1
|
Newman JRB, Long SA, Speake C, Greenbaum CJ, Cerosaletti K, Rich SS, Onengut-Gumuscu S, McIntyre LM, Buckner JH, Concannon P. Shifts in isoform usage underlie transcriptional differences in regulatory T cells in type 1 diabetes. Commun Biol 2023; 6:988. [PMID: 37758901 PMCID: PMC10533491 DOI: 10.1038/s42003-023-05327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Genome-wide association studies have identified numerous loci with allelic associations to Type 1 Diabetes (T1D) risk. Most disease-associated variants are enriched in regulatory sequences active in lymphoid cell types, suggesting that lymphocyte gene expression is altered in T1D. Here we assay gene expression between T1D cases and healthy controls in two autoimmunity-relevant lymphocyte cell types, memory CD4+/CD25+ regulatory T cells (Treg) and memory CD4+/CD25- T cells, using a splicing event-based approach to characterize tissue-specific transcriptomes. Limited differences in isoform usage between T1D cases and controls are observed in memory CD4+/CD25- T-cells. In Tregs, 402 genes demonstrate differences in isoform usage between cases and controls, particularly RNA recognition and splicing factor genes. Many of these genes are regulated by the variable inclusion of exons that can trigger nonsense mediated decay. Our results suggest that dysregulation of gene expression, through shifts in alternative splicing in Tregs, contributes to T1D pathophysiology.
Collapse
Affiliation(s)
- Jeremy R B Newman
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32601, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Carla J Greenbaum
- Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lauren M McIntyre
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32601, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA
| | - Patrick Concannon
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32601, USA.
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32601, USA.
| |
Collapse
|
2
|
Huang K, Wu S, Yang X, Wang T, Liu X, Zhou X, Huang L. CAFuncAPA: a knowledgebase for systematic functional annotations of APA events in human cancers. NAR Cancer 2023; 5:zcad004. [PMID: 36694725 PMCID: PMC9869079 DOI: 10.1093/narcan/zcad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Alternative polyadenylation (APA) is a widespread posttranscriptional regulation process. APA generates diverse mRNA isoforms with different 3' UTR lengths, affecting mRNA expression, miRNA binding regulation and alternative splicing events. Previous studies have demonstrated the important roles of APA in tumorigenesis and cancer progression through diverse aspects. Thus, a comprehensive functional landscape of diverse APA events would aid in a better understanding of the underlying mechanisms related to APA in human cancers. Here, we built CAFuncAPA (https://relab.xidian.edu.cn/CAFuncAPA/) to systematically annotate the functions of 15478 APA events in human pan-cancers. Specifically, we first identified APA events associated with cancer survival and tumor progression. We annotated the potential downstream effects of APA on genes/isoforms expression, regulation of miRNAs, RNA binding proteins (RBPs) and alternative splicing events. Moreover, we also identified up-regulators of APA events, including the effects of genetic variants on poly(A) sites and RBPs, as well as the effect of methylation phenotypes on APA events. These findings suggested that CAFuncAPA can be a helpful resource for a better understanding of APA regulators and potential functions in cancer biology.
Collapse
Affiliation(s)
- Kexin Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
- West China Biomedical Big Data Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Sijia Wu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xiaotong Yang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Tiangang Wang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xi Liu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
3
|
Mukim A, Smith DM, Deshmukh S, Qazi AA, Beliakova-Bethell N. A Camptothetin Analog, Topotecan, Promotes HIV Latency via Interference with HIV Transcription and RNA Splicing. J Virol 2023; 97:e0163022. [PMID: 36719238 PMCID: PMC9973035 DOI: 10.1128/jvi.01630-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 02/01/2023] Open
Abstract
Low level HIV transcription during modern antiretroviral therapy (ART) in persons with HIV is linked to residual inflammation and associated diseases, like cardiovascular disease and cancer. The "block and lock" approach to hold HIV in a state of deep latency may help decrease residual inflammation in a person with HIV on ART and thus improve health. A camptothecin analog topotecan (TPT) was previously implicated as an inhibitor of active HIV replication. Using an in vitro primary T cell model of HIV latency, we demonstrated that (i) TPT reduces HIV transcriptional activity in latently infected cells; (ii) downregulation of HIV RNA by TPT cannot be reversed by latency reversing agents; (iii) several primary and secondary mechanism of action of TPT may be involved in control of HIV replication; (iv) regulation of HIV RNA by TPT is dependent on splicing complexity; (v) increase in proportion of unspliced HIV transcripts was facilitated by intron retention and upregulation of splicing factors, specifically SRSF6, by TPT. Although high TPT dosing (10 μM) was needed to achieve the observed effects, viability of primary CD4+ T cells was not greatly affected. Because toxicity can be observed with TPT in persons with cancer, TPT is unlikely to be used as an anti-HIV agent in clinic, but our study provides proof that camptothetin has "block and lock" activity. Other camptothetin analogs, which are less toxic than TPT, should be designed and tested as HIV "block and lock" agents. IMPORTANCE HIV survives in a state of very low activity, called latency, for long periods in persons with HIV on antiretroviral therapy. This low activity of HIV is linked to residual inflammation and associated diseases, such as heart disease and cancer. New strategies are being explored to further silence the HIV provirus and suppress residual inflammation. This study provides strong evidence that the camptothetin analog, Topotecan, can reduce residual activity of HIV in an experimental model of HIV latency. While Topotecan itself is likely not suitable for use in the clinic due to its toxicity, other camptothetin analogs should be designed and investigated as "block and lock" agents.
Collapse
Affiliation(s)
- Amey Mukim
- Veterans Medical Research Foundation, San Diego, California, USA
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, California, USA
| | - Savitha Deshmukh
- Veterans Medical Research Foundation, San Diego, California, USA
| | - Andrew A. Qazi
- Veterans Medical Research Foundation, San Diego, California, USA
| | - Nadejda Beliakova-Bethell
- Veterans Medical Research Foundation, San Diego, California, USA
- Department of Medicine, University of California, San Diego, California, USA
- VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
4
|
Schwich OD, Blümel N, Keller M, Wegener M, Setty ST, Brunstein ME, Poser I, Mozos IRDL, Suess B, Münch C, McNicoll F, Zarnack K, Müller-McNicoll M. SRSF3 and SRSF7 modulate 3'UTR length through suppression or activation of proximal polyadenylation sites and regulation of CFIm levels. Genome Biol 2021; 22:82. [PMID: 33706811 PMCID: PMC7948361 DOI: 10.1186/s13059-021-02298-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/11/2021] [Indexed: 12/23/2022] Open
Abstract
Background Alternative polyadenylation (APA) refers to the regulated selection of polyadenylation sites (PASs) in transcripts, which determines the length of their 3′ untranslated regions (3′UTRs). We have recently shown that SRSF3 and SRSF7, two closely related SR proteins, connect APA with mRNA export. The mechanism underlying APA regulation by SRSF3 and SRSF7 remained unknown. Results Here we combine iCLIP and 3′-end sequencing and find that SRSF3 and SRSF7 bind upstream of proximal PASs (pPASs), but they exert opposite effects on 3′UTR length. SRSF7 enhances pPAS usage in a concentration-dependent but splicing-independent manner by recruiting the cleavage factor FIP1, generating short 3′UTRs. Protein domains unique to SRSF7, which are absent from SRSF3, contribute to FIP1 recruitment. In contrast, SRSF3 promotes distal PAS (dPAS) usage and hence long 3′UTRs directly by counteracting SRSF7, but also indirectly by maintaining high levels of cleavage factor Im (CFIm) via alternative splicing. Upon SRSF3 depletion, CFIm levels decrease and 3′UTRs are shortened. The indirect SRSF3 targets are particularly sensitive to low CFIm levels, because here CFIm serves a dual function; it enhances dPAS and inhibits pPAS usage by binding immediately downstream and assembling unproductive cleavage complexes, which together promotes long 3′UTRs. Conclusions We demonstrate that SRSF3 and SRSF7 are direct modulators of pPAS usage and show how small differences in the domain architecture of SR proteins can confer opposite effects on pPAS regulation. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02298-y.
