1
|
Modulatory effects of BPC 157 on vasomotor tone and the activation of Src-Caveolin-1-endothelial nitric oxide synthase pathway. Sci Rep 2020; 10:17078. [PMID: 33051481 PMCID: PMC7555539 DOI: 10.1038/s41598-020-74022-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
BPC 157-activated endothelial nitric oxide synthase (eNOS) is associated with tissue repair and angiogenesis as reported in previous studies. However, how BPC 157 regulates the vasomotor tone and intracellular Src-Caveolin-1 (Cav-1)-eNOS signaling is not yet clear. The present study demonstrated a concentration-dependent vasodilation effect of BPC 157 in isolated rat aorta. Attenuation of this vasodilation effect in the absence of endothelium suggested an endothelium-dependent vasodilation effect of BPC 157. Although slightly increased vasorelaxation in aorta without endothelium was noticed at high concentration of BPC 157, there was no direct relaxation effect on three-dimensional model made of vascular smooth muscle cells. The vasodilation effect of BPC 157 was nitric oxide mediated because the addition of L-NAME or hemoglobin inhibited the vasodilation of aorta. Nitric oxide generation was induced by BPC 157 as detected by intracellular DFA-FM DA labeling which was capable of promoting the migration of vascular endothelial cells. BPC 157 enhanced the phosphorylation of Src, Cav-1 and eNOS which was abolished by pretreatment with Src inhibitor, confirming the upstream role of Src in this signal pathway. Activation of eNOS required the released binding with Cav-1 in advance. Co-immunoprecipitation analysis revealed that BPC 157 could reduce the binding between Cav-1 and eNOS. Together, the present study demonstrates that BPC 157 can modulate the vasomotor tone of an isolated aorta in a concentration- and nitric oxide-dependent manner. BPC 157 can induce nitric oxide generation likely through the activation of Src-Cav-1-eNOS pathway.
Collapse
|
2
|
AlTawallbeh G, Haque MM, Streletzky KA, Stuehr DJ, Bayachou M. Endothelial nitric oxide synthase oxygenase on lipid nanodiscs: A nano-assembly reflecting native-like function of eNOS. Biochem Biophys Res Commun 2017; 493:1438-1442. [PMID: 28958937 DOI: 10.1016/j.bbrc.2017.09.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 10/18/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) is a membrane-anchored enzyme. To highlight the potential role and effect of membrane phospholipids on the structure and activity of eNOS, we have incorporated the recombinant oxygenase subunit of eNOS into lipid nanodiscs. Two different size distribution modes were detected by multi-angle dynamic light scattering both for empty nanodiscs, and nanodiscs-bound eNOSoxy. The calculated hydrodynamic diameter for mode 1 species was 9.0 nm for empty nanodiscs and 9.8 nm for nanodisc bound eNOSoxy. Spectroscopic Griess assay was used to measure the enzymatic activity. Remarkably, the specific activity of nanodisc-bound eNOSoxy is ∼65% lower than the activity of free enzyme. The data shows that the nano-membrane environment affects the catalytic properties of eNOS heme domain.
Collapse
Affiliation(s)
| | - Mohammad M Haque
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA
| | - Mekki Bayachou
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA; Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
3
|
Eroglu E, Hallström S, Bischof H, Opelt M, Schmidt K, Mayer B, Waldeck-Weiermair M, Graier WF, Malli R. Real-time visualization of distinct nitric oxide generation of nitric oxide synthase isoforms in single cells. Nitric Oxide 2017; 70:59-67. [PMID: 28882669 PMCID: PMC6002809 DOI: 10.1016/j.niox.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/23/2017] [Accepted: 09/03/2017] [Indexed: 12/19/2022]
Abstract
The members of the nitric oxide synthase (NOS) family, eNOS, nNOS and iNOS, are well-characterized enzymes. However, due to the lack of suitable direct NO sensors, little is known about the kinetic properties of cellular NO generation by the different nitric oxide synthase isoenzymes. Very recently, we developed a novel class of fluorescent protein-based NO-probes, the geNOps, which allow real-time measurement of cellular NO generation and fluctuation. By applying these genetic NO biosensors to nNOS-, eNOS- and iNOS-expressing HEK293 cells we were able to characterize the respective NO dynamics in single cells that exhibited identical Ca2+ signaling as comparable activator of nNOS and eNOS. Our data demonstrate that upon Ca2+ mobilization nNOS-derived NO signals occur instantly and strictly follow the Ca2+ elevation while NO release by eNOS occurs gradually and sustained. To detect high NO levels in cells expressing iNOS, a new ratiometric probe based on two fluorescent proteins was developed. This novel geNOp variant allows the measurement of the high NO levels in cells expressing iNOS. Moreover, we used this probe to study the L-arginine-dependency of NO generation by iNOS on the level of single cells. Our experiments highlight that the geNOps technology is suitable to detect obvious differences in the kinetics, amplitude and substrate-dependence of cellular NO signals-derived from all three nitric oxide synthase isoforms.
Collapse
Affiliation(s)
- Emrah Eroglu
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Seth Hallström
- Institute of Physiological Chemistry, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria.
| | - Helmut Bischof
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Marissa Opelt
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Humboldtstraße 46/I, 8010 Graz, Austria
| | - Kurt Schmidt
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Humboldtstraße 46/I, 8010 Graz, Austria
| | - Bernd Mayer
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Humboldtstraße 46/I, 8010 Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria
| |
Collapse
|
4
|
Bubb KJ, Birgisdottir AB, Tang O, Hansen T, Figtree GA. Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease. Free Radic Biol Med 2017; 109:61-74. [PMID: 28188926 DOI: 10.1016/j.freeradbiomed.2017.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/18/2017] [Accepted: 02/05/2017] [Indexed: 02/07/2023]
Abstract
Rapid and coordinated release of a variety of reactive oxygen species (ROS) such as superoxide (O2.-), hydrogen peroxide (H2O2) and peroxynitrite, in specific microdomains, play a crucial role in cell signalling in the cardiovascular system. These reactions are mediated by reversible and functional modifications of a wide variety of key proteins. Dysregulation of this oxidative signalling occurs in almost all forms of cardiovascular disease (CVD), including at the very early phases. Despite the heavily publicized failure of "antioxidants" to improve CVD progression, pharmacotherapies such as those targeting the renin-angiotensin system, or statins, exert at least part of their large clinical benefit via modulating cellular redox signalling. Over 250 proteins, including receptors, ion channels and pumps, and signalling proteins are found in the caveolae. An increasing proportion of these are being recognized as redox regulated-proteins, that reside in the immediate vicinity of the two major cellular sources of ROS, nicotinamide adenine dinucleotide phosphate oxidase (Nox) and uncoupled endothelial nitric oxide synthase (eNOS). This review focuses on what is known about redox signalling within the caveolae, as well as endogenous protective mechanisms utilized by the cell, and new approaches to targeting dysregulated redox signalling in the caveolae as a therapeutic strategy in CVD.
Collapse
Affiliation(s)
- Kristen J Bubb
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Asa Birna Birgisdottir
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia; Department of Cardiothoracic and Vascular Surgery, Heart and Lung Clinic, University Hospital of North Norway, Tromsø, Norway
| | - Owen Tang
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Thomas Hansen
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Gemma A Figtree
- Kolling Institute of Medical Research, University of Sydney and Cardiology Department, Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
| |
Collapse
|
5
|
Combinative effect of sardine peptides and quercetin alleviates hypertension through inhibition of angiotensin I converting enzyme activity and inflammation. Food Res Int 2017; 100:579-585. [PMID: 28873724 DOI: 10.1016/j.foodres.2017.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 11/21/2022]
Abstract
Hypertension had relation to angiotensin I converting enzyme (ACE) activity and inflammation. In our previous research, sardine peptides (SP) with ACE inhibitory activity were prepared. However, the combinative effect of SP and quercetin (QC) on hypertension alleviation was still unknown. In the present study, the antihypertensive effect of SP and QC was discovered and the optimal proportion of SP and QC (v/v=8:2, with 20.00mg/mL of SP and 12.99μg/mL of QC for their original concentrations) was screened on ACE activity inhibition in vitro. And the in vivo experiment supported it by indicating that the mixture reduced the systolic blood pressure, heart, left ventricular and kidney weight and their corresponding indices, serum ACE activity, angiotensin-II (ANG-II) and tumor necrosis factor-α (TNF-α) (in high dose) concentration in SHR rats. Besides, the mixture also lowers NO, TNF-α andinterleukin-6 (IL-6) concentration significantly in vitro. Hence, the combinative effect of SP and QC in optimal proportion had stronger inhibition on ACE activity than SP or QC alone, and could alleviate hypertension through inhibition of ACE activity and inflammation.
Collapse
|
6
|
Li Y, Qi B. Progress toward Understanding Protein S-acylation: Prospective in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:346. [PMID: 28392791 PMCID: PMC5364179 DOI: 10.3389/fpls.2017.00346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/28/2017] [Indexed: 05/02/2023]
Abstract
S-acylation, also known as S-palmitoylation or palmitoylation, is a reversible post-translational lipid modification in which long chain fatty acid, usually the 16-carbon palmitate, covalently attaches to a cysteine residue(s) throughout the protein via a thioester bond. It is involved in an array of important biological processes during growth and development, reproduction and stress responses in plant. S-acylation is a ubiquitous mechanism in eukaryotes catalyzed by a family of enzymes called Protein S-Acyl Transferases (PATs). Since the discovery of the first PAT in yeast in 2002 research in S-acylation has accelerated in the mammalian system and followed by in plant. However, it is still a difficult field to study due to the large number of PATs and even larger number of putative S-acylated substrate proteins they modify in each genome. This is coupled with drawbacks in the techniques used to study S-acylation, leading to the slower progress in this field compared to protein phosphorylation, for example. In this review we will summarize the discoveries made so far based on knowledge learnt from the characterization of protein S-acyltransferases and the S-acylated proteins, the interaction mechanisms between PAT and its specific substrate protein(s) in yeast and mammals. Research in protein S-acylation and PATs in plants will also be covered although this area is currently less well studied in yeast and mammalian systems.
