1
|
Maddala R, Allen A, Skiba NP, Rao PV. Ankyrin-B is required for the establishment and maintenance of lens cytoarchitecture, mechanics, and clarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598702. [PMID: 38952798 PMCID: PMC11216410 DOI: 10.1101/2024.06.12.598702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
This study illustrates a vital role for ankyrin-B in lens architecture, growth and function through its involvement in membrane protein and spectrin-actin cytoskeletal organization and stability The transparent ocular lens is essential for vision by focusing light onto the retina. Despite recognizing the importance of its unique cellular architecture and mechanical properties, the molecular mechanisms governing these attributes remain elusive. This study aims to elucidate the role of ankyrin-B (AnkB), a membrane scaffolding protein, in lens cytoarchitecture, growth and function using a conditional knockout (cKO) mouse model. AnkB cKO mouse has no defects in lens morphogenesis, but exhibited changes that supported a global role for AnkB in maintenance of lens clarity, size, cytoarchitecture, and stiffness. Notably, absence of AnkB led to nuclear cataract formation, evident from P16. AnkB cKO lens fibers exhibit progressive disruption in membrane organization of the spectrin-actin cytoskeleton, channel proteins, cell-cell adhesion, shape change, loss and degradation of several membrane proteins (e.g., NrCAM. N-cadherin and aquaporin-0) along with a disorganized plasma membrane and impaired ball-and-socket membrane interdigitations. Furthermore, absence of AnkB led to decreased lens stiffness. Collectively, these results illustrate the essential role for AnkB in lens architecture, growth and function through its involvement in membrane protein and cytoskeletal organization.
Collapse
|
2
|
Guo H, Zhao Q, Wang H, Zhu S, Dong H, Xie X, Wang L, Chen L, Han H. Molecular characterization and functional analysis of Eimeria tenella ankyrin repeat-containing protein. Eur J Protistol 2024; 94:126089. [PMID: 38749182 DOI: 10.1016/j.ejop.2024.126089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024]
Abstract
Chicken coccidiosis causes disastrous losses to the poultry industry all over the world. Eimeria tenella is the most prevalent of these disease-causing species. Our former RNA-seq indicated that E. tenella ankyrin repeat-containing protein (EtANK) was expressed differently between drug-sensitive (DS) and drug-resistant strains. In this study, we cloned EtANK and analyzed its translational and transcriptional levels using quantitative real-time PCR (qPCR) and western blotting. The data showed that EtANK was significantly upregulated in diclazuril-resistant (DZR) strain and maduramicin-resistant (MRR) strain compared with the drug-sensitive (DS) strain. In addition, the transcription levels in the DZR strains isolated from the field were higher than in the DS strain. The translation levels of EtANK were higher in unsporulated oocysts (UO) than in sporozoites (SZ), sporulated oocysts (SO), or second-generation merozoites (SM), and the protein levels in SM were significantly higher than in UO, SO, and SZ. The results of the indirect immunofluorescence localization showed that the protein was distributed mainly at the anterior region of SZ and on the surface and in the cytoplasm of SM. The fluorescence intensity increased further with its development in vitro. An anti-rEtANK polyclonal antibody inhibited the invasive ability of E. tenella in DF-1 cells. These results showed that EtANK may be related to host cell invasion, required for the parasite's growth in the host, and may be involved in the development of E. tenella resistance to some drugs.
Collapse
Affiliation(s)
- Huilin Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Haixia Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Xinrui Xie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Lihui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Lang Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, PR China.
| |
Collapse
|
3
|
Abstract
The ankyrin proteins (Ankyrin-R, Ankyrin-B, and Ankyrin-G) are a family of scaffolding, or membrane adaptor proteins necessary for the regulation and targeting of several types of ion channels and membrane transporters throughout the body. These include voltage-gated sodium, potassium, and calcium channels in the nervous system, heart, lungs, and muscle. At these sites, ankyrins recruit ion channels, and other membrane proteins, to specific subcellular domains, which are then stabilized through ankyrin's interaction with the submembranous spectrin-based cytoskeleton. Several recent studies have expanded our understanding of both ankyrin expression and their ion channel binding partners. This review provides an updated overview of ankyrin proteins and their known channel and transporter interactions. We further discuss several potential avenues of future research that would expand our understanding of these important organizational proteins.
Collapse
Affiliation(s)
- Sharon R. Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA,CONTACT Matthew N. Rasband Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX77030, USA
| |
Collapse
|
4
|
Lu J, Chu R, Yin Y, Yu H, Xu Q, Yang B, Sun Y, Song J, Wang Q, Xu J, Lu F, Cheng Y. Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) interacts with the band 3 receptor to promote erythrocyte invasion by malaria parasites. J Biol Chem 2022; 298:101765. [PMID: 35202655 PMCID: PMC8931436 DOI: 10.1016/j.jbc.2022.101765] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Glycosylphosphatidylinositol-anchored micronemal antigen (GAMA) is an erythrocyte binding protein known to be involved in malarial parasite invasion. Although anti-GAMA antibodies have been shown to block GAMA attachment to the erythrocyte surface and subsequently inhibit parasite invasion, little is known about the molecular mechanisms by which GAMA promotes the invasion process. In this study, LC-MS analysis was performed on the erythrocyte membrane to identify the specific receptor that interacts with GAMA. We found that ankyrin 1 and the band 3 membrane protein showed affinity for GAMA, and characterization of their binding specificity indicated that both Plasmodium falciparum and Plasmodium vivax GAMA bound to the same extracellular loop of band 3 (loop 5). In addition, we show the interaction between GAMA and band 3 was sensitive to chymotrypsin. Furthermore, antibodies against band 3 loop 5 were able to reduce the binding activity of GAMA to erythrocytes and inhibit the invasion of P. falciparum merozoites into human erythrocytes, whereas antibodies against P. falciparum GAMA (PfGAMA)-Tr3 only slightly reduced P. falciparum invasion. The identification and characterization of the erythrocyte GAMA receptor is a novel finding that identifies an essential mechanism of parasite invasion of host erythrocytes.
