1
|
Wu M, Beck C, Lee JH, Fulbright RM, Jeong J, Inman JT, Woodhouse MV, Berger JM, Wang MD. Human Topoisomerase IIα Promotes Chromatin Condensation Via a Phase Transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618281. [PMID: 39464128 PMCID: PMC11507700 DOI: 10.1101/2024.10.15.618281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Topoisomerase II (topo II) enzymes are essential enzymes known to resolve topological entanglements during DNA processing. Curiously, while yeast expresses a single topo II, humans express two topo II isozymes, topo IIα and topo IIβ, which share a similar catalytic domain but differ in their intrinsically disordered C-terminal domains (CTDs). During mitosis, topo IIα and condensin I constitute the most abundant chromosome scaffolding proteins essential for chromosome condensation. However, how topo IIα enables this function is poorly understood. Here, we discovered a new and functionally distinct role for human topo IIα - it condenses DNA and chromatin at a low topo IIα concentration (100 pM or less) during a polymer-collapse phase transition. The removal of the topo IIα CTDs effectively abolishes its condensation ability, indicating that the condensation is mediated by the CTDs. Although topo IIβ can also perform condensation, it is about 4-fold less effective. During the condensation, topo IIα-DNA condensates form along DNA, working against a DNA tension of up to 1.5 pN, greater than that previously reported for yeast condensin. In addition, this condensation does not require ATP and thus is independent of topo IIα's catalytic activity. We also found that condensation and catalysis can concurrently proceed with minimal mutual interference. Our findings suggest topo IIα may directly participate in chromosome condensation during mitosis.
Collapse
Affiliation(s)
- Meiling Wu
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | - Curtis Beck
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joyce H. Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James T. Inman
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| | | | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle D. Wang
- Department of Physics & LASSP, Cornell University, Ithaca, NY 14853, USA
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Liu KT, Chen SF, Chan NL. Structural insights into the assembly of type IIA topoisomerase DNA cleavage-religation center. Nucleic Acids Res 2024; 52:9788-9802. [PMID: 39077950 PMCID: PMC11381327 DOI: 10.1093/nar/gkae657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
The ability to catalyze reversible DNA cleavage and religation is central to topoisomerases' role in regulating DNA topology. In type IIA topoisomerases (Top2), the formation of its DNA cleavage-religation center is driven by DNA-binding-induced structural rearrangements. These changes optimally position key catalytic modules, such as the active site tyrosine of the WHD domain and metal ion(s) chelated by the TOPRIM domain, around the scissile phosphodiester bond to perform reversible transesterification. To understand this assembly process in detail, we report the catalytic core structures of human Top2α and Top2β in an on-pathway conformational state. This state features an in trans formation of an interface between the Tower and opposing TOPRIM domain, revealing a groove for accommodating incoming G-segment DNA. Structural superimposition further unveils how subsequent DNA-binding-induced disengagement of the TOPRIM and Tower domains allows a firm grasp of the bound DNA for cleavage/religation. Notably, we identified a previously undocumented protein-DNA interaction, formed between an arginine-capped C-terminus of an α-helix in the TOPRIM domain and the DNA backbone, significantly contributing to Top2 function. This work uncovers a previously unrecognized role of the Tower domain, highlighting its involvement in anchoring and releasing the TOPRIM domain, thus priming Top2 for DNA binding and cleavage.
Collapse
Affiliation(s)
- Ko-Ting Liu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shin-Fu Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| |
Collapse
|
3
|
Nettles SA, Ikeuchi Y, Lefton KB, Abbasi L, Erickson A, Agwu C, Papouin T, Bonni A, Gabel HW. MeCP2 represses the activity of topoisomerase IIβ in long neuronal genes. Cell Rep 2023; 42:113538. [PMID: 38096051 PMCID: PMC10844882 DOI: 10.1016/j.celrep.2023.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
A unique signature of neurons is the high expression of the longest genes in the genome. These genes have essential neuronal functions, and disruption of their expression has been implicated in neurological disorders. DNA topoisomerases resolve DNA topological constraints and facilitate neuronal long gene expression. Conversely, the Rett syndrome protein, methyl-CpG-binding protein 2 (MeCP2), can transcriptionally repress long genes. How these factors regulate long genes is not well understood, and whether they interact is not known. Here, we identify and map a functional interaction between MeCP2 and topoisomerase IIβ (TOP2β) in mouse neurons. We profile neuronal TOP2β activity genome wide, detecting enrichment at regulatory regions and gene bodies of long genes, including MeCP2-regulated genes. We show that loss and overexpression of MeCP2 alter TOP2β activity at MeCP2-regulated genes. These findings uncover a mechanism of TOP2β inhibition by MeCP2 in neurons and implicate TOP2β dysregulation in disorders caused by MeCP2 disruption.
Collapse
Affiliation(s)
- Sabin A Nettles
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoshiho Ikeuchi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katheryn B Lefton
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ladan Abbasi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alyssa Erickson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chibueze Agwu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Singh BN, Achary VMM, Venkatapuram AK, Parmar H, Karippadakam S, Sopory SK, Reddy MK. Expression and functional analysis of various structural domains of tobacco topoisomerase II: To understand the mechanistic insights of plant type II topoisomerases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:302-314. [PMID: 36442361 DOI: 10.1016/j.plaphy.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
In contrast to bacterial, yeast and animal systems, topoisomerases (topo) from plants have not been well studied. In this report, we generated four truncated topoisomerase II (Topo II) cDNA fragments encoding different functional domains of Nicotiana tabacum topo II (NtTopoII). Each of these recombinant polypeptides was expressed alone or in combination in temperature-sensitive topoisomerase II yeast mutants. Recombinant NtTopoII with truncated polypeptides fails to target the yeast nuclei and does not rescue the temperature-sensitive phenotype. In contrast complementation was achieved with the full-length NtTopoII, which localized to the yeast nucleus. These observations suggested the presence of a potent nuclear localization signal (NLS) in the extreme C-terminal 314 amino acid residues of NtTopoII that functioned effectively in the heterologous yeast system. Biochemical characterization of purified recombinant full-length and the partial NtTopoII polypeptides revealed that the ATP-binding and hydrolysis region of NtTopoIIwas located at 413 amino acid N-terminal region and this ATPase domain is functional both when it is expressed as a separate polypeptide or as part of the holoenzyme. The present findings also revealed that all NtTopoII truncated polypeptides were detrimental for in vitro supercoiled DNA relaxation and/or DNA nicking and ligation activity. Further, we discuss the possible disruption of coordinated macromolecular interface movements and the dimer interactions in truncated NtTopoII that are required for functional topoisomerase activity.
Collapse
Affiliation(s)
- Badri Nath Singh
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - V Mohan Murali Achary
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India.
| | - Ajay Kumar Venkatapuram
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - Hemangini Parmar
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - Sangeetha Karippadakam
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India
| | - Sudhir Kumar Sopory
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India.
| | - Malireddy K Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, Delhi, India.
| |
Collapse
|
5
|
Jeong J, Lee JH, Carcamo CC, Parker MW, Berger JM. DNA-Stimulated Liquid-Liquid phase separation by eukaryotic topoisomerase ii modulates catalytic function. eLife 2022; 11:e81786. [PMID: 36342377 PMCID: PMC9674351 DOI: 10.7554/elife.81786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Type II topoisomerases modulate chromosome supercoiling, condensation, and catenation by moving one double-stranded DNA segment through a transient break in a second duplex. How DNA strands are chosen and selectively passed to yield appropriate topological outcomes - for example, decatenation vs. catenation - is poorly understood. Here, we show that at physiological enzyme concentrations, eukaryotic type IIA topoisomerases (topo IIs) readily coalesce into condensed bodies. DNA stimulates condensation and fluidizes these assemblies to impart liquid-like behavior. Condensation induces both budding yeast and human topo IIs to switch from DNA unlinking to active DNA catenation, and depends on an unstructured C-terminal region, the loss of which leads to high levels of knotting and reduced catenation. Our findings establish that local protein concentration and phase separation can regulate how topo II creates or dissolves DNA links, behaviors that can account for the varied roles of the enzyme in supporting transcription, replication, and chromosome compaction.
Collapse
Affiliation(s)
- Joshua Jeong
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Matthew W Parker
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
6
|
Ling EM, Baslé A, Cowell IG, van den Berg B, Blower TR, Austin CA. A comprehensive structural analysis of the ATPase domain of human DNA topoisomerase II beta bound to AMPPNP, ADP, and the bisdioxopiperazine, ICRF193. Structure 2022; 30:1129-1145.e3. [PMID: 35660158 PMCID: PMC9592559 DOI: 10.1016/j.str.2022.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Human topoisomerase II beta (TOP2B) modulates DNA topology using energy from ATP hydrolysis. To investigate the conformational changes that occur during ATP hydrolysis, we determined the X-ray crystallographic structures of the human TOP2B ATPase domain bound to AMPPNP or ADP at 1.9 Å and 2.6 Å resolution, respectively. The GHKL domains of both structures are similar, whereas the QTK loop within the transducer domain can move for product release. As TOP2B is the clinical target of bisdioxopiperazines, we also determined the structure of a TOP2B:ADP:ICRF193 complex to 2.3 Å resolution and identified key drug-binding residues. Biochemical characterization revealed the N-terminal strap reduces the rate of ATP hydrolysis. Mutagenesis demonstrated residue E103 as essential for ATP hydrolysis in TOP2B. Our data provide fundamental insights into the tertiary structure of the human TOP2B ATPase domain and a potential regulatory mechanism for ATP hydrolysis. Three structures of the TOP2B ATPase domain bound to AMPPNP, ADP, or ICRF193 The QTK loop in the ADP complex is further from the active site An SO4 ion is in place of the ATP hydrolysis product, Pi Biochemical data show the N-terminal strap reduces the ATPase hydrolysis activity
Collapse
Affiliation(s)
- Elise M Ling
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Ian G Cowell
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Bert van den Berg
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| | - Caroline A Austin
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
7
|
Moudgil R, Samra G, Ko KA, Vu HT, Thomas TN, Luo W, Chang J, Reddy AK, Fujiwara K, Abe JI. Topoisomerase 2B Decrease Results in Diastolic Dysfunction via p53 and Akt: A Novel Pathway. Front Cardiovasc Med 2020; 7:594123. [PMID: 33330654 PMCID: PMC7709875 DOI: 10.3389/fcvm.2020.594123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023] Open
Abstract
Diastolic dysfunction is condition of a stiff ventricle and a function of aging. It causes significant cardiovascular mortality and morbidity, and in fact, three million Americans are currently suffering from this condition. To date, all the pharmacological clinical trials have been negative. The lack of success in attenuating/ameliorating diastolic dysfunction stems from lack of duplication of myriads of clinical manifestation in pre-clinical settings. Here we report, a novel genetically engineered mice which may represents a preclinical model of human diastolic dysfunction to some extent. Topoisomerase 2 beta (Top2b) is an important enzyme in transcriptional activation of some inducible genes through transient double-stranded DNA breakage events around promoter regions. We created a conditional, tissue-specific, inducible Top2b knockout mice in the heart. Serendipitously, echocardiographic parameters and more invasive analysis of left ventricular function with pressure–volume loops show features of diastolic dysfunction. This was also confirmed histologically. At the cellular level, the Top2b knockdown showed morphological changes and molecular signaling akin to human diastolic dysfunction. Reverse phase protein analysis showed activation of p53 and inhibition of, Akt, as the possible mediators of diastolic dysfunction. Finally, activation of p53 and inhibition of Akt were confirmed in myocardial biopsy samples obtained from human diastolic dysfunctional hearts. Thus, we report for the first time, a Top2b downregulated preclinical mice model for diastolic dysfunction which demonstrates that Akt and p53 are the possible mediators of the pathology, hence representing novel and viable targets for future therapeutic interventions in diastolic dysfunction.