Collapse
|
7
|
|
8
|
Ji Y, Leymarie N, Haeussler DJ, Bachschmid MM, Costello CE, Lin C. Direct detection of S-palmitoylation by mass spectrometry. Anal Chem 2013; 85:11952-9. [PMID: 24279456 DOI: 10.1021/ac402850s] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Direct detection and quantification of protein/peptide palmitoylation by mass spectrometry (MS) is a challenging task because of the tendency of palmitoyl loss during sample preparation and tandem MS analysis. In addition, the large difference in hydrophobicity between the palmitoyl peptides and their unmodified counterparts could prevent their simultaneous analysis in a single liquid chromatography-MS experiment. Here, the stability of palmitoylation in several model palmitoyl peptides under different incubation and fragmentation conditions was investigated. It was found that the usual trypsin digestion protocol using dithiothreitol as the reducing agent in ammonium bicarbonate buffer could result in significant palmitoyl losses. Instead, it is recommended that sample preparation be performed in neutral tris buffer with tris(2-carboxyethyl)phosphine as the reducing agent, conditions under which palmitoylation was largely preserved. For tandem MS analysis, collision-induced dissociation often led to facile palmitoyl loss, and electron capture dissociation frequently produced secondary side-chain losses remote from the backbone cleavage site, thus discouraging their use for accurate palmitoylation site determination. In contrast, the palmitoyl group was mostly preserved during electron transfer dissociation, which produced extensive inter-residue cleavage coverage, making it the ideal fragmentation method for palmitoyl peptide analysis. Finally, derivatization of the unmodified peptides with a perfluoroalkyl tag, N-[(3-perfluorooctyl)propyl] iodoacetamide, significantly increased their hydrophobicity, allowing them to be simultaneously analyzed with palmitoyl peptides for relative quantification of palmitoylation.
Collapse
Affiliation(s)
- Yuhuan Ji
- Center for Biomedical Mass Spectrometry, ‡Department of Biochemistry, and §Department of Medicine, Boston University School of Medicine , Boston, Massachusetts 02118, United States
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Purpose Caveolae are cholesterol and sphingolipids rich subcellular domains on plasma membrane. Caveolae contain a variety of signaling proteins which provide platforms for signaling transduction. In addition to enriched with cholesterol and sphingolipids, caveolae also contain a variety of fatty acids. It has been well-established that acylation of protein plays a pivotal role in subcellular location including targeting to caveolae. However, the fatty acid compositions of caveolae and the type of acylation of caveolar proteins remain largely unknown. In this study, we investigated the fatty acids in caveolae and caveolin-1 bound fatty acids. Methods Caveolae were isolated from Chinese hamster ovary (CHO) cells. The caveolar fatty acids were extracted with Folch reagent, methyl esterificated with BF3, and analyzed by gas chromatograph-mass spectrometer (GC/MS). The caveolin-1bound fatty acids were immunoprecipitated by anti-caveolin-1 IgG and analyzed with GC/MS. Results In contrast to the whole CHO cell lysate which contained a variety of fatty acids, caveolae mainly contained three types of fatty acids, 0.48 µg palmitic acid, 0.61 µg stearic acid and 0.83 µg oleic acid/caveolae preparation/5×107 cells. Unexpectedly, GC/MS analysis indicated that caveolin-1 was not acylated by myristic acid; instead, it was acylated by palmitic acid and stearic acid. Conclusion Caveolae contained a special set of fatty acids, highly enriched with saturated fatty acids, and caveolin-1 was acylated by palmitic acid and stearic acid. The unique fatty acid compositions of caveolae and acylation of caveolin-1 may be important for caveolae formation and for maintaining the function of caveolae.
Collapse
|
10
|
Protein palmitoylation and pathogenesis in apicomplexan parasites. J Biomed Biotechnol 2012; 2012:483969. [PMID: 23093847 PMCID: PMC3470895 DOI: 10.1155/2012/483969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 01/02/2023] Open
Abstract
Apicomplexan parasites comprise a broad variety of protozoan parasites, including Toxoplasma gondii, Plasmodium, Eimeria, and Cryptosporidium species. Being intracellular parasites, the success in establishing pathogenesis relies in their ability to infect a host-cell and replicate within it. Protein palmitoylation is known to affect many aspects of cell biology. Furthermore, palmitoylation has recently been shown to affect important processes in T. gondii such as replication, invasion, and gliding. Thus, this paper focuses on the importance of protein palmitoylation in the pathogenesis of apicomplexan parasites.
Collapse
|
11
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
12
|
Labinskyy N, Hicks S, Grijalva J, Edwards J. The Contrary Impact Of Diabetes And Exercise On Endothelial Nitric Oxide Synthase Function. WEBMEDCENTRAL 2010; 1. [PMID: 27683619 DOI: 10.9754/journal.wmc.2010.00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Harada N. Role of nitric oxide on purinergic signalling in the cochlea. Purinergic Signal 2010; 6:211-20. [PMID: 20806013 DOI: 10.1007/s11302-010-9186-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 05/17/2010] [Indexed: 11/30/2022] Open
Abstract
In the inner ear, there is considerable evidence that extracellular adenosine 5'-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca(2+)](i) in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca(2+) response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca(2+) signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca(2+) signalling in SGNs and supporting cells.
Collapse
Affiliation(s)
- Narinobu Harada
- Harada Ear Institute, Tomoi 2-34-27, Higashiosaka, Osaka, 577-0816 Japan
| |
Collapse
|
14
|
Kvachnina E, Dumuis A, Wlodarczyk J, Renner U, Cochet M, Richter DW, Ponimaskin E. Constitutive Gs-mediated, but not G12-mediated, activity of the 5-hydroxytryptamine 5-HT7(a) receptor is modulated by the palmitoylation of its C-terminal domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1646-55. [PMID: 19715731 DOI: 10.1016/j.bbamcr.2009.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 08/06/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
The 5-HT(7) receptor is the most recently described member of the serotonin receptor family. This receptor is mainly expressed in the thalamus, hypothalamus as well as in the hippocampus and cortex. In the present study, we demonstrate that the mouse 5-hydroxytryptamine 5-HT(7(a)) receptor undergoes post-translational modification by the palmitate, which is covalently attached to the protein through a thioester-type bond. Analysis of protein-bound fatty acids revealed that the 5-HT(7(a)) receptor predominantly contains palmitic acid. Labelling experiments performed in the presence of agonists show that the 5-HT(7(a)) receptor is dynamically palmitoylated in an agonist-dependent manner and that previously synthesized receptors may be subjected to repeated cycles of palmitoylation/depalmitoylation. Mutation analysis revealed that cysteine residues 404 and 438/441 located in the C-terminal receptor domain are the main palmitoylation sites responsible for the attachment of 90% of the receptor-bound palmitate. Analysis of acylation-deficient mutants revealed that non-palmitoylated 5-HT(7(a)) receptors were indistinguishable from the wild-type for their ability to interact with G(s)- and G(12)-proteins after agonist stimulation. However, mutation of the proximal palmitoylation site Cys404-Ser (either alone or in combination with Cys438/441-Ser) significantly increased the agonist-independent, G(s)-mediated constitutive 5-HT(7(a)) receptor activity, while the activation of Galpha(12)-protein was not affected. This demonstrates a functional importance of 5-HT(7(a)) dynamic palmitoylation for the fine tuning of receptor-mediated signaling.
Collapse
Affiliation(s)
- Elena Kvachnina
- Department Neuro- and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Beauchamp E, Rioux V, Legrand P. [New regulatory and signal functions for myristic acid]. Med Sci (Paris) 2009; 25:57-63. [PMID: 19154695 DOI: 10.1051/medsci/200925157] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myristic acid is a 14 carbon saturated fatty acid, which is mostly found in milk fat. In industrialized countries, its excessive consumption is correlated with an increase in plasma cholesterol and mortality due to cardiovascular diseases. Nevertheless, one feature of this fatty acid is its ability to acylate proteins, a reaction which is called N-terminal myristoylation. This article describes various examples of important cellular regulations where the intervention of myristic acid is proven. Modulations of the cellular concentration of this fatty acid and its associated myristoylation function might be used as regulators of these metabolic pathways.
Collapse
Affiliation(s)
- Erwan Beauchamp
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Rennes-INRA USC 2012, 65, rue de Saint-Brieuc, 35042 Rennes Cedex, France
| | | | | |
Collapse
|
16
|
Abstract
Sphingosine-1-phosphate (S1P) is a phosphorylated product of sphingosine, the core structure of the class of lipids termed sphingolipids. S1P is a naturally occurring lipid metabolite, and usually is present at a concentration of a few 100 nanomolar in human sera. S1P has been found to exert a diverse set of physiological and pathophysiological responses in mammalian tissues through the activation of heterotrimeric G-proteins that in turn modulate the activity of various downstream effecter molecules. In blood vessels, vascular endothelial cells and smooth muscle cells express specific receptors for S1P that modulate vascular tone. This article will provide a brief overview of S1P metabolism in the vasculature and will discuss some of the pathways whereby S1P regulates intracellular signal transduction pathways in endothelial and smooth muscle cells, leading to the activation of both vasorelaxation and vasoconstriction responses.
