver fibrogenesis. MicroRNAs (miRNA) regulate some of these processes, and some are regulated by the farnesoid X receptor (FXR). We investigated the effect of repression of specific miRNAs by FXR in hepatocyte injury using fibrotic liver tissue from patients and hepatocytes. METHODS We used immunohistochemistry or real-time polymerase chain reaction to analyze proteins and miRNAs in human and mouse liver samples. HepG2 cells were transfected with pre-miRNA, antisense oligonucleotides, small interfering RNAs, the 3'-untranslated region of liver kinase B1 (LKB1) (STK11), or constructs for overexpression, and analyzed. RESULTS Liver tissue from patients with severe fibrosis had lower levels of FXR and greater amounts of hepatocyte death than samples from patients with mild disease. Levels of several miRNAs changed when FXR expression was disrupted in the liver; one of these, miR-199a-3p, was significantly up-regulated in patients with severe fibrosis. Activation of FXR by its ligand reduced the level of miR-199a-3p in HepG2 cells. LKB1 messenger RNA was identified as a target of miR-199a-3p, and its expression was reduced in human fibrotic liver tissue. Overexpression of FXR or incubation of cultured hepatocytes with the FXR ligand up-regulated LKB1; LKB1 was not induced in cells transfected with miR-199a-3p. Incubation of HepG2 cells with FXR ligand, or injection of the ligand into mice, protected hepatocytes from injury and increased levels of LKB1; levels of miR-199a-3p were reduced compared with cells that were not incubated with the FXR ligand. Activation of FXR reduced mitochondrial dysfunction and oxidative stress and increased hepatocyte survival. CONCLUSIONS In hepatocytes, FXR represses production of miR-199a-3p. In fibrotic livers of humans and mice, FXR expression is reduced, increasing levels of miR-199a-3p, which reduces levels of LKB1. FXR therefore protects hepatocytes from injury by repressing miR-199a-3p and thereby increasing levels of LKB1.
Collapse
Affiliation(s)
- CHAN GYU LEE
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea;
| | - YOUNG WOO KIM
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea;
| | - EUN HYUN KIM
- College of Medicine, Hanyang University, Seoul, Korea;
| | - ZHIPENG MENG
- Department of Gene Regulation and Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - WENDONG HUANG
- Department of Gene Regulation and Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - SE JIN HWANG
- College of Medicine, Hanyang University, Seoul, Korea;
| | - SANG GEON KIM
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea;
| |
Collapse
|
22
|
Abstract
Reactive oxygen species (ROS) have profound influences on cellular homeostasis. In excess, they can potentiate the oxidation of numerous molecules, including proteins, lipids, and nucleic acids, affecting function. Furthermore, ROS-mediated oxidation of proteins can directly or indirectly modulate gene expression via effects on redox-sensitive transcription factors or via effects on phospho-relay-mediated signal transduction. In doing so, ROS impact numerous fundamental cellular processes, and have thus been implicated as critical mediators of both homeostasis and disease pathogenesis. Vascular reduced nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a major contributor of ROS within the lung. The generation of ROS in the pulmonary vasculature has a pivotal role in endothelial cell (EC) activation and function. Alterations in EC phenotype contribute to vascular tone, permeability, and inflammatory responses and, thus, have been implicated in numerous diseases of the lung, including pulmonary hypertension, ischemic-reperfusion injury, and adult respiratory distress syndrome. Thus, although a detailed understanding of NOX-derived ROS in pulmonary EC biology in the context of health and disease is nascent, there is mounting evidence implicating these enzymes as critical modifiers of diseases of the lung and pulmonary circulation. The purpose of this review is to focus specifically on known as well as putative roles for pulmonary EC NOX, with attention to studies on the intact lung.
Collapse
Affiliation(s)
- Rachel Damico
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
23
|
High fat feeding exacerbates endoplasmic reticulum stress and beta cell demise. EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
OnpA, an unusual flavin-dependent monooxygenase containing a cytochrome b(5) domain. J Bacteriol 2012; 194:1342-9. [PMID: 22267507 DOI: 10.1128/jb.06411-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ortho-Nitrophenol 2-monooxygenase (EC 1.14.13.31) from Alcaligenes sp. strain NyZ215 catalyzes monooxygenation of ortho-nitrophenol to form catechol via ortho-benzoquinone. Sequence analysis of this onpA-encoded enzyme revealed that it contained a flavin-binding monooxygenase domain and a heme-binding cytochrome b(5) domain. OnpA was purified to homogeneity as a His-tagged protein and was considered a monomer, as determined by gel filtration. FAD and heme were identified by high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (HPLC-MS) as cofactors in this enzyme, and quantitative analysis indicated that 1 mol of the purified recombinant OnpA contained 0.66 mol of FAD and 0.20 mol of heme. However, the enzyme activity of OnpA was increased by 60% and 450% after addition of FAD and hemin, respectively, suggesting that the optimal stoichiometry was 1:1:1. In addition, site-directed mutagenesis experiments confirmed that two highly conserved histidines located in the cytochrome b(5) domain were associated with binding of the heme, and the cytochrome b(5) domain was involved in the OnpA activity. These results indicate that OnpA is an unusual FAD-dependent monooxygenase containing a fused cytochrome b(5) domain that is essential for its activity. Therefore, we here demonstrate a link between cytochrome b(5) and flavin-dependent monooxygenases.