Collapse
Affiliation(s)
- Rohit Moudgil
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH, United States.,Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| | - Gursharan Samra
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Kyung Ae Ko
- Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| | - Hang Thi Vu
- Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| | - Tamlyn N Thomas
- Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| | - Weijia Luo
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, United States
| | - Jiang Chang
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX, United States
| | - Anilkumar K Reddy
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Keigi Fujiwara
- Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-Ichi Abe
- Department of Cardiology, Division of Internal Medicine MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
Mutations in topoisomerase IIβ result in a B cell immunodeficiency. Nat Commun 2019; 10:3644. [PMID: 31409799 PMCID: PMC6692411 DOI: 10.1038/s41467-019-11570-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/23/2019] [Indexed: 02/01/2023] Open
Abstract
B cell development is a highly regulated process involving multiple differentiation steps, yet many details regarding this pathway remain unknown. Sequencing of patients with B cell-restricted immunodeficiency reveals autosomal dominant mutations in TOP2B. TOP2B encodes a type II topoisomerase, an essential gene required to alleviate topological stress during DNA replication and gene transcription, with no previously known role in B cell development. We use Saccharomyces cerevisiae, and knockin and knockout murine models, to demonstrate that patient mutations in TOP2B have a dominant negative effect on enzyme function, resulting in defective proliferation, survival of B-2 cells, causing a block in B cell development, and impair humoral function in response to immunization. Topoisomerases are required to release topological stress on DNA during replication and transcription. Here, Broderick et al. report genetic variants in TOP2B that cause a syndromic B cell immunodeficiency associated with reduced TOP2B function, defects in B cell development and B cell activation.
Collapse
|
9
|
Marinello J, Delcuratolo M, Capranico G. Anthracyclines as Topoisomerase II Poisons: From Early Studies to New Perspectives. Int J Mol Sci 2018; 19:ijms19113480. [PMID: 30404148 PMCID: PMC6275052 DOI: 10.3390/ijms19113480] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
Mammalian DNA topoisomerases II are targets of anticancer anthracyclines that act by stabilizing enzyme-DNA complexes wherein DNA strands are cut and covalently linked to the protein. This molecular mechanism is the molecular basis of anthracycline anticancer activity as well as the toxic effects such as cardiomyopathy and induction of secondary cancers. Even though anthracyclines have been used in the clinic for more than 50 years for solid and blood cancers, the search of breakthrough analogs has substantially failed. The recent developments of personalized medicine, availability of individual genomic information, and immune therapy are expected to change significantly human cancer therapy. Here, we discuss the knowledge of anthracyclines as Topoisomerase II poisons, their molecular and cellular effects and toxicity along with current efforts to improve the therapeutic index. Then, we discuss the contribution of the immune system in the anticancer activity of anthracyclines, and the need to increase our knowledge of molecular mechanisms connecting the drug targets to the immune stimulatory pathways in cancer cells. We propose that the complete definition of the molecular interaction of anthracyclines with the immune system may open up more effective and safer ways to treat patients with these drugs.
Collapse
Affiliation(s)
- Jessica Marinello
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Maria Delcuratolo
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, University of Bologna, via Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
10
|
Austin CA, Lee KC, Swan RL, Khazeem MM, Manville CM, Cridland P, Treumann A, Porter A, Morris NJ, Cowell IG. TOP2B: The First Thirty Years. Int J Mol Sci 2018; 19:ijms19092765. [PMID: 30223465 PMCID: PMC6163646 DOI: 10.3390/ijms19092765] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Type II DNA topoisomerases (EC 5.99.1.3) are enzymes that catalyse topological changes in DNA in an ATP dependent manner. Strand passage reactions involve passing one double stranded DNA duplex (transported helix) through a transient enzyme-bridged break in another (gated helix). This activity is required for a range of cellular processes including transcription. Vertebrates have two isoforms: topoisomerase IIα and β. Topoisomerase IIβ was first reported in 1987. Here we review the research on DNA topoisomerase IIβ over the 30 years since its discovery.
Collapse
Affiliation(s)
- Caroline A Austin
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ka C Lee
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Rebecca L Swan
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Mushtaq M Khazeem
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Catriona M Manville
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Peter Cridland
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Achim Treumann
- NUPPA, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Andrew Porter
- NUPPA, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Nick J Morris
- School of Biomedical Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ian G Cowell
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
11
|
Post-translational modifications in DNA topoisomerase 2α highlight the role of a eukaryote-specific residue in the ATPase domain. Sci Rep 2018; 8:9272. [PMID: 29915179 PMCID: PMC6006247 DOI: 10.1038/s41598-018-27606-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 01/03/2023] Open
Abstract
Type 2 DNA topoisomerases (Top2) are critical components of key protein complexes involved in DNA replication, chromosome condensation and segregation, as well as gene transcription. The Top2 were found to be the main targets of anticancer agents, leading to intensive efforts to understand their functional and physiological role as well as their molecular structure. Post-translational modifications have been reported to influence Top2 enzyme activities in particular those of the mammalian Top2α isoform. In this study, we identified phosphorylation, and for the first time, acetylation sites in the human Top2α isoform produced in eukaryotic expression systems. Structural analysis revealed that acetylation sites are clustered on the catalytic domains of the homodimer while phosphorylation sites are located in the C-terminal domain responsible for nuclear localization. Biochemical analysis of the eukaryotic-specific K168 residue in the ATPase domain shows that acetylation affects a key position regulating ATP hydrolysis through the modulation of dimerization. Our findings suggest that acetylation of specific sites involved in the allosteric regulation of human Top2 may provide a mechanism for modulation of its catalytic activity.
Collapse
|
12
|
Wang YR, Chen SF, Wu CC, Liao YW, Lin TS, Liu KT, Chen YS, Li TK, Chien TC, Chan NL. Producing irreversible topoisomerase II-mediated DNA breaks by site-specific Pt(II)-methionine coordination chemistry. Nucleic Acids Res 2017; 45:10861-10871. [PMID: 28977631 PMCID: PMC5737487 DOI: 10.1093/nar/gkx742] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/22/2017] [Indexed: 01/15/2023] Open
Abstract
Human type II topoisomerase (Top2) isoforms, hTop2α and hTop2β, are targeted by some of the most successful anticancer drugs. These drugs induce Top2-mediated DNA cleavage to trigger cell-death pathways. The potency of these drugs correlates positively with their efficacy in stabilizing the enzyme-mediated DNA breaks. Structural analysis of hTop2α and hTop2β revealed the presence of methionine residues in the drug-binding pocket, we therefore tested whether a tighter Top2-drug association may be accomplished by introducing a methionine-reactive Pt2+ into a drug to further stabilize the DNA break. Herein, we synthesized an organoplatinum compound, etoplatin-N2β, by replacing the methionine-juxtaposing group of the drug etoposide with a cis-dichlorodiammineplatinum(II) moiety. Compared to etoposide, etoplatin-N2β more potently inhibits both human Top2s. While the DNA breaks arrested by etoposide can be rejoined, those captured by etoplatin-N2β are practically irreversible. Crystallographic analyses of hTop2β complexed with DNA and etoplatin-N2β demonstrate coordinate bond formation between Pt2+ and a flanking methionine. Notably, this stable coordinate tether can be loosened by disrupting the structural integrity of drug-binding pocket, suggesting that Pt2+ coordination chemistry may allow for the development of potent inhibitors with protein conformation-dependent reversibility. This approach may be exploited to achieve isoform-specific targeting of human Top2s.
Collapse
Affiliation(s)
- Ying-Ren Wang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shin-Fu Chen
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chyuan-Chuan Wu
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Wen Liao
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Te-Sheng Lin
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ko-Ting Liu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Song Chen
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Tun-Cheng Chien
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
13
|
Bollimpelli VS, Dholaniya PS, Kondapi AK. Topoisomerase IIβ and its role in different biological contexts. Arch Biochem Biophys 2017; 633:78-84. [PMID: 28669856 DOI: 10.1016/j.abb.2017.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022]
Abstract
Topoisomerase IIβ is a type II DNA topoisomerase that was reported to be expressed in all mammalian cells but abundantly expressed in cells that have undergone terminal differentiation to attain a post mitotic state. Enzymatically it catalyzes ATP-dependent topological changes of double stranded DNA, while as a protein it was reported to be associated with several factors in promoting cell growth, migration, DNA repair and transcription regulation. The cellular roles of topoisomerase IIβ are very less understood compared to its counterpart topoisomerase IIα. This review discusses origin of Topoisomerase II beta, its structure, activities reported in vitro and in vivo along with implications in cellular processes namely transcription, DNA repair, neuronal development, aging, HIV-infection and cancer.
Collapse
Affiliation(s)
- V Satish Bollimpelli
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pankaj S Dholaniya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Anand K Kondapi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
14
|
Functional characterization of the meiosis-specific DNA double-strand break inducing factor SPO-11 from C. elegans. Sci Rep 2017; 7:2370. [PMID: 28539630 PMCID: PMC5443798 DOI: 10.1038/s41598-017-02641-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/13/2017] [Indexed: 11/17/2022] Open
Abstract
The programmed induction of meiotic DNA double-strand breaks (DSBs) by the evolutionarily conserved SPO-11 protein, which is structurally related to archaeal Topo VIA topoisomerases, triggers meiotic recombination. Identification of several meiosis-specific factors that are required for SPO-11-mediated DSB formation raises the question whether SPO-11 alone can cleave DNA. Here, we have developed procedures to express and purify C. elegans SPO-11 in a soluble, untagged, and monodispersed form. Our biochemical and biophysical analyses demonstrate that SPO-11 is monomeric and binds DNA, double-stranded DNA in particular. Importantly, SPO-11 does not exhibit DNA cleavage activity under a wide range of reaction conditions, suggesting that co-factors are needed for DSB induction activity. Our SPO-11 purification system and the findings reported herein should facilitate future mechanistic studies directed at delineating the mechanism of action of the SPO-11 ensemble in meiotic DSB formation.