Collapse
Affiliation(s)
- Jiachen Lu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruilin Chu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Infectious Disease Control and Prevention, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yi Yin
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Huijie Yu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qinwen Xu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yifan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Song
- Department of Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, Jiangsu, China
| | - Jiahui Xu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Feng Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
5
|
Stevens SR, Longley CM, Ogawa Y, Teliska LH, Arumanayagam AS, Nair S, Oses-Prieto JA, Burlingame AL, Cykowski MD, Xue M, Rasband MN. Ankyrin-R regulates fast-spiking interneuron excitability through perineuronal nets and Kv3.1b K + channels. eLife 2021; 10:66491. [PMID: 34180393 PMCID: PMC8257253 DOI: 10.7554/elife.66491] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Neuronal ankyrins cluster and link membrane proteins to the actin and spectrin-based cytoskeleton. Among the three vertebrate ankyrins, little is known about neuronal Ankyrin-R (AnkR). We report AnkR is highly enriched in Pv+ fast-spiking interneurons in mouse and human. We identify AnkR-associated protein complexes including cytoskeletal proteins, cell adhesion molecules (CAMs), and perineuronal nets (PNNs). We show that loss of AnkR from forebrain interneurons reduces and disrupts PNNs, decreases anxiety-like behaviors, and changes the intrinsic excitability and firing properties of Pv+ fast-spiking interneurons. These changes are accompanied by a dramatic reduction in Kv3.1b K+ channels. We identify a novel AnkR-binding motif in Kv3.1b, and show that AnkR is both necessary and sufficient for Kv3.1b membrane localization in interneurons and at nodes of Ranvier. Thus, AnkR regulates Pv+ fast-spiking interneuron function by organizing ion channels, CAMs, and PNNs, and linking these to the underlying β1 spectrin-based cytoskeleton.
Collapse
Affiliation(s)
- Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Colleen M Longley
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Lindsay H Teliska
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | | | - Supna Nair
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, United States
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, United States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| |
Collapse
|
6
|
Stevens SR, Rasband MN. Ankyrins and neurological disease. Curr Opin Neurobiol 2021; 69:51-57. [PMID: 33485190 DOI: 10.1016/j.conb.2021.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Ankyrins are scaffolding proteins widely expressed throughout the nervous system. Ankyrins recruit diverse membrane proteins, including ion channels and cell adhesion molecules, into specialized subcellular membrane domains. These domains are stabilized by ankyrins interacting with the spectrin cytoskeleton. Ankyrin genes are highly associated with a number of neurological disorders, including Alzheimer's disease, schizophrenia, autism spectrum disorders, and bipolar disorder. Here, we discuss ankyrin function and their role in neurological disease. We propose mutations in ankyrins contribute to disease through two primary mechanisms: 1) altered neuronal excitability by disrupting ion channel clustering at key excitable domains, and 2) altered neuronal connectivity via impaired stabilization of membrane proteins.
Collapse
Affiliation(s)
- Sharon R Stevens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Lorenzo DN. Cargo hold and delivery: Ankyrins, spectrins, and their functional patterning of neurons. Cytoskeleton (Hoboken) 2020; 77:129-148. [PMID: 32034889 DOI: 10.1002/cm.21602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
Abstract
The highly polarized, typically very long, and nonmitotic nature of neurons present them with unique challenges in the maintenance of their homeostasis. This architectural complexity serves a rich and tightly controlled set of functions that enables their fast communication with neighboring cells and endows them with exquisite plasticity. The submembrane neuronal cytoskeleton occupies a pivotal position in orchestrating the structural patterning that determines local and long-range subcellular specialization, membrane dynamics, and a wide range of signaling events. At its center is the partnership between ankyrins and spectrins, which self-assemble with both remarkable long-range regularity and micro- and nanoscale specificity to precisely position and stabilize cell adhesion molecules, membrane transporters, ion channels, and other cytoskeletal proteins. To accomplish these generally conserved, but often functionally divergent and spatially diverse, roles these partners use a combinatorial program of a couple of dozens interacting family members, whose code is not fully unraveled. In a departure from their scaffolding roles, ankyrins and spectrins also enable the delivery of material to the plasma membrane by facilitating intracellular transport. Thus, it is unsurprising that deficits in ankyrins and spectrins underlie several neurodevelopmental, neurodegenerative, and psychiatric disorders. Here, I summarize key aspects of the biology of spectrins and ankyrins in the mammalian neuron and provide a snapshot of the latest advances in decoding their roles in the nervous system.