Collapse
Affiliation(s)
- Oliver Daniel Schwich
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | - Nicole Blümel
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany
| | - Mario Keller
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany.,Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Marius Wegener
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | - Samarth Thonta Setty
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany
| | - Melinda Elaine Brunstein
- Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Sandhofstr. 2-4, 60528, Frankfurt am Main, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | | | - Beatrix Suess
- Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287, Darmstadt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Sandhofstr. 2-4, 60528, Frankfurt am Main, Germany
| | - François McNicoll
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt, Germany. .,Faculty of Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Michaela Müller-McNicoll
- Institute for Molecular Bio Science, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt, Germany.
| |
Collapse
|
5
|
SRSF7 maintains its homeostasis through the expression of Split-ORFs and nuclear body assembly. Nat Struct Mol Biol 2020; 27:260-273. [PMID: 32123389 PMCID: PMC7096898 DOI: 10.1038/s41594-020-0385-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
SRSF7 is an essential RNA-binding protein whose misexpression promotes cancer. Here, we describe how SRSF7 maintains its protein homeostasis in murine P19 cells using an intricate negative feedback mechanism. SRSF7 binding to its premessenger RNA promotes inclusion of a poison cassette exon and transcript degradation via nonsense-mediated decay (NMD). However, elevated SRSF7 levels inhibit NMD and promote translation of two protein halves, termed Split-ORFs, from the bicistronic SRSF7-PCE transcript. The first half acts as dominant-negative isoform suppressing poison cassette exon inclusion and instead promoting the retention of flanking introns containing repeated SRSF7 binding sites. Massive SRSF7 binding to these sites and its oligomerization promote the assembly of large nuclear bodies, which sequester SRSF7 transcripts at their transcription site, preventing their export and restoring normal SRSF7 protein levels. We further show that hundreds of human and mouse NMD targets, especially RNA-binding proteins, encode potential Split-ORFs, some of which are expressed under specific cellular conditions.
Collapse
|
6
|
Fu Y, Wang Y. SRSF7 knockdown promotes apoptosis of colon and lung cancer cells. Oncol Lett 2018; 15:5545-5552. [PMID: 29556298 PMCID: PMC5844074 DOI: 10.3892/ol.2018.8072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/10/2018] [Indexed: 02/04/2023] Open
Abstract
Serine/arginine-rich (SR) proteins are a family of important splicing factors, which are involved in multiple aspects of RNA processing, including splicing, mRNA nuclear export, mRNA stability and translation. Previous studies have identified a number of SR proteins that exhibit abnormal expression in various tumor types. In the present study, the expression and function of serine/arginine-rich splicing factor 7 (SRSF7) were investigated in colon and lung cancer. Using tissue immunohistochemistry, it was observed that SRSF7 was overexpressed in colon and lung cancer tissues. As the role of SRSF7 in cancer remains to be fully elucidated, the expression of SRSF7 was knocked down in the present study by transfecting SRSF7-specific small interfering RNAs (siRNAs) into the HCT116 colon cancer cell line and A549 lung cancer cell line, which exhibited elevated expression of SRSF7. MTS assays, western blot analysis, flow cytometry and spectrofluorometer analyses were performed to assess the effects of SRSF7 knockdown on the proliferation and apoptosis of cells. The results demonstrated that the expression of SRSF7 was efficiently knocked down by SRSF7 siRNA, and that SRSF7 knockdown inhibited proliferation and enhanced apoptosis of HCT116 and A549 cells. Further experiments involving BEAS-2B cells stably overexpressing SRSF7, and A549 cells with stable knockdown of SRSF7 revealed that SRSF7 regulated the splicing of the apoptosis regulator Fas. Collectively, these data indicated that SRSF7 is critical for the survival of colon and lung cancer cells, and may be a potential therapeutic target for the treatment of colon and lung cancer.
Collapse
Affiliation(s)
- Yu Fu
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yingze Wang
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| |
Collapse
|
7
|
Zhang Q, Li H, Jin H, Tan H, Zhang J, Sheng S. The global landscape of intron retentions in lung adenocarcinoma. BMC Med Genomics 2014; 7:15. [PMID: 24646369 PMCID: PMC3999986 DOI: 10.1186/1755-8794-7-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/14/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The transcriptome complexity in an organism can be achieved by alternative splicing of precursor messenger RNAs. It has been revealed that alternations in mRNA splicing play an important role in a number of diseases including human cancers. METHODS In this study, we exploited whole transcriptome sequencing data from five lung adenocarcinoma tissues and their matched normal tissues to interrogate intron retention, a less studied alternative splicing form which has profound structural and functional consequence by modifying open reading frame or inserting premature stop codons. RESULTS Abundant intron retention events were found in both tumor and normal tissues, and 2,340 and 1,422 genes only contain tumor-specific retentions and normal-specific retentions, respectively. Combined with gene expression analysis, we showed that genes with tumor-specific retentions tend to be over-expressed in tumors, and the abundance of intron retention within genes is negatively related with gene expression, indicating the action of nonsense mediated decay. Further functional analysis demonstrated that genes with tumor-specific retentions include known lung cancer driver genes and are found enriched in pathways important in carcinogenesis. CONCLUSIONS We hypothesize that intron retentions and consequent nonsense mediated decay may collectively counteract the over-expression of genes promoting cancer development. Identification of genes with tumor-specific retentions may also help develop targeted therapies.