Collapse
|
15
|
Zhao W, Jiang G, Bi C, Li Y, Liu J, Ye C, He H, Li L, Song D, Shao R. The dual topoisomerase inhibitor A35 preferentially and specially targets topoisomerase 2α by enhancing pre-strand and post-strand cleavage and inhibiting DNA religation. Oncotarget 2016; 6:37871-94. [PMID: 26462155 PMCID: PMC4741971 DOI: 10.18632/oncotarget.5680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023] Open
Abstract
DNA topoisomerases play a key role in tumor proliferation. Chemotherapeutics targeting topoisomerases have been widely used in clinical oncology, but resistance and side effects, particularly cardiotoxicity, usually limit their application. Clinical data show that a decrease in topoisomerase (top) levels is the primary factor responsible for resistance, but in cells there is compensatory effect between the levels of top1 and top2α. Here, we validated cyclizing-berberine A35, which is a dual top inhibitor and preferentially targets top2α. The impact on the top2α catalytic cycle indicated that A35 could intercalate into DNA but did not interfere with DNA-top binding and top2α ATPase activity. A35 could facilitate DNA-top2α cleavage complex formation by enhancing pre-strand and post-strand cleavage and inhibiting religation, suggesting this compound can be a topoisomerase poison and had a district mechanism from other topoisomerase inhibitors. TARDIS and comet assays showed that A35 could induce cell DNA breakage and DNA-top complexes but had no effect on the cardiac toxicity inducer top2β. Silencing top1 augmented DNA break and silencing top2α decreased DNA break. Further validation in H9c2 cardiac cells showed A35 did not disturb cell proliferation and mitochondrial membrane potency. Additionally, an assay with nude mice further demonstrated A35 did not damage the heart. Our work identifies A35 as a novel skeleton compound dually inhibits topoisomerases, and predominantly and specially targets top2α by interfering with all cleavage steps and its no cardiac toxicity was verified by cardiac cells and mice heart. A35 could be a novel and effective targeting topoisomerase agent.
Collapse
Affiliation(s)
- Wuli Zhao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guohua Jiang
- Analysis and Testing Center, Beijing Normal University, Beijing, China
| | - Chongwen Bi
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yangbiao Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jingbo Liu
- China Meitan General Hospital, Beijing, China
| | - Cheng Ye
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongwei He
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Liang Li
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Danqing Song
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rongguang Shao
- Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Shapiro AB, Austin CA. A high-throughput fluorescence anisotropy-based assay for human topoisomerase II β-catalyzed ATP-dependent supercoiled DNA relaxation. Anal Biochem 2013; 448:23-9. [PMID: 24309019 DOI: 10.1016/j.ab.2013.11.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/14/2013] [Accepted: 11/24/2013] [Indexed: 01/29/2023]
Abstract
Because of their essentiality for DNA replication, transcription, and repair, type II topoisomerases are targets for antibacterial and anticancer drugs. There are two type II topoisomerases in humans, topoisomerase IIα (TOP2A) and topoisomerase IIβ (TOP2B), and two in bacteria, gyrase and topoisomerase IV. Inhibition of one or both of the human type II topoisomerases by antibacterial compounds targeting their bacterial counterparts could result in toxicity. In addition, side effects of anticancer drugs targeting TOP2A could result from inhibition of TOP2B. A simple and rapid biochemical assay for the activity of TOP2A and TOP2B would be advantageous for screening for novel inhibitors, testing them for selectivity for one enzyme over the other, and testing for potential toxicity of antibacterial type II topoisomerases mediated by human topoisomerase II inhibition. In this paper, we show that a previously reported high-throughput, fluorescence anisotropy-based assay for ATP-dependent relaxation of supercoiled DNA by human TOP2A can also be used under identical conditions for human TOP2B. We used this assay to compare the potencies versus both enzymes of 19 compounds reported in the literature to inhibit human and/or bacterial type II topoisomerases. We also used the assay to investigate the effect of ATP concentration on inhibitor potencies.
Collapse
Affiliation(s)
- Adam B Shapiro
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA 02451, USA.
| | - Caroline A Austin
- Institute for Cell and Molecular Biosciences, The Medical School, The University of Newcastle-upon-Tyne, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
17
|
Bau JT, Kang Z, Austin CA, Kurz EU. Salicylate, a Catalytic Inhibitor of Topoisomerase II, Inhibits DNA Cleavage and Is Selective for the α Isoform. Mol Pharmacol 2013; 85:198-207. [DOI: 10.1124/mol.113.088963] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
18
|
Abstract
Topoisomerases are nuclear enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of topoisomerases: type I enzymes, which make single-stranded cuts in DNA, and type II enzymes, which cut and pass double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. The protocols described in this unit are for assays used to assess new chemical entities for their ability to inhibit both forms of DNA topoisomerase. Included are an in vitro assay for topoisomerase I activity based on relaxation of supercoiled DNA, and an assay for topoisomerase II based on the decatenation of double-stranded DNA. The preparation of mammalian cell extracts for assaying topoisomerase activity is described, along with a protocol for an ICE assay to examine topoisomerase covalent complexes in vivo, and an assay for measuring DNA cleavage in vitro.
Collapse
Affiliation(s)
- John L Nitiss
- Molecular Pharmacology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
19
|
Chen YT, Collins TRL, Guan Z, Chen VB, Hsieh TS. Probing conformational changes in human DNA topoisomerase IIα by pulsed alkylation mass spectrometry. J Biol Chem 2012; 287:25660-8. [PMID: 22679013 DOI: 10.1074/jbc.m112.377606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type II topoisomerases are essential enzymes for solving DNA topological problems by passing one segment of DNA duplex through a transient double-strand break in a second segment. The reaction requires the enzyme to precisely control DNA cleavage and gate opening coupled with ATP hydrolysis. Using pulsed alkylation mass spectrometry, we were able to monitor the solvent accessibilities around 13 cysteines distributed throughout human topoisomerase IIα by measuring the thiol reactivities with monobromobimane. Most of the measured reactivities are in accordance with the predicted ones based on a homology structural model generated from available crystal structures. However, these results reveal new information for both the residues not covered in the structural model and potential differences between the modeled and solution holoenzyme structures. Furthermore, on the basis of the reactivity changes of several cysteines located at the N-gate and DNA gate, we could monitor the movement of topoisomerase II in the presence of cofactors and detect differences in the DNA gate between two closed clamp enzyme conformations locked by either 5'-adenylyl β,γ-imidodiphosphate or the anticancer drug ICRF-193.
Collapse
Affiliation(s)
- Yu-Tsung Chen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
20
|
Ketron AC, Denny WA, Graves DE, Osheroff N. Amsacrine as a topoisomerase II poison: importance of drug-DNA interactions. Biochemistry 2012; 51:1730-9. [PMID: 22304499 DOI: 10.1021/bi201159b] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amsacrine (m-AMSA) is an anticancer agent that displays activity against refractory acute leukemias as well as Hodgkin's and non-Hodgkin's lymphomas. The drug is comprised of an intercalative acridine moiety coupled to a 4'-amino-methanesulfon-m-anisidide headgroup. m-AMSA is historically significant in that it was the first drug demonstrated to function as a topoisomerase II poison. Although m-AMSA was designed as a DNA binding agent, the ability to intercalate does not appear to be the sole determinant of drug activity. Therefore, to more fully analyze structure-function relationships and the role of DNA binding in the action of m-AMSA, we analyzed a series of derivatives for the ability to enhance DNA cleavage mediated by human topoisomerase IIα and topoisomerase IIβ and to intercalate DNA. Results indicate that the 3'-methoxy (m-AMSA) positively affects drug function, potentially by restricting the rotation of the headgroup in a favorable orientation. Shifting the methoxy to the 2'-position (o-AMSA), which abrogates drug function, appears to increase the degree of rotational freedom of the headgroup and may impair interactions of the 1'-substituent or other portions of the headgroup within the ternary complex. Finally, the nonintercalative m-AMSA headgroup enhanced enzyme-mediated DNA cleavage when it was detached from the acridine moiety, albeit with 100-fold lower affinity. Taken together, our results suggest that much of the activity and specificity of m-AMSA as a topoisomerase II poison is embodied in the headgroup, while DNA intercalation is used primarily to increase the affinity of m-AMSA for the topoisomerase II-DNA cleavage complex.
Collapse
Affiliation(s)
- Adam C Ketron
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | | | | | | |
Collapse
|
21
|
Abstract
Type II DNA topoisomerases (Tops) are ATP-dependent enzymes that catalyze topological transformations of genomic DNA by the transport of one DNA double helix through another. In mammals, there are 2 isoforms of DNA Top II, termed Top IIα and Top IIβ. The IIβ isoform is abundantly expressed in cells that have undergone the final cell division and are committed to differentiation into neuronal cells. In recent years, there have been accumulating studies showing the significant role of Top IIβ in neuronal development through regulating expression of certain genes in cells committed to the neuronal fate after the final division. These genes are involved in the processes of neuronal differentiation, migration, axon guidance and so on. The present review mainly focused on the research progress on the role of Top IIβ in neuronal development over the recent decades.
Collapse
Affiliation(s)
- Xin Heng
- Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai 200025, China
| | | |
Collapse
|
22
|
Gilroy KL, Austin CA. The impact of the C-terminal domain on the interaction of human DNA topoisomerase II α and β with DNA. PLoS One 2011; 6:e14693. [PMID: 21358820 PMCID: PMC3040172 DOI: 10.1371/journal.pone.0014693] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 01/19/2011] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Type II DNA topoisomerases are essential, ubiquitous enzymes that act to relieve topological problems arising in DNA from normal cellular activity. Their mechanism of action involves the ATP-dependent transport of one DNA duplex through a transient break in a second DNA duplex; metal ions are essential for strand passage. Humans have two isoforms, topoisomerase IIα and topoisomerase IIβ, that have distinct roles in the cell. The C-terminal domain has been linked to isoform specific differences in activity and DNA interaction. METHODOLOGY/PRINCIPAL FINDINGS We have investigated the role of the C-terminal domain in the binding of human topoisomerase IIα and topoisomerase IIβ to DNA in fluorescence anisotropy assays using full length and C-terminally truncated enzymes. We find that the C-terminal domain of topoisomerase IIβ but not topoisomerase IIα affects the binding of the enzyme to the DNA. The presence of metal ions has no effect on DNA binding. Additionally, we have examined strand passage of the full length and truncated enzymes in the presence of a number of supporting metal ions and find that there is no difference in relative decatenation between isoforms. We find that calcium and manganese, in addition to magnesium, can support strand passage by the human topoisomerase II enzymes. CONCLUSIONS/SIGNIFICANCE The C-terminal domain of topoisomerase IIβ, but not that of topoisomerase IIα, alters the enzyme's K(D) for DNA binding. This is consistent with previous data and may be related to the differential modes of action of the two isoforms in vivo. We also show strand passage with different supporting metal ions for human topoisomerase IIα or topoisomerase IIβ, either full length or C-terminally truncated. They all show the same preferences, whereby Mg > Ca > Mn.
