1
|
Depaepe T, Prinsen E, Hu Y, Sanchez-Munoz R, Denoo B, Buyst D, Darouez H, Werbrouck S, Hayashi KI, Martins J, Winne J, Van Der Straeten D. Arinole, a novel auxin-stimulating benzoxazole, affects root growth and promotes adventitious root formation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5681-5702. [PMID: 38920303 DOI: 10.1093/jxb/erae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
The triple response phenotype is characteristic for seedlings treated with the phytohormone ethylene or its direct precursor 1-aminocyclopropane-carboxylic acid, and is often employed to find novel chemical tools to probe ethylene responses. We identified a benzoxazole-urea derivative (B2) partially mimicking ethylene effects in a triple response bioassay. A phenotypic analysis demonstrated that B2 and its closest analogue arinole (ARI) induced phenotypic responses reminiscent of seedlings with elevated levels of auxin, including impaired hook development and inhibition of seedling growth. Specifically, ARI reduced longitudinal cell elongation in roots, while promoting cell division. In contrast to other natural or synthetic auxins, ARI mostly acts as an inducer of adventitious root development, with only limited effects on lateral root development. Quantification of free auxins and auxin biosynthetic precursors as well as auxin-related gene expression demonstrated that ARI boosts global auxin levels. In addition, analyses of auxin reporter lines and mutants, together with pharmacological assays with auxin-related inhibitors, confirmed that ARI effects are facilitated by TRYPTOPHAN AMINOTRANSFERASE1 (TAA1)-mediated auxin synthesis. ARI treatment in an array of species, including Arabidopsis, pea, tomato, poplar, and lavender, resulted in adventitious root formation, which is a desirable trait in both agriculture and horticulture.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Els Prinsen
- Laboratory of Integrated Molecular Plant Physiological Research (IMPRES), Department of Biology, Faculty of Sciences, University of Antwerp, Antwerp, Belgium
| | - Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Raul Sanchez-Munoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Bram Denoo
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dieter Buyst
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Hajer Darouez
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Stefaan Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Ken-Ichiro Hayashi
- Natural Products Chemistry Lab, Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - José Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Johan Winne
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Li X, Wang Y, Cai C, Ji J, Han F, Zhang L, Chen S, Zhang L, Yang Y, Tang Q, Bucher J, Wang X, Yang L, Zhuang M, Zhang K, Lv H, Bonnema G, Zhang Y, Cheng F. Large-scale gene expression alterations introduced by structural variation drive morphotype diversification in Brassica oleracea. Nat Genet 2024; 56:517-529. [PMID: 38351383 PMCID: PMC10937405 DOI: 10.1038/s41588-024-01655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024]
Abstract
Brassica oleracea, globally cultivated for its vegetable crops, consists of very diverse morphotypes, characterized by specialized enlarged organs as harvested products. This makes B. oleracea an ideal model for studying rapid evolution and domestication. We constructed a B. oleracea pan-genome from 27 high-quality genomes representing all morphotypes and their wild relatives. We identified structural variations (SVs) among these genomes and characterized these in 704 B. oleracea accessions using graph-based genome tools. We show that SVs exert bidirectional effects on the expression of numerous genes, either suppressing through DNA methylation or promoting probably by harboring transcription factor-binding elements. The following examples illustrate the role of SVs modulating gene expression: SVs promoting BoPNY and suppressing BoCKX3 in cauliflower/broccoli, suppressing BoKAN1 and BoACS4 in cabbage and promoting BoMYBtf in ornamental kale. These results provide solid evidence for the role of SVs as dosage regulators of gene expression, driving B. oleracea domestication and diversification.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengcheng Cai
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shumin Chen
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingkui Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinqing Yang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Tang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Johan Bucher
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Xuelin Wang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
3
|
Khan S, Alvi AF, Saify S, Iqbal N, Khan NA. The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance. Biomolecules 2024; 14:90. [PMID: 38254690 PMCID: PMC10813531 DOI: 10.3390/biom14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant's response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant's response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant's ability to cope with environmental challenges more effectively.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Sadaf Saify
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| |
Collapse
|
4
|
Changes of Fruit Abscission and Carbohydrates, Hormones, Related Gene Expression in the Fruit and Pedicel of Macadamia under Starvation Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order toexplore the regulation mechanism of macadamia fruitlet abscission induced by ‘starvation stress’, a treatment of girdling and defoliation was applied to the bearing shoots of macadamia cultivar ‘H2’ at the early stage of fruit development, simulating the starvation stress induced by interrupting carbon supply to fruit. The levels of carbohydrates, hormones, and related gene expression in the different tissues (husk, seed, and pedicel) were investigated after treatment. The results showed that a severe fruit drop occurred 3~5 d after starvation stress treatment. The contents of glucose, fructose, and sucrose in both the husk and the seed were significantly decreased, as well as the fructose and sucrose in the pedicel; this large reduction occurred prior to the massive fruit shedding. Starvation stress significantly reduced the GA3 and ZR contents and enhanced the ABA level in the pedicel and the seed, whereas it did not obviously change these hormones in the husk. After treatment, IAA content decreased considerably in both the husk and seed but increased remarkably in the pedicel. In the husk, the expression of genes related to sugar metabolism and signaling (NI, HXK2, TPS, and TPP), as well as the biosynthesis of ethylene (ACO2 and ACS) and ABA (NCED1.1 and AAO3), was significantly upregulated by starvation stress, as well as the stress-responsive transcription factors (AP2/ERF, HD-ZIP12, bZIP124, and ABI5), whereas the BG gene associated with ABA accumulation and the early auxin-responsive genes (Aux/IAA22 and GH3.9) were considerably suppressed during the period of massive fruit abscission. Similar changes in the expression of all genes occurred in the pedicel, except for NI and AP2/ERF, the expression of which was significantly upregulated during the early stage of fruit shedding and downregulated during the period of severe fruit drop. These results suggest that complicated crosstalk among the sugar, IAA, and ABA signaling may be related to macadamia fruitlet abscission induced by carbohydrate starvation.
Collapse
|
5
|
Transcription Profile of Auxin Related Genes during Positively Gravitropic Hypocotyl Curvature of Brassica rapa. PLANTS 2022; 11:plants11091191. [PMID: 35567192 PMCID: PMC9105288 DOI: 10.3390/plants11091191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022]
Abstract
Unlike typical negative gravitropic curvature, young hypocotyls of Brassica rapa and other dicots exhibit positive gravitropism. This positive curvature occurs at the base of the hypocotyl and is followed by the typical negative gravity-induced curvature. We investigated the role of auxin in both positive and negative hypocotyl curvature by examining the transcription of PIN1, PIN3, IAA5 and ARG1 in curving tissue. We compared tissue extraction of the convex and concave flank with Solid Phase Gene Extraction (SPGE). Based on Ubiquitin1 (UBQ1) as a reference gene, the log (2) fold change of all examined genes was determined. Transcription of the examined genes varied during the graviresponse suggesting that these genes affect differential elongation. The transcription of all genes was upregulated in the lower flank and downregulated in the upper flank during the initial downward curving period. After 48 h, the transcription profile reversed, suggesting that the ensuing negative gravicurvature is controlled by the same genes as the positive gravicurvature. High-spatial resolution profiling using SPGE revealed that the transcription profile of the examined genes was spatially distinct within the curving tissue. The comparison of the hypocotyl transcription profile with the root tip indicated that the tip tissue is a suitable reference for curving hypocotyls and that root and hypocotyl curvature are controlled by the same physiological processes.
Collapse
|
6
|
Chin S, Blancaflor EB. Plant Gravitropism: From Mechanistic Insights into Plant Function on Earth to Plants Colonizing Other Worlds. Methods Mol Biol 2022; 2368:1-41. [PMID: 34647245 DOI: 10.1007/978-1-0716-1677-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gravitropism, the growth of roots and shoots toward or away from the direction of gravity, has been studied for centuries. Such studies have not only led to a better understanding of the gravitropic process itself, but also paved new paths leading to deeper mechanistic insights into a wide range of research areas. These include hormone biology, cell signal transduction, regulation of gene expression, plant evolution, and plant interactions with a variety of environmental stimuli. In addition to contributions to basic knowledge about how plants function, there is accumulating evidence that gravitropism confers adaptive advantages to crops, particularly under marginal agricultural soils. Therefore, gravitropism is emerging as a breeding target for enhancing agricultural productivity. Moreover, research on gravitropism has spawned several studies on plant growth in microgravity that have enabled researchers to uncouple the effects of gravity from other tropisms. Although rapid progress on understanding gravitropism witnessed during the past decade continues to be driven by traditional molecular, physiological, and cell biological tools, these tools have been enriched by technological innovations in next-generation omics platforms and microgravity analog facilities. In this chapter, we review the field of gravitropism by highlighting recent landmark studies that have provided unique insights into this classic research topic while also discussing potential contributions to agriculture on Earth and beyond.
Collapse
Affiliation(s)
- Sabrina Chin
- Department of Botany, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
7
|
Jasmonic Acid-Dependent MYC Transcription Factors Bind to a Tandem G-Box Motif in the YUCCA8 and YUCCA9 Promoters to Regulate Biotic Stress Responses. Int J Mol Sci 2021; 22:ijms22189768. [PMID: 34575927 PMCID: PMC8468920 DOI: 10.3390/ijms22189768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
The indole-3-pyruvic acid pathway is the main route for auxin biosynthesis in higher plants. Tryptophan aminotransferases (TAA1/TAR) and members of the YUCCA family of flavin-containing monooxygenases catalyze the conversion of l-tryptophan via indole-3-pyruvic acid to indole-3-acetic acid (IAA). It has been described that jasmonic acid (JA) locally produced in response to mechanical wounding triggers the de novo formation of IAA through the induction of two YUCCA genes, YUC8 and YUC9. Here, we report the direct involvement of a small number of basic helix-loop-helix transcription factors of the MYC family in this process. We show that the JA-mediated regulation of the expression of the YUC8 and YUC9 genes depends on the abundance of MYC2, MYC3, and MYC4. In support of this observation, seedlings of myc knockout mutants displayed a strongly reduced response to JA-mediated IAA formation. Furthermore, transactivation assays provided experimental evidence for the binding of MYC transcription factors to a particular tandem G-box motif abundant in the promoter regions of YUC8 and YUC9, but not in the promoters of the other YUCCA isogenes. Moreover, we demonstrate that plants that constitutively overexpress YUC8 and YUC9 show less damage after spider mite infestation, thereby underlining the role of auxin in plant responses to biotic stress signals.