Collapse
Affiliation(s)
- Qu Zhang
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hua Li
- HYK High-throughput Biotechnology Institute, 4/F, Building #11, Software Park, 2nd Central Keji Rd, Hi-Tech Industrial Park, Shenzhen 518060, China
| | - Hong Jin
- HYK High-throughput Biotechnology Institute, 4/F, Building #11, Software Park, 2nd Central Keji Rd, Hi-Tech Industrial Park, Shenzhen 518060, China
| | - Huibiao Tan
- HYK High-throughput Biotechnology Institute, 4/F, Building #11, Software Park, 2nd Central Keji Rd, Hi-Tech Industrial Park, Shenzhen 518060, China
| | - Jun Zhang
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai 200025, China
| | - Sitong Sheng
- HYK High-throughput Biotechnology Institute, 4/F, Building #11, Software Park, 2nd Central Keji Rd, Hi-Tech Industrial Park, Shenzhen 518060, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
- College of Life Sciences, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Epstein-Barr virus induces global changes in cellular mRNA isoform usage that are important for the maintenance of latency. J Virol 2013; 87:12291-301. [PMID: 24027308 DOI: 10.1128/jvi.02464-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncogenic viruses promote cell proliferation through the dramatic reorganization of host transcriptomes. In addition to regulating mRNA abundance, changes in mRNA isoform usage can have a profound impact on the protein output of the transcriptome. Using Epstein-Barr virus (EBV) transformation of primary B cells, we have studied the ability of an oncogenic virus to alter the mRNA isoform profile of its host. Using the algorithm called SplicerEX with two complementary Affymetrix microarray platforms, we uncovered 433 mRNA isoform changes regulated by EBV during B-cell transformation. These changes were largely orthogonal with the 2,163 mRNA abundance changes observed during transformation, such that less than one-third of mRNAs changing at the level of isoform also changed in overall abundance. While we observed no preference for a mechanistic class of mRNA isoform change, we detected a significant shortening of 3' untranslated regions and exclusion of cassette exons in EBV-transformed cells relative to uninfected B cells. Gene ontology analysis of the mRNA isoform changes revealed significant enrichment in nucleic acid binding proteins. We validated several of these isoform changes and were intrigued by those in two mRNAs encoding the proteins XBP1 and TCF4, which have both been shown to bind and activate the promoter of the major EBV lytic trans-activator BZLF1. Our studies indicate that EBV latent infection promotes the usage of mRNA isoforms of XBP1 and TCF4 that restrict BZLF1 activation. Therefore, characterization of global changes in mRNA isoform usage during EBV infection identifies a new mechanism for the maintenance of latent infection.
Collapse
|
9
|
McGlincy NJ, Tan LY, Paul N, Zavolan M, Lilley KS, Smith CWJ. Expression proteomics of UPF1 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing resulting in nonsense-mediated mRNA decay. BMC Genomics 2010; 11:565. [PMID: 20946641 PMCID: PMC3091714 DOI: 10.1186/1471-2164-11-565] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/14/2010] [Indexed: 02/07/2023] Open
Abstract
Background In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate. Results In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown. QPCR based validation of the corresponding mRNAs, in response to both UPF1 knockdown and cycloheximide treatment, identified 17 bona fide NMD targets. Most of these were associated with bioinformatically predicted NMD activating features, predominantly upstream open reading frames (uORFs). Strikingly, however, the majority of transcripts up-regulated by UPF1 knockdown were either insensitive to, or even down-regulated by, cycloheximide treatment. Furthermore, the mRNA abundance of several down-regulated proteins failed to change upon UPF1 knockdown, indicating that UPF1's role in regulating mRNA and protein abundance is more complex than previously appreciated. Among the bona fide NMD targets, we identified a highly conserved AS-NMD event within the 3' UTR of the HNRNPA2B1 gene. Overexpression of GFP tagged hnRNP A2 resulted in a decrease in endogenous hnRNP A2 and B1 mRNA with a concurrent increase in the NMD sensitive isoforms. Conclusions Despite the large number of changes in protein expression upon UPF1 knockdown, a relatively small fraction of them can be directly attributed to the action of NMD on the corresponding mRNA. From amongst these we have identified a conserved AS-NMD event within HNRNPA2B1 that appears to mediate autoregulation of HNRNPA2B1 expression levels.
Collapse
Affiliation(s)
- Nicholas J McGlincy
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | | | | | | | | | | |
Collapse
|
10
|
Artamonova II, Gelfand MS. Comparative Genomics and Evolution of Alternative Splicing: The Pessimists' Science. Chem Rev 2007; 107:3407-30. [PMID: 17645315 DOI: 10.1021/cr068304c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Irena I Artamonova
- Group of Bioinformatics, Vavilov Institute of General Genetics, RAS, Gubkina 3, Moscow 119991, Russia
| | | |
Collapse
|
11
|
Sequence features responsible for intron retention in human. BMC Genomics 2007; 8:59. [PMID: 17324281 PMCID: PMC1831480 DOI: 10.1186/1471-2164-8-59] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 02/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND One of the least common types of alternative splicing is the complete retention of an intron in a mature transcript. Intron retention (IR) is believed to be the result of intron, rather than exon, definition associated with failure of the recognition of weak splice sites flanking short introns. Although studies on individual retained introns have been published, few systematic surveys of large amounts of data have been conducted on the mechanisms that lead to IR. RESULTS TTo understand how sequence features are associated with or control IR, and to produce a generalized model that could reveal previously unknown signals that regulate this type of alternative splicing, we partitioned intron retention events observed in human cDNAs into two groups based on the relative abundance of both isoforms and compared relevant features. We found that a higher frequency of IR in human is associated with individual introns that have weaker splice sites, genes with shorter intron lengths, higher expression levels and lower density of both a set of exon splicing silencers (ESSs) and the intronic splicing enhancer GGG. Both groups of retained introns presented events conserved in mouse, in which the retained introns were also short and presented weaker splice sites. CONCLUSION Although our results confirmed that weaker splice sites are associated with IR, they showed that this feature alone cannot explain a non-negligible fraction of events. Our analysis suggests that cis-regulatory elements are likely to play a crucial role in regulating IR and also reveals previously unknown features that seem to influence its occurrence. These results highlight the importance of considering the interplay among these features in the regulation of the relative frequency of IR.
Collapse
|
12
|
Gao L, Wang J, Wang Y, Andreadis A. SR protein 9G8 modulates splicing of tau exon 10 via its proximal downstream intron, a clustering region for frontotemporal dementia mutations. Mol Cell Neurosci 2006; 34:48-58. [PMID: 17137791 PMCID: PMC1866282 DOI: 10.1016/j.mcn.2006.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 10/05/2006] [Accepted: 10/09/2006] [Indexed: 12/15/2022] Open
Abstract
The microtubule-associated protein tau is important to normal neuronal function in the mammalian nervous system. Aggregated tau is the major component of neurofibrillary tangles (NFTs), present in several neurodegenerative diseases, including Alzheimer's and frontotemporal dementia with Parkinsonism (FTDP). Splicing misregulation of adult-specific exon 10 results in expression of abnormal ratios of tau isoforms, leading to FTDP. Positions +3 to +16 of the intron downstream of exon 10 define a clustering region for point mutations that are found in FTDP. The serine/arginine-rich (SR) factor 9G8 strongly inhibits inclusion of tau exon 10. In this study, we established that 9G8 binds directly to this clustering region, requires a wild-type residue at position +14 to inhibit exon inclusion, and RNAi constructs against 9G8 increase exon 10 inclusion. These results indicate that 9G8 plays a key role in regulation of exon 10 splicing and imply a pathogenic role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lei Gao
- Shriver Center at UMMS, Waltham, MA 02452
| | | | - Yingzi Wang
- Shriver Center at UMMS, Waltham, MA 02452
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Athena Andreadis
- Shriver Center at UMMS, Waltham, MA 02452
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
- *Corresponding author: Athena Andreadis, Shriver Center, 200 Trapelo Road, Waltham, MA 02452; Tel.: 781-642-0279; FAX: 781-642-0017; e-mail:
| |
Collapse
|
13
|
Park E, Han J, Son GH, Lee MS, Chung S, Park SH, Park K, Lee KH, Choi S, Seong JY, Kim K. Cooperative actions of Tra2alpha with 9G8 and SRp30c in the RNA splicing of the gonadotropin-releasing hormone gene transcript. J Biol Chem 2005; 281:401-9. [PMID: 16249178 DOI: 10.1074/jbc.m505814200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In earlier studies, we demonstrated that excision of the first intron (intron A) from the gonadotropin-releasing hormone (GnRH) transcript is highly cell type- and developmental stage-specific. The removal of GnRH intron A requires exonic splicing enhancers on exons 3 and 4 (ESE3 and ESE4, respectively). Tra2alpha,a serine/arginine-rich (SR)-like protein, specifically binds to ESE4, although it requires additional nuclear co-factors for efficient removal of this intron. In the present study, we demonstrate the cooperative action of multiple SR proteins in the regulation of GnRH pre-mRNA splicing. SRp30c specifically binds to both ESE3 and ESE4, whereas 9G8 binds to an element in exon 3 and strongly enhances the excision of GnRH intron A in the presence of minimal amount of other nuclear components. Interestingly, Tra2alpha can interact with either 9G8 or SRp30c, whereas no interaction between 9G8 and SRp30c is observed. Tra2alpha has an additive effect on the RNA binding of these proteins. Overexpression or knock-down of these three proteins in cultured cells further suggests their essential role in intron A excision activities, and their presence in GnRH neurons of the mouse preoptic area further strengthens this possibility. Together, these results indicate that interaction of Tra2alpha with 9G8 and SRp30c appears to be crucial for ESE-dependent GnRH pre-mRNA splicing, allowing efficient generation of mature mRNA in GnRH-producing cells.