Collapse
Affiliation(s)
- Kathryn L. Gilroy
- Institute for Cell and Molecular Biosciences, University of Newcastle Upon Tyne, Newcastle upon Tyne, United Kingdom
| | - Caroline A. Austin
- Institute for Cell and Molecular Biosciences, University of Newcastle Upon Tyne, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG. Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod 2011; 84:900-9. [PMID: 21228215 DOI: 10.1095/biolreprod.110.090035] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To achieve the specialized nuclear structure in sperm necessary for fertilization, dramatic chromatin reorganization steps in developing spermatids are required where histones are largely replaced first by transition proteins and then by protamines. This entails the transient formation of DNA strand breaks to allow for, first, DNA relaxation and then chromatin compaction. However, the nature and origin of these breaks are not well understood. We previously reported that these DNA strand breaks trigger the activation of poly(ADP-ribose) (PAR) polymerases PARP1 and PARP2 and that interference with PARP activation causes poor chromatin integrity with abnormal retention of histones in mature sperm and impaired embryonic survival. Here we show that the activity of topoisomerase II beta (TOP2B), an enzyme involved in DNA strand break formation in elongating spermatids, is strongly inhibited by the activity of PARP1 and PARP2 in vitro, and this is in turn counteracted by the PAR-degrading activity of PAR glycohydrolase. Moreover, genetic and pharmacological PARP inhibition both lead to increased TOP2B activity in murine spermatids in vivo as measured by covalent binding of TOP2B to the DNA. In summary, the available data suggest a functional relationship between the DNA strand break-generating activity of TOP2B and the DNA strand break-dependent activation of PARP enzymes that in turn inhibit TOP2B. Because PARP activity also facilitates histone H1 linker removal and local chromatin decondensation, cycles of PAR formation and degradation may be necessary to coordinate TOP2B-dependent DNA relaxation with histone-to-protamine exchange necessary for spermatid chromatin remodeling.
Collapse
Affiliation(s)
- Mirella L Meyer-Ficca
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
24
|
López-Lázaro M, Willmore E, Austin CA. The dietary flavonoids myricetin and fisetin act as dual inhibitors of DNA topoisomerases I and II in cells. Mutat Res 2009; 696:41-7. [PMID: 20025993 DOI: 10.1016/j.mrgentox.2009.12.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/28/2009] [Accepted: 10/10/2009] [Indexed: 11/24/2022]
Abstract
DNA topoisomerases (topos) are the target of several drugs commonly used in cancer chemotherapy; these drugs induce topo-DNA complexes with either topo I or topo II that eventually trigger cell death. The inhibition of these enzymes induces DNA alterations that may also lead to carcinogenic effects; indeed, an increased risk for developing leukemia has been observed in patients treated with some topo II inhibitors. Several flavonoids have been shown to interact with purified topo I and topo II, therefore suggesting that these compounds may possess both anticancer and carcinogenic activity. Because the activity of a drug on purified topoisomerases does not always represent the activity in the cell, the aim of this work is to evaluate the effects of several common dietary flavonoids on these enzymes in cells. Using the cell-based TARDIS assay, we have evaluated the effects of the flavonoids quercetin, apigenin, fisetin and myricetin on topo I and topo II in K562 human leukemia cells at several concentrations and exposure times. Quercetin and apigenin induced moderate levels of topo II-DNA complexes and did not induce topo I-DNA complexes in these cells. Fisetin induced neither topo I- nor topo II-DNA complexes, but behaved as a catalytic inhibitor of both enzymes. Myricetin induced high levels of topo-DNA complexes with both enzymes. In addition, murine embryo fibroblasts lacking topo IIbeta were resistant to myricetin-induced cell-growth inhibition, therefore suggesting that topo IIbeta is an important drug target for this flavonoid. These results support the idea that specific concentrations of some dietary flavonoids may produce topoisomerase-mediated carcinogenic and chemotherapeutic effects in vivo. The ability of myricetin to induce topo-DNA complexes with both topo I and topo II in leukemia cells may be therapeutically useful and deserves further study.
Collapse
Affiliation(s)
- Miguel López-Lázaro
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | | | | |
Collapse
|
25
|
Lee MT, Bachant J. SUMO modification of DNA topoisomerase II: trying to get a CENse of it all. DNA Repair (Amst) 2009; 8:557-68. [PMID: 19230795 DOI: 10.1016/j.dnarep.2009.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA topoisomerase II (topo II) is an essential determinant of chromosome structure and function, acting to resolve topological problems inherent in recombining, transcribing, replicating and segregating DNA. In particular, the unique decatenating activity of topo II is required for sister chromatids to disjoin and separate in mitosis. Topo II exhibits a dynamic localization pattern on mitotic chromosomes, accumulating at centromeres and axial chromosome cores prior to anaphase. In organisms ranging from yeast to humans, a fraction of topo II is targeted for SUMO conjugation in mitotic cells, and here we review our current understanding of the significance of this modification. As we shall see, an emerging consensus is that in metazoans SUMO modification is required for topo II to accumulate at centromeres, and that in the absence of this regulation there is an elevated frequency of chromosome non-disjunction, segregation errors, and aneuploidy. The underlying molecular mechanisms for how SUMO controls topo II are as yet unclear. In closing, however, we will evaluate two possible interpretations: one in which SUMO promotes enzyme turnover, and a second in which SUMO acts as a localization tag for topo II chromosome trafficking.
Collapse
Affiliation(s)
- Ming-Ta Lee
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
26
|
Toyoda E, Kagaya S, Cowell IG, Kurosawa A, Kamoshita K, Nishikawa K, Iiizumi S, Koyama H, Austin CA, Adachi N. NK314, a topoisomerase II inhibitor that specifically targets the alpha isoform. J Biol Chem 2008; 283:23711-20. [PMID: 18596031 PMCID: PMC3259784 DOI: 10.1074/jbc.m803936200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 06/27/2008] [Indexed: 11/06/2022] Open
Abstract
Topoisomerase II (Top2) is a ubiquitous nuclear enzyme that relieves torsional stress in chromosomal DNA during various cellular processes. Agents that target Top2, involving etoposide, doxorubicin, and mitoxantrone, are among the most effective anticancer drugs used in the clinic. Mammalian cells possess two genetically distinct Top2 isoforms, both of which are the target of these agents. Top2alpha is essential for cell proliferation and is highly expressed in vigorously growing cells, whereas Top2beta is nonessential for growth and has recently been implicated in treatment-associated secondary malignancies, highlighting the validity of a Top2alpha-specific drug for future cancer treatment; however, no such agent has been hitherto reported. Here we show that NK314, a novel synthetic benzo[c]phenanthridine alkaloid, targets Top2alpha and not Top2beta in vivo. Unlike other Top2 inhibitors, NK314 induces Top2-DNA complexes and double-strand breaks (DSBs) in an alpha isoform-specific manner. Heterozygous disruption of the human TOP2alpha gene confers increased NK314 resistance, whereas TOP2beta homozygous knock-out cells display increased NK314 sensitivity, indicating that the alpha isoform is the cellular target. We further show that the absence of Top2beta does not alleviate NK314 hypersensitivity of cells deficient in non-homologous end-joining, a critical pathway for repairing Top2-mediated DSBs. Our results indicate that NK314 acts as a Top2alpha-specific poison in mammalian cells, with excellent potential as an efficacious and safe chemotherapeutic agent. We also suggest that a series of human knock-out cell lines are useful in assessing DNA damage and repair induced by potential topoisomerase-targeting agents.
Collapse
Affiliation(s)
- Eriko Toyoda
- International Graduate School of Arts and
Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027,
Japan, the Pharmaceutical Research Laboratories,
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-chome, Kita-ku, Tokyo 115-8588, Japan,
and the Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne,
NE2 4HH United Kingdom
| | - Shigehide Kagaya
- International Graduate School of Arts and
Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027,
Japan, the Pharmaceutical Research Laboratories,
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-chome, Kita-ku, Tokyo 115-8588, Japan,
and the Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne,
NE2 4HH United Kingdom
| | - Ian G. Cowell
- International Graduate School of Arts and
Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027,
Japan, the Pharmaceutical Research Laboratories,
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-chome, Kita-ku, Tokyo 115-8588, Japan,
and the Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne,
NE2 4HH United Kingdom
| | - Aya Kurosawa
- International Graduate School of Arts and
Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027,
Japan, the Pharmaceutical Research Laboratories,
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-chome, Kita-ku, Tokyo 115-8588, Japan,
and the Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne,
NE2 4HH United Kingdom
| | - Keiichi Kamoshita
- International Graduate School of Arts and
Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027,
Japan, the Pharmaceutical Research Laboratories,
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-chome, Kita-ku, Tokyo 115-8588, Japan,
and the Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne,
NE2 4HH United Kingdom
| | - Kiyohiro Nishikawa
- International Graduate School of Arts and
Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027,
Japan, the Pharmaceutical Research Laboratories,
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-chome, Kita-ku, Tokyo 115-8588, Japan,
and the Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne,
NE2 4HH United Kingdom
| | - Susumu Iiizumi
- International Graduate School of Arts and
Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027,
Japan, the Pharmaceutical Research Laboratories,
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-chome, Kita-ku, Tokyo 115-8588, Japan,
and the Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne,
NE2 4HH United Kingdom
| | - Hideki Koyama
- International Graduate School of Arts and
Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027,
Japan, the Pharmaceutical Research Laboratories,
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-chome, Kita-ku, Tokyo 115-8588, Japan,
and the Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne,
NE2 4HH United Kingdom
| | - Caroline A. Austin
- International Graduate School of Arts and
Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027,
Japan, the Pharmaceutical Research Laboratories,
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-chome, Kita-ku, Tokyo 115-8588, Japan,
and the Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne,
NE2 4HH United Kingdom
| | - Noritaka Adachi
- International Graduate School of Arts and
Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027,
Japan, the Pharmaceutical Research Laboratories,
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-chome, Kita-ku, Tokyo 115-8588, Japan,
and the Institute for Cell and Molecular
Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne,
NE2 4HH United Kingdom
| |
Collapse
|
27
|
Meczes EL, Gilroy KL, West KL, Austin CA. The impact of the human DNA topoisomerase II C-terminal domain on activity. PLoS One 2008; 3:e1754. [PMID: 18335031 PMCID: PMC2262138 DOI: 10.1371/journal.pone.0001754] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 12/27/2007] [Indexed: 11/20/2022] Open
Abstract
Background Type II DNA topoisomerases (topos) are essential enzymes needed for the resolution of topological problems that occur during DNA metabolic processes. Topos carry out an ATP-dependent strand passage reaction whereby one double helix is passed through a transient break in another. Humans have two topoII isoforms, α and β, which while enzymatically similar are differentially expressed and regulated, and are thought to have different cellular roles. The C-terminal domain (CTD) of the enzyme has the most diversity, and has been implicated in regulation. We sought to investigate the impact of the CTD domain on activity. Methodology/Principle Findings We have investigated the role of the human topoII C-terminal domain by creating constructs encoding C-terminally truncated recombinant topoIIα and β and topoIIα+β-tail and topoIIβ+α-tail chimeric proteins. We then investigated function in vivo in a yeast system, and in vitro in activity assays. We find that the C-terminal domain of human topoII isoforms is needed for in vivo function of the enzyme, but not needed for cleavage activity. C-terminally truncated enzymes had similar strand passage activity to full length enzymes, but the presence of the opposite C-terminal domain had a large effect, with the topoIIα-CTD increasing activity, and the topoIIβ-CTD decreasing activity. Conclusions/Significance In vivo complementation data show that the topoIIα C-terminal domain is needed for growth, but the topoIIβ isoform is able to support low levels of growth without a C-terminal domain. This may indicate that topoIIβ has an additional localisation signal. In vitro data suggest that, while the lack of any C-terminal domain has little effect on activity, the presence of either the topoIIα or β C-terminal domain can affect strand passage activity. Data indicates that the topoIIβ-CTD may be a negative regulator. This is the first report of in vitro data with chimeric human topoIIs.