Collapse
|
8
|
The Arabidopsis Root Tip (Phospho)Proteomes at Growth-Promoting versus Growth-Repressing Conditions Reveal Novel Root Growth Regulators. Cells 2021; 10:cells10071665. [PMID: 34359847 PMCID: PMC8303113 DOI: 10.3390/cells10071665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/15/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022] Open
Abstract
Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxin-controlled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.
Collapse
|
9
|
An C, Gao Y. Essential Roles of the Linker Sequence Between Tetratricopeptide Repeat Motifs of Ethylene Overproduction 1 in Ethylene Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:657300. [PMID: 33936142 PMCID: PMC8081955 DOI: 10.3389/fpls.2021.657300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Ethylene Overproduction 1 (ETO1) is a negative regulator of ethylene biosynthesis. However, the regulation mechanism of ETO1 remains largely unclear. Here, a novel eto1 allele (eto1-16) was isolated with typical triple phenotypes due to an amino acid substitution of G480C in the uncharacterized linker sequence between the TPR1 and TPR2 motifs. Further genetic and biochemical experiments confirmed the eto1-16 mutation site. Sequence analysis revealed that G480 is conserved not only in two paralogs, EOL1 and EOL2, in Arabidopsis, but also in the homologous protein in other species. The glycine mutations (eto1-11, eto1-12, and eto1-16) do not influence the mRNA abundance of ETO1, which is reflected by the mRNA secondary structure similar to that of WT. According to the protein-protein interaction analysis, the abnormal root phenotype of eto1-16 might be caused by the disruption of the interaction with type 2 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACSs) proteins. Overall, these data suggest that the linker sequence between tetratricopeptide repeat (TPR) motifs and the glycine in TPR motifs or the linker region are essential for ETO1 to bind with downstream mediators, which strengthens our knowledge of ETO1 regulation in balancing ACSs.
Collapse
Affiliation(s)
- Chuanjing An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Gong Y, Alassimone J, Varnau R, Sharma N, Cheung LS, Bergmann DC. Tuning self-renewal in the Arabidopsis stomatal lineage by hormone and nutrient regulation of asymmetric cell division. eLife 2021; 10:e63335. [PMID: 33739283 PMCID: PMC8009662 DOI: 10.7554/elife.63335] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/18/2021] [Indexed: 02/03/2023] Open
Abstract
Asymmetric and self-renewing divisions build and pattern tissues. In the Arabidopsis stomatal lineage, asymmetric cell divisions, guided by polarly localized cortical proteins, generate most cells on the leaf surface. Systemic and environmental signals modify tissue development, but the mechanisms by which plants incorporate such cues to regulate asymmetric divisions are elusive. In a screen for modulators of cell polarity, we identified CONSTITUTIVE TRIPLE RESPONSE1, a negative regulator of ethylene signaling. We subsequently revealed antagonistic impacts of ethylene and glucose signaling on the self-renewing capacity of stomatal lineage stem cells. Quantitative analysis of cell polarity and fate dynamics showed that developmental information may be encoded in both the spatial and temporal asymmetries of polarity proteins. These results provide a framework for a mechanistic understanding of how nutritional status and environmental factors tune stem-cell behavior in the stomatal lineage, ultimately enabling flexibility in leaf size and cell-type composition.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biology, Stanford UniversityStanfordUnited States
| | | | - Rachel Varnau
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Nidhi Sharma
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Lily S Cheung
- School of Chemical and Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Dominique C Bergmann
- Department of Biology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
11
|
McCauley CL, McAdam SAM, Bhide K, Thimmapuram J, Banks JA, Young BG. Transcriptomics in Erigeron canadensis reveals rapid photosynthetic and hormonal responses to auxin herbicide application. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3701-3709. [PMID: 32161961 PMCID: PMC7307852 DOI: 10.1093/jxb/eraa124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/10/2020] [Indexed: 05/14/2023]
Abstract
The perception pathway for endogenous auxin has been well described, yet the mode of action of synthetic auxin herbicides, used for >70 years, remains uncharacterized. We utilized transcriptomics and targeted physiological studies to investigate the unknown rapid response to synthetic auxin herbicides in the globally problematic weed species Erigeron canadensis. Synthetic auxin herbicide application consistently and rapidly down-regulated the photosynthetic machinery. At the same time, there was considerable perturbation to the expression of many genes related to phytohormone metabolism and perception. In particular, auxin herbicide application enhanced the expression of the key abscisic acid biosynthetic gene, 9-cis-epoxycarotenoid deoxygenase (NCED). The increase in NCED expression following auxin herbicide application led to a rapid biosynthesis of abscisic acid (ABA). This increase in ABA levels was independent of a loss of cell turgor or an increase in ethylene levels, both proposed triggers for rapid ABA biosynthesis. The levels of ABA in the leaf after auxin herbicide application continued to increase as plants approached death, up to >3-fold higher than in the leaves of plants that were drought stressed. We propose a new model in which synthetic auxin herbicides trigger plant death by the whole-scale, rapid, down-regulation of photosynthetic processes and an increase in ABA levels through up-regulation of NCED expression, independent of ethylene levels or a loss of cell turgor.
Collapse
Affiliation(s)
- Cara L McCauley
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
- Correspondence:
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | | | - Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Bryan G Young
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
12
|
Yamauchi T, Tanaka A, Tsutsumi N, Inukai Y, Nakazono M. A Role for Auxin in Ethylene-Dependent Inducible Aerenchyma Formation in Rice Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E610. [PMID: 32403344 PMCID: PMC7284992 DOI: 10.3390/plants9050610] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 01/22/2023]
Abstract
Internal oxygen diffusion from shoot to root tips is enhanced by the formation of aerenchyma (gas space) in waterlogged soils. Lysigenous aerenchyma is created by programmed cell death and subsequent lysis of the root cortical cells. Rice (Oryza sativa) forms aerenchyma constitutively under aerobic conditions and increases its formation under oxygen-deficient conditions. Recently, we have demonstrated that constitutive aerenchyma formation is regulated by auxin signaling mediated by Auxin/indole-3-acetic acid protein (AUX/IAA; IAA). While ethylene is involved in inducible aerenchyma formation, the relationship of auxin and ethylene during aerenchyma formation remains unclear. Here, we examined the effects of oxygen deficiency and ethylene on aerenchyma formation in the roots of a rice mutant (iaa13) in which auxin signaling is suppressed by a mutation in the degradation domain of IAA13 protein. The results showed that AUX/IAA-mediated auxin signaling contributes to ethylene-dependent inducible aerenchyma formation in rice roots. An auxin transport inhibitor abolished aerenchyma formation under oxygen-deficient conditions and reduced the expression of genes encoding ethylene biosynthesis enzymes, further supporting the idea that auxin is involved in ethylene-dependent inducible aerenchyma formation. Based on these studies, we propose a mechanism that underlies the relationship between auxin and ethylene during inducible aerenchyma formation in rice roots.
Collapse
Affiliation(s)
- Takaki Yamauchi
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan;
| | - Akihiro Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464–8601, Japan;
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan;
| | - Yoshiaki Inukai
- International Center for Research and Education in Agriculture, Nagoya University, Nagoya, Aichi 464–8601, Japan;
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464–8601, Japan;
- The UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
13
|
Zhang Y, Wang Y, Ye D, Xing J, Duan L, Li Z, Zhang M. Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110196. [PMID: 31779899 DOI: 10.1016/j.plantsci.2019.110196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 05/12/2023]
Abstract
Ethephon efficiently regulates plant growth to modulate the maize (Zea mays L.) stalk strength and yield potential, yet there is little information on how ethylene governs a specific cellular response for altering internode elongation. Here, the internode elongation kinetics, cell morphological and physiological properties and transcript expression patterns were investigated in the ethephon-treated elongating internode. Ethephon decreased the internode elongation rate, shortened the effective elongation duration, and advanced the growth process. Ethephon regulated the expression patterns of expansin and secondary cell wall-associated cellulose synthase genes to alter cell size. Moreover, ethephon increased the activities and transcripts level of phenylalanine ammonia-lyase and peroxidase, which contributed to lignin accumulation. Otherwise, ethephon-boosted ethylene evolution activated ethylene signal and increased ZmGA2ox3 and ZmGA2ox10 transcript levels while down-regulating ZmPIN1a, ZmPIN4 and ZmGA3ox1 transcript levels, which led to lower accumulation of gibberellins and auxin. In addition, transcriptome profiles confirmed previous results and identified several transcription factors that are involved in the ethephon-modulated transcriptional regulation of cell wall biosynthesis and modification and responses to ethylene, gibberellins and auxin. These results indicated that ethylene-modulated auxin and gibberellins signaling mediated the transcriptional operation of cell wall modification to regulate cell elongation in the ethephon-treated maize internode.