Collapse
Affiliation(s)
- Junsuke Igarashi
- Department of Cardiovascular Physiology, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | |
Collapse
|
17
|
Grijalva J, Hicks S, Zhao X, Medikayala S, Kaminski PM, Wolin MS, Edwards JG. Exercise training enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats. Cardiovasc Diabetol 2008; 7:34. [PMID: 19019231 PMCID: PMC2602993 DOI: 10.1186/1475-2840-7-34] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/19/2008] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Different mechanisms of diabetic-induced NO dysfunction have been proposed and central to most of them are significant changes in eNOS function as the rate-limiting step in NO bioavailability. eNOS exists in both monomeric and dimeric conformations, with the dimeric form catalyzing the synthesis of nitric oxide, while the monomeric form catalyzes the synthesis of superoxide (O2-). Diabetic-induced shifts to decrease the dimer:monomer ratio is thought to contribute to the degradation of nitric oxide (NO) bioavailability. Exercise has long been useful in the management of diabetes. Although exercise-induced increases expression of eNOS has been reported, it is unclear if exercise may alter the functional coupling of eNOS. METHODS To investigate this question, Goto-Kakizaki rats (a model of type II diabetes) were randomly assigned to a 9-week running program (train) or sedentary (sed) groups. RESULTS Exercise training significantly (p < .05) increased plantaris muscle cytochrome oxidase, significantly improved glycosylated hemoglobin (sed: 7.33 +/- 0.56%; train: 6.1 +/- 0.18%), ad improved insulin sensitivity. Exercise increased both total eNOS expression and the dimer:monomer ratio in the left ventricle LV (sed: 11.7 +/- 3.2%; train: 41.4 +/- 4.7%). Functional analysis of eNOS indicated that exercise induced significant increases in nitric oxide (+28%) production and concomitant decreases in eNOS-dependent superoxide (-12%) production. This effect was observed in the absence of tetrahydrobiopterin (BH4), but not in the presence of exogenous BH4. Exercise training also significantly decreased NADPH-dependent O2- activity. CONCLUSION Exercise-induced increased eNOS dimerization resulted in an increased coupling of the enzyme to facilitate production of NO at the expense of ROS generation. This shift that could serve to decrease diabetic-related oxidative stress, which should serve to lessen diabetic-related complications.
Collapse
Affiliation(s)
- James Grijalva
- Department of Physiology, New York Medical College, Valhalla NY, USA
| | - Steven Hicks
- Department of Physiology, New York Medical College, Valhalla NY, USA
| | - Xiangmin Zhao
- Department of Physiology, New York Medical College, Valhalla NY, USA
| | - Sushma Medikayala
- Department of Physiology, New York Medical College, Valhalla NY, USA
| | - Pawel M Kaminski
- Department of Physiology, New York Medical College, Valhalla NY, USA
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla NY, USA
| | - John G Edwards
- Department of Physiology, New York Medical College, Valhalla NY, USA
| |
Collapse
|
18
|
Sánchez FA, Kim DD, Durán RG, Meininger CJ, Durán WN. Internalization of eNOS via caveolae regulates PAF-induced inflammatory hyperpermeability to macromolecules. Am J Physiol Heart Circ Physiol 2008; 295:H1642-8. [PMID: 18708444 DOI: 10.1152/ajpheart.00629.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide (NO) synthase (eNOS) is thought to regulate microvascular permeability via NO production. We tested the hypotheses that the expression of eNOS and eNOS endocytosis by caveolae are fundamental for appropriate signaling mechanisms in inflammatory endothelial permeability to macromolecules. We used bovine coronary postcapillary venular endothelial cells (CVECs) because these cells are derived from the microvascular segment responsible for the transport of macromolecules in inflammation. We stimulated CVECs with platelet-activating factor (PAF) at 100 nM and measured eNOS phosphorylation, NO production, and CVEC monolayer permeability to FITC-dextran 70 KDa (Dx-70). PAF translocated eNOS from plasma membrane to cytosol, induced changes in the phosphorylation state of the enzyme, and increased NO production from 4.3+/-3.8 to 467+/-22.6 nM. PAF elevated CVEC monolayer permeability to FITC-Dx-70 from 3.4+/-0.3 x 10(-6) to 8.5+/-0.4 x 10(-6) cm/s. The depletion of endogenous eNOS with small interfering RNA abolished PAF-induced hyperpermeability, demonstrating that the expression of eNOS is required for inflammatory hyperpermeability responses. The inhibition of the caveolar internalization by blocking caveolar scission using transfection of dynamin dominant-negative mutant, dyn2K44A, inhibited PAF-induced hyperpermeability to FITC-Dx-70. We interpret these data as evidence that 1) eNOS is required for hyperpermeability to macromolecules and 2) the internalization of eNOS via caveolae is an important mechanism in the regulation of endothelial permeability. We advance the novel concept that eNOS internalization to cytosol is a signaling mechanism for the onset of microvascular hyperpermeability in inflammation.
Collapse
Affiliation(s)
- Fabiola A Sánchez
- Program in Vascular Biology, Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey, USA.
| | | | | | | | | |
Collapse
|
19
|
Galluzzo P, Ascenzi P, Bulzomi P, Marino M. The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor alpha-palmitoylation. Endocrinology 2008; 149:2567-75. [PMID: 18239068 DOI: 10.1210/en.2007-1173] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Naringenin (Nar) is a component of fruits and vegetables associated with healthful benefits, such as in osteoporosis, cancer, and cardiovascular diseases. These protective effects have been linked with Nar antiestrogenic as well as estrogenic activities. Previous studies indicate that Nar impaired estrogen receptor (ER) alpha signaling by interfering with ERalpha-mediated activation of ERK and phosphoinositide 3-kinase signaling pathways in the absence of effects at the transcriptional level. The present studies evaluated the hypothesis that these Nar antagonistic effects occur at the level of the plasma membrane. Our results indicate that Nar induces ERalpha depalmitoylation faster than 17beta-estradiol, which results in receptor rapid dissociation from caveolin-1. Furthermore, Nar impedes ERalpha to bind adaptor (modulator of nongenomic actions of the ER) and signaling (c-Src) proteins involved in the activation of the mitogenic signaling cascades (i.e. ERK and phosphoinositide 3-kinase). On the other hand, Nar induces the ER-dependent, but palmitoylation-independent, activation of p38 kinase, which in turn is responsible for Nar-mediated antiproliferative effects in cancer cells. Altogether, these data highlight new ER-dependent mechanisms on the root of antiproliferative and antiestrogenic effects of Nar. Moreover, the different modulation of ERalpha palmitoylation exerted by different ligands represents a pivotal mechanism that drives cancer cell to proliferation or apoptosis.
Collapse
Affiliation(s)
- Paola Galluzzo
- Department of Biology, University Roma Tre, Viale G. Marconi, 446, I-00146 Roma, Italy
| | | | | | | |
Collapse
|
20
|
|
21
|
Igarashi J, Miyoshi M, Hashimoto T, Kubota Y, Kosaka H. Hydrogen peroxide induces S1P1 receptors and sensitizes vascular endothelial cells to sphingosine 1-phosphate, a platelet-derived lipid mediator. Am J Physiol Cell Physiol 2006; 292:C740-8. [PMID: 16943246 DOI: 10.1152/ajpcell.00117.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a platelet-derived angiogenic lipid growth factor, modulating G-protein-coupled S1P(1) receptors (S1P(1)-R) to activate endothelial nitric oxide synthase (eNOS), as well as MAPK pathways in endothelial cells. We explored whether and how hydrogen peroxide (H(2)O(2)), a representative reactive oxygen species, alters S1P(1)-R expression and influences S1P signaling in cultured bovine aortic endothelial cells (BAECs). When BAECs are treated with pathophysiologically relevant concentrations of H(2)O(2) (150 microM for 30 min), S1P(1)-R protein expression levels are acutely augmented by approximately 30-fold in a dose-dependent fashion. When BAECs have been pretreated with H(2)O(2), subsequent S1P stimulation (100 nM) leads to a higher degree of eNOS enzyme activation (assessed as intracellular cGMP content, 1.7 +/- 0.2-fold vs. no H(2)O(2) pretreatment groups, P < 0.05), associated with a higher magnitude of phosphorylation responses of eNOS and MAPK ERK1/2. PP2, an inhibitor of Src-family tyrosine kinase, abolished the effects of H(2)O(2) on both S1P(1)-R protein upregulation and enhanced BAEC responses to S1P. H(2)O(2) does not augment S1P(1) mRNA expression, whereas VEGF under identical cultures leads to increases in S1P(1) mRNA signals. Whereas H(2)O(2) attenuates proliferation of BAECs, addition of S1P restores growth responses of these cells. These results demonstrate that extracellularly administered H(2)O(2) increases S1P(1)-R expression and promotes endothelial responses for subsequent S1P treatment. These results may identify potentially important points of cross-talk between reactive oxygen species and sphingolipid pathways in vascular responses.