Collapse
Affiliation(s)
- Eonyoung Park
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kumar S, Lopez AJ. Negative feedback regulation among SR splicing factors encoded by Rbp1 and Rbp1-like in Drosophila. EMBO J 2005; 24:2646-55. [PMID: 15961996 PMCID: PMC1176452 DOI: 10.1038/sj.emboj.7600723] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 05/31/2005] [Indexed: 01/08/2023] Open
Abstract
SR proteins constitute a widely conserved family of splicing regulators. Negative autoregulation of SR proteins has been proposed to exert homeostatic control on the splicing environment, but few examples have been studied and the role of isoforms that lack the RS domain is unclear. We show that genes Rbp1 and Rbp1-like, which encode Drosophila homologs of mammalian SRp20, negatively autoregulate and crossregulate at the level of alternative 3' splice site selection. This adjusts the relative expression of isoforms with either an RS domain or unrelated C-terminal domains (ALT) that are rich in serine and threonine. The effects of RBP1-ALT on splicing of doublesex and Rbp1-like are opposite to those of RBP1-RS and RBP1L-RS. RBP1-ALT and -RS exert opposing negative feedback on the ALT/RS ratio. However, RBP1-ALT inhibits the expression of RBP1-RS while stimulating that of RBP1L-RS. This asymmetry may contribute to changes in the RBP1-RS/RBP1L-RS ratio that are observed during development. These results provide the first example of a feedback-regulated SR protein network with evidence of an active homeostatic role for alternative isoforms.
Collapse
Affiliation(s)
- Supriya Kumar
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - A Javier Lopez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA. Tel.: +1 412 268 3400; Fax: +1 412 268 7129; E-mail:
| |
Collapse
|
15
|
Zha XF, Xia QY, Zhao P, Li J, Duan J, Wang ZL, Qian JF, Xiang ZH. Detection and analysis of alternative splicing in the silkworm by aligning expressed sequence tags with the genomic sequence. INSECT MOLECULAR BIOLOGY 2005; 14:113-119. [PMID: 15796744 DOI: 10.1111/j.1365-2583.2004.00536.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We identified 277 alternative splice forms in silkworm genes based on aligning expressed sequence tags with genomic sequences, using a transcript assembly program. A large fraction (74%) of these alternative splices are located in protein-coding regions and alter protein products, whereas only 26% are in untranslated regions. From the alternative splices located in protein-coding regions, some (43%) affect protein domains that bind various biological molecules. The vast majority of the detected alternative forms in this study appear to be novel, and potentially affect biologically meaningful control of function in silkworm genes. Our results indicate that alternative splicing in silkworm largely produces protein diversity and functional diversity, and is a widely used mechanism for regulating gene expression.
Collapse
Affiliation(s)
- X-F Zha
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest Agricultural University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H. Function of alternative splicing. Gene 2004; 344:1-20. [PMID: 15656968 DOI: 10.1016/j.gene.2004.10.022] [Citation(s) in RCA: 651] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 09/10/2004] [Accepted: 10/21/2004] [Indexed: 02/06/2023]
Abstract
Alternative splicing is one of the most important mechanisms to generate a large number of mRNA and protein isoforms from the surprisingly low number of human genes. Unlike promoter activity, which primarily regulates the amount of transcripts, alternative splicing changes the structure of transcripts and their encoded proteins. Together with nonsense-mediated decay (NMD), at least 25% of all alternative exons are predicted to regulate transcript abundance. Molecular analyses during the last decade demonstrate that alternative splicing determines the binding properties, intracellular localization, enzymatic activity, protein stability and posttranslational modifications of a large number of proteins. The magnitude of the effects range from a complete loss of function or acquisition of a new function to very subtle modulations, which are observed in the majority of cases reported. Alternative splicing factors regulate multiple pre-mRNAs and recent identification of physiological targets shows that a specific splicing factor regulates pre-mRNAs with coherent biological functions. Therefore, evidence is now accumulating that alternative splicing coordinates physiologically meaningful changes in protein isoform expression and is a key mechanism to generate the complex proteome of multicellular organisms.
Collapse
Affiliation(s)
- Stefan Stamm
- Institute for Biochemistry, University of Erlangen, Fahrstrasse 17, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pacheco TR, Gomes AQ, Barbosa-Morais NL, Benes V, Ansorge W, Wollerton M, Smith CW, Valcárcel J, Carmo-Fonseca M. Diversity of vertebrate splicing factor U2AF35: identification of alternatively spliced U2AF1 mRNAS. J Biol Chem 2004; 279:27039-49. [PMID: 15096518 DOI: 10.1074/jbc.m402136200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
U2 small nuclear ribonucleoprotein auxiliary factor small subunit (U2AF(35)) is encoded by a conserved gene designated U2AF1. Here we provide evidence for the existence of alternative vertebrate transcripts encoding different U2AF(35) isoforms. Three mRNA isoforms (termed U2AF(35)a-c) were produced by alternative splicing of the human U2AF1 gene. U2AF(35)c contains a premature stop codon that targets the resulting mRNA to nonsense-mediated mRNA decay. U2AF(35)b differs from the previously described U2AF(35)a isoform in 7 amino acids located at the atypical RNA Recognition Motif involved in dimerization with U2AF(65). Biochemical experiments indicate that isoform U2AF(35)b, which has been highly conserved from fish to man, maintains the ability to interact with U2AF(65), stimulates U2AF(65) binding to a pre-mRNA, and promotes U2AF splicing activity in vitro. Real time, quantitative PCR analysis indicates that U2AF(35)a is the most abundant isoform expressed in murine tissues, although the ratio between U2AF(35)a and U2AF(35)b varies from 10-fold in the brain to 20-fold in skeletal muscle. We propose that post-transcriptional regulation of U2AF1 gene expression may provide a mechanism by which the relative cellular concentration and availability of U2AF(35) protein isoforms are modulated, thus contributing to the finely tuned control of splicing events in different tissues.