Collapse
Affiliation(s)
- Yushi Zhang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yubin Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Delian Ye
- College of Crop Science, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Jiapeng Xing
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Winterhagen P, Hagemann MH, Wünsche JN. Different regulatory modules of two mango ERS1 promoters modulate specific gene expression in response to phytohormones in transgenic model plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110269. [PMID: 31623779 DOI: 10.1016/j.plantsci.2019.110269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Ethylene is a key element of plant physiology, thus ethylene research is important for both, fundamental research and agriculture. Previous work on ethylene receptors focused on expression level and protein interaction, but knowledge on regulation of gene transcription is scarce. Promoters of mango ethylene receptor genes (pMiERS1a, pMiERS1b) were analysed particularly regarding responsiveness to hormones. The promoter sequences reveal some variation and they were characterized by identifying functional regulatory candidate modules via truncated-promoter approach. Based on ectopic gene expression studies in transgenic Arabidopsis and Nicotiana it is demonstrated that both promoters are positively responsive to ethylene. For pMiERS1a the AHBP/DOFF1 module is linked to ethylene responsiveness, while for pMiERS1b it is the module MYBL/OPAQ1. A negative gene regulation in response to abscisic acid (ABA) is linked to MYBL/DOFF2. A positive response to indole-3-acetic acid (IAA) was found for GTBX/MYCL1, containing the motifs IBOX/IDDF/TEFB, which are present in this combination only in pMiERS1b, but not in pMiERS1a. Conclusively, the general response of the ethylene receptor genes is conserved, but similar regulation can be linked to different modules. Further, a minor variation in a transcription factor binding site (TFBS) motif within an overall conserved module type can lead to a different expression.
Collapse
Affiliation(s)
- Patrick Winterhagen
- University of Hohenheim, Institute of Crop Science, Section Crop Physiology of Specialty Crops, Stuttgart, Germany.
| | - Michael H Hagemann
- University of Hohenheim, Institute of Crop Science, Section Crop Physiology of Specialty Crops, Stuttgart, Germany
| | - Jens N Wünsche
- University of Hohenheim, Institute of Crop Science, Section Crop Physiology of Specialty Crops, Stuttgart, Germany
| |
Collapse
|
15
|
Raad M, Glare TR, Brochero HL, Müller C, Rostás M. Transcriptional Reprogramming of Arabidopsis thaliana Defence Pathways by the Entomopathogen Beauveria bassiana Correlates With Resistance Against a Fungal Pathogen but Not Against Insects. Front Microbiol 2019; 10:615. [PMID: 30984142 PMCID: PMC6449843 DOI: 10.3389/fmicb.2019.00615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/11/2019] [Indexed: 01/17/2023] Open
Abstract
The entomopathogenic fungus Beauveria bassiana can adopt an endophytic lifestyle by colonising a wide array of plant species. Beauveria-colonised plants can show enhanced resistance against insects and plant pathogens alike. However, little is known about the molecular and physiological mechanisms that govern such interactions. Here, we assessed the effects of two B. bassiana strains (BG11, FRh2) on the growth of Arabidopsis thaliana and its resistance against two herbivore species and a phytopathogen. Plant responses were studied on the transcriptomic and metabolic level using microarrays and by measuring changes in defence-related phytohormones and glucosinolates (GLSs). Root inoculation with B. bassiana BG11 significantly increased plant growth, while FRh2 had no such effect. Both Beauveria strains decreased leaf lesion area caused by the phytopathogen Sclerotinia sclerotiorum but did not affect population growth of the aphid Myzus persicae or the growth of Plutella xylostella caterpillars. Microarray analyses of leaves from endophyte-inoculated A. thaliana provided evidence for transcriptional reprogramming of plant defence pathways, with strain-specific changes in the expression of genes related to pathogenesis, phytoalexin, jasmonic (JA), and salicylic acid (SA) signalling pathways. However, B. bassiana colonisation did not result in higher concentrations of JA and SA or major changes in leaf GLS profiles. We conclude that the endophyte B. bassiana induces plant defence responses and hypothesise that these contribute to enhanced resistance against S. sclerotiorum.
Collapse
Affiliation(s)
- Maya Raad
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Travis R Glare
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Helena L Brochero
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - Michael Rostás
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand.,Department of Crop Sciences, Agricultural Entomology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Gao Y, Zhao M, Wu XH, Li D, Borthakur D, Ye JH, Zheng XQ, Lu JL. Analysis of Differentially Expressed Genes in Tissues of Camellia sinensis during Dedifferentiation and Root Redifferentiation. Sci Rep 2019; 9:2935. [PMID: 30814540 PMCID: PMC6393419 DOI: 10.1038/s41598-019-39264-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/21/2019] [Indexed: 12/04/2022] Open
Abstract
Tissue culture is very important for identifying the gene function of Camellia sinensis (L.) and exploiting novel germplasm through transgenic technology. Regeneration system of tea plant has been explored but not been well established since the molecular mechanism of tea plant regeneration is not clear yet. In this study, transcriptomic analysis was performed in the initial explants of tea plant and their dedifferentiated and redifferentiated tissues. A total of 93,607 unigenes were obtained through de novo assembly, and 7,193 differentially expressed genes (DEGs) were screened out from the 42,417 annotated unigenes. Much more DEGs were observed during phase transition rather than at growth stages of callus. Our KOG and KEGG analysis, and qPCR results confirmed that phase transition of tea plant was closely related to the mechanism that regulate expression of genes encoding the auxin- and cytokinin-responsive proteins, transcription factor MYB15 and ethylene-responsive transcription factor ERF RAP2-12. These findings provide a reliable foundation for elucidating the mechanism of the phase transition and may help to optimize the regeneration system by regulating the gene expression pattern.
Collapse
Affiliation(s)
- Ying Gao
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Min Zhao
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Xiao-Han Wu
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Da Li
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | | | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Xin-Qiang Zheng
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China
| | - Jian-Liang Lu
- Zhejiang University Tea Research Institute, Hangzhou, 310058, P.R. China.
| |
Collapse
|
17
|
Kim G, Jang S, Yoon EK, Lee SA, Dhar S, Kim J, Lee MM, Lim J. Involvement of Pyridoxine/Pyridoxamine 5'-Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root. Mol Cells 2018; 41:1033-1044. [PMID: 30453730 PMCID: PMC6315319 DOI: 10.14348/molcells.2018.0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022] Open
Abstract
As sessile organisms, plants have evolved to adjust their growth and development to environmental changes. It has been well documented that the crosstalk between different plant hormones plays important roles in the coordination of growth and development of the plant. Here, we describe a novel recessive mutant, mildly insensitive to ethylene (mine), which displayed insensitivity to the ethylene precursor, ACC (1-aminocyclopropane-1-carboxylic acid), in the root under the dark-grown conditions. By contrast, mine roots exhibited a normal growth response to exogenous IAA (indole-3-acetic acid). Thus, it appears that the growth responses of mine to ACC and IAA resemble those of weak ethylene insensitive (wei) mutants. To understand the molecular events underlying the crosstalk between ethylene and auxin in the root, we identified the MINE locus and found that the MINE gene encodes the pyridoxine 5'-phosphate (PNP)/pyridoxamine 5'-phosphate (PMP) oxidase, PDX3. Our results revealed that MINE/PDX3 likely plays a role in the conversion of the auxin precursor tryptophan to indole-3-pyruvic acid in the auxin biosynthesis pathway, in which TAA1 (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1) and its related genes (TRYPTOPHAN AMINOTRANSFERASE RELATED 1 and 2; TAR1 and TAR2) are involved. Considering that TAA1 and TARs belong to a subgroup of PLP (pyridoxal-5'-phosphate)-dependent enzymes, we propose that PLP produced by MINE/PDX3 acts as a cofactor in TAA1/TAR-dependent auxin biosynthesis induced by ethylene, which in turn influences the crosstalk between ethylene and auxin in the Arabidopsis root.
Collapse
Affiliation(s)
- Gyuree Kim
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore,
Singapore
| | - Shin Ae Lee
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Wanju,
Korea
| | - Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Jinkwon Kim
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Myeong Min Lee
- Department of Systems Biology, Yonsei University, Seoul,
Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| |
Collapse
|
18
|
Zemlyanskaya EV, Omelyanchuk NA, Ubogoeva EV, Mironova VV. Deciphering Auxin-Ethylene Crosstalk at a Systems Level. Int J Mol Sci 2018; 19:ijms19124060. [PMID: 30558241 PMCID: PMC6321013 DOI: 10.3390/ijms19124060] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/17/2023] Open
Abstract
The auxin and ethylene pathways cooperatively regulate a variety of developmental processes in plants. Growth responses to ethylene are largely dependent on auxin, the key regulator of plant morphogenesis. Auxin, in turn, is capable of inducing ethylene biosynthesis and signaling, making the interaction of these hormones reciprocal. Recent studies discovered a number of molecular events underlying auxin-ethylene crosstalk. In this review, we summarize the results of fine-scale and large-scale experiments on the interactions between the auxin and ethylene pathways in Arabidopsis. We integrate knowledge on molecular crosstalk events, their tissue specificity, and associated phenotypic responses to decipher the crosstalk mechanisms at a systems level. We also discuss the prospects of applying systems biology approaches to study the mechanisms of crosstalk between plant hormones.
Collapse
Affiliation(s)
- Elena V Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Nadya A Omelyanchuk
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Elena V Ubogoeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Victoria V Mironova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia.
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
19
|
Xie R, Ge T, Zhang J, Pan X, Ma Y, Yi S, Zheng Y. The molecular events of IAA inhibiting citrus fruitlet abscission revealed by digital gene expression profiling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:192-204. [PMID: 29990772 DOI: 10.1016/j.plaphy.2018.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Citrus fruits possess two abscission zones (AZ), AZ A and AZ C located at the pedicel and calyx, respectively. Early citrus fruitlet abscission (CFA) exclusively occurs at AZ A. Previous data have shown that indole-3-acetic acid (IAA) could inhibit fruitlet abscission. However, its role in CFA remains vague. In this study, we first removed the ovaries of fruitlets in order to exclude their interferences. Then, the calyxes were treated with IAA, gibberellin 3 (GA3) and 6-benzylaminopurine (6-BA), respectively. The results have shown that IAA could prevent CFA from taking place, while either GA3 or 6-BA could not. When IAA concentration decreased to a value between 30 mg/L and 40 mg/L, CFA occurred, showing a concentration-dependent manner. Digital gene expression analysis revealed that 2317 corresponded to IAA treatment, of which 1226 genes were closely related to CFA. The most affected genes included those related to biosynthesis, transport and signaling of phytohormones, primarily ethylene (ET), abscisic acid (ABA) and auxin as well as protein ubiquitination, ROS response, calcium signal transduction, cell wall and transcription factors (TFs). The results obtained in this study suggested that the IAA in AZ A could suppress ethylene biosynthesis and signaling, and then inhibit abscission signaling. To our knowledge, it is the first time to reveal the key role of IAA in CFA, which will contribute to a better understanding for the mechanism underlying CFA.