Collapse
Affiliation(s)
- Damaris N Lorenzo
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
TRIM46 Organizes Microtubule Fasciculation in the Axon Initial Segment. J Neurosci 2019; 39:4864-4873. [PMID: 30967428 DOI: 10.1523/jneurosci.3105-18.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022] Open
Abstract
Selective cargo transport into axons and dendrites over the microtubule network is essential for neuron polarization. The axon initial segment (AIS) separates the axon from the somatodendritic compartment and controls the microtubule-dependent transport into the axon. Interestingly, the AIS has a characteristic microtubule organization; it contains bundles of closely spaced microtubules with electron dense cross-bridges, referred to as microtubule fascicles. The microtubule binding protein TRIM46 localizes to the AIS and when overexpressed in non-neuronal cells forms microtubule arrays that closely resemble AIS fascicles in neurons. However, the precise role of TRIM46 in microtubule fasciculation in neurons has not been studied. Here we developed a novel correlative light and electron microscopy approach to study AIS microtubule organization. We show that in cultured rat hippocampal neurons of both sexes, TRIM46 levels steadily increase at the AIS during early neuronal differentiation and at the same time closely spaced microtubules form, whereas the fasciculated microtubules appear at later developmental stages. Moreover, we localized TRIM46 to the electron dense cross-bridges and show that depletion of TRIM46 causes loss of cross-bridges and increased microtubule spacing. These data indicate that TRIM46 has an essential role in organizing microtubule fascicles in the AIS.SIGNIFICANCE STATEMENT The axon initial segment (AIS) is a specialized region at the proximal axon where the action potential is initiated. In addition the AIS separates the axon from the somatodendritic compartment, where it controls protein transport to establish and maintain neuron polarity. Cargo vesicles destined for the axon recognize specialized microtubule tracks that enter the AIS. Interestingly the microtubules entering the AIS form crosslinked bundles, called microtubule fascicules. Recently we found that the microtubule-binding protein TRIM46 localizes to the AIS, where it may organize the AIS microtubules. In the present study we developed a novel correlative light and electron microscopy approach to study the AIS microtubules during neuron development and identified an essential role for TRIM46 in microtubule fasciculation.
Collapse
|
9
|
Gamlin CR, Yu WQ, Wong ROL, Hoon M. Assembly and maintenance of GABAergic and Glycinergic circuits in the mammalian nervous system. Neural Dev 2018; 13:12. [PMID: 29875009 PMCID: PMC5991458 DOI: 10.1186/s13064-018-0109-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/06/2018] [Indexed: 12/19/2022] Open
Abstract
Inhibition in the central nervous systems (CNS) is mediated by two neurotransmitters: gamma-aminobutyric acid (GABA) and glycine. Inhibitory synapses are generally GABAergic or glycinergic, although there are synapses that co-release both neurotransmitter types. Compared to excitatory circuits, much less is known about the cellular and molecular mechanisms that regulate synaptic partner selection and wiring patterns of inhibitory circuits. Recent work, however, has begun to fill this gap in knowledge, providing deeper insight into whether GABAergic and glycinergic circuit assembly and maintenance rely on common or distinct mechanisms. Here we summarize and contrast the developmental mechanisms that regulate the selection of synaptic partners, and that promote the formation, refinement, maturation and maintenance of GABAergic and glycinergic synapses and their respective wiring patterns. We highlight how some parts of the CNS demonstrate developmental changes in the type of inhibitory transmitter or receptor composition at their inhibitory synapses. We also consider how perturbation of the development or maintenance of one type of inhibitory connection affects other inhibitory synapse types in the same circuit. Mechanistic insight into the development and maintenance of GABAergic and glycinergic inputs, and inputs that co-release both these neurotransmitters could help formulate comprehensive therapeutic strategies for treating disorders of synaptic inhibition.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Mrinalini Hoon
- Department of Biological Structure, University of Washington, Seattle, WA, USA. .,Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
10
|
|
11
|
Xu M, Cooper EC. An Ankyrin-G N-terminal Gate and Protein Kinase CK2 Dually Regulate Binding of Voltage-gated Sodium and KCNQ2/3 Potassium Channels. J Biol Chem 2015; 290:16619-32. [PMID: 25998125 DOI: 10.1074/jbc.m115.638932] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/06/2022] Open
Abstract
In many mammalian neurons, fidelity and robustness of action potential generation and conduction depends on the co-localization of voltage-gated sodium (Nav) and KCNQ2/3 potassium channel conductance at the distal axon initial segment (AIS) and nodes of Ranvier in a ratio of ∼40 to 1. Analogous "anchor" peptides within intracellular domains of vertebrate KCNQ2, KCNQ3, and Nav channel α-subunits bind Ankyrin-G (AnkG), thereby mediating concentration of those channels at AISs and nodes of Ranvier. Here, we show that the channel anchors bind at overlapping but distinct sites near the AnkG N terminus. In pulldown assays, the rank order of AnkG binding strength is Nav1.2 ≫ KCNQ3 > KCNQ2. Phosphorylation of KCNQ2 and KCNQ3 anchor domains by protein kinase CK2 (CK2) augments binding, as previously shown for Nav1.2. An AnkG fragment comprising ankyrin repeats 1 through 7 (R1-7) binds phosphorylated Nav or KCNQ anchors robustly. However, mutational analysis of R1-7 reveals differences in binding mechanisms. A smaller fragment, R1-6, exhibits much-diminished KCNQ3 binding but binds Nav1.2 well. Two lysine residues at the tip of repeat 2-3 β-hairpin (residues 105-106) are critical for Nav1.2 but not KCNQ3 channel binding. Another dibasic motif (residues Arg-47, Arg-50) in the repeat 1 front α-helix is crucial for KCNQ2/3 but not Nav1.2 binding. AnkG's alternatively spliced N terminus selectively gates access to those sites, blocking KCNQ but not Nav channel binding. These findings suggest that the 40:1 Nav:KCNQ channel conductance ratio at the distal AIS and nodes arises from the relative strength of binding to AnkG.