Collapse
Affiliation(s)
- Junsuke Igarashi
- Dept. of Cardiovascular Physiology, Kagawa Univ. Faculty of Medicine, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793 Japan.
| | | | | | | | | |
Collapse
|
22
|
Fernández-Hernando C, Fukata M, Bernatchez PN, Fukata Y, Lin MI, Bredt DS, Sessa WC. Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. ACTA ACUST UNITED AC 2006; 174:369-77. [PMID: 16864653 PMCID: PMC2064233 DOI: 10.1083/jcb.200601051] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipid modifications mediate the subcellular localization and biological activity of many proteins, including endothelial nitric oxide synthase (eNOS). This enzyme resides on the cytoplasmic aspect of the Golgi apparatus and in caveolae and is dually acylated by both N-myristoylation and S-palmitoylation. Palmitoylation-deficient mutants of eNOS release less nitric oxide (NO). We identify enzymes that palmitoylate eNOS in vivo. Transfection of human embryonic kidney 293 cells with the complementary DNA (cDNA) for eNOS and 23 cDNA clones encoding the Asp-His-His-Cys motif (DHHC) palmitoyl transferase family members showed that five clones (2, 3, 7, 8, and 21) enhanced incorporation of [3H]-palmitate into eNOS. Human endothelial cells express all five of these enzymes, which colocalize with eNOS in the Golgi and plasma membrane and interact with eNOS. Importantly, inhibition of DHHC-21 palmitoyl transferase, but not DHHC-3, in human endothelial cells reduces eNOS palmitoylation, eNOS targeting, and stimulated NO production. Collectively, our data describe five new Golgi-targeted DHHC enzymes in human endothelial cells and suggest a regulatory role of DHHC-21 in governing eNOS localization and function.
Collapse
Affiliation(s)
- Carlos Fernández-Hernando
- Department of Pharmacology and Program in Vascular Cell Signaling and Therapeutics, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Lu JY, Hofmann SL. Thematic review series: Lipid Posttranslational Modifications. Lysosomal metabolism of lipid-modified proteins. J Lipid Res 2006; 47:1352-7. [PMID: 16627894 DOI: 10.1194/jlr.r600010-jlr200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Much is now understood concerning the synthesis of prenylated and palmitoylated proteins, but what is known of their metabolic fate? This review details metabolic pathways for the lysosomal degradation of S-fatty acylated and prenylated proteins. Central to these pathways are two lysosomal enzymes, palmitoyl-protein thioesterase (PPT1) and prenylcysteine lyase (PCL). PPT1 is a soluble lipase that cleaves fatty acids from cysteine residues in proteins during lysosomal protein degradation. Notably, deficiency in the enzyme causes a neurodegenerative lysosomal storage disorder, infantile neuronal ceroid lipofuscinosis. PCL is a membrane-associated flavin-containing lysosomal monooxygenase that metabolizes prenylcysteine to prenyl aldehyde through a completely novel mechanism. The eventual metabolic fates of other lipidated proteins (such as glycosylphosphatidylinositol-anchored and N-myristoylated proteins) are poorly understood, suggesting directions for future research.
Collapse
Affiliation(s)
- Jui-Yun Lu
- Hamon Center for Therapeutic Oncology Research and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | |
Collapse
|
24
|
Schilling K, Opitz N, Wiesenthal A, Oess S, Tikkanen R, Müller-Esterl W, Icking A. Translocation of endothelial nitric-oxide synthase involves a ternary complex with caveolin-1 and NOSTRIN. Mol Biol Cell 2006; 17:3870-80. [PMID: 16807357 PMCID: PMC1593164 DOI: 10.1091/mbc.e05-08-0709] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, we characterized a novel endothelial nitric-oxide synthase (eNOS)-interacting protein, NOSTRIN (for eNOS-trafficking inducer), which decreases eNOS activity upon overexpression and induces translocation of eNOS away from the plasma membrane. Here, we show that NOSTRIN directly binds to caveolin-1, a well-established inhibitor of eNOS. Because this interaction occurs between the N terminus of caveolin (positions 1-61) and the central domain of NOSTRIN (positions 323-434), it allows for independent binding of each of the two proteins to eNOS. Consistently, we were able to demonstrate the existence of a ternary complex of NOSTRIN, eNOS, and caveolin-1 in Chinese hamster ovary (CHO)-eNOS cells. In human umbilical vein endothelial cells (HUVECs), the ternary complex assembles at the plasma membrane upon confluence or thrombin stimulation. In CHO-eNOS cells, NOSTRIN-mediated translocation of eNOS involves caveolin in a process most likely representing caveolar trafficking. Accordingly, trafficking of NOSTRIN/eNOS/caveolin is affected by altering the state of actin filaments or cholesterol levels in the plasma membrane. During caveolar trafficking, NOSTRIN functions as an adaptor to recruit mediators such as dynamin-2 essential for membrane fission. We propose that a ternary complex between NOSTRIN, caveolin-1, and eNOS mediates translocation of eNOS, with important implications for the activity and availability of eNOS in the cell.
Collapse
Affiliation(s)
- Kirstin Schilling
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Nils Opitz
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Anja Wiesenthal
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Stefanie Oess
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Werner Müller-Esterl
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| | - Ann Icking
- Institute of Biochemistry II, University of Frankfurt Medical School, D-60590 Frankfurt, Germany
| |
Collapse
|
25
|
Biel M, Deck P, Giannis A, Waldmann H. Synthesis and Evaluation of Acyl Protein Thioesterase 1 (APT1) Inhibitors. Chemistry 2006; 12:4121-43. [PMID: 16528788 DOI: 10.1002/chem.200501128] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lipid-modified proteins play decisive roles in important biological processes such as signal transduction, organisation of the cytoskeleton and vesicular transport. Lipidation of these proteins is essential for correct biological function. Among the modifications with lipids, prenylation and myristoylation are well understood. However, the machinery of palmitoylation is still under investigation. Recently, an enzyme, acyl protein thioesterase 1 (APT1), that may play a regulatory role in the palmitoylation cycle of H-Ras and G-protein alpha subunits, was purified. Motivated by this work, several inhibitors of APT1 were designed, synthesized and biologically evaluated leading to highly active compounds.
Collapse
Affiliation(s)
- Markus Biel
- University of Leipzig, Institute of Organic Chemistry, Johannisallee 29, 04103 Leipzig, Germany
| | | | | | | |
Collapse
|
26
|
Ohno Y, Kihara A, Sano T, Igarashi Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:474-83. [PMID: 16647879 DOI: 10.1016/j.bbalip.2006.03.010] [Citation(s) in RCA: 346] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/07/2006] [Accepted: 03/13/2006] [Indexed: 11/30/2022]
Abstract
Increasing evidence indicates that DHHC cysteine-rich domain-containing proteins (DHHC proteins) are protein acyltransferases. Although multiple DHHC proteins are found in eukaryotes, characterization has been examined for only a few. Here, we have cloned all the yeast and human DHHC genes and investigated their intracellular localization and tissue-specific expression. Most DHHC proteins are localized in the ER and/or Golgi, with a few localized in the plasma membrane and one in the yeast vacuole. Human DHHC mRNAs also differ in their tissue-specific expression. These results may provide clues to aid in discovering the specific function(s) of each DHHC protein.
Collapse
Affiliation(s)
- Yusuke Ohno
- Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
27
|
Petäjä-Repo UE, Hogue M, Leskelä TT, Markkanen PMH, Tuusa JT, Bouvier M. Distinct subcellular localization for constitutive and agonist-modulated palmitoylation of the human delta opioid receptor. J Biol Chem 2006; 281:15780-9. [PMID: 16595649 DOI: 10.1074/jbc.m602267200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein palmitoylation is a reversible lipid modification that plays important roles for many proteins involved in signal transduction, but relatively little is known about the regulation of this modification and the cellular location where it occurs. We demonstrate that the human delta opioid receptor is palmitoylated at two distinct cellular locations in human embryonic kidney 293 cells and undergoes dynamic regulation at one of these sites. Although palmitoylation could be readily observed for the mature receptor (Mr 55,000), [3H]palmitate incorporation into the receptor precursor (Mr 45,000) could be detected only following transport blockade with brefeldin A, nocodazole, and monensin, indicating that the modification occurs initially during or shortly after export from the endoplasmic reticulum. Blocking of palmitoylation with 2-bromopalmitate inhibited receptor cell surface expression, indicating that it is needed for efficient intracellular transport. However, cell surface biotinylation experiments showed that receptors can also be palmitoylated once they have reached the plasma membrane. At this location, palmitoylation is regulated in a receptor activation-dependent manner, as was indicated by the opioid agonist-promoted increase in the turnover of receptor-bound palmitate. This agonist-mediated effect did not require receptor-G protein coupling and occurred at the cell surface without the need for internalization or recycling. The activation-dependent modulation of receptor palmitoylation may thus contribute to the regulation of receptor function at the plasma membrane.