Collapse
Affiliation(s)
- Rangjin Xie
- Citrus Research Institute, Southwest University, Chongqing 400716, China.
| | - Ting Ge
- Citrus Research Institute, Southwest University, Chongqing 400716, China
| | - Jing Zhang
- Citrus Research Institute, Southwest University, Chongqing 400716, China
| | - Xiaoting Pan
- Citrus Research Institute, Southwest University, Chongqing 400716, China
| | - Yanyan Ma
- Citrus Research Institute, Southwest University, Chongqing 400716, China
| | - Shilai Yi
- Citrus Research Institute, Southwest University, Chongqing 400716, China
| | - Yongqiang Zheng
- Citrus Research Institute, Southwest University, Chongqing 400716, China
| |
Collapse
|
20
|
Pholo M, Coetzee B, Maree HJ, Young PR, Lloyd JR, Kossmann J, Hills PN. Cell division and turgor mediate enhanced plant growth in Arabidopsis plants treated with the bacterial signalling molecule lumichrome. PLANTA 2018; 248:477-488. [PMID: 29777364 DOI: 10.1007/s00425-018-2916-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Transcriptomic analysis indicates that the bacterial signalling molecule lumichrome enhances plant growth through a combination of enhanced cell division and cell enlargement, and possibly enhances photosynthesis. Lumichrome (7,8 dimethylalloxazine), a novel multitrophic signal molecule produced by Sinorhizobium meliloti bacteria, has previously been shown to elicit growth promotion in different plant species (Phillips et al. in Proc Natl Acad Sci USA 96:12275-12280, https://doi.org/10.1073/pnas.96.22.12275 , 1999). However, the molecular mechanisms that underlie this plant growth promotion remain obscure. Global transcript profiling using RNA-seq suggests that lumichrome enhances growth by inducing genes impacting on turgor driven growth and mitotic cell cycle that ensures the integration of cell division and expansion of developing leaves. The abundance of XTH9 and XPA4 transcripts was attributed to improved mediation of cell-wall loosening to allow turgor-driven cell enlargement. Mitotic CYCD3.3, CYCA1.1, SP1L3, RSW7 and PDF1 transcripts were increased in lumichrome-treated Arabidopsis thaliana plants, suggesting enhanced growth was underpinned by increased cell differentiation and expansion with a consequential increase in biomass. Synergistic ethylene-auxin cross-talk was also observed through reciprocal over-expression of ACO1 and SAUR54, in which ethylene activates the auxin signalling pathway and regulates Arabidopsis growth by both stimulating auxin biosynthesis and modulating the auxin transport machinery to the leaves. Decreased transcription of jasmonate biosynthesis and responsive-related transcripts (LOX2; LOX3; LOX6; JAL34; JR1) might contribute towards suppression of the negative effects of methyl jasmonate (MeJa) such as chlorophyll loss and decreases in RuBisCO and photosynthesis. This work contributes towards a deeper understanding of how lumichrome enhances plant growth and development.
Collapse
Affiliation(s)
- Motlalepula Pholo
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Beatrix Coetzee
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij, Institute for Deciduous Fruit, Vines and Wine, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Hans J Maree
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
- Agricultural Research Council, Infruitec-Nietvoorbij, Institute for Deciduous Fruit, Vines and Wine, Private Bag X5026, Stellenbosch, 7599, South Africa
| | - Philip R Young
- Institute for Wine Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - James R Lloyd
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Jens Kossmann
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Paul N Hills
- Department of Genetics, Institute for Plant Biotechnology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
21
|
Duca DR, Rose DR, Glick BR. Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek 2018; 111:1645-1660. [PMID: 29492769 DOI: 10.1007/s10482-018-1051-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
The plant growth-promoting rhizobacterium Pseudomonas sp. UW4 was transformed to increase the biosynthesis of the auxin, indole-3-acetic acid (IAA). Four native IAA biosynthesis genes from strain UW4 were individually cloned into an expression vector and introduced back into the wild-type strain. Quantitative real-time polymerase chain reaction analysis revealed that the introduced genes ami, nit, nthAB and phe were all overexpressed in these transformants. A significant increase in the production of IAA was observed for all modified strains. Canola plants inoculated with the modified strains showed enhanced root elongation under gnotobiotic conditions. The growth rate and 1-aminocyclopropane-1-carboxylate deaminase activity of transformant strains was lower compared to the wild-type. The indoleacetic acid biosynthesis pathways and the role of this phytohormone in the mechanism of plant growth stimulation by Pseudomonas sp. UW4 is discussed.
Collapse
Affiliation(s)
- Daiana R Duca
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - David R Rose
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
22
|
Lee HY, Chen YC, Kieber JJ, Yoon GM. Regulation of the turnover of ACC synthases by phytohormones and heterodimerization in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:491-504. [PMID: 28440947 DOI: 10.1111/tpj.13585] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 05/19/2023]
Abstract
Ethylene influences many aspects of plant growth and development. The biosynthesis of ethylene is highly regulated by a variety of internal and external cues. A key target of this regulation is 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), generally the rate-limiting step in ethylene biosynthesis, which is regulated both transcriptionally and post-transcriptionally. Prior studies have demonstrated that cytokinin and brassinosteroid (BR) act as regulatory inputs to elevate ethylene biosynthesis by increasing the stability of ACS proteins. Here, we demonstrate that several additional phytohormones also regulate ACS protein turnover. Abscisic acid, auxin, gibberellic acid, methyl jasmonic acid, and salicylic acid differentially regulate the stability of ACS proteins, with distinct effects on various isoforms. In addition, we demonstrate that heterodimerization influences the stability of ACS proteins. Heterodimerization between ACS isoforms from distinct subclades results in increased stability of the shorter-lived partner. Together, our study provides a comprehensive understanding of the roles of various phytohormones on ACS protein stability, which brings new insights into crosstalk between ethylene and other phytohormones, and a novel regulatory mechanism that controls ACS protein stability through a heterodimerization of ACS isoforms.
Collapse
Affiliation(s)
- Han Yong Lee
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yi-Chun Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
23
|
Abts W, Vandenbussche B, De Proft MP, Van de Poel B. The Role of Auxin-Ethylene Crosstalk in Orchestrating Primary Root Elongation in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2017; 8:444. [PMID: 28424722 PMCID: PMC5371662 DOI: 10.3389/fpls.2017.00444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/14/2017] [Indexed: 05/05/2023]
Abstract
It is well-established in Arabidopsis and other species that ethylene inhibits root elongation through the action of auxin. In sugar beet (Beta vulgaris L.) ethylene promotes root elongation in a concentration dependent manner. However, the crosstalk between ethylene and auxin remains unknown during sugar beet seedling development. Our experiments have shown that exogenously applied auxin (indole-3-acetic acid; IAA) also stimulates root elongation. We also show that auxin promotes ethylene biosynthesis leading to longer roots. We have further demonstrated that the auxin treatment stimulates ethylene production by redirecting the pool of available 1-aminocyclopropane-1-carboxylic acid (ACC) toward ethylene instead of malonyl-ACC (MACC) resulting in a prolonged period of high rates of ethylene production and subsequently a longer root. On the other hand we have also shown that endogenous IAA levels were not affected by an ACC treatment during germination. All together our findings suggest that the general model for auxin-ethylene crosstalk during early root development, where ethylene controls auxin biosynthesis and transport, does not occur in sugar beet. On the contrary, we have shown that the opposite, where auxin stimulates ethylene biosynthesis, is true for sugar beet root development.
Collapse
Affiliation(s)
- Willem Abts
- Division of Crop Biotechnics, Department of Biosystems, University of LeuvenLeuven, Belgium
| | | | - Maurice P. De Proft
- Division of Crop Biotechnics, Department of Biosystems, University of LeuvenLeuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of LeuvenLeuven, Belgium
| |
Collapse
|
24
|
Takahashi-Asami M, Shichijo C, Tsurumi S, Hashimoto T. Ethylene Is Not Responsible for Phytochrome-Mediated Apical Hook Exaggeration in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:1756. [PMID: 27933077 PMCID: PMC5120132 DOI: 10.3389/fpls.2016.01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
The apical hook of tomato seedlings is exaggerated by phytochrome actions, while in other species such as bean, pea and Arabidopsis, the hook is exaggerated by ethylene and opens by phytochrome actions. The present study was aimed to clarify mainly whether ethylene is responsible for the phytochrome-mediated hook exaggeration of tomato seedlings. Dark-grown 5-day-old seedlings were subjected to various ways of ethylene application in the dark as well as under the actions of red (R) or far-red light (FR). The ethylene emitted by seedlings was also quantified relative to hook exaggeration. The results show: Ambient ethylene, up-to about 1.0 μL L-1, suppressed (opened) the hooks formed in the dark as well as the ones exaggerated by R or FR, while at 3.0-10 μL L-1 it enhanced (closed) the hook only slightly as compared with the most-suppressed level at about 1.0 μL L-1. Treatment with 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene biosynthesis, did not enhance the hook, only mimicking the suppressive effects of ambient ethylene. The biosynthesis inhibitor, CoCl2 or aminoethoxyvinylglycine, enhanced hook curvature, and the enhancement was canceled by supplement of ethylene below 1.0 μL L-1. Auxin transport inhibitor, N-1-naphthylphthalamic acid, by contrast, suppressed curvature markedly without altering ethylene emission. The effects of the above-stated treatments did not differentiate qualitatively among the R-, FR-irradiated seedlings and dark control so as to explain phytochrome-mediated hook exaggeration. In addition, ethylene emission by seedlings was affected neither by R nor FR at such fluences as to cause hook exaggeration. In conclusion, (1) ethylene suppresses not only the light-exaggerated hook, but also the dark-formed one; (2) ethylene emission is not affected by R or FR, and also not correlated with the hook exaggerations; thus ethylene is not responsible for the hook exaggeration in tomato; and (3) auxin is essential for the maintenance and development of the hook in tomato as is the case in other species lacking phytochrome-mediated hook exaggeration. A possible mechanism of phytochrome action for hook exaggeration is discussed.