Collapse
Affiliation(s)
- Teresa R Pacheco
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bourgeois CF, Lejeune F, Stévenin J. Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:37-88. [PMID: 15210328 DOI: 10.1016/s0079-6603(04)78002-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alternative splicing of pre-messenger RNA (pre-mRNA) is a highly regulated process that allows expansion of the potential of expression of the genome in higher eukaryotes and involves many factors. Among them, the family of the serine- and arginine-rich proteins (SR proteins) plays a pivotal role: it has essential functions during spliceosome assembly and also interacts with RNA regulatory sequences on the pre-mRNA as well as with multiple cofactors. Collectively, SR proteins, because of their capacity to recognize multiple RNA sequences with a broad specificity, are at the heart of the regulation pathways that lead to the choice of alternative splice sites. Moreover, a growing body of evidence shows that the mechanisms of splicing regulation are not limited to the basic involvement of cis- and trans-acting factors at the pre-mRNA level, but result from intricate pathways, initiated sometimes by stimuli that are external to the cell and integrate SR proteins (and other factors) within an extremely sophisticated network of molecular machines associated with one another. This review focuses on the molecular aspects of the functions of SR proteins. In particular, we discuss the different ways in which SR proteins manage to achieve a high level of specificity in splicing regulation, even though they are also involved in the constitutive reaction.
Collapse
Affiliation(s)
- Cyril F Bourgeois
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, C.U. Strasbourg, France
| | | | | |
Collapse
|
19
|
Abstract
The PITSLRE protein kinases, hereafter referred to as CDK11 because of their association with the cyclin L regulatory partner, belong to large molecular weight protein complexes that contain RNA polymerase II. These CDK11(p110) complexes have been reported to influence transcription as well as interact with the general pre-mRNA-splicing factor RNPS1. Some of these complexes may also play a role in pre-mRNA splicing. Using a two-hybrid interactive screen, the splicing protein 9G8 was identified as an in vivo partner for CDK11(p110). The identification of several splicing-related factors as CDK11(p110) interactors along with the close relationship between transcription and splicing indicated that CDK11(p110) might influence splicing activity directly. Immunodepletion of CDK11(p110) from splicing extracts greatly reduced the appearance of spliced products using an in vitro assay system. Moreover, the re-addition of these CDK11(p110) immune complexes to the CDK11(p110)-immunodepleted splicing reactions completely restored splicing activity. Similarly, the addition of purified CDK11(p110) amino-terminal domain protein was sufficient to inhibit the splicing reaction. Finally, 9G8 is a phosphoprotein in vivo and is a substrate for CDK11(p110) phosphorylation in vitro. These data are among the first demonstrations showing that a CDK activity is functionally coupled to the regulation of pre-mRNA-splicing events and further support the hypothesis that CDK11(p110) is in a signaling pathway that may help to coordinate transcription and RNA-processing events.
Collapse
Affiliation(s)
- Dongli Hu
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
20
|
Liu X, Mayeda A, Tao M, Zheng ZM. Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway. J Virol 2003; 77:2105-15. [PMID: 12525645 PMCID: PMC140879 DOI: 10.1128/jvi.77.3.2105-2115.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bovine papillomavirus type 1 (BPV-1) late pre-mRNAs are spliced in keratinocytes in a differentiation-specific manner: the late leader 5' splice site alternatively splices to a proximal 3' splice site (at nucleotide 3225) to express L2 or to a distal 3' splice site (at nucleotide 3605) to express L1. Two exonic splicing enhancers, each containing two ASF/SF2 (alternative splicing factor/splicing factor 2) binding sites, are located between the two 3' splice sites and have been identified as regulating alternative 3' splice site usage. The present report demonstrates for the first time that ASF/SF2 is required under physiological conditions for the expression of BPV-1 late RNAs and for selection of the proximal 3' splice site for BPV-1 RNA splicing in DT40-ASF cells, a genetically engineered chicken B-cell line that expresses only human ASF/SF2 controlled by a tetracycline-repressible promoter. Depletion of ASF/SF2 from the cells by tetracycline greatly decreased viral RNA expression and RNA splicing at the proximal 3' splice site while increasing use of the distal 3' splice site in the remaining viral RNAs. Activation of cells lacking ASF/SF2 through anti-immunoglobulin M-B-cell receptor cross-linking rescued viral RNA expression and splicing at the proximal 3' splice site and enhanced Akt phosphorylation and expression of the phosphorylated serine/arginine-rich (SR) proteins SRp30s (especially SC35) and SRp40. Treatment with wortmannin, a specific phosphatidylinositol 3-kinase/Akt kinase inhibitor, completely blocked the activation-induced activities. ASF/SF2 thus plays an important role in viral RNA expression and splicing at the proximal 3' splice site, but activation-rescued viral RNA expression and splicing in ASF/SF2-depleted cells is mediated through the phosphatidylinositol 3-kinase/Akt pathway and is associated with the enhanced expression of other SR proteins.
Collapse
Affiliation(s)
- Xuefeng Liu
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
21
|
Sureau A, Gattoni R, Dooghe Y, Stévenin J, Soret J. SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. EMBO J 2001; 20:1785-96. [PMID: 11285241 PMCID: PMC145484 DOI: 10.1093/emboj/20.7.1785] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SC35 belongs to the family of SR proteins that regulate alternative splicing in a concentration-dependent manner in vitro and in vivo. We previously reported that SC35 is expressed through alternatively spliced mRNAs with differing 3' untranslated sequences and stabilities. Here, we show that overexpression of SC35 in HeLa cells results in a significant decrease of endogenous SC35 mRNA levels along with changes in the relative abundance of SC35 alternatively spliced mRNAs. Remarkably, SC35 leads to both an exon inclusion and an intron excision in the 3' untranslated region of its mRNAs. In vitro splicing experiments performed with recombinant SR proteins demonstrate that SC35, but not ASF/SF2 or 9G8, specifically activates these alternative splicing events. Interestingly, the resulting mRNA is very unstable and we present evidence that mRNA surveillance is likely to be involved in this instability. SC35 therefore constitutes the first example of a splicing factor that controls its own expression through activation of splicing events leading to expression of unstable mRNA.