Collapse
Affiliation(s)
- Ulla E Petäjä-Repo
- Biocenter Oulu and Department of Anatomy and Cell Biology, University of Oulu, FI-90014, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
28
|
Yélamos B, Roncal F, Albar JP, Rodríguez-Crespo I, Gavilanes F. Influence of Acylation of a Peptide Corresponding to the Amino-Terminal Region of Endothelial Nitric Oxide Synthase on the Interaction with Model Membranes. Biochemistry 2006; 45:1263-70. [PMID: 16430222 DOI: 10.1021/bi0514865] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Covalent attachment of fatty acids to proteins is a common form of protein modification which has been shown to influence both structure and interaction with membranes. Endothelial nitric oxide synthase (eNOS) is dually acylated by the fatty acids myristate and palmitate. We have synthesized four peptides corresponding to the first 28 amino acids of the N-terminal region of eNOS. Besides the nonacylated eNOS sequence, three additional peptides with different degrees of acylation have been obtained: myristoylated, doubly palmitoylated, and dually myristoylated and doubly palmitoylated. Acylation itself, myristic and/or palmitic, confers the peptide the ability to adopt extended conformations, indicated by the fact that the CD spectrum of all acylated peptides has a minimum at approximately 215 nm characteristic of beta-sheet structure. The nonacylated sequence interacts with model membranes composed of acidic phospholipids probably through ionic interactions with the polar headgroup of the phospholipids. However, the acylated peptides are able to insert deeply into the hydrophobic core of both neutral and acidic phospholipids, maintaining the spectral features of extended conformations. When DMPC vesicles containing cholesterol and sphingomyelin at 10% were used, the insertion of the triacylated peptide almost completely canceled the thermal transition, although the interaction of the other acylated peptides also reduced the transition amplitude but to a much lower extent and affected only the acyl chains in the fluid state.
Collapse
Affiliation(s)
- Belén Yélamos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
Abstract
The vascular endothelium synthesises the vasodilator and anti-aggregatory mediator nitric oxide (NO) from L-arginine. This action is catalysed by the action of NO synthases, of which two forms are present in the endothelium. Endothelial (e)NOS is highly regulated, constitutively active and generates NO in response to shear stress and other physiological stimuli. Inducible (i)NOS is expressed in response to immunological stimuli, is transcriptionally regulated and, once activated, generates large amounts of NO that contribute to pathological conditions. The physiological actions of NO include the regulation of vascular tone and blood pressure, prevention of platelet aggregation and inhibition of vascular smooth muscle proliferation. Many of these actions are a result of the activation by NO of the soluble guanylate cyclase and consequent generation of cyclic guanosine monophosphate (cGMP). An additional target of NO is the cytochrome c oxidase, the terminal enzyme in the electron transport chain, which is inhibited by NO in a manner that is reversible and competitive with oxygen. The consequent reduction of cytochrome c oxidase leads to the release of superoxide anion. This may be an NO-regulated cell signalling system which, under certain circumstances, may lead to the formation of the powerful oxidant species, peroxynitrite, that is associated with a variety of vascular diseases.
Collapse
Affiliation(s)
- S Moncada
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
30
|
Zhang Z, Lee YC, Kim SJ, Choi MS, Tsai PC, Xu Y, Xiao YJ, Zhang P, Heffer A, Mukherjee AB. Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL. Hum Mol Genet 2005; 15:337-46. [PMID: 16368712 DOI: 10.1093/hmg/ddi451] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Numerous proteins undergo modification by palmitic acid (S-acylation) for their biological functions including signal transduction, vesicular transport and maintenance of cellular architecture. Although palmitoylation is an essential modification, these proteins must also undergo depalmitoylation for their degradation by lysosomal proteases. Palmitoyl-protein thioesterase-1 (PPT1), a lysosomal enzyme, cleaves thioester linkages in S-acylated proteins and removes palmitate residues facilitating the degradation of these proteins. Thus, inactivating mutations in the PPT1 gene cause infantile neuronal ceroid lipofuscinosis (INCL), a devastating neurodegenerative storage disorder of childhood. Although rapidly progressing brain atrophy is the most dramatic pathological manifestation of INCL, the molecular mechanism(s) remains unclear. Using PPT1-knockout (PPT1-KO) mice that mimic human INCL, we report here that the endoplasmic reticulum (ER) in the brain cells of these mice is structurally abnormal. Further, we demonstrate that the level of growth-associated protein-43 (GAP-43), a palmitoylated neuronal protein, is elevated in the brains of PPT1-KO mice. Moreover, forced expression of GAP-43 in PPT1-deficient cells results in the abnormal accumulation of this protein in the ER. Consistent with these results, we found evidence for the activation of unfolded protein response (UPR) marked by elevated levels of phosphorylated translation initiation factor, eIF2alpha, increased expression of chaperone proteins such as glucose-regulated protein-78 and activation of caspase-12, a cysteine proteinase in the ER, mediating caspase-3 activation and apoptosis. Our results, for the first time, link PPT1 deficiency with the activation of UPR, apoptosis and neurodegeneration in INCL and identify potential targets for therapeutic intervention in this uniformly fatal disease.
Collapse
Affiliation(s)
- Zhongjian Zhang
- Section on Developmental Genetics, Heritable Disorders Branch, National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892-1830, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Murad F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep 2005; 24:452-74. [PMID: 16134022 DOI: 10.1007/s10540-005-2741-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The role of nitric oxide in cellular signaling in the past 22 years has become one of the most rapidly growing areas in biology with more than 20,000 publications to date. Nitric oxide is a gas and free radical with an unshared electron that can regulate an ever-growing list of biological processes. In many instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis from GTP. However, the list of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. For example, nitric oxide can interact with transition metals such as iron, thiol groups, other free radicals, oxygen, superoxide anion, unsaturated fatty acids and other molecules. Some of these reactions result in the oxidation of nitric oxide to nitrite and nitrate to terminate its effect, while other reactions can lead to altered protein structure, function, and/or catalytic capacity. These diverse effects of nitric oxide that are either cyclic GMP dependent or independent can alter and regulate important physiological and biochemical events in cell regulation and function. Nitric oxide can function as an intracellular messenger, an autacoid, a paracrine substance, a neurotransmitter, or as a hormone that can be carried to distant sites for effects. Thus, it is a unique simple molecule with an array of signaling functions. However, as with any messenger molecule, there can be too little or too much of the substance and pathological events result. Some of the methods to regulate either nitric oxide formation, metabolism, or function have been in clinical use for more than a century as with the use of organic nitrates and nitroglycerin in angina pectoris that was initiated in the 1870's. Current and future research with nitric oxide and cyclic GMP will undoubtedly expand the clinicians' therapeutic armamentarium to manage a number of important diseases by perturbing nitric oxide and cyclic GMP formation and metabolism. Such promise and expectations have obviously fueled the interests in these signaling molecules for a growing list of potential therapeutic applications.
Collapse
Affiliation(s)
- Ferid Murad
- Department of Integrative Biology, Pharmacology, and Physiology, University of Texas-Houston Medical School, Houston, TX 77030 , USA
| |
Collapse
|
32
|
Erwin PA, Mitchell DA, Sartoretto J, Marletta MA, Michel T. Subcellular targeting and differential S-nitrosylation of endothelial nitric-oxide synthase. J Biol Chem 2005; 281:151-7. [PMID: 16286475 DOI: 10.1074/jbc.m510421200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelial nitric-oxide synthase (eNOS) undergoes a complex pattern of post-translational modifications that regulate its activity. We have recently reported that eNOS is constitutively S-nitrosylated in endothelial cells and that agonists promote eNOS denitrosylation concomitant with enzyme activation (Erwin, P. A., Lin, A. J., Golan, D. E., and Michel, T. (2005), J. Biol. Chem. 280, 19888-19894). In the present studies, we use mass spectrometry to confirm that the zinc-tetrathiolate cysteines of eNOS are S-nitrosylated. eNOS targeting to the plasma membrane is necessary for enzyme S-nitrosylation, and we report that translocation between cellular compartments is necessary for dynamic eNOS S-nitrosylation. We transfected cells with cDNA encoding wild-type eNOS, which is membrane-targeted, or with acylation-deficient mutant eNOS (Myr-), which is expressed solely in the cytosol. While wild-type eNOS is robustly S-nitrosylated, we found that S-nitrosylation of the Myr- eNOS mutant is nearly abolished. When we transfected cells with a fusion protein in which Myr- eNOS is ligated to the CD8-transmembrane domain (CD8-Myr-), we found that CD8-Myr- eNOS, which does not undergo dynamic subcellular translocation, is hypernitrosylated relative to wild-type eNOS. Furthermore, we found that when endothelial cells transfected with wild-type or CD8-Myr- eNOS are stimulated with eNOS agonist, only wild-type eNOS is denitrosylated; CD8-Myr- eNOS S-nitrosylation is unchanged. These findings indicate that subcellular targeting is a critical determinant of eNOS S-nitrosylation. Finally, we show that eNOS S-nitrosylation can be detected in intact arterial preparations from mouse and that eNOS S-nitrosylation is a dynamic agonist-modulated process in intact blood vessels. These studies suggest that receptor-regulated eNOS S-nitrosylation may represent an important determinant of NO-dependent signaling in the vascular wall.