Collapse
Affiliation(s)
- Miki Takahashi-Asami
- Plant Physiology, Department of Biology, Graduate School of Science, Kobe UniversityKobe, Japan
| | - Chizuko Shichijo
- Plant Physiology, Department of Biology, Graduate School of Science, Kobe UniversityKobe, Japan
| | - Seiji Tsurumi
- Center for Supports to Research and Education Activities, Kobe UniversityKobe, Japan
| | | |
Collapse
|
25
|
Li SW, Shi RF, Leng Y, Zhou Y. Transcriptomic analysis reveals the gene expression profile that specifically responds to IBA during adventitious rooting in mung bean seedlings. BMC Genomics 2016; 17:43. [PMID: 26755210 PMCID: PMC4709940 DOI: 10.1186/s12864-016-2372-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/06/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Auxin plays a critical role in inducing adventitious rooting in many plants. Indole-3-butyric acid (IBA) is the most widely employed auxin for adventitious rooting. However, the molecular mechanisms by which auxin regulate the process of adventitious rooting are less well known. RESULTS The RNA-Seq data analysis indicated that IBA treatment greatly increased the amount of clean reads and the amount of expressed unigenes by 24.29 % and 27.42 % and by 4.3 % and 5.04 % at two time points, respectively, and significantly increased the numbers of unigenes numbered with RPKM = 10-100 and RPKM = 500-1000 by 13.04 % and 3.12 % and by 24.66 % and 108.2 % at two time points, respectively. Gene Ontology (GO) enrichment analysis indicated that the enrichment of down-regulated GOs was 2.87-fold higher than that of up-regulated GOs at stage 1, suggesting that IBA significantly down-regulated gene expression at 6 h. The GO functional category indicated that IBA significantly up- or down-regulated processes associated with auxin signaling, ribosome assembly and protein synthesis, photosynthesis, oxidoreductase activity and extracellular region, secondary cell wall biogenesis, and the cell wall during the development process. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that ribosome biogenesis, plant hormone signal transduction, pentose and glucuronate interconversions, photosynthesis, phenylpropanoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, ribosome, cutin, flavonoid biosynthesis, and phenylalanine metabolism were the pathways most highly regulated by IBA. A total of 6369 differentially expressed (2-fold change > 2) unigenes (DEGs) with 3693 (58 %) that were up-regulated and 2676 (42 %) down-regulated, 5433 unigenes with 2208 (40.6 %) that were up-regulated and 3225 (59.4 %) down-regulated, and 7664 unigenes with 3187 (41.6 %) that were up-regulated and 4477 (58.4 %) down-regulated were detected at stage 1, stage 2, and between stage 1 and stage 2, respectively, suggesting that IBA treatment increased the number of DEGs. A total of 143 DEGs specifically involved in plant hormone signaling and 345 transcription factor (TF) genes were also regulated by IBA. qRT-PCR validation of the 36 genes with known functions indicated a strong correlation with the RNA-Seq data. CONCLUSIONS The changes in GO functional categories, KEGG pathways, and global DEG profiling during adventitious rooting induced by IBA were analyzed. These results provide valuable information about the molecular traits of IBA regulation of adventitious rooting.
Collapse
Affiliation(s)
- Shi-Weng Li
- School of Environmental and Municipal Engineering, Key Laboratory of Extreme Environmental Microbial Resources and Engineering Gansu Province, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P. R. China.
| | - Rui-Fang Shi
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| | - Yan Leng
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| | - Yuan Zhou
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, 88 West Anning Road, Lanzhou, 730070, P.R. China.
| |
Collapse
|
26
|
Arabidopsis ERF1 Mediates Cross-Talk between Ethylene and Auxin Biosynthesis during Primary Root Elongation by Regulating ASA1 Expression. PLoS Genet 2016; 12:e1005760. [PMID: 26745809 PMCID: PMC4706318 DOI: 10.1371/journal.pgen.1005760] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022] Open
Abstract
The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1), encoding a rate-limiting enzyme in tryptophan (Trp) biosynthesis, from which auxin is derived. However, the molecular mechanism by which ethylene decreases root growth via ASA1 is not understood. Here we report that the ethylene-responsive AP2 transcription factor, ETHYLENE RESPONSE FACTOR1 (ERF1), plays an important role in primary root elongation of Arabidopsis. Using loss- and gain-of-function transgenic lines as well as biochemical analysis, we demonstrate that ERF1 can directly up-regulate ASA1 by binding to its promoter, leading to auxin accumulation and ethylene-induced inhibition of root growth. This discloses one mechanism linking ethylene signaling and auxin biosynthesis in Arabidopsis roots. Ethylene is a gaseous phytohormone that plays critical roles in plant development and defense. It is well known that ethylene inhibits primary root elongation through effects on auxin. However, it is not clear how ethylene signal is translated into auxin. In this report, the highly ethylene-responsive transcription factor ETHYLENE RESPONSE FACTOR1 (ERF1) is demonstrated to positively regulate ASA1, encoding ANTHRANILATE SYNTHASE α1, a rate-limiting enzyme in Trp biosynthesis where auxin is derived, by directly binding to its promoter and activating ASA1. Consequently, auxin biosynthesis is promoted, leading to increased auxin accumulation and thus inhibition of primary root elongation. This study unravels a molecular mechanism that bridges ethylene signaling and auxin biosynthesis in primary root elongation.
Collapse
|
27
|
Hagemann MH, Winterhagen P, Hegele M, Wünsche JN. Ethephon induced abscission in mango: physiological fruitlet responses. FRONTIERS IN PLANT SCIENCE 2015; 6:706. [PMID: 26442021 PMCID: PMC4569964 DOI: 10.3389/fpls.2015.00706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/24/2015] [Indexed: 05/13/2023]
Abstract
Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets.
Collapse
Affiliation(s)
- Michael H. Hagemann
- Section Crop Physiology of Specialty Crops, Institute of Crop Science, University of HohenheimStuttgart, Germany
| | | | | | | |
Collapse
|
28
|
Li ZG, Chen HW, Li QT, Tao JJ, Bian XH, Ma B, Zhang WK, Chen SY, Zhang JS. Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis. Sci Rep 2015. [PMID: 26207341 PMCID: PMC4513569 DOI: 10.1038/srep12477] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ethylene perceived by a family of five receptors regulates many developmental processes in Arabidopsis. Here we conducted the yeast two-hybrid assay to screen for additional unidentified proteins that interact with subfamily II ethylene receptor ETR2. Three SAUR proteins, named SAUR76, 77 and 78, were identified to associate with both ETR2 and EIN4 in different assays. Interaction of SAUR76 and SAUR78 with ETR2 was further verified by co-immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays. Expressions of SAUR76-78 are induced by auxin and ethylene treatments. Compared with wild type, SAUR-overexpressing plants exhibit reduced ethylene sensitivity, while SAUR-RNAi lines exhibit enhanced ethylene sensitivity. Overexpressing the three SAURs partially complements the phenotype of subfamily II ethylene receptor loss-of-function double mutant etr2-3ein4-4, which has increased ethylene response and small cotyledon and rosette. saur76 mutation partially suppresses the reduced ethylene sensitivity of etr2-2. SAUR76/78 proteins are regulated by 26S proteasome system and larger tag increases their protein stability. These findings suggest that SAUR76-78 may affect ethylene receptor signaling and promote plant growth in Arabidopsis.
Collapse
Affiliation(s)
- Zhi-Gang Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao-Wei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Hua Bian
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
29
|
Rai MI, Wang X, Thibault DM, Kim HJ, Bombyk MM, Binder BM, Shakeel SN, Schaller GE. The ARGOS gene family functions in a negative feedback loop to desensitize plants to ethylene. BMC PLANT BIOLOGY 2015; 15:157. [PMID: 26105742 PMCID: PMC4478640 DOI: 10.1186/s12870-015-0554-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/15/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Ethylene plays critical roles in plant growth and development, including the regulation of cell expansion, senescence, and the response to biotic and abiotic stresses. Elements of the initial signal transduction pathway have been determined, but we are still defining regulatory mechanisms by which the sensitivity of plants to ethylene is modulated. RESULTS We report here that members of the ARGOS gene family of Arabidopsis, previously implicated in the regulation of plant growth and biomass, function as negative feedback regulators of ethylene signaling. Expression of all four members of the ARGOS family is induced by ethylene, but this induction is blocked in ethylene-insensitive mutants. The dose dependence for ethylene induction varies among the ARGOS family members, suggesting that they could modulate responses across a range of ethylene concentrations. GFP-fusions of ARGOS and ARL localize to the endoplasmic reticulum, the same subcellular location as the ethylene receptors and other initial components of the ethylene signaling pathway. Seedlings with increased expression of ARGOS family members exhibit reduced ethylene sensitivity based on physiological and molecular responses. CONCLUSIONS These results support a model in which the ARGOS gene family functions as part of a negative feedback circuit to desensitize the plant to ethylene, thereby expanding the range of ethylene concentrations to which the plant can respond. These results also indicate that the effects of the ARGOS gene family on plant growth and biomass are mediated through effects on ethylene signal transduction.
Collapse
Affiliation(s)
- Muneeza Iqbal Rai
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
- Department of Biochemistry, Quaid-i-azam University, Islamabad, 45320, Pakistan.
| | - Xiaomin Wang
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Derek M Thibault
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Hyo Jung Kim
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Matthew M Bombyk
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - Samina N Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
- Department of Biochemistry, Quaid-i-azam University, Islamabad, 45320, Pakistan.