Collapse
Affiliation(s)
- A. Sureau
- CNRS-UMR 146, Institut Curie, Bât. 110, Centre Universitaire, 91405 Orsay, Centre de Génétique Moléculaire, CNRS-UPR 2167, 91190 Gif sur Yvette and Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, France Present address: Institut de Génétique Moléculaire, CNRS-UMR 5535, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France Corresponding author e-mail:
| | - R. Gattoni
- CNRS-UMR 146, Institut Curie, Bât. 110, Centre Universitaire, 91405 Orsay, Centre de Génétique Moléculaire, CNRS-UPR 2167, 91190 Gif sur Yvette and Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, France Present address: Institut de Génétique Moléculaire, CNRS-UMR 5535, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France Corresponding author e-mail:
| | - Y. Dooghe
- CNRS-UMR 146, Institut Curie, Bât. 110, Centre Universitaire, 91405 Orsay, Centre de Génétique Moléculaire, CNRS-UPR 2167, 91190 Gif sur Yvette and Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, France Present address: Institut de Génétique Moléculaire, CNRS-UMR 5535, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France Corresponding author e-mail:
| | - J. Stévenin
- CNRS-UMR 146, Institut Curie, Bât. 110, Centre Universitaire, 91405 Orsay, Centre de Génétique Moléculaire, CNRS-UPR 2167, 91190 Gif sur Yvette and Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, France Present address: Institut de Génétique Moléculaire, CNRS-UMR 5535, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France Corresponding author e-mail:
| | - J. Soret
- CNRS-UMR 146, Institut Curie, Bât. 110, Centre Universitaire, 91405 Orsay, Centre de Génétique Moléculaire, CNRS-UPR 2167, 91190 Gif sur Yvette and Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 67404 Illkirch, France Present address: Institut de Génétique Moléculaire, CNRS-UMR 5535, 1919 Route de Mende, 34293 Montpellier, Cedex 5, France Corresponding author e-mail:
| |
Collapse
|
22
|
Lejeune F, Cavaloc Y, Stevenin J. Alternative splicing of intron 3 of the serine/arginine-rich protein 9G8 gene. Identification of flanking exonic splicing enhancers and involvement of 9G8 as a trans-acting factor. J Biol Chem 2001; 276:7850-8. [PMID: 11096110 DOI: 10.1074/jbc.m009510200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
9G8 protein belongs to the conserved serine/arginine-rich (SR) protein family, whose members exhibit multiple functions in constitutive and alternative splicing. We have previously shown that 9G8 primary transcripts are subjected to alternative splicing by excision/retention of intron 3 and to a tissue specific modulation. Because both 5'- and 3'-splice sites of intron 3 appear to be suboptimal in vertebrates, we tested the 9G8 intron 3 as a novel model system of alternative splicing. By using an in vitro approach and a mutational analysis, we have identified two purine-rich exonic splicing enhancers (ESE) located in exon 4 and a (GAA)(3) enhancer located in exon 3. These elements act in concert to promote efficient splicing activation both in vitro and in vivo. Titration experiments with an excess of exonic enhancers or SR-specific RNA targets strongly suggest that SR proteins are specifically involved in the activation process. Although ASF/SF2 was expected to interact the most efficiently with ESE according to the enhancer sequences, UV cross-linking coupled or not to immunopurification demonstrates that 9G8 is highly recruited by the three ESE, followed by SC35. In contrast, ASF/SF2 only binds significantly to the (GAA)(3) motif. S100 complementation experiments with individual SR proteins demonstrate that only 9G8 is able to fully restore splicing of intron 3. These results, and the fact that the exon 3 and 4 ESE sequences are conserved in vertebrates, strongly suggest that the alternative splicing of intron 3 represents an important step in the regulation of the expression of 9G8.
Collapse
Affiliation(s)
- F Lejeune
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, 1 Rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | |
Collapse
|
23
|
Ryo A, Suzuki Y, Arai M, Kondoh N, Wakatsuki T, Hada A, Shuda M, Tanaka K, Sato C, Yamamoto M, Yamamoto N. Identification and characterization of differentially expressed mRNAs in HIV type 1-infected human T cells. AIDS Res Hum Retroviruses 2000; 16:995-1005. [PMID: 10890361 DOI: 10.1089/08892220050058416] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We used a novel differential display (DD) technique to identify host factors involved in virus replication, pathogenesis, and host response in HIV-1-infected T cells. Thirteen cDNA fragments differentially expressed in HIV-1NL4-3-infected MT-4 cells prior to the occurrence of specific apoptotic cell death were sequenced and identified. Two of seven elevated genes were identical to HIV-1 sequences and the other five were MIP-1alpha, ACTE-III, CD11c, arginase I, and CCR5. The six downregulated genes included prothymosin-a, Jaw-1, proteasome subunit XAPC7, splicing factor 9G8, GA17 protein, and an unknown mRNA. Northern blot and RT-PCR analyses confirmed the altered gene expressions in MT-4 cells as well as in another T cell line, MOLT-4. We also revealed that the amount of MIP-1alpha in culture supernatant of HIV-1-infected cells was increased by more than 15-fold relative to control cells, and the expression of its receptor CCR5 was cooperatively upregulated on the surface of these cells. Furthermore, the upregulation of CD11c after HIV-1 infection was slightly inhibited by blocking the MIP-1alpha-mediated signal transduction. These results indicate that genes altered on HIV-1 infection may be mutually organized and play an important role in HIV-1-induced pathogenesis.
Collapse
Affiliation(s)
- A Ryo
- Department of Microbiology, School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Golovkin M, Reddy AS. An SC35-like protein and a novel serine/arginine-rich protein interact with Arabidopsis U1-70K protein. J Biol Chem 1999; 274:36428-38. [PMID: 10593939 DOI: 10.1074/jbc.274.51.36428] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The U1 small nuclear ribonucleoprotein 70-kDa protein, a U1 small nuclear ribonucleoprotein-specific protein, has been shown to have multiple roles in nuclear precursor mRNA processing in animals. By using the C-terminal arginine-rich region of Arabidopsis U1-70K protein in the yeast two-hybrid system, we have identified an SC35-like (SR33) and a novel plant serine/arginine-rich (SR) protein (SR45) that interact with the plant U1-70K. The SR33 and SR45 proteins share several features with SR proteins including modular domains typical of splicing factors in the SR family of proteins. However, both plant SR proteins are rich in proline, and SR45, unlike most animal SR proteins, has two distinct arginine/serine-rich domains separated by an RNA recognition motif. By using coprecipitation assays we confirmed the interaction of plant U1-70K with SR33 and SR45 proteins. Furthermore, in vivo and in vitro protein-protein interaction experiments have shown that SR33 protein interacts with itself and with SR45 protein but not with two other members (SRZ21 and SRZ22) of the SR family that are known to interact with the Arabidopsis full-length U-70K only. A Clk/Sty protein kinase (AFC-2) from Arabidopsis phosphorylated four SR proteins (SR33, SR45, SRZ21, and SRZ22). Coprecipitation studies have confirmed the interaction of SR proteins with AFC2 kinase, and the interaction between AFC2 and SR33 is modulated by the phosphorylation status of these proteins. These and our previous results suggest that the plant U1-70K interacts with at least four distinct members of the SR family including SR45 with its two arginine/serine-rich domains, and the interaction between the SR proteins and AFC2 is modulated by phosphorylation. The interaction of plant U1-70K with a novel set of proteins suggests the early stages of spliceosome assembly, and intron recognition in plants is likely to be different from animals.
Collapse
Affiliation(s)
- M Golovkin
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
25
|
ten Dam GB, Wieringa B, Poels LG. Alternative splicing of CD45 pre-mRNA is uniquely obedient to conditions in lymphoid cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:317-33. [PMID: 10524206 DOI: 10.1016/s0167-4781(99)00119-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The leucocyte common antigen (LCA or CD45) consists of various isoforms generated by alternative splicing of variable exons 4, 5 and 6 (or A, B and C). To follow splicing behaviour in different cell types we developed a human CD45 mini-gene and analysed its expression in transfected cell lines and transgenic mouse tissues. In Cos-1, HeLa and 3T3 cells we found distinct expression patterns which could only be modulated slightly by protein synthesis inhibitors but not by variation in culture conditions like pH, serum concentration and cell density, or by stimulation with phorbol ester (TPA). In all non-lymphoid transgenic tissues the default splicing pattern (CD45R0) was found, while the expression profile in lymphoid cells, where all eight isoforms are present, mimics that of the endogenous mouse LCA gene products. Next, to examine the factors involved in alternative exon use we analysed the expression pattern of members of the family of SR proteins, well known splicing regulators with arginine/serine-rich (R/S) domains. Cell lines expressed variable levels of SRp75, SRp30 and SRp20 and constant amounts of SRp40. Mouse tissues expressed large amounts of SRp75, SRp55 and SRp40, additional expression of SRp30s and SRp20 was restricted to lymphoid tissues. Therefore, SRp30 and SRp20 may contribute to forming the appropriate cellular conditions for alternative use of CD45 exons 4-6 in the haematopoietic compartment.