Collapse
Affiliation(s)
- Phillip A Erwin
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
33
|
Ferri N, Paoletti R, Corsini A. Lipid-modified proteins as biomarkers for cardiovascular disease: a review. Biomarkers 2005; 10:219-37. [PMID: 16191483 DOI: 10.1080/13547500500216660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid-modified proteins are classified based on the identity of the attached lipid, a post- or co-translational modification required for their biological function. At least five different lipid modifications of cysteines, glycines and other residues on the COOH- and NH(2)-terminal domains have been described. Cysteine residues may be modified by the addition of a 16-carbon saturated fatty acyl group by a labile thioester bond (palmitoylation) or by prenylation processes that catalyze the formation of thioether bond with mevalonate derived isoprenoids, farnesol and geranylgeraniol. The NH(2)-terminal glycine residues may undergo a quite distinct process involving the formation of an amide bond with a 14-carbon saturated acyl group (myristoylation), while glycine residues in the COOH-terminal may be covalently attached with a cholesterol moiety by an ester bond. Finally, cell surface proteins can be anchored to the membrane through the addition of glycosylphosphatidylinositol moiety. Several lines of evidence suggest that lipid-modified proteins are directly involved in different steps of the development of lesions of atherosclerosis, from leukocyte recruitment to plaque rupture, and their expression or lipid modification are likely altered during atherogenesis. This review will briefly summarize the different enzymatic pathways of lipid modification and propose a series of lipid-modified proteins that can be used as biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
- N Ferri
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
34
|
Shen J, Harada N, Nakazawa H, Yamashita T. Involvement of the nitric oxide-cyclic GMP pathway and neuronal nitric oxide synthase in ATP-induced Ca2+ signalling in cochlear inner hair cells. Eur J Neurosci 2005; 21:2912-22. [PMID: 15978003 DOI: 10.1111/j.1460-9568.2005.04135.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently demonstrated that extracellular adenosine 5'-triphosphate (ATP) induced nitric oxide (NO) production in the inner hair cells (IHCs) of the guinea pig cochlea, which inhibited the ATP-induced increase in the intracellular Ca(2+) concentrations ([Ca(2+)](i)) by a feedback mechanism [Shen, J., Harada, N. & Yamashita, T. (2003) Neurosci. Lett., 337, 135-138]. We herein investigated the role of the NO-cGMP pathway and neuronal NO synthase (nNOS) in the ATP-induced Ca(2+) signalling in IHCs using the Ca(2+)-sensitive dye fura-2 and the NO-sensitive dye DAF-2. Fura-2 fluorescence-quenching experiments with Mn(2+) showed that ATP triggered a Mn(2+) influx. L-N(G)-nitroarginine methyl ester (L-NAME), a nonspecific NOS inhibitor, accelerated the ATP-induced Mn(2+) influx while S-nitroso-N-acetylpenicillamine (SNAP), a NO donor, suppressed it. 1H-[1,2,4]oxadiazole[4,3-a] quinoxalin-1-one, an inhibitor of guanylate cyclase, and KT5823, an inhibitor of cGMP-dependent protein kinase, enhanced the ATP-induced [Ca(2+)](i) increase. 8-Bromoguanosine-cGMP, a membrane-permeant analogue of cGMP mimicked the effects of SNAP. Moreover, the effects of 7-nitroindazole, a selective nNOS inhibitor, mimicked the effects of L-NAME regarding both the enhancement of the ATP-induced Ca(2+) response and the attenuation of NO production. Immunofluorescent staining of nNOS using a single IHC revealed that nNOS was distributed throughout the IHCs, but enriched in the apical region of the IHCs as shown by intense staining. In conclusion, the ATP-induced Ca(2+) influx may be the principal source for nNOS activity, which may interact with P2X receptors in the apical region of IHCs. Thereafter, NO can be produced and conversely inhibits the Ca(2+) influx via the NO-cGMP-PKG pathway by a feedback mechanism.
Collapse
Affiliation(s)
- Jing Shen
- Hearing Research Laboratory, Department of Otolaryngology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8507, Japan
| | | | | | | |
Collapse
|
35
|
Santamaría A, Castellanos E, Gómez V, Benedit P, Renau-Piqueras J, Morote J, Reventós J, Thomson TM, Paciucci R. PTOV1 enables the nuclear translocation and mitogenic activity of flotillin-1, a major protein of lipid rafts. Mol Cell Biol 2005; 25:1900-11. [PMID: 15713644 PMCID: PMC549350 DOI: 10.1128/mcb.25.5.1900-1911.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
PTOV1 is a mitogenic protein that shuttles between the nucleus and the cytoplasm in a cell cycle-dependent manner. It consists of two homologous domains arranged in tandem that constitute a new class of protein modules. We show here that PTOV1 interacts with the lipid raft protein flotillin-1, with which it copurifies in detergent-insoluble floating fractions. Flotillin-1 colocalized with PTOV1 not only at the plasma membrane but, unexpectedly, also in the nucleus, as demonstrated by immunocytochemistry and subcellular fractionation of endogenous and exogenous flotillin-1. Flotillin-1 entered the nucleus concomitant with PTOV1, shortly before the initiation of the S phase. Protein levels of PTOV1 and flotillin-1 oscillated during the cell cycle, with a peak in S. Depletion of PTOV1 significantly inhibited nuclear localization of flotillin-1, whereas depletion of flotillin-1 did not affect nuclear localization of PTOV1. Depletion of either protein markedly inhibited cell proliferation under basal conditions. Overexpression of PTOV1 or flotillin-1 strongly induced proliferation, which required their localization to the nucleus, and was dependent on the reciprocal protein. These observations suggest that PTOV1 assists flotillin-1 in its translocation to the nucleus and that both proteins are required for cell proliferation.
Collapse
Affiliation(s)
- Anna Santamaría
- Unitat de Recerca Biomèdica, Hospital Vall d'Hebrón, Passeig Vall d'Hebrón 119-129, 00835 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Erwin PA, Lin AJ, Golan DE, Michel T. Receptor-regulated dynamic S-nitrosylation of endothelial nitric-oxide synthase in vascular endothelial cells. J Biol Chem 2005; 280:19888-94. [PMID: 15774480 DOI: 10.1074/jbc.m413058200] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The endothelial isoform of nitric-oxide synthase (eNOS) is regulated by a complex pattern of post-translational modifications. In these studies, we show that eNOS is dynamically regulated by S-nitrosylation, the covalent adduction of nitric oxide (NO)-derived nitrosyl groups to the cysteine thiols of proteins. We report that eNOS is tonically S-nitrosylated in resting bovine aortic endothelial cells and that the enzyme undergoes rapid transient denitrosylation after addition of the eNOS agonist, vascular endothelial growth factor. eNOS is thereafter progressively renitrosylated to basal levels. The receptor-mediated decrease in eNOS S-nitrosylation is inversely related to enzyme phosphorylation at Ser(1179), a site associated with eNOS activation. We also document that targeting of eNOS to the cell membrane is required for eNOS S-nitrosylation. Acylation-deficient mutant eNOS, which is targeted to the cytosol, does not undergo S-nitrosylation. Using purified eNOS, we show that eNOS S-nitrosylation by exogenous NO donors inhibits enzyme activity and that eNOS inhibition is reversed by denitrosylation. We determine that the cysteines of the zinc-tetrathiolate that comprise the eNOS dimer interface are the targets of S-nitrosylation. Mutation of the zinc-tetrathiolate cysteines eliminates eNOS S-nitrosylation but does not eliminate NO synthase activity, arguing strongly that disruption of the zinc-tetrathiolate does not necessarily lead to eNOS monomerization in vivo. Taken together, these studies suggest that eNOS S-nitrosylation may represent an important mechanism for regulation of NO signaling pathways in the vascular wall.
Collapse
Affiliation(s)
- Phillip A Erwin
- Cardiovascular, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
37
|
Xia Y, Krukoff TL. Estrogen induces nitric oxide production via activation of constitutive nitric oxide synthases in human neuroblastoma cells. Endocrinology 2004; 145:4550-7. [PMID: 15242984 DOI: 10.1210/en.2004-0327] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although it is becoming increasingly evident that nitric oxide (NO) mediates some of estrogen's actions in the brain, the effects of estrogen on NO production through NO synthases (NOS) in neuronal cells have not yet been identified. Here we assessed changes in NO production induced by 17beta-estradiol (E2) in cells of neuronal origin using human SK-N-SH neuroblastoma cells, which we show express all three isoforms of NOS. Involvement of NOS isoforms in E2-induced NO production was examined using isoform-specific NOS inhibitors. E2 (10(-10)-10(-6) m) induced rapid increases in NO release and changes in endothelial NOS (eNOS) expression, which were blocked by ICI 182,780, an antagonist of estrogen receptors. Increased levels of NO release and NOS activity induced by E2 were blocked by N5-(1-Imino-3-butenyl)-L-ornithine, a neuronal NOS inhibitor, and N(5)-(1-Iminoethyl)-L-ornithine, an eNOS inhibitor, but not by 1400W, an inducible NOS inhibitor. These results demonstrate that E2-stimulated NO production occurs via estrogen receptor-mediated activation of the constitutive NOSs, neuronal NOS and eNOS. The E2-induced NO increase was abolished when extracellular Ca2+ was removed from the medium or after the addition of nifedipine, an L-type channel blocker, and was partially inhibited using 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, an intracellular Ca2+ chelator. However, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester itself also caused an increase in NO release that was blocked by 1400W, suggesting that inducible NOS mediates this response. Together these data reveal that constitutive NOS activities are responsible for E2-induced NO production in neuroblastoma cells and that differential activation of NOS isoforms in these cells occurs in response to different treatments.
Collapse
Affiliation(s)
- Yun Xia
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
38
|
Mungrue IN, Bredt DS, Stewart DJ, Husain M. From molecules to mammals: what's NOS got to do with it? ACTA ACUST UNITED AC 2004; 179:123-35. [PMID: 14510775 DOI: 10.1046/j.1365-201x.2003.01182.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide synthases (NOSs) generate nitric oxide (NO) and the by-product l-citrulline, via the catalytic combination of l-arginine and molecular oxygen. In mammals, there are three NOS genes: nNOS (NOS1), iNOS (NOS2) and eNOS (NOS3). The molecular structure, enzymology and pharmacology of these enzymes have been well defined, and reveal critical roles for the NOS system in a variety of important processes. The studies of NOS enzymes using knockout and transgenic mouse models have provided an invaluable contribution, highlighting critical roles in neuronal, renal, pulmonary, gastro-intestinal, skeletal muscle, reproductive and cardiovascular biology. This review will outline the data gleaned from complementary knockout and transgenic over-expression models in mice, and focus on the interactions between NOS enzymes and pathophysiology of the vascular system. These studies are a paradigm for the near future, which will involve the translation of an enormous amount of genomic data into physiological insights that penetrate the realms of both health care and biology.