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
30
|
Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara-García ÁA, López-Bucio J. Mitogen-Activated Protein Kinase 6 and Ethylene and Auxin Signaling Pathways Are Involved in Arabidopsis Root-System Architecture Alterations by Trichoderma atroviride. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:701-10. [PMID: 26067203 DOI: 10.1094/mpmi-01-15-0005-r] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trichoderma atroviride is a symbiotic fungus that interacts with roots and stimulates plant growth and defense. Here, we show that Arabidopsis seedlings cocultivated with T. atroviride have an altered root architecture and greater biomass compared with axenically grown seedlings. These effects correlate with increased activity of mitogen-activated protein kinase 6 (MPK6). The primary roots of mpk6 mutants showed an enhanced growth inhibition by T. atroviride when compared with wild-type (WT) plants, while T. atroviride increases MPK6 activity in WT roots. It was also found that T. atroviride produces ethylene (ET), which increases with l-methionine supply to the fungal growth medium. Analysis of growth and development of WT seedlings and etr1, ein2, and ein3 ET-related Arabidopsis mutants indicates a role for ET in root responses to the fungus, since etr1 and ein2 mutants show defective root-hair induction and enhanced primary-root growth inhibition when cocultivated with T. atroviride. Increased MPK6 activity was evidenced in roots of ctr1 mutants, which correlated with repression of primary root growth, thus connecting MPK6 signaling with an ET response pathway. Auxin-inducible gene expression analysis using the DR5:uidA reporter construct further revealed that ET affects auxin signaling through the central regulator CTR1 and that fungal-derived compounds, such as indole-3-acetic acid and indole-3-acetaldehyde, induce MPK6 activity. Our results suggest that T. atroviride likely alters root-system architecture modulating MPK6 activity and ET and auxin action.
Collapse
Affiliation(s)
- Hexon Angel Contreras-Cornejo
- 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, México
| | - Jesús Salvador López-Bucio
- 2 Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Alejandro Méndez-Bravo
- 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, México
| | - Lourdes Macías-Rodríguez
- 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, México
| | - Maricela Ramos-Vega
- 2 Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - Ángel Arturo Guevara-García
- 2 Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, México
| | - José López-Bucio
- 1 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, México
| |
Collapse
|
31
|
Saitoh A, Takase T, Kitaki H, Miyazaki Y, Kiyosue T. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls. PLANT SIGNALING & BEHAVIOR 2015; 10:e1071752. [PMID: 26237185 PMCID: PMC4854359 DOI: 10.1080/15592324.2015.1071752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 05/26/2023]
Abstract
Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.
Collapse
Affiliation(s)
- Aya Saitoh
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
- These authors contributed equally to this work
| | - Tomoyuki Takase
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
- These authors contributed equally to this work
| | - Hiroyuki Kitaki
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
| | - Yuji Miyazaki
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
| | - Tomohiro Kiyosue
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo, Japan
| |
Collapse
|
32
|
Rodrigues MA, Bianchetti RE, Freschi L. Shedding light on ethylene metabolism in higher plants. FRONTIERS IN PLANT SCIENCE 2014; 5:665. [PMID: 25520728 PMCID: PMC4249713 DOI: 10.3389/fpls.2014.00665] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/07/2014] [Indexed: 05/20/2023]
Abstract
Ethylene metabolism in higher plants is regulated by a wide array of endogenous and environmental factors. During most physiological processes, ethylene levels are mainly determined by a strict control of the rate-limiting biosynthetic steps responsible for the production of 1-aminocyclopropane-1-carboxylic acid (ACC) and its subsequent conversion to ethylene. Responsible for these reactions, the key enzymes ACC synthase and ACC oxidase are encoded by multigene families formed by members that can be differentially regulated at the transcription and post-translational levels by specific developmental and environmental signals. Among the wide variety of environmental cues controlling plant ethylene production, light quality, duration, and intensity have consistently been demonstrated to influence the metabolism of this plant hormone in diverse plant tissues, organs, and species. Although still not completely elucidated, the mechanisms underlying the interaction between light signal transduction and ethylene evolution appears to involve a complex network that includes central transcription factors connecting multiple signaling pathways, which can be reciprocally modulated by ethylene itself, other phytohormones, and specific light wavelengths. Accumulating evidence has indicated particular photoreceptors as essential mediators in light-induced signaling cascades affecting ethylene levels. Therefore, this review specifically focuses on discussing the current knowledge of the potential molecular mechanisms implicated in the light-induced responses affecting ethylene metabolism during the regulation of developmental and metabolic plant responses. Besides presenting the state of the art in this research field, some overlooked mechanisms and future directions to elucidate the exact nature of the light-ethylene interplay in higher plants will also be compiled and discussed.
Collapse
Affiliation(s)
| | | | - Luciano Freschi
- Laboratory of Plant Physiology, Institute of Biosciences, Department of Botany, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
33
|
Abts W, Van de Poel B, Vandenbussche B, De Proft MP. Ethylene is differentially regulated during sugar beet germination and affects early root growth in a dose-dependent manner. PLANTA 2014; 240:679-86. [PMID: 25034827 DOI: 10.1007/s00425-014-2124-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/07/2014] [Indexed: 05/09/2023]
Abstract
By integrating molecular, biochemical, and physiological data, ethylene biosynthesis in sugar beet was shown to be differentially regulated, affecting root elongation in a concentration-dependent manner. There is a close relation between ethylene production and seedling growth of sugar beet (Beta vulgaris L.), yet the exact function of ethylene during this early developmental stage is still unclear. While ethylene is mostly considered to be a root growth inhibitor, we found that external 1-aminocyclopropane-1-carboxylic acid (ACC) regulates root growth in sugar beet in a concentration-dependent manner: low concentrations stimulate root growth while high concentrations inhibit root growth. These results reveal that ethylene action during root elongation is strongly concentration dependent. Furthermore our detailed study of ethylene biosynthesis kinetics revealed a very strict gene regulation pattern of ACC synthase (ACS) and ACC oxidase (ACO), in which ACS is the rate liming step during sugar beet seedling development.
Collapse
Affiliation(s)
- Willem Abts
- Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Willem de Croylaan 42, bus 2427, 3001, Leuven, Belgium,
| | | | | | | |
Collapse
|
34
|
Kumar R, Khurana A, Sharma AK. Role of plant hormones and their interplay in development and ripening of fleshy fruits. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4561-75. [PMID: 25028558 DOI: 10.1093/jxb/eru277] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant hormones have been extensively studied for their roles in the regulation of various aspects of plant development. However, in the last decade important new insights have been made into their action during development and ripening, in both dry and fleshy fruits. Emerging evidence suggests that relative functions of plant hormones are not restricted to a particular stage, and a complex network of more than one plant hormone is involved in controlling various aspects of fruit development. Though some areas are extensively covered, considerable gaps in our knowledge and understanding still exist in the control of hormonal networks and crosstalk between different hormones during fruit expansion, maturation, and various other aspects of ripening. Here, we evaluate the new knowledge on their relative roles during tomato fruit development with a view to understand their mechanism of action in fleshy fruits. For a better understanding, pertinent evidences available on hormonal crosstalk during fruit development in other species are also discussed. We envisage that such detailed knowledge will help design new strategies for effective manipulation of fruit ripening.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India. Current address: Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Ashima Khurana
- Zakir Husain Delhi College, University of Delhi, New Delhi 110002, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
35
|
Steinwand BJ, Xu S, Polko JK, Doctor SM, Westafer M, Kieber JJ. Alterations in auxin homeostasis suppress defects in cell wall function. PLoS One 2014; 9:e98193. [PMID: 24859261 PMCID: PMC4032291 DOI: 10.1371/journal.pone.0098193] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 04/30/2014] [Indexed: 11/30/2022] Open
Abstract
The plant cell wall is a highly dynamic structure that changes in response to both environmental and developmental cues. It plays important roles throughout plant growth and development in determining the orientation and extent of cell expansion, providing structural support and acting as a barrier to pathogens. Despite the importance of the cell wall, the signaling pathways regulating its function are not well understood. Two partially redundant leucine-rich-repeat receptor-like kinases (LRR-RLKs), FEI1 and FEI2, regulate cell wall function in Arabidopsis thaliana roots; disruption of the FEIs results in short, swollen roots as a result of decreased cellulose synthesis. We screened for suppressors of this swollen root phenotype and identified two mutations in the putative mitochondrial pyruvate dehydrogenase E1α homolog, IAA-Alanine Resistant 4 (IAR4). Mutations in IAR4 were shown previously to disrupt auxin homeostasis and lead to reduced auxin function. We show that mutations in IAR4 suppress a subset of the fei1 fei2 phenotypes. Consistent with the hypothesis that the suppression of fei1 fei2 by iar4 is the result of reduced auxin function, disruption of the WEI8 and TAR2 genes, which decreases auxin biosynthesis, also suppresses fei1 fei2. In addition, iar4 suppresses the root swelling and accumulation of ectopic lignin phenotypes of other cell wall mutants, including procuste and cobra. Further, iar4 mutants display decreased sensitivity to the cellulose biosynthesis inhibitor isoxaben. These results establish a role for IAR4 in the regulation of cell wall function and provide evidence of crosstalk between the cell wall and auxin during cell expansion in the root.
Collapse
Affiliation(s)
- Blaire J. Steinwand
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Shouling Xu
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joanna K. Polko
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Stephanie M. Doctor
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mike Westafer
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joseph J. Kieber
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
|
37
|
Pulianmackal AJ, Kareem AVK, Durgaprasad K, Trivedi ZB, Prasad K. Competence and regulatory interactions during regeneration in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:142. [PMID: 24782880 PMCID: PMC3990048 DOI: 10.3389/fpls.2014.00142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/25/2014] [Indexed: 05/08/2023]
Abstract
The ability to regenerate is widely exploited by multitudes of organisms ranging from unicellular bacteria to multicellular plants for their propagation and repair. But the levels of competence for regeneration vary from species to species. While variety of living cells of a plant display regeneration ability, only a few set of cells maintain their stemness in mammals. This highly pliable nature of plant cells in-terms of regeneration can be attributed to their high developmental plasticity. De novo organ initiation can be relatively easily achieved in plants by proper hormonal regulations. Elevated levels of plant hormone auxin induces the formation of proliferating mass of pluripotent cells called callus, which predominantly express lateral root meristem markers and hence is having an identity similar to lateral root primordia. Organ formation can be induced from the callus by modulating the ratio of hormones. An alternative for de novo organogenesis is by the forced expression of plant specific transcription factors. The mechanisms by which plant cells attain competence for regeneration on hormonal treatment or forced expression remain largely elusive. Recent studies have provided some insight into how the epigenetic modifications in plants affect this competence. In this review we discuss the present understanding of regenerative biology in plants and scrutinize the future prospectives of this topic. While discussing about the regeneration in the sporophyte of angiosperms which is well studied, here we outline the regenerative biology of the gametophytic phase and discuss about various strategies of regeneration that have evolved in the domain of life so that a common consensus on the entire process of regeneration can be made.