Collapse
|
25
|
Guo Y, Xu M, Deng B, Frontera JR, Kover KL, Aires D, Ding H, Carlson SE, Turk J, Wang W, Zhu H. Beta-Cell Injury in Ncb5or-null Mice is Exacerbated by Consumption of a High-Fat Diet. EUR J LIPID SCI TECH 2011; 114:233-243. [PMID: 22582025 DOI: 10.1002/ejlt.201100309] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
NADH-cytochrome b5 oxidoreductase (Ncb5or) in endoplasmic reticulum (ER) is involved in fatty acid metabolism, and Ncb5or(-/-) mice fed standard chow (SC) are insulin-sensitive but weigh less than wild type (WT) littermates. Ncb5or(-/-) mice develop hyperglycemia at about age 7 weeks due to β-cell dysfunction and loss associated with saturated fatty acid accumulation and manifestations of ER and oxidative stress. Here we report that when Ncb5or(-/-) mice born to heterozygous mothers fed a high fat (HF) diet continue to ingest HF, they weigh as much as SC-fed WT at age 5 weeks. By age 7 weeks, diabetes mellitus develops in all HF-fed vs. 68% of SC-fed Ncb5or(-/-) mice. Islet β-cell content in age 5-week Ncb5or(-/-) mice fed HF for 7 days is lower (53%) than for those fed SC (63%), and both are lower than for WT (75%, SC, vs. 69%, HF). Islet transcript levels for markers of mitochondrial biogenesis (PGC-1α) and ER stress (ATF6α) are higher in Ncb5or(-/-) than WT mice but not significantly affected by diet. Consuming a HF diet exacerbates Ncb5or(-/-) β-cell accumulation of intracellular saturated fatty acids and increases the frequency of ER distention from 11% (SC) to 47% (HF), thus accelerates β-cell injury in Ncb5or(-/-) mice.
Collapse
Affiliation(s)
- Ying Guo
- Department of Endocrinology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, China 510275
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang W, Guo Y, Xu M, Huang HH, Novikova L, Larade K, Jiang ZG, Thayer TC, Frontera JR, Aires D, Ding H, Turk J, Mathews CE, Bunn HF, Stehno-Bittel L, Zhu H. Development of diabetes in lean Ncb5or-null mice is associated with manifestations of endoplasmic reticulum and oxidative stress in beta cells. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1532-41. [PMID: 21839170 DOI: 10.1016/j.bbadis.2011.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/15/2011] [Accepted: 07/26/2011] [Indexed: 01/01/2023]
Abstract
NADH-cytochrome b5 oxidoreductase (Ncb5or) is an endoplasmic reticulum (ER)-associated redox enzyme involved in fatty acid metabolism, and phenotypic abnormalities of Ncb5or(-/-) mice include diabetes and lipoatrophy. These mice are lean and insulin-sensitive but become hyperglycemic at age 7 weeks as a result of β-cell dysfunction and loss. Here we examine early cellular and molecular events associated with manifestations of β-cell defects in Ncb5or(-/-) mice. We observe lower islet β-cell content in pancreata at age 4 weeks and prominent ER distention in β-cells by age 5 weeks. Ultrastructural changes progress rapidly in severity from age 5 to 6 weeks, and their frequency rises from 10% of β-cells at 5 weeks to 33% at 6 weeks. These changes correlate temporally with the onset of diabetes. ER stress responses and lipid load in Ncb5or(-/-) β-cells were assessed with isolated islets from mice at age 5 weeks. Expression levels of the stress marker protein Grp78/BiP and of phosphorylated eIF2α protein were found to be reduced, although their transcript levels did not decline. This pattern stands in contrast to the canonical unfolded protein response. Ncb5or(-/-) β-cells also accumulated higher intracellular levels of palmitate and other free fatty acids and exhibited greater reactive oxygen species production than wild-type cells. An alloxan-susceptible genetic background was found to confer accelerated onset of diabetes in Ncb5or(-/-) mice. These findings provide the first direct evidence that manifestations of diabetes in lean Ncb5or(-/-) mice involve saturated free fatty acid overload of β-cells and ER and oxidative stress responses.
Collapse
Affiliation(s)
- Wenfang Wang
- Department of Physical Therapy and Rehabilitation Science, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lederer F. Another look at the interaction between mitochondrial cytochrome c and flavocytochrome b (2). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:1283-99. [PMID: 21503671 DOI: 10.1007/s00249-011-0697-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/28/2011] [Accepted: 03/16/2011] [Indexed: 11/29/2022]
Abstract
Yeast flavocytochrome b (2) tranfers reducing equivalents from lactate to oxygen via cytochrome c and cytochrome c oxidase. The enzyme catalytic cycle includes FMN reduction by lactate and reoxidation by intramolecular electron transfer to heme b (2). Each subunit of the soluble tetrameric enzyme consists of an N terminal b (5)-like heme-binding domain and a C terminal flavodehydrogenase. In the crystal structure, FMN and heme are face to face, and appear to be in a suitable orientation and at a suitable distance for exchanging electrons. But in one subunit out of two, the heme domain is disordered and invisible. This raises a central question: is this mobility required for interaction with the physiological acceptor cytochrome c, which only receives electrons from the heme and not from the FMN? The present review summarizes the results of the variety of methods used over the years that shed light on the interactions between the flavin and heme domains and between the enzyme and cytochrome c. The conclusion is that one should consider the interaction between the flavin and heme domains as a transient one, and that the cytochrome c and the flavin domain docking areas on the heme b (2) domain must overlap at least in part. The heme domain mobility is an essential component of the flavocytochrome b (2) functioning. In this respect, the enzyme bears similarity to a variety of redox enzyme systems, in particular those in which a cytochrome b (5)-like domain is fused to proteins carrying other redox functions.