Collapse
Affiliation(s)
- Mingxuan Xu
- From the Molecular Neuropharmacology Laboratory, Department of Neurology,
| | - Edward C Cooper
- From the Molecular Neuropharmacology Laboratory, Department of Neurology, Department of Neuroscience, and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
12
|
Kline CF, Mohler PJ. Weighing in on molecular anchors: the role of ankyrin polypeptides in human arrhythmia. Expert Rev Cardiovasc Ther 2014; 4:477-85. [PMID: 16918266 DOI: 10.1586/14779072.4.4.477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Loss-of-function gene variants which affect the biophysical properties of ion channel proteins have long been associated with the destabilization of cardiac electrical activity, leading to human arrhythmia and sudden cardiac death. However, recent studies have also demonstrated the importance of ion channel/transporter-anchoring molecules for normal cardiac function. Ankyrins are a family of membrane adaptor proteins whose role in metazoan physiology has been elucidated over the last quarter of a century, but with great strides taken in the last half decade with regard to cardiac cell physiology. The association of dysfunction in ankyrin-based cellular pathways with abnormal human cardiac function represents a surprising turn in the genetics of arrhythmias and sudden cardiac death, demonstrating an exciting new player in the field of 'channelopathies'.
Collapse
Affiliation(s)
- Crystal F Kline
- Vanderbilt University School of Medicine, Graduate Program in Pathology, Nashville, TN 37232, USA.
| | | |
Collapse
|
13
|
Barry J, Gu Y, Jukkola P, O'Neill B, Gu H, Mohler PJ, Rajamani KT, Gu C. Ankyrin-G directly binds to kinesin-1 to transport voltage-gated Na+ channels into axons. Dev Cell 2014; 28:117-31. [PMID: 24412576 DOI: 10.1016/j.devcel.2013.11.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 10/14/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022]
Abstract
Action potentials (APs) propagating along axons require the activation of voltage-gated Na(+) (Nav) channels. How Nav channels are transported into axons is unknown. We show that KIF5/kinesin-1 directly binds to ankyrin-G (AnkG) to transport Nav channels into axons. KIF5 and Nav1.2 channels bind to multiple sites in the AnkG N-terminal domain that contains 24 ankyrin repeats. Disrupting AnkG-KIF5 binding with small interfering RNA or dominant-negative constructs markedly reduced Nav channel levels at the axon initial segment (AIS) and along entire axons, thereby decreasing AP firing. Live-cell imaging showed that fluorescently tagged AnkG or Nav1.2 cotransported with KIF5 along axons. Deleting AnkG in vivo or virus-mediated expression of a dominant-negative KIF5 construct specifically decreased the axonal level of Nav, but not Kv1.2, channels in mouse cerebellum. These results indicate that AnkG functions as an adaptor to link Nav channels to KIF5 during axonal transport before anchoring them to the AIS and nodes of Ranvier.
Collapse
Affiliation(s)
- Joshua Barry
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Yuanzheng Gu
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Peter Jukkola
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Brian O'Neill
- Department of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Howard Gu
- Department of Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Departments of Internal Medicine and Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Chen Gu
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Bennett V, Lorenzo DN. Spectrin- and Ankyrin-Based Membrane Domains and the Evolution of Vertebrates. CURRENT TOPICS IN MEMBRANES 2013; 72:1-37. [DOI: 10.1016/b978-0-12-417027-8.00001-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Reeves TM, Greer JE, Vanderveer AS, Phillips LL. Proteolysis of submembrane cytoskeletal proteins ankyrin-G and αII-spectrin following diffuse brain injury: a role in white matter vulnerability at Nodes of Ranvier. Brain Pathol 2010; 20:1055-68. [PMID: 20557305 PMCID: PMC3265329 DOI: 10.1111/j.1750-3639.2010.00412.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 05/18/2010] [Indexed: 12/29/2022] Open
Abstract
A high membrane-to-cytoplasm ratio makes axons particularly vulnerable to traumatic injury. Posttraumatic shifts in ionic homeostasis promote spectrin cleavage, disrupt ankyrin linkages and destabilize axolemmal proteins. This study contrasted ankyrin-G and αII-spectrin degradation in cortex and corpus callosum following diffuse axonal injury produced by fluid percussion insult. Ankyrin-G lysis occurred preferentially in white matter, with acute elevation of all fragments and long-term reduction of a low kD form. Calpain-generated αII-spectrin fragments increased in both regions. Caspase-3 lysis of αII-spectrin showed a small, acute rise in cortex but was absent in callosum. White matter displayed nodal damage, with horseradish peroxidase permeability into the submyelin space. Ankyrin-G-binding protein neurofascin and spectrin-binding protein ankyrin-B showed acute alterations in expression. These results support ankyrin-G vulnerability in white matter following trauma and suggest that ankyrin-G and αII-spectrin proteolysis disrupts Node of Ranvier integrity. The time course of such changes were comparable to previously observed functional deficits in callosal fibers.