Collapse
Affiliation(s)
- G B ten Dam
- Department of Cell Biology, Faculty of Medical Sciences, University of Nijmegen, The Netherlands.
| | | | | |
Collapse
|
26
|
Zhang H, Wada J, Kanwar YS, Tsuchiyama Y, Hiragushi K, Hida K, Shikata K, Makino H. Screening for genes up-regulated in 5/6 nephrectomized mouse kidney. Kidney Int 1999; 56:549-58. [PMID: 10432394 DOI: 10.1046/j.1523-1755.1999.00561.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In diabetic and nondiabetic renal diseases, glomerular hyperfiltration is believed to play a central role in the subsequent progression of glomerulosclerosis and interstitial renal scarring. To identify genes involved in the process of hyperfiltration and hypertrophy, a polymerase chain reaction (PCR)-based subtraction method, that is, representational difference analysis of cDNA (cDNA-RDA), was employed. METHODS Ten-week-old ICR mice were 5/6 nephrectomized and sham operated. After two weeks, mRNAs were isolated from control and remnant kidneys and were subjected to the cDNA-RDA procedure. RESULTS We identified 10 known and 9 novel genes. Among 19 clones, 12 clones (8 known and 4 novel) showed 1.5- to 6-fold up-regulation by Northern blot analyses. The remaining seven clones were rarely expressed genes and were barely detected by Northern blot analyses, and their up-regulated expression was confirmed by Southern blot analysis using the PCR-amplified representative amplicons. The known genes included kidney androgen-regulated protein, major urinary protein, lysozyme M, metalloproteinase-3 tissue inhibitor, chaperonin 10, cytochrome oxidase I, epsilon-sarcoglycan, ribosomal protein S3a, G-proteingamma10 subunit, and splicing factor 9G8. All of the isolated known genes have not been reported to be up-regulated in the nephrectomized mouse kidney and suggest the possible role of androgen action, mitochondrial functions, matrix metabolism, cell-matrix interactions, and intracellular signaling events in the initiation of the progressive renal injury of the remnant kidney. Furthermore, cDNA-RDA facilitates the discovery of novel genes, including two kidney-specific genes. CONCLUSIONS The isolated known and novel genes may be involved in the pathobiological process of initial hyperfiltration and hypertrophy of remnant kidney.
Collapse
Affiliation(s)
- H Zhang
- Department of Medicine III, Okayama University Medical School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Du K, Leu JI, Peng Y, Taub R. Transcriptional up-regulation of the delayed early gene HRS/SRp40 during liver regeneration. Interactions among YY1, GA-binding proteins, and mitogenic signals. J Biol Chem 1998; 273:35208-15. [PMID: 9857059 DOI: 10.1074/jbc.273.52.35208] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arg-Ser-rich domain-containing proteins (SR proteins), a family of splicing factors, can regulate pre-mRNA alternative splicing in a concentration dependent manner. Thus, the relative expression of various SR proteins may play an important role in alternative splicing regulation. HRS/SRp40, an SR protein and delayed early gene in liver regeneration, can mediate alternative splicing of fibronectin mRNA. Here we determined that transcription of the HRS/SRp40 gene is induced about 5-fold during liver regeneration, similar to the level of steady-state mRNA. We found that both mouse and human HRS promoters lack TATA and CAAT boxes. The mouse promoter region from -130 to -18, which contains highly conserved GA-binding protein (GABP) and YY1 binding sites, conferred high transcriptional activity. While GABPalpha/GABPbeta heterodimer transactivated the HRS promoter, YY1 functioned as a repressor. During liver regeneration, the relative amount of GABPalpha/GABPbeta heterodimer increased 3-fold, and YY1 changed little, which could partially account for the increase in HRS gene transcription. Interleukin-6, a critical mitogenic component of liver regeneration, was able to relieve the repressive activity of the YY1 site within the HRS promoter. The combined effect of small changes in the level of existing transcription factors and mitogenic signals may explain the transcriptional activation of the HRS gene during cell growth.
Collapse
Affiliation(s)
- K Du
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
28
|
Nayler O, Cap C, Stamm S. Human transformer-2-beta gene (SFRS10): complete nucleotide sequence, chromosomal localization, and generation of a tissue-specific isoform. Genomics 1998; 53:191-202. [PMID: 9790768 DOI: 10.1006/geno.1998.5471] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Htra2-beta is a human homologue of Drosophila transformer-2 and a member of the SR-like protein family. Here we report the isolation and characterization of the complete htra2-beta gene (HGMW-approved symbol SFRS10). The gene spans 21,232 bp and is composed of 10 exons and 9 introns. Radiation hybrid mapping localized the gene to chromosome 3q. The region upstream of the transcription initiation codon contains an Alu element and several potential transcription factor binding sites. RT-PCR and comparison with EST clones revealed five different RNA isoforms generated by alternative splicing. These isoforms encode three diverging open reading frames, and two of these, htra2-beta3 and htra2-beta4, lack the first SR domain. Htra2-beta3 is developmentally regulated and expressed predominantly in brain, liver testis, and weakly in kidney. Furthermore, the domain structure of htra2-beta3 resembles a variant found in the Drosophila male germline, indicating a remarkable conservation of alternative transformer-2 variants. Finally, we show that htra2-beta3 is expressed in the nucleus and interacts with a subset of SR proteins in a yeast two-hybrid system and in vivo.
Collapse
Affiliation(s)
- O Nayler
- Max-Planck Institute of Neurobiology, Max-Planck Institute of Biochemistry, Am Klopferspitz 18a, Martinsried, D-82152, Germany
| | | | | |
Collapse
|
29
|
Krämer A, Quentin M, Mulhauser F. Diverse modes of alternative splicing of human splicing factor SF1 deduced from the exon-intron structure of the gene. Gene X 1998; 211:29-37. [PMID: 9573336 DOI: 10.1016/s0378-1119(98)00058-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Several cDNAs encoding the essential human splicing facor (SF) 1 have been cloned. Comparison of the cDNA sequences suggested that the corresponding mRNAs are generated by alternative splicing from a common pre-mRNA. To confirm this assumption and to analyze possible modes used in the generation of these mRNAs, we have determined the structure of the gene encoding SF1. The gene extends over approximately 15kb and contains 14 exons. The exon/intron structure and sequences at the splice sites are highly conserved in the corresponding mouse gene. The human SF1 gene is located on chromosome 11 close to the gene encoding Menin, recently identified as the gene responsible for multiple endocrine neoplasia-type 1 (MEN1). The absence of a TATA box in the 5' flanking region of the SF1 transcription unit suggests that the SF1 gene represents a housekeeping gene. However, genomic sequence analysis revealed putative binding sites for regulatory transcription factors upstream of the 5' end of the cDNA. Analysis of the SF1 genomic and cDNA sequences predicts the use of duplicated 5' and 3' splice sites as well as exon skipping and intron inclusion to generate six SF1 mRNAs by alternative splicing events.