Collapse
Affiliation(s)
| | | | | | | | - Kalika Prasad
- *Correspondence: Kalika Prasad, School of Biology Indian Institute of Science Education and Research, Thiruvananthapuram, India e-mail:
| |
Collapse
|
38
|
Mazzella MA, Casal JJ, Muschietti JP, Fox AR. Hormonal networks involved in apical hook development in darkness and their response to light. FRONTIERS IN PLANT SCIENCE 2014; 5:52. [PMID: 24616725 PMCID: PMC3935338 DOI: 10.3389/fpls.2014.00052] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/04/2014] [Indexed: 05/19/2023]
Abstract
In darkness, the dicot seedlings produce an apical hook as result of differential cell division and extension at opposite sides of the hypocotyl. This hook protects the apical meristem from mechanical damage during seedling emergence from the soil. In darkness, gibberellins act via the DELLA-PIF (PHYTOCHROME INTERACTING FACTORs) pathway, and ethylene acts via the EIN3/EIL1 (ETHYLENE INSENSITIVE 3/EIN3 like 1)-HLS1 (HOOKLESS 1) pathway to control the asymmetric accumulation of auxin required for apical hook formation and maintenance. These core pathways form a network with multiple points of connection. Light perception by phytochromes and cryptochromes reduces the activity of PIFs and (COP1) CONSTITUTIVE PHOTOMORPHOGENIC 1-both required for hook formation in darkness-, lowers the levels of gibberellins, and triggers hook opening as a component of the switch between heterotrophic and photoautotrophic development. Apical hook opening is thus a suitable model to study the convergence of endogenous and exogenous signals on the control of cell division and cell growth.
Collapse
Affiliation(s)
- Maria A. Mazzella
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres” (INGEBI-CONICET)Buenos Aires, Argentina
- *Correspondence: Maria A. Mazzella, INGEBI, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres”, 2490 Vuelta de Obligado, Buenos Aires, 1428, Argentina e-mail:
| | - Jorge J. Casal
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Universidad de Buenos Aires and CONICETBuenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Jorge P. Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres” (INGEBI-CONICET)Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Ana R. Fox
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, “Dr. Héctor Torres” (INGEBI-CONICET)Buenos Aires, Argentina
| |
Collapse
|
39
|
|
40
|
Böttcher C, Burbidge CA, Boss PK, Davies C. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening. BMC PLANT BIOLOGY 2013; 13:222. [PMID: 24364881 PMCID: PMC3878033 DOI: 10.1186/1471-2229-13-222] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/20/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. RESULTS Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. CONCLUSIONS In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape berry ripening.
Collapse
Affiliation(s)
| | | | - Paul K Boss
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| | | |
Collapse
|
41
|
Bai B, Su YH, Yuan J, Zhang XS. Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. MOLECULAR PLANT 2013; 6:1247-60. [PMID: 23271028 DOI: 10.1093/mp/sss154] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Somatic embryogenesis is an important experimental model for studying cellular and molecular mechanisms of early embryo development. Although it has long been known that removal of exogenous auxin from medium results in somatic embryogenesis, the mechanisms underlying the initiation of somatic embryos (SEs) are poorly understood. In this study, we showed that YUCCAs (YUCs) encoding key enzymes in auxin biosynthesis are required for SE induction in Arabidopsis. To identify other factors mediating SE initiation, we performed transcriptional profiling and gene expression analysis. The results showed that genes involved in ethylene biosynthesis and its responses were down-regulated during SE initiation. Ethylene level decreased progressively during SE initiation, whereas treatment with the metabolic precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), or mutation of ETHYLENE-OVERPRODUCTION1 (ETO1) disrupted SE induction, suggesting that ethylene plays a role in this process. Suppression of SE induction was also observed in the constitutive triple response 1 (ctr1) mutant, in which ethylene signaling was enhanced. These results indicate that down-regulation of not only ethylene biosynthesis, but also ethylene response is critical for SE induction. We further showed that ethylene disturbed SE initiation through inhibiting YUC expression that might be involved in local auxin biosynthesis and subsequent auxin distribution. Our results provide new information on the mechanisms of hormone-regulated SE initiation.
Collapse
Affiliation(s)
- Bo Bai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | | | | | | |
Collapse
|
42
|
Saini S, Sharma I, Kaur N, Pati PK. Auxin: a master regulator in plant root development. PLANT CELL REPORTS 2013; 32:741-57. [PMID: 23553556 DOI: 10.1007/s00299-013-1430-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/19/2013] [Accepted: 03/19/2013] [Indexed: 05/05/2023]
Abstract
The demand for increased crop productivity and the predicted challenges related to plant survival under adverse environmental conditions have renewed the interest in research in root biology. Various physiological and genetic studies have provided ample evidence in support of the role of plant growth regulators in root development. The biosynthesis and transport of auxin and its signaling play a crucial role in controlling root growth and development. The univocal role of auxin in root development has established it as a master regulator. Other plant hormones, such as cytokinins, brassinosteroids, ethylene, abscisic acid, gibberellins, jasmonic acid, polyamines and strigolactones interact either synergistically or antagonistically with auxin to trigger cascades of events leading to root morphogenesis and development. In recent years, the availability of biological resources, development of modern tools and experimental approaches have led to the advancement of knowledge in root development. Research in the areas of hormone signal perception, understanding network of events involved in hormone action and the transport of plant hormones has added a new dimension to root biology. The present review highlights some of the important conceptual developments in the interplay of auxin and other plant hormones and associated downstream events affecting root development.
Collapse
Affiliation(s)
- Shivani Saini
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, India
| | | | | | | |
Collapse
|
43
|
Hou K, Wu W, Gan SS. SAUR36, a small auxin up RNA gene, is involved in the promotion of leaf senescence in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:1002-9. [PMID: 23250625 PMCID: PMC3560998 DOI: 10.1104/pp.112.212787] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 05/18/2023]
Abstract
Small Auxin Up RNA genes (SAURs) are early auxin-responsive genes, but whether any of them are involved in leaf senescence is not known. Auxin, on the other hand, has been shown to have a role in leaf senescence. Some of the external application experiments indicated that auxin can inhibit leaf senescence, whereas other experiments indicated that auxin can promote leaf senescence. Here, we report the identification and characterization of an Arabidopsis (Arabidopsis thaliana) leaf senescence-associated gene named SAG201, which is highly up-regulated during leaf senescence and can be induced by 1-naphthaleneacetic acid, a synthetic auxin. It encodes a functionally uncharacterized SAUR that has been annotated as SAUR36. Leaf senescence in transfer DNA insertion saur36 knockout lines was delayed as revealed by analyses of chlorophyll content, F(v)/F(m) ratio (a parameter for photosystem II activity), ion leakage, and the expression of leaf senescence marker genes. In contrast, transgenic Arabidopsis plants overexpressing SAUR36 (without its 3' untranslated region [UTR]) displayed an early leaf senescence phenotype. However, plants overexpressing SAUR36 with its 3' UTR were normal and did not exhibit the early-senescence phenotype. These data suggest that SAUR36 is a positive regulator of leaf senescence and may mediate auxin-induced leaf senescence and that the 3' UTR containing a highly conserved downstream destabilizes the SAUR36 transcripts in young leaves.
Collapse
|
44
|
Galland M, Gamet L, Varoquaux F, Touraine B, Touraine B, Desbrosses G. The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 190:74-81. [PMID: 22608521 DOI: 10.1016/j.plantsci.2012.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/25/2012] [Indexed: 05/08/2023]
Abstract
In Arabidopsis roots, some epidermal cells differentiate into root hair cells. Auxin regulates root hair positioning, while ethylene controls cell elongation. Phyllobacterium brassicacearum STM196, a beneficial strain of plant growth promoting rhizobacteria (PGPR) isolated from the roots of field-grown oilseed rape, stimulates root hair elongation in Arabidopsis thaliana seedlings. We investigated the role of ethylene in the response of root hair cells to STM196 inoculation. While we could not detect a significant increase in ethylene biosynthesis, we could detect a slight activation of the ethylene signalling pathway. Consistent with this, an exhaustive survey of the root hair elongation response of mutants and transgenic lines affected in the ethylene pathway showed contrasting root hair sensitivities to STM196. We propose that local ethylene emission contributes to STM196-induceed root hair elongation.
Collapse
Affiliation(s)
- Marc Galland
- Laboratory of Tropical Symbiosis (UMR113), Université Montpellier 2, Institut de Recherche pour le Développement, Cirad, Montpellier SupAgro, Institut National de la Recherche Agronomique, Université de Montpellier, CC002, Place E. Bataillon, F34095 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
45
|
Muday GK, Rahman A, Binder BM. Auxin and ethylene: collaborators or competitors? TRENDS IN PLANT SCIENCE 2012; 17:181-95. [PMID: 22406007 DOI: 10.1016/j.tplants.2012.02.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 05/18/2023]
Abstract
The individual roles of auxin and ethylene in controlling the growth and development of young seedlings have been well studied. In recent years, these two hormones have been shown to act synergistically to control specific growth and developmental processes, such as root elongation and root hair formation, as well as antagonistically in other processes, such as lateral root formation and hypocotyl elongation. This review examines the growth and developmental processes that are regulated by crosstalk between these two hormones and explores the mechanistic basis for the regulation of these processes. The emerging trend from these experiments is that ethylene modulates auxin synthesis, transport, and signaling with unique targets and responses in a range of tissues to fine-tune seedling growth and development.