Collapse
Affiliation(s)
- Emma L. Meczes
- Institute for Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle Upon Tyne, United Kingdom
| | - Kathryn L. Gilroy
- Institute for Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle Upon Tyne, United Kingdom
| | - Katherine L. West
- Division of Cancer Sciences and Molecular Pathology, University of Glasgow, Glasgow, United Kingdom
| | - Caroline A. Austin
- Institute for Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Newcastle Upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Linka RM, Porter AC, Volkov A, Mielke C, Boege F, Christensen MO. C-terminal regions of topoisomerase IIalpha and IIbeta determine isoform-specific functioning of the enzymes in vivo. Nucleic Acids Res 2007; 35:3810-22. [PMID: 17526531 PMCID: PMC1920234 DOI: 10.1093/nar/gkm102] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Topoisomerase II removes supercoils and catenanes generated during DNA metabolic processes such as transcription and replication. Vertebrate cells express two genetically distinct isoforms (alpha and beta) with similar structures and biochemical activities but different biological roles. Topoisomerase IIalpha is essential for cell proliferation, whereas topoisomerase IIbeta is required only for aspects of nerve growth and brain development. To identify the structural features responsible for these differences, we exchanged the divergent C-terminal regions (CTRs) of the two human isoforms (alpha 1173-1531 and beta 1186-1621) and tested the resulting hybrids for complementation of a conditional topoisomerase IIalpha knockout in human cells. Proliferation was fully supported by all enzymes bearing the alpha CTR. The alpha CTR also promoted chromosome binding of both enzyme cores, and was by itself chromosome-bound, suggesting a role in enzyme targeting during mitosis. In contrast, enzymes bearing the beta CTR supported proliferation only rarely and when expressed at unusually high levels. A similar analysis of the divergent N-terminal regions (alpha 1-27 and beta 1-43) revealed no role in isoform-specific functions. Our results show that it is the CTRs of human topoisomerase II that determine their isoform-specific functions in proliferating cells. They also indicate persistence of some functional redundancy between the two isoforms.
Collapse
Affiliation(s)
- René M. Linka
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Andrew C.G. Porter
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Arsen Volkov
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Christian Mielke
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Morten O. Christensen
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Medical School, Moorenstrasse 5, D-40225 Düsseldorf, Germany and Gene Targeting Group, Department of Haematology, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
- *To whom correspondence should be addressed. +49 211 8118036; +49 211 8118021;
| |
Collapse
|
29
|
Leontiou C, Watters GP, Gilroy KL, Heslop P, Cowell IG, Craig K, Lightowlers RN, Lakey JH, Austin CA. Differential selection of acridine resistance mutations in human DNA topoisomerase IIbeta is dependent on the acridine structure. Mol Pharmacol 2007; 71:1006-14. [PMID: 17209120 DOI: 10.1124/mol.106.032953] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type II DNA topoisomerases are targets of acridine drugs. Nine mutations conferring resistance to acridines were obtained by forced molecular evolution, using methyl N-(4'-(9-acridinylamino)-3-methoxy-phenyl) methane sulfonamide (mAMSA), methyl N-(4'-(9-acridinylamino)-2-methoxy-phenyl) carbamate hydrochloride (mAMCA), methyl N-(4'-(9-acridinylamino)-phenyl) carbamate hydrochloride (AMCA), and N-[2-(dimethylamino)ethyl]acridines-4-carboxamide (DACA) as selection agents. Mutations betaH514Y, betaE522K, betaG550R, betaA596T, betaY606C, betaR651C, and betaD661N were in the B' domain, and betaG465D and betaP732L were not. With AMCA, four mutations were selected (betaE522K, betaG550R, betaA596T, and betaD661N). Two mutations were selected with mAMCA (betaY606C and betaR651C) and two with mAMSA (betaG465D and betaP732L). It is interesting that there was no overlap between mutation selection with AMCA and mAMSA or mAMCA. AMCA lacks the methoxy substituent present in mAMCA and mAMSA, suggesting that this motif determines the mutations selected. With the fourth acridine DACA, five mutations were selected for resistance (betaG465D, betaH514Y, betaG550R, betaA596T, and betaD661N). betaG465D was selected with both DACA and mAMSA, and betaG550R, betaA596T, and betaD661N were selected with both DACA and AMCA. DACA lacks the anilino motif of the other three drugs but retains the acridine ring motif. The overlap in selection with DACA and mAMSA or AMCA suggests that altered recognition of the acridine moiety may be involved in these mutations. We used restriction fragment length polymorphisms and heteroduplex analysis to demonstrate that some mutations were selected multiple times (betaG465D, betaE522K, betaG550R, betaA596T, and betaD661N), whereas others were selected only once (betaH514Y, betaY606C, betaR651C, and betaP732L). Here, we compare the drug resistance profile of all nine mutations and report the biochemical characterization of three, betaG550R, betaY606C, and betaD661N.
Collapse
Affiliation(s)
- Chrysoula Leontiou
- The Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gilroy KL, Leontiou C, Padget K, Lakey JH, Austin CA. mAMSA resistant human topoisomerase IIbeta mutation G465D has reduced ATP hydrolysis activity. Nucleic Acids Res 2006; 34:1597-607. [PMID: 16549872 PMCID: PMC1405819 DOI: 10.1093/nar/gkl057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type II Human DNA Topoisomerases (topos II) play an essential role in DNA replication and transcription and are important targets for cancer chemotherapeutic drugs. Topoisomerase II causes transient double-strand breaks in DNA, forming a gate through which another double helix is passed, and acts as a DNA dependent ATPase. Mutations in topoII have been linked to atypical multi-drug resistance. Both human Topoisomerase II isoforms, α and β, are targeted by amsacrine. We have used a forced molecular evolution approach to identify mutations conferring resistance to acridines. Here we report mutation βG465D, which was selected with mAMSA and DACA and is cross-resistant to etoposide, ellipticine and doxorubicin. Resistance to mAMSA appears to decrease over time indicating a previously unreported resistance mechanism. G465D lies within the B′ domain in the region that contacts the cleaved gate helix. There is a 3-fold decrease in ATP affinity and ATP hydrolysis and an altered requirement for magnesium in decatenation assays. The decatenation rate is decreased for the mutated G465D protein. And we report for the first time the use of fluorescence anisotropy with intact human topoisomerase II.
Collapse
Affiliation(s)
- Kathryn L Gilroy
- The Institute for Cell and Molecular Biosciences, The University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
31
|
Habermeyer M, Fritz J, Barthelmes HU, Christensen MO, Larsen MK, Boege F, Marko D. Anthocyanidins modulate the activity of human DNA topoisomerases I and II and affect cellular DNA integrity. Chem Res Toxicol 2005; 18:1395-404. [PMID: 16167831 DOI: 10.1021/tx050039n] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we investigated the effect of anthocyanidins on human topoisomerases I and II and its relevance for DNA integrity within human cells. Anthocyanidins bearing vicinal hydroxy groups at the B-ring (delphinidin, DEL; cyanidin, CY) were found to potently inhibit the catalytic activity of human topoisomerases I and II, without discriminating between the IIalpha and the IIbeta isoforms. However, in contrast to topoisomerase poisons, DEL and CY did not stabilize the covalent DNA-topoisomerase intermediates (cleavable complex) of topoisomerase I or II. Using recombinant topoisomerase I, the presence of CY or DEL (> or = 1 microM) effectively prohibited the stabilization of the cleavable complex by the topoisomerase I poison camptothecin. We furthermore investigated whether the potential protective effect vs topoisomerase I poisons is reflected also on the cellular level, affecting the DNA damaging properties of camptothecin. Indeed, in HT29 cells, low micromolar concentrations of DEL (1-10 microM) significantly diminished the DNA strand breaking effect of camptothecin (100 microM). However, at concentrations > or = 50 microM, all anthocyanidins tested (delphinidin, cyanidin, malvidin, pelargonidin, and paeonidin), including those not interfering with topoisomerases, were found to induce DNA strand breaks in the comet assay. All of these analogues were able to compete with ethidium bromide for the intercalation into calf thymus DNA and to replace the minor groove binder Hoechst 33258. These data indicate substantial affinity to double-stranded DNA, which might contribute at least to the DNA strand breaking effect of anthocyanidins at higher concentrations (> or = 50 microM).