Collapse
Affiliation(s)
- A Krämer
- Départment de Biologie Cellulaire, Université de Genève, Geneva, Switzerland.
| | | | | |
Collapse
|
30
|
Abstract
HRS/SRp40/SFRS5 (HRS) is an SR (serine-arginine-rich) protein which regulates both alternative splicing and basal splicing. HRS mRNA contains several transcripts, including HRS-SF and HRS-LF which have different temporal patterns of expression in proliferating liver. As previously reported, HRS-SF mRNA encodes the SR splicing factor. However, the identity of HRS-LF remained unknown. Here, we cloned and characterized the mouse HRS gene, partial human HRS gene, and several cDNAs derived from HRS-LF mRNA. The mouse HRS gene spans 5050 bp and contains eight exons and seven introns. HRS-LF mRNA contains a 1.2 kb insert within the SF mRNA with stop codons in all three reading frames. A comparison of HRS-LF and the HRS gene revealed that HRS-LF mRNA is an intron-retaining product which contains intron 5. At most, HRS-LF encodes a truncated HRS protein with one RNA binding domain. Interestingly, intron 5 demonstrates 90% identity between the mouse and human HRS genes, implying that intron 5 might play an important role in regulating HRS gene splicing or expression.
Collapse
Affiliation(s)
- K Du
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
31
|
Chu S, Zeitlin PL. Alternative mRNA splice variants of the rat ClC-2 chloride channel gene are expressed in lung: genomic sequence and organization of ClC-2. Nucleic Acids Res 1997; 25:4153-9. [PMID: 9321672 PMCID: PMC147000 DOI: 10.1093/nar/25.20.4153] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ClC-2 epithelial cell chloride channel is a voltage-, tonicity- and pH-regulated member of the ClC super family. We have previously shown that rat lung ClC-2 (rClC-2) is down-regulated at birth, and molecular diversity is generated by alternative splicing [Murray et al. (1995) Am. J. Respir. Cell Mol. Biol. 12, 597-604; Murray et al. (1996) Am. J. Physiol. 271, L829-L837; Chu et al . (1996) Nucleic Acids Res. 24, 3453-3457]. To investigate other possible mRNA splice variations, we sequenced the entire rClC-2 gene and found that ClC-2Sa (formerly ClC-2S) results from the deletion of exon 20. The preceding intron 19 has an unusually high CT content and a rare AAG acceptor site. Because both features were also found in intron 13, we next tested the hypothesis that intron 13 would be involved in alternative splicing. As predicted, a second splice product, ClC-2Sb, was found by RT-PCR, but only in lung. When we compared the genomic maps of rClC-2 and human ClC-1 (hClC-1), striking similarities were found in each exon except for rClC-2 exon 20, which is absent in hClC-1. These observations suggest that ClC-1 and ClC-2 may have evolved by gene duplication, mutation and DNA rearrangement.
Collapse
Affiliation(s)
- S Chu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
32
|
Snow BE, Heng HH, Shi XM, Zhou Y, Du K, Taub R, Tsui LC, McInnes RR. Expression analysis and chromosomal assignment of the human SFRS5/SRp40 gene. Genomics 1997; 43:165-70. [PMID: 9244433 DOI: 10.1006/geno.1997.4794] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alternative splicing plays a major role in the regulation of gene expression. SFRS5/SRp40 is a member of the serine/arginine (SR) protein family of regulators of alternative pre-mRNA splicing. We cloned the human SFRS5 cDNA and observed two major SFRS5 transcripts, an approximately 1.8-kb short form and an approximately 3.3-kb long form, in both human and rat tissues. Both transcripts were detected in all human tissues examined, but there were notable tissue-specific differences in their relative abundance, the short form being most abundant in retina. Affinity-purified SFRS5 antisera recognized a single 40-kDa polypeptide in human and mouse retinal lysates. The abundant retinal expression of SFRS5 was not restricted to any specific cell type, since immunofluorescent labeling of human retinal sections identified the SFRS5 protein in nuclei of all three nuclear layers of the retina. The human SFRS5 gene was localized to human chromosome 14q24 by fluorescence in situ hybridization and PCR analysis of a human/hamster somatic cell hybrid panel.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Blotting, Northern
- Blotting, Western
- Chromosome Mapping
- Chromosomes, Human, Pair 14/genetics
- Cloning, Molecular
- Gene Expression Regulation/genetics
- Humans
- Hybrid Cells
- In Situ Hybridization, Fluorescence
- Microscopy, Confocal
- Nuclear Proteins/analysis
- Nuclear Proteins/genetics
- Phosphoproteins/analysis
- Phosphoproteins/genetics
- Polymerase Chain Reaction
- RNA Precursors/genetics
- RNA, Messenger/analysis
- RNA-Binding Proteins/genetics
- Retina/chemistry
- Retina/cytology
- Sequence Analysis, DNA
- Serine-Arginine Splicing Factors
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- B E Snow
- Department of Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res 1997; 25:2547-61. [PMID: 9185563 PMCID: PMC146782 DOI: 10.1093/nar/25.13.2547] [Citation(s) in RCA: 410] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors.
Collapse
Affiliation(s)
- G Edwalds-Gilbert
- Department of Molecular Genetics and Biochemistry and the Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261-2072, USA
| | | | | |
Collapse
|
34
|
Jumaa H, Guénet JL, Nielsen PJ. Regulated expression and RNA processing of transcripts from the Srp20 splicing factor gene during the cell cycle. Mol Cell Biol 1997; 17:3116-24. [PMID: 9154810 PMCID: PMC232164 DOI: 10.1128/mcb.17.6.3116] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic splicing factors belonging to the SR family are essential splicing factors consisting of an N-terminal RNA-binding region and a C-terminal RS domain. They are believed to be involved in alternative splicing of numerous transcripts because their expression levels can influence splice site selection. We have characterized the structure and transcriptional regulation of the gene for the smallest member of the SR family, SRp20 (previously called X16). The mouse gene encoding SRp20, termed Srp20, consists of one alternative exon and six constitutive exons and was mapped to a 2-centimorgan interval on chromosome 17. When cells are transfected with SRp20 genomic DNA, both standard and alternatively spliced transcripts and corresponding proteins are produced. Interestingly, in starved (G0) cells, the amount of SRp20 mRNA containing the alternative exon is large, whereas the amount of the standard SRp20 mRNA without the alternative exon is small. When starved cells are stimulated with serum, the alternative form is lost and the standard form is induced. These results suggest that splicing could be regulated during the cell cycle and that this could be, at least in part, due to regulated expression of SR proteins. Consistent with this, experiments with synchronized cells showed an induction of SRp20 transcripts in late G1 or early S. We have also characterized the promoter of SRp20. It lies within a GC-rich CpG island and contains two consensus binding sites for E2F, a transcription factor thought to be involved in regulating the cell cycle. These motifs may be functional since reporter constructs with the SRp20 promoter can be stimulated by cotransfection with E2F expression plasmids.
Collapse
Affiliation(s)
- H Jumaa
- Max Planck Institute for Immunobiology, Freiburg im Breisgau, Germany
| | | | | |
Collapse
|