Collapse
Affiliation(s)
- Gloria K Muday
- Department of Biology, Wake Forest University, Winston-Salem, NC 27106, USA.
| | | | | |
Collapse
|
46
|
He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie DY, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H. A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. THE PLANT CELL 2011; 23:3944-60. [PMID: 22108404 PMCID: PMC3246337 DOI: 10.1105/tpc.111.089029] [Citation(s) in RCA: 274] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/08/2011] [Accepted: 10/26/2011] [Indexed: 05/18/2023]
Abstract
The interactions between phytohormones are crucial for plants to adapt to complex environmental changes. One example is the ethylene-regulated local auxin biosynthesis in roots, which partly contributes to ethylene-directed root development and gravitropism. Using a chemical biology approach, we identified a small molecule, l-kynurenine (Kyn), which effectively inhibited ethylene responses in Arabidopsis thaliana root tissues. Kyn application repressed nuclear accumulation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Moreover, Kyn application decreased ethylene-induced auxin biosynthesis in roots, and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1/TRYPTOPHAN AMINOTRANSFERASE RELATEDs (TAA1/TARs), the key enzymes in the indole-3-pyruvic acid pathway of auxin biosynthesis, were identified as the molecular targets of Kyn. Further biochemical and phenotypic analyses revealed that Kyn, being an alternate substrate, competitively inhibits TAA1/TAR activity, and Kyn treatment mimicked the loss of TAA1/TAR functions. Molecular modeling and sequence alignments suggested that Kyn effectively and selectively binds to the substrate pocket of TAA1/TAR proteins but not those of other families of aminotransferases. To elucidate the destabilizing effect of Kyn on EIN3, we further found that auxin enhanced EIN3 nuclear accumulation in an EIN3 BINDING F-BOX PROTEIN1 (EBF1)/EBF2-dependent manner, suggesting the existence of a positive feedback loop between auxin biosynthesis and ethylene signaling. Thus, our study not only reveals a new level of interactions between ethylene and auxin pathways but also offers an efficient method to explore and exploit TAA1/TAR-dependent auxin biosynthesis.
Collapse
Affiliation(s)
- Wenrong He
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Javier Brumos
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Hongjiang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507
| | - Yusi Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Meng Ke
- Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xinqi Gong
- Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinglong Zeng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Wenyang Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Xinyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Fengying An
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Xing Wen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Pengpeng Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Jinfang Chu
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohong Sun
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cunyu Yan
- National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nieng Yan
- Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - De-Yu Xie
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Natasha Raikhel
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507
| | - Zhenbiao Yang
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507
| | - Anna N. Stepanova
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Jose M. Alonso
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Hongwei Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- Address correspondence to
| |
Collapse
|
47
|
Santisree P, Nongmaithem S, Vasuki H, Sreelakshmi Y, Ivanchenko MG, Sharma R. Tomato root penetration in soil requires a coaction between ethylene and auxin signaling. PLANT PHYSIOLOGY 2011; 156:1424-38. [PMID: 21571667 PMCID: PMC3135914 DOI: 10.1104/pp.111.177014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/10/2011] [Indexed: 05/21/2023]
Abstract
During seed germination, emerging roots display positive gravitropism and penetrate into the soil for nutrition and anchorage. Tomato (Solanum lycopersicum) seeds germinated in the presence of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, failed to insert roots into Soilrite and grew in the air, forming loops. Time-lapse video imaging showed that 1-MCP-grown root tips retained positive gravitropism and made contact with the surface of Soilrite but failed to penetrate into the Soilrite. Time-course studies revealed that the effect of 1-MCP was most prominent when seed imbibition and germination were carried out in the continual presence of 1-MCP. Conversely, 1-MCP was ineffective when applied postgermination after penetration of roots in the Soilrite. Furthermore, treatment with 1-MCP caused a reduction in DR5::β-glucuronidase auxin-reporter activity and modified the expression of SlIAA3 and SlIAA9 transcripts, indicating interference with auxin signaling. The reduced ethylene perception mutant, Never-ripe, displayed decreased ability for root penetration, and the enhanced polar auxin transport mutant, polycotyledon, showed a nearly normal root penetration in the presence of 1-MCP, which could be reversed by application of auxin transport inhibitors. Our results indicate that during tomato seed germination, a coaction between ethylene and auxin is required for root penetration into the soil.
Collapse
|
48
|
Zhao Q, Guo HW. Paradigms and paradox in the ethylene signaling pathway and interaction network. MOLECULAR PLANT 2011; 4:626-34. [PMID: 21690206 DOI: 10.1093/mp/ssr042] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phytohormone ethylene plays pivotal roles in plant response to developmental and environmental signals. During the past few years, the emerging evidence has led us to a new understanding of the signaling mechanisms and regulatory networks of the ethylene action. In this review, we focus on the major advances made in the past three years, particularly the findings leading to new paradigms and the observations under debate. With the recent demonstration of the regulation of the protein stability of numerous key signaling components including EIN3, EIL1, EIN2, ETR2, EBF1/EBF2, and ETP1/ETP2, we highlight proteasome-dependent protein degradation as an essential regulatory mechanism that is widely adopted in the ethylene signaling pathway. We also discuss the implication of the negative feedback mechanism in the ethylene signaling pathway in light of ethylene-induced ETR2 and EBF2 gene expression. Meanwhile, we summarize the controversy on the involvement of MKK9-MPK3/6 cascade in the ethylene signaling versus biosynthesis pathway, and discuss the possible role of this MAPK module in the ethylene action. Finally, we describe the complex interactions between ethylene and other signaling pathways including auxin, light, and plant innate immunity, and propose that EIN3/EIL1 act as a convergence point in the ethylene-initiated signaling network.
Collapse
Affiliation(s)
- Qiong Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
49
|
Basu P, Brown KM, Pal A. Detailed quantitative analysis of architectural traits of basal roots of young seedlings of bean in response to auxin and ethylene. PLANT PHYSIOLOGY 2011; 155:2056-65. [PMID: 21311033 PMCID: PMC3091101 DOI: 10.1104/pp.110.168229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/02/2011] [Indexed: 05/22/2023]
Abstract
Vertical placement of roots within the soil determines their efficiency of acquisition of heterogeneous belowground resources. This study quantifies the architectural traits of seedling basal roots of bean (Phaseolus vulgaris), and shows that the distribution of root tips at different depths results from a combined effect of both basal root growth angle (BRGA) and root length. Based on emergence locations, the basal roots are classified in three zones, upper, middle, and lower, with each zone having distinct architectural traits. The genotypes characterized as shallow on BRGA alone produced basal roots with higher BRGA, greater length, and more vertically distributed roots than deep genotypes, thereby establishing root depth as a robust measure of root architecture. Although endogenous indole-3-acetic acid (IAA) levels were similar in all genotypes, IAA and 1-N-naphthylphthalamic acid treatments showed different root growth responses to auxin because shallow and deep genotypes tended to have optimal and supraoptimal auxin levels, respectively, for root growth in controls. While IAA increased ethylene production, ethylene also increased IAA content. Although differences in acropetal IAA transport to roots of different zones can account for some of the differences in auxin responsiveness among roots of different emergence positions, this study shows that mutually dependent ethylene-auxin interplay regulates BRGA and root growth differently in different genotypes. Root length inhibition by auxin was reversed by an ethylene synthesis inhibitor. However, IAA caused smaller BRGA in deep genotypes, but not in shallow genotypes, which only responded to IAA in the presence of an ethylene inhibitor.
Collapse
Affiliation(s)
| | | | - Anupam Pal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India (P.B., A.P.); and Intercollege Program in Plant Biology (P.B., K.M.B.) and Department of Horticulture (K.M.B.), Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
50
|
Denancé N, Ranocha P, Martinez Y, Sundberg B, Goffner D. Light-regulated compensation of wat1 (walls are thin1) growth and secondary cell wall phenotypes is auxin-independent. PLANT SIGNALING & BEHAVIOR 2010; 5:1302-4. [PMID: 20935503 PMCID: PMC3115373 DOI: 10.4161/psb.5.10.13103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We previously reported the characterization of walls are thin1 (wat1), an Arabidopsis mutant that exhibits two developmental phenotypes in stems: (1) a severe decrease in fiber secondary cell wall thickness and (2) a reduction in stem height. Auxin concentration and transport were also significantly reduced in the stem base of wat1 plants. In the original study, these characteristics were observed in plants grown under short day conditions (9 h light /15 h dark). Herein, we provide evidence for partial phenotypic complementation of both wat1 developmental phenotypes when grown under a continuous light regime. Interestingly, when auxin concentration and basipetal transport were measured in these plants, neither was restored to wild type levels. These results suggest that free auxin concentration is not responsible for the partial light-regulated complementation of wat1-mediated phenotypes.
Collapse
Affiliation(s)
- Nicolas Denancé
- Université de Toulouse; UPS; CNRS UMR 5546; Surfaces Cellulaires et Signalisation chez les Végétaux; Castanet-Tolosan, France
| | - Philippe Ranocha
- Université de Toulouse; UPS; CNRS UMR 5546; Surfaces Cellulaires et Signalisation chez les Végétaux; Castanet-Tolosan, France
| | - Yves Martinez
- Université de Toulouse; UPS; CNRS UMR 5546; Surfaces Cellulaires et Signalisation chez les Végétaux; Castanet-Tolosan, France
| | - Björn Sundberg
- Umeå Plant Science Center; Department of Forest Genetics and Plant Physiology; Swedish University of Agricultural Sciences; Umeå, Sweden
| | - Deborah Goffner
- Université de Toulouse; UPS; CNRS UMR 5546; Surfaces Cellulaires et Signalisation chez les Végétaux; Castanet-Tolosan, France
| |
Collapse
|