Collapse
Affiliation(s)
- Michael Habermeyer
- Department of Chemistry, Division of Food Chemistry and Environmental Toxicology, University of Kaiserslautern, Erwin-Schroedinger Strasse 52, 67663 Kaiserslautern, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Leontiou C, Lakey JH, Lightowlers R, Turnbull RM, Austin CA. Mutation P732L in human DNA topoisomerase IIbeta abolishes DNA cleavage in the presence of calcium and confers drug resistance. Mol Pharmacol 2005; 69:130-9. [PMID: 16239602 DOI: 10.1124/mol.105.015933] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anti cancer drug methyl N-(4'-(9-acridinylamino)-3-methoxy-phenyl) methane sulfonamide (mAMSA) targets human DNA topoisomerase IIbeta. We report here the first selection with mAMSA of resistant human topoisomerase IIbeta. Random mutagenesis of human DNA topoisomerase IIbeta cDNA, followed by selection in yeast for resistance to mAMSA, identified betaP732L. This mutant was 10-fold less sensitive to mAMSA and cross-resistant to other chemotherapeutic agents such as etoposide, ellipticine, methyl N-(4'-(9-acridinylamino)-2-methoxy-phenyl) carbamate hydrochloride (mAMCA), methyl N-(4'-(9-acridinylamino)-phenyl) carbamate hydrochloride (AMCA), and doxorubicin. betaP732L is functional but has reduced strand passage activities and altered DNA binding compared with the wild-type protein. It has drastically altered cleavage properties compared with the wild-type enzyme. It cleaved a 40-base pair (bp) DNA substrate in the presence of magnesium but at positions different from that of the wild-type protein. More striking is that betaP732L was unable to cleave the 40-bp DNA substrate, a 500-bp linear substrate, or a 4.3-kilobase supercoiled substrate in the presence of calcium ions. This is the first report of a topoisomerase II mutation abolishing the ability of calcium to support DNA cleavage. This provides evidence for metal ion requirement for the phosphoryltransfer reaction of topoisomerase II and a possible mechanism for drug resistance.
Collapse
Affiliation(s)
- Chrysoula Leontiou
- Institute for Cell and Molecular Bioscience, The Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
33
|
Krogh BO, Llorente B, Lam A, Symington LS. Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex stability in addition to nuclease activity. Genetics 2005; 171:1561-70. [PMID: 16143598 PMCID: PMC1456084 DOI: 10.1534/genetics.105.049478] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Mre11-Rad50-Xrs2 complex is involved in DNA double-strand break repair, telomere maintenance, and the intra-S phase checkpoint. The Mre11 subunit has nuclease activity in vitro, but the role of the nuclease in DNA repair and telomere maintenance remains controversial. We generated six mre11 alleles with substitutions of conserved residues within the Mre11-phosphoesterase motifs and compared the phenotypes conferred, as well as exonuclease activity and complex formation, by the mutant proteins. Substitutions of Asp16 conferred the most severe DNA repair and telomere length defects. Interactions between Mre11-D16A or Mre11-D16N and Rad50 or Xrs2 were severely compromised, whereas the mre11 alleles with greater DNA repair proficiency also exhibited stable complex formation. At all of the targeted residues, alanine substitution resulted in a more severe defect in DNA repair compared to the more conservative asparagine substitutions, but all of the mutant proteins exhibited <2% of the exonuclease activity observed for wild-type Mre11. Our results show that the structural integrity of the Mre11-Rad50-Xrs2 complex is more important than the catalytic activity of the Mre11 nuclease for the overall functions of the complex in vegetative cells.
Collapse
Affiliation(s)
- Berit O Krogh
- Institute of Cancer Research and Department of Microbiology, Columbia University Medical Center, 701 W. 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
34
|
Lillard-Wetherell K, Machwe A, Langland GT, Combs KA, Behbehani GK, Schonberg SA, German J, Turchi JJ, Orren DK, Groden J. Association and regulation of the BLM helicase by the telomere proteins TRF1 and TRF2. Hum Mol Genet 2004; 13:1919-32. [PMID: 15229185 DOI: 10.1093/hmg/ddh193] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In addition to increased DNA-strand exchange, a cytogenetic feature of cells lacking the RecQ-like BLM helicase is a tendency for telomeres to associate. We also report additional cellular and biochemical evidence for the role of BLM in telomere maintenance. BLM co-localizes and complexes with the telomere repeat protein TRF2 in cells that employ the recombination-mediated mechanism of telomere lengthening known as ALT (alternative lengthening of telomeres). BLM co-localizes with TRF2 in foci actively synthesizing DNA during late S and G2/M; co-localization increases in late S and G2/M when ALT is thought to occur. Additionally, TRF1 and TRF2 interact directly with BLM and regulate BLM unwinding activity in vitro. Whereas TRF2 stimulates BLM unwinding of telomeric and non-telomeric substrates, TRF1 inhibits BLM unwinding of telomeric substrates only. Finally, TRF2 stimulates BLM unwinding with equimolar concentrations of TRF1, but not when TRF1 is added in molar excess. These data suggest a function for BLM in recombination-mediated telomere lengthening and support a model for the coordinated regulation of BLM activity at telomeres by TRF1 and TRF2.
Collapse
Affiliation(s)
- Kate Lillard-Wetherell
- Department of Molecular Genetics, Biochemistry and Microbiology, Howard Hughes Medical Institute, University of Cincinnati College of Medicine, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Engel R, Valkov NI, Gump JL, Hazlehurst L, Dalton WS, Sullivan DM. The cytoplasmic trafficking of DNA topoisomerase IIalpha correlates with etoposide resistance in human myeloma cells. Exp Cell Res 2004; 295:421-31. [PMID: 15093741 DOI: 10.1016/j.yexcr.2004.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2003] [Revised: 01/08/2004] [Indexed: 10/26/2022]
Abstract
In this study we have investigated the role of topoisomerase (topo) IIalpha trafficking in cellular drug resistance. To accomplish this, it was necessary to separate the influence of cell cycle, drug uptake, topo protein levels, and enzyme trafficking on drug sensitivity. Thus, we developed a cell model (called accelerated plateau) using human myeloma H929 cells that reproducibly translocates topo IIalpha to the cytoplasm. Compared to log-phase cells, the cytoplasmic redistribution of topo IIalpha in plateau-phase cells correlated with a 10-fold resistance to VP-16 and a 40-60% reduction in the number of drug-induced double-strand DNA breaks. In addition, 7-fold more VP-16 was necessary to achieve 50% topo IIalpha band depletion, suggesting that there are fewer drug-induced topo-DNA complexes formed in quiescent cells than in log-phase cells. The total cellular amount of topo IIalpha and topo IIbeta protein in log- and plateau-phase cells was similar as determined by Western blot analysis. There was a 25% reduction in S-phase cell number in plateau cells (determined by bromodeoxyuridine (BrdU) incorporation), while there was no significant difference in the equilibrium concentrations of [(3)H]-VP-16 when log cells were compared with plateau cells. Furthermore, the nuclear/cytoplasmic ratio of topo IIalpha is increased 58-fold in accelerated-plateau H929 cells treated with leptomycin B (LMB) when compared to untreated cells. It appears that the nuclear-cytoplasmic shuttling of topo IIalpha, which decreases the amount of nuclear target enzyme, is a major mechanism of drug resistance to topo II inhibitors in plateau-phase myeloma cells.
Collapse
MESH Headings
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/therapeutic use
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Antineoplastic Agents, Phytogenic/therapeutic use
- Blotting, Western
- Cell Line, Tumor
- Cell Nucleus/enzymology
- Comet Assay
- Cytoplasm/enzymology
- DNA Topoisomerases, Type II/drug effects
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- Drug Resistance, Neoplasm
- Electrophoresis, Gel, Two-Dimensional
- Etoposide/pharmacokinetics
- Etoposide/therapeutic use
- Fatty Acids, Unsaturated/pharmacokinetics
- Fatty Acids, Unsaturated/therapeutic use
- Flow Cytometry
- HL-60 Cells
- Humans
- Microscopy, Fluorescence
- Mitoxantrone/pharmacokinetics
- Mitoxantrone/therapeutic use
- Multiple Myeloma/drug therapy
- Multiple Myeloma/enzymology
- Plasmacytoma/drug therapy
- Plasmacytoma/enzymology
- Protein Transport
- Subcellular Fractions
Collapse
Affiliation(s)
- Roxane Engel
- Experimental Therapeutics Program, Departments of Interdisciplinary Oncology and Biochemistry and Molecular Biology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | |
Collapse
|
36
|
Low RL, Orton S, Friedman DB. A truncated form of DNA topoisomerase IIbeta associates with the mtDNA genome in mammalian mitochondria. ACTA ACUST UNITED AC 2003; 270:4173-86. [PMID: 14519130 DOI: 10.1046/j.1432-1033.2003.03814.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the likely requirement for a DNA topoisomerase II activity during synthesis of mitochondrial DNA in mammals, this activity has been very difficult to identify convincingly. The only DNA topoisomerase II activity conclusively demonstrated to be mitochondrial in origin is that of a type II activity found associated with the mitochondrial, kinetoplast DNA network in trypanosomatid protozoa [Melendy, T., Sheline, C., and Ray, D.S. (1988) Cell 55, 1083-1088; Shapiro, T.A., Klein, V.A., and Englund, P.A. (1989) J. Biol. Chem.264, 4173-4178]. In the present study, we report the discovery of a type DNA topoisomerase II activity in bovine mitochondria. Identified among mtDNA replicative proteins recovered from complexes of mtDNA and protein, the DNA topoisomerase relaxes a negatively, supercoiled DNA template in vitro, in a reaction that requires Mg2+ and ATP. The relaxation activity is inhibited by etoposide and other inhibitors of eucaryotic type II enzymes. The DNA topoisomerase II copurifies with mitochondria and directly associates with mtDNA, as indicated by sensitivity of some mtDNA circles in the isolated complex of mtDNA and protein to cleavage by etoposide. The purified activity can be assigned to a approximately 150-kDa protein, which is recognized by a polyclonal antibody made against the trypanosomal mitochondrial topo II enzyme. Mass spectrometry performed on peptides prepared from the approximately 150-kDa protein demonstrate that this bovine mitochondrial activity is a truncated version of DNA topoisomerase IIbeta, one of two DNA topoisomerase II activities known to exist in mammalian nuclei.