Collapse
Affiliation(s)
- Thomas M Reeves
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA, USA.
| | | | | | | |
Collapse
|
16
|
Li J, Kline CF, Hund TJ, Anderson ME, Mohler PJ. Ankyrin-B regulates Kir6.2 membrane expression and function in heart. J Biol Chem 2010; 285:28723-30. [PMID: 20610380 DOI: 10.1074/jbc.m110.147868] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ankyrin polypeptides are critical for normal membrane protein expression in diverse cell types, including neurons, myocytes, epithelia, and erythrocytes. Ankyrin dysfunction results in defects in membrane expression of ankyrin-binding partners (including ion channels, transporters, and cell adhesion molecules), resulting in aberrant cellular function and disease. Here, we identify a new role for ankyrin-B in cardiac cell biology. We demonstrate that cardiac sarcolemmal K(ATP) channels directly associate with ankyrin-B in heart via the K(ATP) channel alpha-subunit Kir6.2. We demonstrate that primary myocytes lacking ankyrin-B display defects in Kir6.2 protein expression, membrane expression, and function. Moreover, we demonstrate a secondary role for ankyrin-B in regulating K(ATP) channel gating. Finally, we demonstrate that ankyrin-B forms a membrane complex with K(ATP) channels and the cardiac Na/K-ATPase, a second key membrane transporter involved in the cardiac ischemia response. Collectively, our new findings define a new role for cardiac ankyrin polypeptides in regulation of ion channel membrane expression in heart.
Collapse
Affiliation(s)
- Jingdong Li
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
17
|
Functional diversity of ankyrin repeats in microbial proteins. Trends Microbiol 2009; 18:132-9. [PMID: 19962898 DOI: 10.1016/j.tim.2009.11.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 10/09/2009] [Accepted: 11/11/2009] [Indexed: 12/18/2022]
Abstract
The ankyrin repeat (ANK) is the most common protein-protein interaction motif in nature, and is predominantly found in eukaryotic proteins. Genome sequencing of various pathogenic or symbiotic bacteria and eukaryotic viruses has identified numerous genes encoding ANK-containing proteins that are proposed to have been acquired from eukaryotes by horizontal gene transfer. However, the recent discovery of additional ANK-containing proteins encoded in the genomes of archaea and free-living bacteria suggests either a more ancient origin of the ANK motif or multiple convergent evolution events. Many bacterial pathogens employ various types of secretion systems to deliver ANK-containing proteins into eukaryotic cells, where they mimic or manipulate various host functions. Studying the molecular and biochemical functions of this family of proteins will enhance our understanding of important host-microbe interactions.
Collapse
|
18
|
Ankyrin-based patterning of membrane microdomains: new insights into a novel class of cardiovascular diseases. J Cardiovasc Pharmacol 2009; 54:106-15. [PMID: 19636256 DOI: 10.1097/fjc.0b013e3181b2b6ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The organization of membrane-spanning proteins within discrete microdomains is critical for their physiologic function. This is especially important in the heart, where ion transporter and force-transducing microdomains are responsible for excitation-contraction coupling, anisotropic depolarization, and mechanotransduction. The following review will discuss recent advances in our understanding of the patterning of ion channel and force-transmitting membrane microdomains in cardiomyocytes, focusing on the T-tubule and intercalated disc.
Collapse
|
19
|
Hashemi SM, Hund TJ, Mohler PJ. Cardiac ankyrins in health and disease. J Mol Cell Cardiol 2009; 47:203-9. [PMID: 19394342 DOI: 10.1016/j.yjmcc.2009.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/10/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
Ankyrins are critical components of ion channel and transporter signaling complexes in the cardiovascular system. Over the past 5 years, ankyrin dysfunction has been linked with abnormal ion channel and transporter membrane organization and fatal human arrhythmias. Loss-of-function variants in the ankyrin-B gene (ANK2) cause "ankyrin-B syndrome" (previously called type 4 long QT syndrome), manifested by a complex cardiac phenotype including ventricular arrhythmias and sudden cardiac death. More recently, dysfunction in the ankyrin-B-based targeting pathway has been linked with a highly penetrant and severe form of human sinus node disease. Ankyrin-G (a second ankyrin gene product) is required for normal expression, membrane localization, and biophysical function of the primary cardiac voltage-gated sodium channel, Na(v)1.5. Loss of the ankyrin-G/Na(v)1.5 interaction is associated with human cardiac arrhythmia (Brugada syndrome). Finally, in the past year ankyrin dysfunction has been associated with more common arrhythmia and cardiovascular disease phenotypes. Specifically, large animal studies reveal striking remodeling of ankyrin-B and associated proteins following myocardial infarction. Additionally, the ANK2 locus has been linked with QT(c) interval variability in the general human population. Together, these findings identify a host of unanticipated and exciting roles for ankyrin polypeptides in cardiac function. More broadly, these findings illustrate the importance of local membrane organization for normal cardiac physiology.
Collapse
Affiliation(s)
- Seyed M Hashemi
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | |
Collapse
|
20
|
Cunha SR, Le Scouarnec S, Schott JJ, Mohler PJ. Exon organization and novel alternative splicing of the human ANK2 gene: implications for cardiac function and human cardiac disease. J Mol Cell Cardiol 2008; 45:724-34. [PMID: 18790697 DOI: 10.1016/j.yjmcc.2008.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/05/2008] [Accepted: 08/12/2008] [Indexed: 01/14/2023]
Abstract
Recent findings illustrate a critical role for ankyrin-B function in normal cardiovascular physiology. Specifically, decreased expression of ankyrin-B in mice or human mutations in the ankyrin-B gene (ANK2) results in potentially fatal cardiac arrhythmias. Despite the clear role of ankyrin-B in heart, the mechanisms underlying transcriptional regulation of ANK2 are unknown. In fact, to date there is no description of ANK2 genomic organization. The aims of this study were to provide a comprehensive description of the ANK2 gene and to evaluate the relative expression of alternative splicing events associated with ANK2 transcription in heart. Using reverse-transcriptase PCR on mRNA isolated from human hearts, we identify seven new exons associated with the ANK2 gene including an alternative first exon located approximately 145 kb upstream of the previously-identified first exon. In addition, we identify over thirty alternative splicing events associated with ANK2 mRNA transcripts. Using real-time PCR and exon boundary-spanning primers to selectively amplify these splice variants, we demonstrate that these variants are expressed at varying levels in human heart. Finally, ankyrin-B immunoblot analysis demonstrates the expression of a heterogeneous population of ankyrin-B polypeptides in heart. ANK2 consists of 53 exons that span approximately 560 kb on human chromosome 4. Additionally, our data demonstrates that ANK2 is subject to complex transcriptional regulation that likely results in differential ankyrin-B polypeptide function.