Collapse
Affiliation(s)
- Florence Lederer
- Laboratoire de Chimie Physique, Université Paris-Sud, Orsay Cedex, France.
| |
Collapse
|
28
|
Xu M, Wang W, Frontera JR, Neely MC, Lu J, Aires D, Hsu FF, Turk J, Swerdlow RH, Carlson SE, Zhu H. Ncb5or deficiency increases fatty acid catabolism and oxidative stress. J Biol Chem 2011; 286:11141-54. [PMID: 21300801 DOI: 10.1074/jbc.m110.196543] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The endoplasmic reticulum-associated NADH cytochrome b(5) oxidoreductase (Ncb5or) is widely distributed in animal tissues. Ncb5or(-/-) mice develop diabetes at age 7 weeks and have increased susceptibility to the diabetogenic oxidant streptozotocin. Ncb5or deficiency also results in lipoatrophy and increased hepatocyte sensitivity to cytotoxic effects of saturated fatty acids. Here we investigate the mechanisms of these phenomena in prediabetic Ncb5or(-/-) mice and find that, despite increased rates of fatty acid uptake and synthesis and higher stearoyl-CoA desaturase (SCD) expression, Ncb5or(-/-) liver accumulates less triacylglycerol (TAG) than wild type (WT). Increased fatty acid catabolism and oxidative stress are evident in Ncb5or(-/-) hepatocytes and reflect increased mitochondrial content, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) expression, fatty acid oxidation rates, oxidative stress response gene expression, and oxidized glutathione content. Ncb5or(-/-) hepatocytes readily incorporate exogenous fatty acids into TAG but accumulate more free fatty acids (FFA) and have greater palmitate-induced oxidative stress responses and cell death than WT, all of which are alleviated by co-incubation with oleate via TAG channeling. A high fat diet rich in palmitate and oleate stimulates both lipogenesis and fatty acid catabolism in Ncb5or(-/-) liver, resulting in TAG levels similar to WT but increased intracellular FFA accumulation. Hepatic SCD-specific activity is lower in Ncb5or(-/-) than in WT mice, although Ncb5or(-/-) liver has a greater increase in Scd1 mRNA and protein levels. Together, these findings suggest that increased FFA accumulation and catabolism and oxidative stress are major consequences of Ncb5or deficiency in liver.
Collapse
Affiliation(s)
- Ming Xu
- Department of Physical Therapy and Rehabilitation Science, University of of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Deng B, Parthasarathy S, Wang W, Gibney BR, Battaile KP, Lovell S, Benson DR, Zhu H. Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain. J Biol Chem 2010; 285:30181-91. [PMID: 20630863 DOI: 10.1074/jbc.m110.120329] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NADH cytochrome b(5) oxidoreductase (Ncb5or) is found in animals and contains three domains similar to cytochrome b(5) (b(5)), CHORD-SGT1 (CS), and cytochrome b(5) reductase (b(5)R). Ncb5or has an important function, as suggested by the diabetes and lipoatrophy phenotypes in Ncb5or null mice. To elucidate the structural and functional properties of human Ncb5or, we generated its individual b(5) and b(5)R domains (Ncb5or-b(5) and Ncb5or-b(5)R, respectively) and compared them with human microsomal b(5) (Cyb5A) and b(5)R (Cyb5R3). A 1.25 Å x-ray crystal structure of Ncb5or-b(5) reveals nearly orthogonal planes of the imidazolyl rings of heme-ligating residues His(89) and His(112), consistent with a highly anisotropic low spin EPR spectrum. Ncb5or is the first member of the cytochrome b(5) family shown to have such a heme environment. Like other b(5) family members, Ncb5or-b(5) has two helix-loop-helix motifs surrounding heme. However, Ncb5or-b(5) differs from Cyb5A with respect to location of the second heme ligand (His(112)) and of polypeptide conformation in its vicinity. Electron transfer from Ncb5or-b(5)R to Ncb5or-b(5) is much less efficient than from Cyb5R3 to Cyb5A, possibly as a consequence of weaker electrostatic interactions. The CS linkage probably obviates the need for strong interactions between b(5) and b(5)R domains in Ncb5or. Studies with a construct combining the Ncb5or CS and b(5)R domains suggest that the CS domain facilitates docking of the b(5) and b(5)R domains. Trp(114) is an invariant surface residue in all known Ncb5or orthologs but appears not to contribute to electron transfer from the b(5)R domain to the b(5) domain.
Collapse
Affiliation(s)
- Bin Deng
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Gardner AM, Cook MR, Gardner PR. Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes. J Biol Chem 2010; 285:23850-7. [PMID: 20511233 DOI: 10.1074/jbc.m110.132340] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytoglobin (Cygb) was investigated for its capacity to function as a NO dioxygenase (NOD) in vitro and in hepatocytes. Ascorbate and cytochrome b(5) were found to support a high NOD activity. Cygb-NOD activity shows respective K(m) values for ascorbate, cytochrome b(5), NO, and O(2) of 0.25 mm, 0.3 microm, 40 nm, and approximately 20 microm and achieves a k(cat) of 0.5 s(-1). Ascorbate and cytochrome b(5) reduce the oxidized Cygb-NOD intermediate with apparent second order rate constants of 1000 m(-1) s(-1) and 3 x 10(6) m(-1) s(-1), respectively. In rat hepatocytes engineered to express human Cygb, Cygb-NOD activity shows a similar k(cat) of 1.2 s(-1), a K(m)(NO) of 40 nm, and a k(cat)/K(m)(NO) (k'(NOD)) value of 3 x 10(7) m(-1) s(-1), demonstrating the efficiency of catalysis. NO inhibits the activity at [NO]/[O(2)] ratios >1:500 and limits catalytic turnover. The activity is competitively inhibited by CO, is slowly inactivated by cyanide, and is distinct from the microsomal NOD activity. Cygb-NOD provides protection to the NO-sensitive aconitase. The results define the NOD function of Cygb and demonstrate roles for ascorbate and cytochrome b(5) as reductants.