Collapse
Affiliation(s)
- Robert L Low
- Department of Pathology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | |
Collapse
|
37
|
Leontiou C, Lightowlers R, Lakey JH, Austin CA. Kinetic analysis of human topoisomerase IIα and β DNA binding by surface plasmon resonance. FEBS Lett 2003; 554:206-10. [PMID: 14596941 DOI: 10.1016/s0014-5793(03)01172-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Topoisomerase IIbeta binding to DNA has been analysed by surface plasmon resonance for the first time. Three DNA substrates with different secondary structures were studied, a 40 bp oligonucleotide, a four way junction and a 189 bp bent DNA fragment. We also compared the DNA binding kinetics of both human topoisomerase isoforms under identical conditions. Both alpha and beta isoforms exhibited similar binding kinetics, with average equilibrium dissociation constants ranging between 1.4 and 2.9 nM. We therefore conclude that neither isoform has any preference for a specific DNA substrate under the conditions used in these experiments.
Collapse
Affiliation(s)
- Chrysoula Leontiou
- School of Cell and Molecular BioSciences, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
38
|
Sengupta T, Mukherjee M, Mandal C, Das A, Majumder HK. Functional dissection of the C-terminal domain of type II DNA topoisomerase from the kinetoplastid hemoflagellate Leishmania donovani. Nucleic Acids Res 2003; 31:5305-16. [PMID: 12954766 PMCID: PMC203312 DOI: 10.1093/nar/gkg727] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The amino acid sequences of the C-terminal domain (CTD) of the type II DNA topoisomerases are divergent and species specific as compared with the highly conserved N-terminal and central domains. A set of C-terminal deletion mutants of Leishmania donovani topoisomerase II was constructed. Removal of more than 178 amino acids out of 1236 amino acid residues from the C-terminus inactivates the enzyme, whereas removal of 118 amino acids or less has no apparent effect on the ability of the parasite enzyme to complement a temperature-sensitive mutation of the Saccharomyces cerevisiae topoisomerase II gene. Deletion analysis revealed a potent nuclear localization signal (NLS) within the amino acid residues 998-1058. Immunomicroscopy results suggest that the removal of an NLS in the CTD is likely to contribute to the physiological dysfunction of these proteins. Modeling of the LdTOP2 based on the crystal structure of the yeast type II DNA topoisomerase showed that the parasite protein assumes a structure similar to its yeast counterpart harboring all the conserved residues in a structurally similar position. However, a marked difference in electrostatic potential was found in a span of 60 amino acid residues (998-1058), which also do not have any homology with topoisomerase II sequences. Such significant differences can be exploited by the structure-based design of selective inhibitors using the structure of the Leishmania enzyme as a template.
Collapse
Affiliation(s)
- Tanushri Sengupta
- Department of Molecular Parasitology, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
39
|
Ding H, Duan W, Zhu WG, Ju R, Srinivasan K, Otterson GA, Villalona-Calero MA. P21 response to DNA damage induced by genistein and etoposide in human lung cancer cells. Biochem Biophys Res Commun 2003; 305:950-6. [PMID: 12767922 DOI: 10.1016/s0006-291x(03)00873-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The p21(WAF1/Cip1) gene plays a central role in cell cycle regulation. Here we show that topoisomerase II inhibitors, genistein and etoposide, induce p21(WAF1/Cip1) expression mainly in a p53-dependent manner in human lung cancer cell line A549. However, although p53 accumulated, p21(WAF1/Cip1) expression did not depend on the level of Ser15 phosphorylation of p53. Caffeine, an ataxia telangiectasia-mutated (ATM), and ATM- and Rad3-related kinase (ATR) inhibitor, abrogated genistein-induced p21(WAF1/Cip1) and largely blocked etoposide-induced p21(WAF1/Cip1) expression. Wortmannin, an ATM- and DNA-dependent protein kinase inhibitor, partially inhibited p21(WAF1/Cip1) expression induced by genistein and etoposide, whereas UCN-01, a Chk1 inhibitor, partially blocked etoposide, but not genistein-induced p21(WAF1/Cip1) expression. These data suggest that both genistein and etoposide induce p21(WAF1/Cip1) expression in a p53-dependent manner. Genistein appears to stimulate p21(WAF1/Cip1) expression through p53 via ATM, whereas etoposide may activate both ATM and ATR pathways. Our results suggest different mechanisms participate in genistein and etoposide induced p21(WAF1/Cip1) expression.
Collapse
Affiliation(s)
- Haiming Ding
- Arthur James Cancer Hospital and Richard Solove Research Institute, Comprehensive Cancer Center, and Department of Internal Medicine, The Ohio State University, Columbus, OH 43210-1240, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Gao H, Yamasaki EF, Chan KK, Shen LL, Snapka RM. DNA sequence specificity for topoisomerase II poisoning by the quinoxaline anticancer drugs XK469 and CQS. Mol Pharmacol 2003; 63:1382-8. [PMID: 12761349 DOI: 10.1124/mol.63.6.1382] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The two known antineoplastic quinoxaline topoisomerase II poisons, XK469 (NSC 697887) and CQS (chloroquinoxaline sulfonamide, NSC 339004), were compared for DNA cleavage site specificity, using purified human topoisomerase IIalpha and human topoisomerase IIbeta. The DNA cleavage intensity pattern for topoisomerase IIalpha poisoning by CQS closely resembled that of VM-26, despite the lack of any apparent common pharmacophore. In contrast, the topoisomerase IIalpha DNA cleavage intensity patterns of XK469 and CQS were very different from one another despite the similar overall structures of the two drugs. This suggests that the differences in DNA site specificity of topoisomerase II poisoning by XK469 and CQS may be caused by differences in their geometry, side chains, or electronic structure. The topoisomerase IIbeta-mediated DNA cleavage sites of CQS and XK469 were also very different from one another, adding further support to this idea. Earlier work has demonstrated that a number of specific topoisomerase II poisons show very similar patterns of DNA cleavage with either topoisomerase IIalpha or topoisomerase IIbeta, suggesting that the topoisomerase II isozymes play only a minor role in choices of DNA cleavage sites. However, both of the quinoxaline topoisomerase II poisons in this study showed distinctly different and unique DNA cleavage intensity patterns with each topoisomerase II isozyme. This indicates that topoisomerase II isozymes can play a major role in DNA cleavage site selection for some classes of topoisomerase II poisons.
Collapse
Affiliation(s)
- Hanlin Gao
- The Ohio State University, Department of Radiology, 103 Wiseman Hall, 400 West 12th Avenue, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
41
|
Akimitsu N, Adachi N, Hirai H, Hossain MS, Hamamoto H, Kobayashi M, Aratani Y, Koyama H, Sekimizu K. Enforced cytokinesis without complete nuclear division in embryonic cells depleting the activity of DNA topoisomerase IIalpha. Genes Cells 2003; 8:393-402. [PMID: 12653966 DOI: 10.1046/j.1365-2443.2003.00643.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND There are two distinct DNA topoisomerase II (topo II) isoforms, designated topo IIalpha and topo IIbeta, in mammalian cells. The function of topo IIalpha in the development of mammalian cells has not been elucidated because of a lack of topo IIalpha mutants. RESULTS We generated mice with a targeted disruption of the topo IIalpha gene. The development of topo IIalpha-/- embryos was terminated at the 4- or 8-cell stage. When wild-type embryos at the 2- or 4-cell stage were treated with ICRF-193, a catalytic inhibitor of topo II, nuclear division occurred followed by cytokinesis to form 4 or 8 cells, respectively, then development was terminated. Microscope analysis of 4,6-diamidino-2-phenylindole (DAPI)-stained nuclei of both topo IIalpha-/- and ICFR-193-treated embryonic cells revealed a droplet-like structure connecting the terminals of two adjacent nuclei forming a bridge-like structure. Phosphorylated histone H3, a marker for the M phases, disappeared from the nuclei of the topo IIalpha-depleted embryonic cells. Laser scanning cytometry of the topo IIalpha-depleted cells revealed the presence of 2N DNA cells. CONCLUSIONS Our results indicate that topo IIalpha has an essential role in the early stages of mouse development and that depletion of topo IIalpha from the embryonic cells causes incomplete nuclear division followed by enforced cytokinesis.
Collapse
Affiliation(s)
- Nobuyoshi Akimitsu
- Laboratory of Developmental Biochemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
West KL, Turnbull RM, Willmore E, Lakey JH, Austin CA. Characterisation of the DNA-dependent ATPase activity of human DNA topoisomerase IIbeta: mutation of Ser165 in the ATPase domain reduces the ATPase activity and abolishes the in vivo complementation ability. Nucleic Acids Res 2002; 30:5416-24. [PMID: 12490710 PMCID: PMC140051 DOI: 10.1093/nar/gkf677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report for the first time an analysis of the ATPase activity of human DNA topoisomerase (topo) IIbeta. We show that topo IIbeta is a DNA-dependent ATPase that appears to fit Michaelis-Menten kinetics. The ATPase activity is stimulated 44-fold by DNA. The k(cat) for ATP hydrolysis by human DNA topo IIbeta in the presence of DNA is 2.25 s(-1). We have characterised a topo IIbeta derivative which carries a mutation in the ATPase domain (S165R). S165R reduced the kcat for ATP hydrolysis by 7-fold, to 0.32 s(-1), while not significantly altering the apparent K(m). The specificity constant for the interaction between ATP and topo IIbeta (kcat/K(mapp)) showed a 90% reduction for betaS165R. The DNA binding affinity and ATP-independent DNA cleavage activity of the enzyme are unaffected by this mutation. However, the strand passage activity is reduced by 80%, presumably due to reduced ATP hydrolysis. The mutant enzyme is unable to complement ts yeast topo II in vivo. We have used computer modelling to predict the arrangement of key residues at the ATPase active site of topo IIbeta. Ser165 is predicted to lie very close to the bound nucleotide, and the S165R mutation could thus influence both ATP binding and ADP dissociation.
Collapse
Affiliation(s)
- Katherine L West
- School of Cell and Molecular BioSciences, The Medical School, The University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
43
|
Campbell S, Maxwell A. The ATP-operated clamp of human DNA topoisomerase IIalpha: hyperstimulation of ATPase by "piggy-back" binding. J Mol Biol 2002; 320:171-88. [PMID: 12079377 DOI: 10.1016/s0022-2836(02)00461-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have constructed a series of clones encoding N-terminal fragments of human DNA topoisomerase IIalpha. All fragments exhibit DNA-dependent ATPase activity. Fragment 1-420 shows hyperbolic dependence of ATPase on DNA concentration, whereas fragment 1-453 shows hyperstimulation at low ratios of DNA to enzyme, a phenomenon found previously with the full-length enzyme. The minimum length of DNA found to stimulate the ATPase activity was approximately 10 bp; fragments >or=32 bp manifest the hyperstimulation phenomenon. Molecular mass studies show that fragment 1-453 is a monomer in the absence of nucleotides and a dimer in the presence of nucleotide triphosphate. The results are consistent with the role of the N-terminal domain of topoisomerase II as an ATP-operated clamp that dimerises in the presence of ATP. The hyperstimulation effect can be interpreted in terms of a "piggy-back binding" model for protein-DNA interaction.