Collapse
Affiliation(s)
- Shane R Cunha
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
21
|
Čokić VP, Schechter AN. Chapter 7 Effects of Nitric Oxide on Red Blood Cell Development and Phenotype. Curr Top Dev Biol 2008; 82:169-215. [DOI: 10.1016/s0070-2153(07)00007-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Werbeck ND, Itzhaki LS. Probing a moving target with a plastic unfolding intermediate of an ankyrin-repeat protein. Proc Natl Acad Sci U S A 2007; 104:7863-8. [PMID: 17483458 PMCID: PMC1876538 DOI: 10.1073/pnas.0610315104] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeat proteins are composed of tandem arrays of 30- to 40-residue structural motifs and are characterized by short-range interactions between residues close in sequence. Here we have investigated the equilibrium unfolding of D34, a 426-residue fragment of ankyrinR that comprises 12 ankyrin repeats. We show that D34 unfolds via an intermediate in which the C-terminal half of the protein is structured and the N-terminal half is unstructured. Surprisingly, however, we find that we change the unfolding process when we attempt to probe it. Single-site, moderately destabilizing mutations at the C terminus result in different intermediates dominating. The closer to the C terminus the mutation, the fewer repeats are structured in the intermediate; thus, structure in the intermediate frays from the site of the mutation. This behavior contrasts with the robust unfolding of globular proteins in which mutations can destabilize an intermediate but do not cause a different intermediate to be populated. We suggest that, for large repeat arrays, the energy landscape is very rough, with many different low-energy species containing varying numbers of folded modules so the species that dominates can be altered easily by single, conservative mutations. The multiplicity of partly folded states populated in the equilibrium unfolding of D34 is also mirrored by the kinetic folding mechanism of ankyrin-repeat proteins in which we have observed that parallel pathways are accessible from different initiation sites in the structure.
Collapse
Affiliation(s)
- Nicolas D. Werbeck
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Laura S. Itzhaki
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Edelman EJ, Maksimova Y, Duru F, Altay C, Gallagher PG. A complex splicing defect associated with homozygous ankyrin-deficient hereditary spherocytosis. Blood 2007; 109:5491-3. [PMID: 17327413 PMCID: PMC1890827 DOI: 10.1182/blood-2006-09-046573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Defects in erythrocyte ankyrin are the most common cause of typical, dominant hereditary spherocytosis (HS). Detection of ankyrin gene mutations has been complicated by allelic heterogeneity, large gene size, frequent de novo mutations, and associated mRNA instability. Using denaturing high-performance liquid chromatography (DHPLC)-based mutation detection, a mutation in the splice acceptor of exon 17 was discovered in a Turkish family. Reticulocyte RNA and functional minigene splicing assays in heterologous cells revealed that this mutation was associated with a complex pattern of aberrant splicing, suggesting that removal of intron 16 is important for ordered ankyrin mRNA splicing. As predicted by clinical, laboratory, and biochemical studies, the parents were heterozygous and the proband was homozygous for this mutation. These data indicate that DHPLC offers a highly sensitive, economic, and rapid method for mutation detection and, unlike previously suggested, homozygosity for a mutation associated with dominant ankyrin-linked HS may be compatible with life.
Collapse
Affiliation(s)
- E Jennifer Edelman
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520-8064, USA
| | | | | | | | | |
Collapse
|
24
|
Boiko T, Vakulenko M, Ewers H, Yap CC, Norden C, Winckler B. Ankyrin-dependent and -independent mechanisms orchestrate axonal compartmentalization of L1 family members neurofascin and L1/neuron-glia cell adhesion molecule. J Neurosci 2007; 27:590-603. [PMID: 17234591 PMCID: PMC6672792 DOI: 10.1523/jneurosci.4302-06.2007] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Axonal initial segments (IS) and nodes of Ranvier are functionally important membrane subdomains in which the clustering of electrogenic channels enables action potential initiation and propagation. In addition, the initial segment contributes to neuronal polarity by serving as a diffusion barrier. To study the mechanisms of axonal compartmentalization, we focused on two L1 family of cell adhesion molecules (L1-CAMs) [L1/neuron-glia cell adhesion molecule (L1/NgCAM) and neurofascin (NF)] and two neuronal ankyrins (ankB and ankG). NF and ankG accumulate specifically at the initial segment, whereas L1/NgCAM and ankB are expressed along the entire lengths of axons. We find that L1/NgCAM and NF show distinct modes of steady-state accumulation during axon outgrowth in cultured hippocampal neurons. Despite their different steady-state localizations, both L1/NgCAM and NF show slow diffusion and low detergent extractability specifically in the initial segment but fast diffusion and high detergent extractability in the distal axon. We propose that L1-CAMs do not strongly bind ankB in the distal axon because of spatial regulation of ankyrin affinity by phosphorylation. NF, conversely, is initially enriched in an ankyrin-independent manner in the axon generally and accumulates progressively in the initial segment attributable to preferential binding to ankG. Our results suggest that NF and L1/NgCAM accumulate in the axon by an ankyrin-independent pathway, but retention at the IS requires ankyrin binding.