Collapse
Affiliation(s)
- Anne M Gardner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
31
|
Zhang Y, Larade K, Jiang ZG, Ito S, Wang W, Zhu H, Bunn HF. The flavoheme reductase Ncb5or protects cells against endoplasmic reticulum stress-induced lipotoxicity. J Lipid Res 2010; 51:53-62. [PMID: 19609006 DOI: 10.1194/jlr.m900146-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NCB5OR is a novel flavoheme reductase with a cytochrome b5-like domain at the N-terminus and a cytochrome b5 reductase-like domain at the C terminus. Ncb5or knock-out mice develop insulin deficient diabetes and loss of white adipose tissue. Ncb5or(-/-) mice have impairment of Delta9 fatty acid desaturation with elevated ratios of palmitate to palmitoleate and stearate to oleate. In this study we assess the role of the endoplasmic reticulum (ER) stress response in mediating lipotoxicity in Ncb5or(-/-) mice. The ER stress response was assessed by induction of BiP, ATF3, ATF6, XBP-1, and C/EBP homologous protein (CHOP). Exposure to palmitate, but not oleate or mixtures of oleate and palmitate induced these markers of ER stress to a much greater extent in Ncb5or(-/-) hepatocytes than in wild-type cells. In contrast, Ncb5or(-/-) and Ncb5or(+/+) hepatocytes were equally sensitive to ER stress imposed by increasing concentrations of tunicamycin. In order to assess the role of ER stress in vivo, we prepared mice that lack both NCB5OR and CHOP, a proapoptotic transcription factor important in the ER stress response. Onset of hyperglycemia in the Chop(-/-);Ncb5or(-/-) mice was delayed two weeks beyond that observed in Chop(+/+);Ncb5or(-/-) mice. Taken together these results suggest that ER stress plays a critical role in palmitate-induced lipotoxicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Yongzhao Zhang
- Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Effect of ovarian steroids on gene expression profile in human uterine microvascular endothelial cells. Fertil Steril 2009; 92:709-21. [DOI: 10.1016/j.fertnstert.2008.06.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 04/07/2008] [Accepted: 06/09/2008] [Indexed: 12/11/2022]
|
33
|
Boiani M, Merlino A, Gerpe A, Porcal W, Croce F, Depaula S, Rodríguez M, Cerecetto H, González M. o-Nitroanilines as major metabolic products of anti-Trypanosoma cruzi5-phenylethenylbenzofuroxans in microsomal and cytosolic fractions of rat hepatocytes and in whole parasitic cells. Xenobiotica 2009; 39:236-48. [DOI: 10.1080/00498250802691535] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Yantsevich AV, Gilep AA, Usanov SA. Mechanism of electron transfer in fusion protein cytochrome b5-NADH-cytochrome b5 reductase. BIOCHEMISTRY (MOSCOW) 2008; 73:1096-107. [PMID: 18991555 DOI: 10.1134/s0006297908100052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present work we summarize results on construction of expression plasmid, heterologous expression in Escherichia coli, isolation and purification, as well as physicochemical characterization of chimeric protein consisting of hydrophilic domain of cytochrome b(5) and truncated from the N-terminal sequence (Delta(23)) form of NADH-cytochrome b(5) reductase. The kinetics and mechanism of electron transfer between NADH-cytochrome b(5) reductase and cytochrome b(5) in the frames of fusion protein consisting of cytochrome b(5) (94 amino acids) and truncated form of NADH-cytochrome b(5) reductase (277 amino acids) have been studied. It is shown that electron transfer takes place between redox partners belonging to two different molecules of the chimeric protein. Using computer modeling, we built the model of the tertiary structure of the fusion protein, which is in agreement with experimental data. By using Marcus theory of electron transfer in polar media, we demonstrate the inability of the hypothesis of electrostatic repulsions to explain the increase of electron transfer rate on increase of ion concentration in media due to elimination of the repulsion of similar charges. The real reason for the increase of the first order rate constant in some oxidation-reduction reactions between proteins, as shown in the present work, is a decrease of the media reorganization energy resulting in decrease of activation energy for oxidation-reduction reactions.
Collapse
Affiliation(s)
- A V Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Minsk, 220141, Belarus
| | | | | |
Collapse
|
35
|
Larade K, Jiang Z, Zhang Y, Wang W, Bonner-Weir S, Zhu H, Bunn HF. Loss of Ncb5or results in impaired fatty acid desaturation, lipoatrophy, and diabetes. J Biol Chem 2008; 283:29285-91. [PMID: 18682384 DOI: 10.1074/jbc.m804645200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Targeted ablation of the novel flavoheme reductase Ncb5or knock-out (KO) results in progressive loss of pancreatic beta-cells and white adipose tissue over time. Lipoatrophy persisted in KO animals in which the confounding metabolic effects of diabetes were eliminated by islet transplantation (transplanted knockout (TKO)). Lipid profiles in livers prepared from TKO animals were markedly deficient in triglycerides and diacylglycerides. Despite enhanced expression of stearoyl-Co-A desaturase-1, levels of palmitoleic and oleic acids (Delta9 fatty acid desaturation) were decreased in TKO relative to wild type controls. Treatment of KO hepatocytes with palmitic acid reduced cell viability and increased apoptosis, a response blunted by co-incubation with oleic acid. The results presented here support the hypothesis that Ncb5or supplies electrons for fatty acid desaturation, offer new insight into the regulation of a crucial step in fatty acid biosynthesis, and provide a plausible explanation for both the diabetic and the lipoatrophic phenotype in Ncb5or(-/-) mice.