Collapse
Affiliation(s)
- Spencer Campbell
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | | |
Collapse
|
44
|
Hossain MS, Akimitsu N, Takaki T, Hirai H, Sekimizu K. ICRF-193, a catalytic inhibitor of DNA topoisomerase II, inhibits re-entry into the cell division cycle from quiescent state in mammalian cells. Genes Cells 2002; 7:285-94. [PMID: 11918672 DOI: 10.1046/j.1365-2443.2002.00521.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND To describe the requirement of DNA topoisomerase II (topo II) during transition from the quiescent state (G0 phase) to the cell division cycle in mammalian cells, we examined the influence of ICRF-193, a catalytic inhibitor of topo II, on re-entry into the cell division cycle of quiescent cells in response to appropriate growth stimuli. RESULTS The re-entry into the S phase of cultured cell lines arrested at the quiescent (G0) phase by serum-starvation was sensitive to 10 microm ICRF-193. DNA syntheses induced by lipopolysaccharide in murine spleen cells or by release from contact-inhibition were also inhibited by ICRF-193. The cell lines with a high-level of resistance toward ICRF-193 due to a point mutation in the topo IIalpha gene entered into the S phase from quiescence in the presence of ICRF-193. The drug did not inhibit entry into the S phase in cultured cells released from arrest at the metaphase or G1 phase. CONCLUSION There is an ICRF-193-sensitive step during re-entry of quiescent mammalian cells into the cell division cycle upon growth stimulation and the drug targets topo IIalpha during the process.
Collapse
Affiliation(s)
- Muktadir S Hossain
- Laboratory of Developmental Biochemistry, Faculty of Pharmaceutical Sciences, University of Tokyo, 3-1, 7-Chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
45
|
Pan XS, Yague G, Fisher LM. Quinolone resistance mutations in Streptococcus pneumoniae GyrA and ParC proteins: mechanistic insights into quinolone action from enzymatic analysis, intracellular levels, and phenotypes of wild-type and mutant proteins. Antimicrob Agents Chemother 2001; 45:3140-7. [PMID: 11600369 PMCID: PMC90795 DOI: 10.1128/aac.45.11.3140-3147.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in DNA gyrase and/or topoisomerase IV genes are frequently encountered in quinolone-resistant mutants of Streptococcus pneumoniae. To investigate the mechanism of their effects at the molecular and cellular levels, we have used an Escherichia coli system to overexpress S. pneumoniae gyrase gyrA and topoisomerase IV parC genes encoding respective Ser81Phe and Ser79Phe mutations, two changes widely associated with quinolone resistance. Nickel chelate chromatography yielded highly purified mutant His-tagged proteins that, in the presence of the corresponding GyrB and ParE subunits, reconstituted gyrase and topoisomerase IV complexes with wild-type specific activities. In enzyme inhibition or DNA cleavage assays, these mutant enzyme complexes were at least 8- to 16-fold less responsive to both sparfloxacin and ciprofloxacin. The ciprofloxacin-resistant (Cip(r)) phenotype was silent in a sparfloxacin-resistant (Spx(r)) S. pneumoniae gyrA (Ser81Phe) strain expressing a demonstrably wild-type topoisomerase IV, whereas Spx(r) was silent in a Cip(r) parC (Ser79Phe) strain. These epistatic effects provide strong support for a model in which quinolones kill S. pneumoniae by acting not as enzyme inhibitors but as cellular poisons, with sparfloxacin killing preferentially through gyrase and ciprofloxacin through topoisomerase IV. By immunoblotting using subunit-specific antisera, intracellular GyrA/GyrB levels were a modest threefold higher than those of ParC/ParE, most likely insufficient to allow selective drug action by counterbalancing the 20- to 40-fold preference for cleavable-complex formation through topoisomerase IV observed in vitro. To reconcile these results, we suggest that drug-dependent differences in the efficiency by which ternary complexes are formed, processed, or repaired in S. pneumoniae may be key factors determining the killing pathway.
Collapse
Affiliation(s)
- X S Pan
- Molecular Genetics Group, Department of Biochemistry and Immunology, St. George's Hospital Medical School, University of London, London SW17 0RE, United Kingdom
| | | | | |
Collapse
|
46
|
Cabello OA, Eliseeva E, He WG, Youssoufian H, Plon SE, Brinkley BR, Belmont JW. Cell cycle-dependent expression and nucleolar localization of hCAP-H. Mol Biol Cell 2001; 12:3527-37. [PMID: 11694586 PMCID: PMC60273 DOI: 10.1091/mbc.12.11.3527] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Condensin is a conserved 13S heteropentamer composed of two nonidentical structural maintenance of chromosome (SMC) family proteins, in Xenopus XCAP-C and XCAP-E, and three regulatory subunits, XCAP-D2, XCAP-G, and XCAP-H. Both biochemical and genetic analyses have demonstrated an essential role for the 13S condensin complex in mitotic chromosome condensation. Further, a potential requirement for condensin in completion of chromatid arm separation in early anaphase is demonstrated by the mutational phenotypes of the Drosophila homologues of XCAP-H, barren and XCAP-C, DmSMC4. In this study we have investigated the expression and subcellular distribution of hCAP-H, the human homolog of XCAP-H, in order to better understand its cellular functions. Transcription of hCAP-H was restricted to proliferating cells with highest expression during the G(2) phase of the cell cycle. In contrast, cellular hCAP-H protein levels were constant throughout the cell cycle. hCAP-H was found to be associated with mitotic chromosomes exhibiting a nonuniform but symmetric distribution along sister chromatids. The symmetry of hCAP-H association with sister chromatids suggests that there are sequence-dependent domains of condensin aggregation. During interphase hCAP-H, -C, and -E, have distinct punctate nucleolar localization, suggesting that condensin may associate with and modulate the conformation and function of rDNA. hCAP-H association with condensed chromatin was not observed in the early phase of chromosome condensation when histone H3 phosphorylation has already taken place. This finding is consistent with the hypothesis that histone H3 phosphorylation precedes condensin-mediated condensation.
Collapse
Affiliation(s)
- O A Cabello
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Sakaguchi A, Akashi T, Kikuchi A. A distinct subnuclear localization of mammalian DNA topoisomerase IIbeta in yeast. Biochem Biophys Res Commun 2001; 283:876-82. [PMID: 11350066 DOI: 10.1006/bbrc.2001.4856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian topoisomerase II isoforms alpha and beta are diverged in their C-terminal domain (CTD), but both isoforms complement the yeast top2 mutation. In this study, mammalian topoisomerase IIalpha-CTD and IIbeta-CTD were tagged with yellow fluorescent protein (YFP), expressed in yeast cells, and their localization was examined. YFP tagged-topoisomerase IIalpha-CTD was distributed evenly throughout the nucleus, while YFP tagged-topoisomerase IIbeta-CTD was sequestered into a subnuclear compartment. Deletion analysis revealed that two regions (amino acids 1207-1234 and 1513-1573) of the topoisomerase IIbeta-CTD are essential for specific localization of the beta isoform: if either of the two regions is removed, the mutant topoisomerase IIbeta-CTD distributes evenly throughout the nucleus. The data suggest that yeast cells distinguish the nuclear and subnuclear localization signals associated with these two mammalian topoisomerase II isoforms.
Collapse
Affiliation(s)
- A Sakaguchi
- Laboratory of Medical Mycology, Institute for Disease Mechanism and Control, University of Nagoya School and Faculty of Medicine, 65 Tsurumai-cho, Nagoya, Showa-ku, 466-8550, Japan
| | | | | |
Collapse
|
48
|
Affiliation(s)
- J L Nitiss
- St. Jude Children's Research Hospital, Mernphis, Tennessee, USA
| |
Collapse
|
49
|
Wang H, Mao Y, Chen AY, Zhou N, LaVoie EJ, Liu LF. Stimulation of topoisomerase II-mediated DNA damage via a mechanism involving protein thiolation. Biochemistry 2001; 40:3316-23. [PMID: 11258951 DOI: 10.1021/bi002786j] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The breakage/reunion reaction of DNA topoisomerase II (TOP2) can be interrupted by DNA intercalators (e.g., doxorubicin), enzyme binders (e.g., etoposide), or DNA lesions (e.g., abasic sites) to produce TOP2-mediated DNA damage. Here, we demonstrate that thiol alkylation of TOP2 can also produce TOP2-mediated DNA damage. This conclusion is supported by the following observations using purified TOP2: (1) Thiol-reactive quinones were shown to induce TOP2-mediated DNA cleavage. (2) Thiol-reactive compounds such as N-ethylmaleimide (NEM), disulfiram, and organic disulfides [e.g., 2,2'-dithiobis(5-nitropyridine)] were also shown to induce TOP2-mediated DNA cleavage with similar reaction characteristics as thiol-reactive quinones. (3) TOP2-mediated DNA cleavage induced by thiol-reactive quinones was completely abolished using mutant yeast TOP2 with all cysteine residues replaced with alanine (cysteineless TOP2). These results suggest the possibility that cellular DNA damage could occur indirectly through thiolation of a nuclear protein, TOP2. The implications of this reaction in carcinogenesis and apoptotic cell death are discussed.
Collapse
Affiliation(s)
- H Wang
- Department of Pharmacology, University of Medicine & Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854-5635, USA
| | | | | | | | | | | |
Collapse
|
50
|
Johnson CA, Padget K, Austin CA, Turner BM. Deacetylase activity associates with topoisomerase II and is necessary for etoposide-induced apoptosis. J Biol Chem 2001; 276:4539-42. [PMID: 11136718 DOI: 10.1074/jbc.c000824200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase II (topo II) is a ubiquitous nuclear enzyme that is involved in DNA replication, transcription, chromosome segregation, and apoptosis. Here we show by immunoprecipitation, pull down with glutathione S-transferase fusion proteins, and yeast two-hybrid analysis that both topo IIalpha and -beta physically interact with the histone deacetylase HDAC1. The in vitro DNA decatenation activity of recombinant topo IIalpha and -beta is inhibited by association with catalytically inactive, recombinant HDAC1. We provide evidence for the in vivo significance of the topo II-HDAC1 association, showing that inhibition of HDAC activity with trichostatin A suppresses apoptosis induced by the topo II poison etoposide, but not by the topoisomerase I inhibitor camptothecin. We suggest that chromatin remodeling by an HDAC-containing complex facilitates both topo II-catalyzed DNA rearrangement and etoposide-induced DNA damage in vivo.
Collapse
Affiliation(s)
- C A Johnson
- Chromatin and Gene Expression Group, Department of Anatomy, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|