Collapse
Affiliation(s)
- Tatiana Boiko
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Max Vakulenko
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Helge Ewers
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Chan Choo Yap
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Caren Norden
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
25
|
Kizhatil K, Yoon W, Mohler PJ, Davis LH, Hoffman JA, Bennett V. Ankyrin-G and β2-Spectrin Collaborate in Biogenesis of Lateral Membrane of Human Bronchial Epithelial Cells. J Biol Chem 2007; 282:2029-37. [PMID: 17074766 DOI: 10.1074/jbc.m608921200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ankyrins are a family of adapter proteins required for localization of membrane proteins to diverse specialized membrane domains including axon initial segments, specialized sites at the transverse tubule/sarcoplasmic reticulum in cardiomyocytes, and lateral membrane domains of epithelial cells. Little is currently known regarding the molecular basis for specific roles of different ankyrin isoforms. In this study, we systematically generated alanine mutants of clusters of charged residues in the spectrin-binding domains of both ankyrin-B and -G. The corresponding mutants were evaluated for activity in either restoration of abnormal localization of the inositol trisphosphate receptor in the sarcoplasmic reticulum in mutant mouse cardiomyocytes deficient in ankyrin-B or in prevention of loss of lateral membrane in human bronchial epithelial cells depleted of ankyrin-G by small interfering RNA. Interestingly, ankyrin-B and -G share two homologous sites that result in loss of function in both systems, suggesting that common molecular interactions underlie diverse roles of these isoforms. Ankyrins G and B also exhibit differences; mutations affecting spectrin binding had no effect on ankyrin-B function but did abolish activity of ankyrin-G in restoring lateral membrane biogenesis. Depletion of beta(2)-spectrin by small interfering RNA phenocopied depletion of ankyrin-G and resulted in a failure to form new lateral membrane in interphase and mitotic cells. These results demonstrate that ankyrin-G and beta(2)-spectrin are functional partners in biogenesis of the lateral membrane of epithelial cells.
Collapse
Affiliation(s)
- Krishnakumar Kizhatil
- Howard Hughes Medical Institute and Departments of Cell Biology, Biochemistry, and Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The coordinate activity of ion channels and transporters in cardiac muscle is critical for normal excitation-contraction coupling and cardiac rhythm. In the past decade, human gene variants, which alter ion channel biophysical properties, have been linked with fatal cardiac arrhythmias. Ankyrins are a family of "adaptor" proteins, which play critical roles in the proper expression and membrane localization of ion channels and transporters in excitable and nonexcitable cells. Recent findings demonstrate a new paradigm for human cardiac arrhythmia based not on gene mutations that affect channel biophysical properties, but instead on mutations that affect ion channel/transporter localization at excitable membranes in heart. Human ANK2 mutations are associated with "ankyrin-B syndrome" (an atypical arrhythmia syndrome with risk of sudden cardiac death). Human gene mutations, which affect ankyrin-G-based pathways for voltage-gated Na(v) channel localization, are associated with Brugada syndrome, a second potentially fatal arrhythmia. Together, these data demonstrate the importance of the molecular events involved in the cellular organization of membrane domains in excitable cells. Moreover, these data define an exciting new field of cardiac "channelopathies" due to defects in proper channel targeting/localization.
Collapse
Affiliation(s)
- Peter J Mohler
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA.
| |
Collapse
|
27
|
Nicolas V, Mouro-Chanteloup I, Lopez C, Gane P, Gimm A, Mohandas N, Cartron JP, Le Van Kim C, Colin Y. Functional interaction between Rh proteins and the spectrin-based skeleton in erythroid and epithelial cells. Transfus Clin Biol 2006; 13:23-8. [PMID: 16580865 DOI: 10.1016/j.tracli.2006.02.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We summarize the different experimental approaches which provide evidence that direct interaction of Rh and RhAG to ankyrin-R constitutes, together with the AE-1 (Band 3)-ankyrin-protein 4.2 and GPC-protein 4.1-p55 complexes, another major anchoring site between the red cell membrane bilayer and the underlying spectrin-based skeleton. The observations that some residues of the ankyrin binding site are mutated in Rh and RhAG proteins from some weak D and Rh(null) variants, respectively, suggest that the Rh-RhAG/ankyrin-R interaction plays a crucial role in the biosynthesis and/or the stability of the Rh complex in the red cell membrane. Similarly, binding to ankyrin G is required for cell surface expression of the non-erythroid member of the Rh protein family, RhBG, at the basolateral membrane domain of polarized epithelial cells. The next challenge will be to determine whether binding to the membrane skeleton may be critical for the emerging ammonium transport function of Rh proteins in erythroid and non-erythroid cells.