Collapse
Affiliation(s)
- Kevin Larade
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
A variety of hemoglobins, including several microbial flavohemoglobins, enzymatically dioxygenate the free radical nitric oxide (*NO) to form nitrate. Many of these *NO dioxygenases have been shown to control *NO toxicity and signaling. Furthermore, *NO dioxygenation appears to be an ancient and intrinsic function for members of the hemoglobin superfamily found in Archaea, eukaryotes, and bacteria. Yet for many hemoglobins, a function remains to be elucidated. Methods for the assay and characterization of the *NO dioxygenase (EC 1.14.12.17) activity and function of flavohemoglobins are described. The methods may also be applied to the discovery and design of inhibitors for use as antibiotics or as modulators of *NO signaling.
Collapse
|
37
|
Larade K, Jiang ZG, Dejam A, Zhu H, Bunn H. The reductase NCB5OR is responsive to the redox status in beta-cells and is not involved in the ER stress response. Biochem J 2007; 404:467-76. [PMID: 17343567 PMCID: PMC1896276 DOI: 10.1042/bj20061859] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The novel reductase NCB5OR (NADPH cytochrome b5 oxidoreductase) resides in the ER (endoplasmic reticulum) and may protect cells against ER stress. Levels of BiP (immunoglobulin heavy-chain-binding protein), CHOP (CCAAT/enhancer-binding protein homologous protein) and XBP-1 (X-box-binding protein-1) did not differ in WT (wild-type) and KO (Ncb5or-null) tissues or MEFs (mouse embryonic fibroblasts), and XBP-1 remained unspliced. MEFs treated with inducers of ER stress demonstrated no change in Ncb5or expression and expression of ER-stress-induced genes was not enhanced. Induction of ER stress in beta-cell lines did not change Ncb5or expression or promoter activity. Transfection with Ncb5or-specific siRNA (small interfering RNA) yielded similar results. Microarray analysis of mRNA from islets and liver of WT and KO animals revealed no significant changes in ER-stress-response genes. Induction of oxidative stress in betaTC3 cells did not alter Ncb5or mRNA levels or promoter activity. However, KO islets were more sensitive to streptozotocin when compared with WT islets. MEFs incubated with nitric oxide donors showed no difference in cell viability or levels of nitrite produced. No significant differences in mRNA expression of antioxidant enzymes were observed when comparing WT and KO tissues; however, microarray analysis of islets indicated slightly enhanced expression of some antioxidant enzymes in the KO islets. Short-term tBHQ (t-butylhydroquinone) treatment increased Ncb5or promoter activity, although longer incubation times yielded a dose-dependent decrease in activity. This response appears to be due to a consensus ARE (antioxidant-response element) present in the Ncb5or promoter. In summary, NCB5OR does not appear to be involved in ER stress, although it may be involved in maintaining or regulating the redox status in beta-cells.
Collapse
Affiliation(s)
- Kevin Larade
- *Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, U.S.A
| | - Zhi-gang Jiang
- *Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, U.S.A
| | - Andre Dejam
- *Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, U.S.A
| | - Hao Zhu
- *Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, U.S.A
- †Department of Clinical Laboratory Sciences, Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, U.S.A
| | - H. Franklin Bunn
- *Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Kinoshita A, Nakayama Y, Kitayama T, Tomita M. Simulation study of methemoglobin reduction in erythrocytes. Differential contributions of two pathways to tolerance to oxidative stress. FEBS J 2007; 274:1449-58. [PMID: 17489100 DOI: 10.1111/j.1742-4658.2007.05685.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Methemoglobin (metHb), an oxidized form of hemoglobin, is unable to bind and carry oxygen. Erythrocytes are continuously subjected to oxidative stress and nitrite exposure, which results in the spontaneous formation of metHb. To avoid the accumulation of metHb, reductive pathways mediated by cytochrome b5 or flavin, coupled with NADH-dependent or NADPH-dependent metHb reductases, respectively, keep the level of metHb in erythrocytes at less than 1% of the total hemoglobin under normal conditions. In this work, a mathematical model has been developed to quantitatively assess the relative contributions of the two major metHb-reducing pathways, taking into consideration the supply of NADH and NADPH from central energy metabolism. The results of the simulation experiments suggest that these pathways have different roles in the reduction of metHb; one has a high response rate to hemoglobin oxidation with a limited reducing flux, and the other has a low response rate with a high capacity flux. On the basis of the results of our model, under normal oxidative conditions, the NADPH-dependent system, the physiological role of which to date has been unclear, is predicted to be responsible for most of the reduction of metHb. In contrast, the cytochrome b5-NADH pathway becomes dominant under conditions of excess metHb accumulation, only after the capacity of the flavin-NADPH pathway has reached its limit. We discuss the potential implications of a system designed with two metHb-reducing pathways in human erythrocytes.