Collapse
Affiliation(s)
- I N Mungrue
- The Department of Medicine, University of Toronto, Toronto, Canada
| | | | | | | |
Collapse
|
39
|
Sullivan JC, Pollock JS. NOS 3 subcellular localization in the regulation of nitric oxide production. ACTA ACUST UNITED AC 2004; 179:115-22. [PMID: 14510774 DOI: 10.1046/j.1365-201x.2003.01181.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Endothelium-derived nitric oxide (NO) is a key signalling molecule in the maintenance of cardiovascular health. Endothelial NO synthase (NOS 3), which catalyses the formation of NO, is targeted to the plasma membrane by dual acylation. In vitro studies suggest that membrane localization of NOS 3 is an important regulatory element of NO production. Dysfunction of the vascular endothelium and a decrease in NO bioavailability is associated with the development and progression of a number of cardiovascular diseases, including hypertension. Our laboratory has previously published that in salt-dependent hypertension there is an altered localization of NOS 3, with an increase in cytosolic expression. These data have led us to question whether the increased cytosolic NOS 3 expression is a form of compensation for endothelial dysfunction in hypertension, or an indicator and contributing factor to endothelial dysfunction. This review will outline the importance of subcellular localization in the regulation of NOS 3 in vitro, the role of NOS 3 in endothelial dysfunction associated with salt-dependent hypertension, and the potential physiological consequences of altered NOS 3 localization in vivo.
Collapse
Affiliation(s)
- J C Sullivan
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912, USA
| | | |
Collapse
|
40
|
Fivaz M, Meyer T. Specific localization and timing in neuronal signal transduction mediated by protein-lipid interactions. Neuron 2003; 40:319-30. [PMID: 14556711 DOI: 10.1016/s0896-6273(03)00634-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A large number of signaling proteins translocate from the cytosol to the plasma membrane in response to receptor and electrical stimuli. The site of translocation to the plasma membrane and the "on" and "off" rates of the translocation process are critical for defining the specificity of the signaling response. In addition to targeting mechanisms based on protein-protein interactions, signaling proteins have evolved a large repertoire of covalent lipid modifications and lipid binding protein modules that regulate reversible membrane association. The time constants of these membrane interactions range from milliseconds to several hours. Here we discuss how diversity in lipid-based membrane anchoring and targeting motifs contributes to plasticity in neuronal signaling by providing local and regional control mechanisms as well as a means to transduce and integrate signals over a broad range of different time scales.
Collapse
Affiliation(s)
- Marc Fivaz
- Department of Molecular Pharmacology, School of Medicine, Stanford University, 318 Campus Drive, Clark Center W200, Stanford, CA 94305, USA
| | | |
Collapse
|
41
|
Schneider JC, El Kebir D, Chéreau C, Lanone S, Huang XL, De Buys Roessingh AS, Mercier JC, Dall'Ava-Santucci J, Dinh-Xuan AT. Involvement of Ca2+/calmodulin-dependent protein kinase II in endothelial NO production and endothelium-dependent relaxation. Am J Physiol Heart Circ Physiol 2003; 284:H2311-9. [PMID: 12560211 DOI: 10.1152/ajpheart.00932.2001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO synthesis was assessed by a NO sensor and chemiluminescence in culture medium of cultured porcine aortic endothelial cells stimulated with the Ca(2+) ionophore A23187 and thapsigargin. Rat aortic endothelial NOS activity was measured by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline. Three CaMK II inhibitors, polypeptide 281-302, KN-93, and lavendustin C, attenuated the endothelium-dependent relaxation of endothelium-intact rat aortic rings in response to acetylcholine, A23187, and thapsigargin. None of the CaMK II inhibitors affected the relaxation induced by NO donors. In a porcine aortic endothelial cell line, KN-93 decreased NO synthesis and caused a rightward shift of the concentration-response curves to A23187 and thapsigargin. In rat aortic endothelial cells, KN-93 significantly decreased bradykinin-induced eNOS activity. These results suggest that CaMK II was involved in NO synthesis as a result of Ca(2+)-dependent activation of eNOS.
Collapse
Affiliation(s)
- Jean-Christophe Schneider
- Service de Physiologie-Explorations Fonctionnelles, Centre Hospitalier Universitaire Cochin, Assistance Publique, Hôpitaux de Paris, Université Paris 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Co-infection of a host cell by two unrelated enveloped viruses can lead to the production of pseudotypes: virions containing the genome of one virus but the envelope proteins of both viruses. The selection of components during virus assembly must therefore be flexible enough to allow the incorporation of unrelated viral membrane proteins, yet specific enough to exclude the bulk of host proteins. This apparent contradiction has been termed the pseudotypic paradox. There is mounting evidence that lipid rafts play a role in the assembly pathway of non-icosahedral, enveloped viruses. Viral components are concentrated initially in localized regions of the plasma membrane via their interaction with lipid raft domains. Lateral interactions of viral structural proteins amplify the changes in local lipid composition which in turn enhance the concentration of viral proteins in the rafts. An affinity for lipid rafts may be the common feature of enveloped virus proteins that leads to the formation of pseudotypes.
Collapse
Affiliation(s)
- John A G Briggs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Thomas Wilk
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Stephen D Fuller
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| |
Collapse
|
43
|
Nozawa N, Daikoku T, Koshizuka T, Yamauchi Y, Yoshikawa T, Nishiyama Y. Subcellular localization of herpes simplex virus type 1 UL51 protein and role of palmitoylation in Golgi apparatus targeting. J Virol 2003; 77:3204-16. [PMID: 12584344 PMCID: PMC149782 DOI: 10.1128/jvi.77.5.3204-3216.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) UL51 gene products are virion-associated phosphoproteins with apparent molecular masses of 27, 29, and 30 kDa in HSV-1-infected cells. In this study, we have investigated the intracellular localization and distribution of UL51 protein both in infected cells and in transfected cells expressing only UL51. We found that this protein colocalized closely with Golgi marker proteins such as the Golgi-58K protein and GM130 in transfected cells expressing only UL51. However, in infected cells, the UL51 protein localized to the juxtanuclear region but only partially colocalized with the Golgi maker proteins. Mutant protein analysis revealed that the N-terminal 15 amino acid residues of the UL51 protein sufficed for this Golgi localization property. The UL51 protein redistributed on addition of brefeldin A. This was prevented by pretreatment with 2-deoxyglucose and sodium azide, which results in ATP depletion, but not by pretreatment with NaF and AlCl(3), which activates heterotrimeric G proteins. Moreover, we found that palmitoylation of the UL51 protein through the N-terminal cysteine at position 9 was necessary for its Golgi localization. Protease digestion analysis suggested that the UL51 protein localized on the cytoplasmic face of the membrane in UL51-transfected cells, while in infected cells it localized mainly to the inside of cytoplasmic vesicles and/or the viral envelope. Transmission immunoelectron microscopy revealed an association of UL51 protein-specific labeling with cytoplasmic virions and also with some membranous structure. We infer from these observations that internalization of UL51 protein into the cytoplasmic vesicle and/or virion may occur in association with viral envelopment in HSV-infected cells.
Collapse
Affiliation(s)
- Naoki Nozawa
- Laboratory of Virology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Miggin SM, Lawler OA, Kinsella BT. Palmitoylation of the human prostacyclin receptor. Functional implications of palmitoylation and isoprenylation. J Biol Chem 2003; 278:6947-58. [PMID: 12488443 DOI: 10.1074/jbc.m210637200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously established that isoprenylation of the prostacyclin receptor (IP) is required for its efficient G protein coupling and effector signaling (Hayes, J. S., Lawler, O. A., Walsh, M. T., and Kinsella, B. T. (1999) J. Biol. Chem. 274, 23707-23718). In the present study, we sought to investigate whether the IP may actually be subject to palmitoylation in addition to isoprenylation and to establish the functional significance thereof. The human (h) IP was efficiently palmitoylated at Cys(308) and Cys(311), proximal to transmembrane domain 7 within its carboxyl-terminal (C)-tail domain, whereas Cys(309) was not palmitoylated. The isoprenylation-defective hIP(SSLC) underwent palmitoylation but did not efficiently couple to G(s) or G(q), confirming that isoprenylation is required for G protein coupling. Deletion of C-tail sequences distal to Val(307) generated hIP(Delta307) that was neither palmitoylated nor isoprenylated and did not efficiently couple to G(s) or to G(q), whereas hIP(Delta312) was palmitoylated and ably coupled to both effector systems. Conversion of Cys(308), Cys(309), Cys(311), Cys(308,309), or Cys(309,311) to corresponding Ser residues, while leaving the isoprenylation CAAX motif intact, did not affect hIP coupling to G(s) signaling, whereas mutation of Cys(308,311) and Cys(308,309,311) abolished signaling, indicating that palmitoylation of either Cys(308) or Cys(311) is sufficient to maintain functional G(s) coupling. Although mutation of Cys(309) and Cys(311) did not affect hIP-mediated G(q) coupling, mutation of Cys(308) abolished signaling, indicating a specific requirement for palmitoylation of Cys(308) for G(q) coupling. Consistent with this, neither hIP(C308S,C309S), hIP(C308S,C311S), nor hIP(C308S,C309S,C311S) coupled to G(q). Taken together, these data confirm that the hIP is isoprenylated and palmitoylated, and collectively these modifications modulate its G protein coupling and effector signaling. We propose that through lipid modification followed by membrane insertion, the C-tail domain of the IP may contain a double loop structure anchored by the dynamically regulated palmitoyl groups proximal to transmembrane domain 7 and by a distal farnesyl isoprenoid permanently attached to its carboxyl terminus.