Collapse
Affiliation(s)
- Ayako Kinoshita
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | | | | | | |
Collapse
|
39
|
Kietzmann T, Görlach A. Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol 2006; 16:474-86. [PMID: 15905109 DOI: 10.1016/j.semcdb.2005.03.010] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) have long been considered as cytotoxic. However, recent evidence indicates a prominent role of ROS as signaling molecules in the response to hormones, growth and coagulation factors, cytokines and other factors as well as to changes in oxygen tension. The hypoxia-inducible transcription factors (HIFs) are key players in the cellular response to changes in oxygen tension. Recently, HIFs have also been shown to respond to the above-mentioned non-hypoxic stimuli. In this article, the role of ROS in the regulation of HIF-1 under hypoxic and non-hypoxic conditions is summarized.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Faculty of Chemistry, Department of Biochemistry, Erwin-Schrödinger-Strasse, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | |
Collapse
|
40
|
Larade K, Bunn HF. Promoter characterization and transcriptional regulation of Ncb5or, a novel reductase necessary for pancreatic beta-cell maintenance. ACTA ACUST UNITED AC 2006; 1759:257-62. [PMID: 16814408 DOI: 10.1016/j.bbaexp.2006.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/20/2006] [Accepted: 05/17/2006] [Indexed: 11/15/2022]
Abstract
Ncb5or is a ubiquitously expressed gene required for beta-cell survival in mice. Examination of mouse tissues demonstrated high levels of expression in the pancreas, heart and kidney. A transcription start site was identified 149 bp upstream from the start codon and transient expression analysis in betaTC3 cells indicated the presence of a core promoter located within 348 bp upstream of this site. Deletion of Region C (-216/-157) resulted in a significant decrease in promoter activity and specific nucleotides located in a region designated C2 were demonstrated to be critical for complex binding. Deletion of Region D (-60/-33), which contains multiple consensus Sp1 sites, resulted in an additional loss of promoter activity. The data presented here identify and characterize the previously unknown promoter of Ncb5or, a reductase critical for beta-cell survival.
Collapse
Affiliation(s)
- Kevin Larade
- Department of Medicine, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, CHRB-05.215, Boston, MA 02115, USA
| | | |
Collapse
|
41
|
Al-Shabrawey M, Bartoli M, El-Remessy AB, Platt DH, Matragoon S, Behzadian MA, Caldwell RW, Caldwell RB. Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:599-607. [PMID: 16049343 PMCID: PMC1603550 DOI: 10.1016/s0002-9440(10)63001-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Because oxidative stress has been strongly implicated in up-regulation of vascular endothelial growth factor (VEGF) expression in ischemic retinopathy, we evaluated the role of NAD(P)H oxidase in causing VEGF overexpression and retinal neovascularization. Dihydroethidium imaging analyses showed increased superoxide formation in areas of retinal neovascularization associated with relative retinal hypoxia in a mouse model for oxygen-induced retinopathy. The effect of hypoxia in stimulating superoxide formation in retinal vascular endothelial cells was confirmed by in vitro chemiluminescence assays. The superoxide formation was blocked by specific inhibitors of NAD(P)H oxidase activity (apocynin, gp91ds-tat) indicating that NAD(P)H oxidase is a major source of superoxide formation. Western blot and immunolocalization analyses showed that retinal ischemia increased expression of the NAD(P)H oxidase catalytic subunit gp91phox, which localized primarily within vascular endothelial cells. Treatment of mice with apocynin blocked ischemia-induced increases in oxidative stress, normalized VEGF expression, and prevented retinal neovascularization. Apocynin and gp91ds-tat also blocked the action of hypoxia in causing increased VEGF expression in vitro, confirming the specific role of NAD(P)H oxidase in hypoxia-induced increases in VEGF expression. In conclusion, NAD(P)H oxidase activity is required for hypoxia-stimulated increases in VEGF expression and retinal neovascularization. Inhibition of NAD(P)H oxidase offers a new therapeutic target for the treatment of retinopathy.
Collapse
Affiliation(s)
- Mohamed Al-Shabrawey
- Vascular Biology Center, Medical College of Georgia, 1120 15th St., Augusta, GA 30912-2500, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Nakagawa M, Yamano T, Kuroda K, Nonaka Y, Tojo H, Fujii S. A cytosolic cytochrome b5-like protein in yeast cell accelerating the electron transfer from NADPH to cytochrome c catalyzed by Old Yellow Enzyme. Biochem Biophys Res Commun 2005; 338:605-9. [PMID: 16182238 DOI: 10.1016/j.bbrc.2005.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 09/03/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
A 410-nm absorbing species which enhanced the reduction rate of cytochrome c by Old Yellow Enzyme (OYE) with NADPH was found in Saccharomyces cerevisiae. It was solubilized together with OYE by the treatment of yeast cells with 10% ethyl acetate. The purified species showed visible absorption spectra in both oxidized and reduced forms, which were the same as those of the yeast microsomal cytochrome b5. At least 14 amino acid residues of the N-terminal region coincided with those of yeast microsomal b5, but the protein had a lower molecular weight determined to be 12,600 by SDS-PAGE and 9775 by mass spectrometry. The cytochrome b5-like protein enhanced the reduction rate of cytochrome c by OYE, and a plot of the reduction rates against its concentration showed a sigmoidal curve with an inflexion point at 6x10(-8) M of the protein.
Collapse
Affiliation(s)
- Manabu Nakagawa
- Laboratory of Chemistry, Kansai Medical University, Hirakata 573-1136, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Drew D, Slotboom DJ, Friso G, Reda T, Genevaux P, Rapp M, Meindl-Beinker NM, Lambert W, Lerch M, Daley DO, Van Wijk KJ, Hirst J, Kunji E, De Gier JW. A scalable, GFP-based pipeline for membrane protein overexpression screening and purification. Protein Sci 2005; 14:2011-7. [PMID: 15987891 PMCID: PMC2279312 DOI: 10.1110/ps.051466205] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We describe a generic, GFP-based pipeline for membrane protein overexpression and purification in Escherichia coli. We exemplify the use of the pipeline by the identification and characterization of E. coli YedZ, a new, membrane-integral flavocytochrome. The approach is scalable and suitable for high-throughput applications. The GFP-based pipeline will facilitate the characterization of the E. coli membrane proteome and serves as an important reference for the characterization of other membrane proteomes.
Collapse
Affiliation(s)
- David Drew
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lardy B, Bof M, Aubry L, Paclet MH, Morel F, Satre M, Klein G. NADPH oxidase homologs are required for normal cell differentiation and morphogenesis in Dictyostelium discoideum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:199-212. [PMID: 15950752 DOI: 10.1016/j.bbamcr.2005.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 01/25/2005] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Membrane-associated NADPH oxidase complexes catalyse the production of the superoxide anion radical from oxygen and NADPH. In mammalian systems, NADPH oxidases form a family of at least seven isoforms that participate in host defence and signalling pathways. We report here the cloning and the characterisation of slime mould Dictyostelium discoideum homologs of the mammalian heme-containing subunit of flavocytochrome b (gp91(phox)) (NoxA, NoxB and NoxC), of the small subunit of flavocytochrome b (p22(phox)) and of the cytosolic factor p67(phox). Null-mutants of either noxA, noxB, noxC or p22(phox) show aberrant starvation-induced development and are unable to produce spores. The overexpression of NoxA(myc2) in noxA null strain restores spore formation. Remarkably, the gene alg-2B, coding for one of the two penta EF-hand proteins in Dictyostelium, acts as a suppressor in noxA, noxB, and p22(phox) null-mutant strains. Knockout of alg-2B allows noxA, noxB or p22(phox) null-mutants to return to normal development. However, the knockout of gene encoding NoxC, which contains two penta EF-hands, is not rescued by the invalidation of alg-2B. These data are consistent with a hypothesis connecting superoxide and calcium signalling during Dictyostelium development.
Collapse
Affiliation(s)
- Bernard Lardy
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR5092 CNRS), Département de Réponse et Dynamique Cellulaires, CEA-Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
45
|
Baker MA, Krutskikh A, Curry BJ, Hetherington L, Aitken RJ. Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa. Biol Reprod 2005; 73:334-42. [PMID: 15858218 DOI: 10.1095/biolreprod.104.037960] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Lucigenin-dependent chemiluminescence together with 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H tetrazolium monosodium salt (WST-1) reduction can be detected following addition of NADH to many cell types, including human sperm suspensions. Although many reports suggest that such a phenomenon is due to reactive oxygen species production, other oxygen detecting metabolite probes, such as MCLA and luminol, do not produce a chemiluminescent signal in this model system. The enzyme responsible for NADH-dependent lucigenin chemiluminescence was purified and identified as cytochrome-b5 reductase. In support of this concept, COS-7 cells overexpressing cytochrome-b5 reductase displayed at least a 3-fold increase in the previously mentioned activity compared with mock-transfected cells. Fractions containing cytochrome-b5 reductase were capable of inducing both lucigenin-dependent chemiluminescence and WST-1 reduction. Oxygen radicals clearly did not mediate the cytochrome b5-mediated activation of these probes in vitro since neither luminol nor MCLA gave a chemiluminescence response in the presence of the enzyme and the cofactor NADH. These results emphasize the importance of the direct NADH-dependent reduction of these putative superoxide-sensitive probes by cytochrome-b5 reductase even though this enzyme does not, on its own accord, produce reactive oxygen species.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, and Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | |
Collapse
|
46
|
Hartmann TB, Bazhin AV, Schadendorf D, Eichmüller SB. SEREX identification of new tumor antigens linked to melanoma-associated retinopathy. Int J Cancer 2005; 114:88-93. [PMID: 15523688 DOI: 10.1002/ijc.20762] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metastatic melanoma still has a very poor prognosis since it withstands conventional therapies like surgery or chemotherapy. A paraneoplastic autoimmune manifestation of this disease is melanoma-associated retinopathy (MAR). MAR has been associated with prolonged survival and may be an early marker of tumor progression. By screening a retina and a melanoma cDNA phage library by SEREX using sera of patients suffering from melanoma and, in some cases, clinical symptoms of MAR, we identified 20 new antigens (HD-MM-28-47), of which 14 clones had high homology to well-known genes. Six of these genes had previously been associated with retina: rhodopsin, visual arrestin, MEK1, SRPX, BBS1 and galectin-3. Individual clones were recognized by up to 43% of patients' sera, while sera of healthy volunteers were negative except in 2 cases. The expression profile of the antigens identified on the basis of homologous EST database entries in healthy tissues was ubiquitous to differential. Using RT-PCR, we found frequent expression of preselected antigens in melanoma cell lines. For rhodopsin, this could be quantified by quantitative PCR. Retinal proteins were recognized by serum antibodies of melanoma patients but not healthy controls. The role of these antigens in MAR awaits further investigation. (Supplementary material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html.)