Collapse
Affiliation(s)
- Sinead M Miggin
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, Merville House, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
45
|
Abstract
Nitric oxide (NO) is a gaseous free radical that functions as an endogenous mediator in numerous tissues. Because NO is both reactive and highly diffusible, its formation must be tightly regulated to control its synthesis and to specify its signaling. Indeed, molecular studies of the NO synthase (NOS) family of enzymes have elaborated a variety of mechanisms, including protein interactions, lipid modifications and protein phosphorylation cascades that spatially and temporally control NO biosynthesis. These mechanisms determine both the upstream cellular signals that stimulate NO formation and the downstream molecular targets for NO. Understanding these cellular pathways that control NOS will help us to elucidate the functional roles of NO and provide novel strategies to treat diseases associated with NO abnormalities.
Collapse
Affiliation(s)
- David S Bredt
- Department of Physiology, University of California at San Francisco School of Medicine, 513 Parnassus Avenue, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
46
|
Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1-12. [PMID: 12482742 DOI: 10.1152/ajpregu.00323.2002] [Citation(s) in RCA: 606] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endothelial nitric oxide synthase (eNOS), the expression of which is regulated by a range of transcriptional and posttranscriptional mechanisms, generates nitric oxide (NO) in response to a number of stimuli. The physiologically most important determinants for the continuous generation of NO and thus the regulation of local blood flow are fluid shear stress and pulsatile stretch. Although eNOS activity is coupled to changes in endothelial cell Ca(2+) levels, an increase in Ca(2+) alone is not sufficient to affect enzyme activity because the binding of calmodulin (CaM) and the flow of electrons from the reductase to the oxygenase domain of the enzyme is dependent on protein phosphorylation and dephosphorylation. Two amino acids seem to be particularly important in regulating eNOS activity and these are a serine residue in the reductase domain (Ser(1177)) and a threonine residue (Thr(495)) located within the CaM-binding domain. Simultaneous alterations in the phosphorylation of Ser(1177) and Thr(495) in response to a variety of stimuli are regulated by a number of kinases and phosphatases that continuously associate with and dissociate from the eNOS signaling complex. eNOS associated proteins, such as caveolin, heat shock protein 90, eNOS interacting protein, and possibly also motor proteins provide the scaffold for the formation of the protein complex as well as its intracellular localization.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institut für Kardiovaskuläre Physiologie, J. W. Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | | |
Collapse
|
47
|
Saura M, Zaragoza C, Cao W, Bao C, Rodríguez-Puyol M, Rodríguez-Puyol D, Lowenstein CJ. Smad2 mediates transforming growth factor-beta induction of endothelial nitric oxide synthase expression. Circ Res 2002; 91:806-13. [PMID: 12411395 DOI: 10.1161/01.res.0000040397.23817.e5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming growth factor-beta (TGF-beta) increases expression of endothelial nitric oxide synthase (eNOS), although the precise mechanism by which it does so is unclear. We report that Smad2, a transcription factor activated by TGF-beta, mediates TGF-beta induction of eNOS in endothelial cells. TGF-beta induces Smad2 translocation from cytoplasm to nucleus, where it directly interacts with a specific region of the eNOS promoter. Overexpression of Smad2 increases basal levels of eNOS, and further increases TGF-beta stimulation of eNOS expression. Ectopic expression of Smurf, an antagonizer of Smad2, decreases Smad2 expression and blocks TGF-beta induction of eNOS. Because Smad2 can interact with a variety of transcription factors, coactivators, and corepressors, Smad2 may thus act as an integrator of multiple signals in the regulation of eNOS expression.
Collapse
Affiliation(s)
- Marta Saura
- Department of Physiology, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Figueroa XF, González DR, Martínez AD, Durán WN, Boric MP. ACh-induced endothelial NO synthase translocation, NO release and vasodilatation in the hamster microcirculation in vivo. J Physiol 2002; 544:883-96. [PMID: 12411531 PMCID: PMC2290640 DOI: 10.1113/jphysiol.2002.021972] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Studies in cultured cells show that activation of endothelial nitric oxide (NO) synthase (eNOS) requires the dissociation of this enzyme from its inhibitory association with caveolin-1 (Cav-1), and perhaps its translocation from plasma membrane caveolae to other cellular compartments. We investigated the hypothesis that in vivo NO-dependent vasodilatation is associated with the translocation of eNOS from the cell membrane. To this end, we applied ACh topically (10-100 microM for 10 min) to the hamster cheek pouch microcirculation and measured NO production, blood flow and vessel diameter, and assessed subcellular eNOS distribution by Western blotting. Baseline NO production was 54.4 +/- 5.2 pmol min(-1) (n = 16). ACh increased NO release, caused arteriolar and venular dilatation and elevated microvascular flow. These responses were inhibited by N(G)-nitro-L-arginine (30 microM). The maximal increase in NO production induced by 10 microM and 100 microM ACh was 45 +/- 20 % and 111 +/- 33 %, respectively; the corresponding blood flow increases were 50 +/- 10 % and 130 +/- 24 %, respectively (n = 4-6). Both responses followed a similar time course, although increases in NO preceded flow changes. In non-stimulated tissues, eNOS was distributed mainly in the microsomal fraction. ACh-induced vasodilatation was associated with eNOS translocation to the cytosolic and Golgi-enriched fractions. After 1.5, 3.0 or 6.0 min of application, 10 microM ACh decreased the level of membrane-bound eNOS by -13 +/- 4 %, -60 +/- 4 % and -19 +/- 17 %, respectively; at the same time points, 100 microM ACh reduced microsomal eNOS content by -38 +/- 9 %, -61 +/- 16 % and -40 +/- 18 %, respectively (n = 4-5). In all cases, microsomal Cav-1 content did not change. The close ACh concentration dependence and the concomitance between eNOS subcellular redistribution and NO release support the concept that eNOS translocation from the plasma membrane is part of an activation mechanism that induces NO-dependent vasodilatation in vivo.
Collapse
Affiliation(s)
- Xavier F Figueroa
- Unidad de Regulación Neurohumoral, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
49
|
Gonzalez E, Kou R, Lin AJ, Golan DE, Michel T. Subcellular targeting and agonist-induced site-specific phosphorylation of endothelial nitric-oxide synthase. J Biol Chem 2002; 277:39554-60. [PMID: 12189156 DOI: 10.1074/jbc.m207299200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endothelial isoform of nitric-oxide synthase (eNOS) undergoes a complex pattern of covalent modifications, including acylation with the fatty acids myristate and palmitate as well as phosphorylation on multiple sites. eNOS acylation is a key determinant for the reversible subcellular targeting of the enzyme to plasmalemmal caveolae. We transfected a series of hemagglutinin epitope-tagged eNOS mutant cDNAs deficient in palmitoylation (palm(-)) and/or myristoylation (myr(-)) into bovine aortic endothelial cells; after treatment with the eNOS agonists sphingosine 1-phosphate or vascular endothelial growth factor, the recombinant eNOS was immunoprecipitated using an antibody directed against the epitope tag, and patterns of eNOS phosphorylation were analyzed in immunoblots probed with phosphorylation state-specific eNOS antibodies. The wild-type eNOS underwent agonist-induced phosphorylation at serine 1179 (a putative site for phosphorylation by kinase Akt), but phosphorylation of the myr(-) eNOS at this residue was nearly abrogated; the palm(-) eNOS exhibited an intermediate phenotype. The addition of the CD8 transmembrane domain to the amino terminus of eNOS acylation-deficient mutants rescued the wild-type phenotype of robust agonist-induced serine 1179 phosphorylation. Thus, membrane targeting, but not necessarily acylation, is the critical determinant for agonist-promoted eNOS phosphorylation at serine 1179. In striking contrast to serine 1179, phosphorylation of eNOS at serine 116 was enhanced in the myr(-) eNOS mutant and was markedly attenuated in the CD8-eNOS membrane-targeted fusion protein. We conclude that eNOS targeting differentially affects eNOS phosphorylation at distinct sites in the protein and suggest that the inter-relationships of eNOS acylation and phosphorylation may modulate eNOS localization and activity and thereby influence NO signaling pathways in the vessel wall.
Collapse
Affiliation(s)
- Eva Gonzalez
- Cardiovascular Division, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Nitric Oxide Synthases (NOSs) are a group of related proteins that produce nitric oxide (NO). In mammals, there are three known members of this gene family: nNOS (NOS1), iNOS (NOS2) and eNOS (NOS3). Each has been disrupted by targeted gene ablation in mice and the corresponding phenotypes examined. These mice have allowed an examination of the contribution of each NOS in a variety of experimental models and continue to provided insights into the patho-physiological role of NOS and NO. With increasing sophistication, murine transgenic approaches continue to offer a wealth of information, and invaluable tools to further study the NOS system. The focus of this review will be an examination of the tools available, and the insights gained from studies done on murine NOS genetic models in the context of heart failure.
Collapse
Affiliation(s)
- Imran N Mungrue
- Division of Cell & Molecular Biology, The Toronto General Hospital Research Institute, 12EN-221, 101 College St, Toronto, ON, M5G 2C4, Canada
| | | | | |
Collapse
|