Collapse
Affiliation(s)
- Tanja B Hartmann
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany
| | | | | | | |
Collapse
|
47
|
Abstract
Throughout gestation, low oxygen tensions are a dominant feature of the fetal environment and so may be important in sustaining a normal pattern of lung morphogenesis until the moment of birth. As breathing begins, the equilibration of the lung lumen to postnatal PO2 evokes a series of physiologic and morphogenic maturation events that are partially reversible by hypoxia. In this review, we discuss the experimental evidence that fetal and perinatal oxygen tensions differently influence lung morphogenesis through oxygen- and redox-responsive signaling pathways and identify five loci at which this regulation may occur: (I) proliferation of undifferentiated lung mesenchyme as governed by hypoxia-regulated transcription factors (HIF-1alpha, C/EBPbeta); (II) transient production of reactive oxygen species (ROS) and nuclear oxidation of the perinatal lung epithelium; (III) nuclear transport and oxidation of thioredoxin in hand with the acute activation of nuclear factor- kappaB (NF-kappaB); (IV) ROS-evoked chronic rise in intracellular glutathione and thioredoxin redox buffering capacity; and (V) NF-kappaB-dependent increase in transepithelial Na+ transport and lung lumenal fluid clearance. Although not exhaustive, this analysis leads us to the conclusion that redox events that occur in the lung during gestation, parturition, and the early neonatal period may dramatically influence the expression of genes and physiological events that are crucial to the successful transition from fetal to postnatal lung maturation.
Collapse
Affiliation(s)
- Stephen C Land
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
48
|
Andersen G, Wegner L, Rose CS, Xie J, Zhu H, Larade K, Johansen A, Ek J, Lauenborg J, Drivsholm T, Borch-Johnsen K, Damm P, Hansen T, Bunn HF, Pedersen O. Variation in NCB5OR: studies of relationships to type 2 diabetes, maturity-onset diabetes of the young, and gestational diabetes mellitus. Diabetes 2004; 53:2992-7. [PMID: 15504981 PMCID: PMC3044473 DOI: 10.2337/diabetes.53.11.2992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recent data show that homozygous Ncb5or(-/-) knock-out mice present with an early-onset nonautoimmune diabetes phenotype. Furthermore, genome-wide scans have reported linkage to the chromosome 6q14.2 region close to the human NCB5OR. We therefore considered NCB5OR to be a biological and positional candidate gene and examined the coding region of NCB5OR in 120 type 2 diabetic patients and 63 patients with maturity-onset diabetes of the young using denaturing high-performance liquid chromatography. We identified a total of 22 novel nucleotide variants. Three variants [IVS5+7del(CT), Gln187Arg, and His223Arg] were genotyped in a case-control design comprising 1,246 subjects (717 type 2 diabetic patients and 529 subjects with normal glucose tolerance). In addition, four rare variants were investigated for cosegregation with diabetes in multiplex type 2 diabetic families. The IVS5+7del(CT) variant was associated with common late-onset type 2 diabetes; however, we failed to relate this variant to any diabetes-related quantitative traits among the 529 control subjects. Thus, variation in the coding region of NCB5OR is not a major contributor in the pathogenesis of nonautoimmune diabetes.
Collapse
Affiliation(s)
- Gitte Andersen
- Steno Diabetes Center and Hagedorn Research Institute, Niels Steensens Vej 2, NSH2.16, DK-2820 Gentofte, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Xie J, Zhu H, Larade K, Ladoux A, Seguritan A, Chu M, Ito S, Bronson RT, Leiter EH, Zhang CY, Rosen ED, Bunn HF. Absence of a reductase, NCB5OR, causes insulin-deficient diabetes. Proc Natl Acad Sci U S A 2004; 101:10750-5. [PMID: 15247412 PMCID: PMC490006 DOI: 10.1073/pnas.0404044101] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Indexed: 11/18/2022] Open
Abstract
NCB5OR is a highly conserved NAD(P)H reductase that contains a cytochrome b5-like domain at the N terminus and a cytochrome b5 reductase-like domain at the C terminus. The enzyme is located in the endoplasmic reticulum (ER) and is widely expressed in organs and tissues. Targeted inactivation of this gene in mice has no impact on embryonic or fetal viability. At 4 weeks of age, Ncb5or-/- mice have normal blood glucose levels but impaired glucose tolerance. Isolated Ncb5or-/- islets have markedly impaired glucose- or arginine-stimulated insulin secretion. By 7 weeks of age, these mice develop severe hyperglycemia with markedly decreased serum insulin levels and nearly normal insulin tolerance. As the animals age, there is a progressive loss of beta cells in pancreatic islets, but there is no loss of alpha, delta, or PP cells. Electron microscopy reveals degranulation of beta cells and hypertrophic and hyperplastic mitochondria, some of which contain electron dense inclusions. Four-week-old Ncb5or-/- mice have enhanced sensitivity to the diabetogenic agent streptozotocin. NCB5OR appears to play a critical role in protecting pancreatic beta cells against oxidant stress.
Collapse
Affiliation(s)
- Jianxin Xie
- Hematology Division, Brigham and Women's Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cross AR, Segal AW. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. BIOCHIMICA ET BIOPHYSICA ACTA 2004; 1657:1-22. [PMID: 15238208 PMCID: PMC2636547 DOI: 10.1016/j.bbabio.2004.03.008] [Citation(s) in RCA: 341] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 03/16/2004] [Accepted: 03/16/2004] [Indexed: 02/06/2023]
Abstract
The NADPH oxidase is an electron transport chain in "professional" phagocytic cells that transfers electrons from NADPH in the cytoplasm, across the wall of the phagocytic vacuole, to form superoxide. The electron transporting flavocytochrome b is activated by the integrated function of four cytoplasmic proteins. The antimicrobial function of this system involves pumping K+ into the vacuole through BKCa channels, the effect of which is to elevate the vacuolar pH and activate neutral proteases. A number of homologous systems have been discovered in plants and lower animals as well as in man. Their function remains to be established.
Collapse
Affiliation(s)
- Andrew R. Cross
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anthony W. Segal
- Centre for Molecular Medicine, Department of Medicine, University College London, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|