Collapse
|
28
|
Mohler PJ, Davis JQ, Bennett V. Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PLoS Biol 2005; 3:e423. [PMID: 16292983 PMCID: PMC1287507 DOI: 10.1371/journal.pbio.0030423] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 10/12/2005] [Indexed: 11/19/2022] Open
Abstract
We report identification of an ankyrin-B-based macromolecular complex of Na/K ATPase (alpha 1 and alpha 2 isoforms), Na/Ca exchanger 1, and InsP3 receptor that is localized in cardiomyocyte T-tubules in discrete microdomains distinct from classic dihydropyridine receptor/ryanodine receptor "dyads." E1425G mutation of ankyrin-B, which causes human cardiac arrhythmia, also blocks binding of ankyrin-B to all three components of the complex. The ankyrin-B complex is markedly reduced in adult ankyrin-B(+/-) cardiomyocytes, which may explain elevated [Ca2+]i transients in these cells. Thus, loss of the ankyrin-B complex provides a molecular basis for cardiac arrhythmia in humans and mice. T-tubule-associated ankyrin-B, Na/Ca exchanger, and Na/K ATPase are not present in skeletal muscle, where ankyrin-B is expressed at 10-fold lower levels than in heart. Ankyrin-B also is not abundantly expressed in smooth muscle. We propose that the ankyrin-B-based complex is a specialized adaptation of cardiomyocytes with a role for cytosolic Ca2+ modulation.
Collapse
Affiliation(s)
- Peter J Mohler
- 1Department of Pathology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jonathan Q Davis
- 2Howard Hughes Medical Institute and Departments of Cell Biology, Biochemistry, and Neurosciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vann Bennett
- 2Howard Hughes Medical Institute and Departments of Cell Biology, Biochemistry, and Neurosciences, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
29
|
Santos Duarte ADS, Traina F, Favaro PMB, Bassères DS, de Carvalho IC, Medina SDS, Costa FF, Saad STO. Characterisation of a new splice variant of MASK-BP3(ARF) and MASK human genes, and their expression patterns during haematopoietic cell differentiation. Gene 2005; 363:113-22. [PMID: 16297570 DOI: 10.1016/j.gene.2005.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 01/05/2005] [Accepted: 08/11/2005] [Indexed: 11/19/2022]
Abstract
In this study we report the characterisation of a new splice variant, here denominated splice variant 4 (accession number AF258557) of the human Multiple Ankyrin repeats Single KH domain (hMASK) (accession number AF521882) and the hMASK-4E-Binding Protein 3 Alternative Reading Frame (hMASK-BP3(ARF)) (accession number AF521883), containing a number of ANK-repeat motifs. Ankyrin (ANK) repeat-containing proteins carry out a wide variety of biological activities and are involved in processes, such as cell differentiation and transcriptional regulation. The present study reports the computer analysis of these splice variant cDNAs and their broad mRNA expression in different normal human tissues and cancer cell lines. An upregulation of the splice variant mRNAs expression was observed after HL-60 and erythroblast differentiation. The upregulation of splice variant 4 mRNA was considerably higher than those of the other variants, during erythroid differentiation.
Collapse
|
30
|
Mohler PJ, Bennett V. Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting. Curr Opin Cardiol 2005; 20:189-93. [PMID: 15861006 DOI: 10.1097/01.hco.0000160372.95116.3e] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review addresses a new mechanism for arrhythmia due to abnormal cellular localization of membrane ion channels and transporters. The focus is on ankyrins, a family of proteins that localize diverse membrane ion channels and transporters, and recent evidence that mutations affecting functions of ankyrins result in cardiac arrhythmia. RECENT FINDINGS A loss-of-function mutation of ankyrin-B in humans and a null mutation in mice result in a dominantly-inherited fatal cardiac arrhythmia initially classified as type 4 long QT syndrome. Characterization of additional probands suggests ankyrin-B mutations cause a new cardiac arrhythmia syndrome associated with sinus node dysfunction that is distinct from long QT syndrome. Ankyrin-B mutation results in elevated calcium transients in cardiomyocytes accompanied by loss of cellular targeting of Na/K ATPase, Na/Ca exchanger, and InsP3 receptor (all ankyrin-binding proteins) to cardiomyocyte membrane domains. The principal voltage-gated Na channel in heart, Nav1.5, is directly associated with ankyrin-G, which is encoded by a distinct gene from ankyrin-B. Mutation of Nav1.5 causing loss of binding to ankyrin-G results in Brugada syndrome and loss of targeting of Nav1.5 to the cell surface of cardiomyocytes. SUMMARY Ankyrin-B and ankyrin-G are recently recognized constituents of the heart that target diverse ion channels/pumps/transporters to physiologic sites of action in cardiomyocytes. Mutations of ankyrin-B cause a newly defined cardiac arrhythmia syndrome associated with abnormal calcium homeostasis in a mouse model. Ankyrin-G associates with the principal voltage-gated Na channel in the heart, and loss of this interaction due to mutation of Nav1.5 results in Brugada syndrome.
Collapse
Affiliation(s)
- Peter J Mohler
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
31
|
Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 2005; 13:1435-48. [PMID: 15152081 PMCID: PMC2279977 DOI: 10.1110/ps.03554604] [Citation(s) in RCA: 638] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ankyrin repeat is one of the most frequently observed amino acid motifs in protein databases. This protein-protein interaction module is involved in a diverse set of cellular functions, and consequently, defects in ankyrin repeat proteins have been found in a number of human diseases. Recent biophysical, crystallographic, and NMR studies have been used to measure the stability and define the various topological features of this motif in an effort to understand the structural basis of ankyrin repeat-mediated protein-protein interactions. Characterization of the folding and assembly pathways suggests that ankyrin repeat domains generally undergo a two-state folding transition despite their modular structure. Also, the large number of available sequences has allowed the ankyrin repeat to be used as a template for consensus-based protein design. Such projects have been successful in revealing positions responsible for structure and function in the ankyrin repeat as well as creating a potential universal scaffold for molecular recognition.
Collapse
Affiliation(s)
- Leila K Mosavi
- MC3305, Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06032, USA
| | | | | | | |
Collapse
|
32
|
Lopez C, Métral S, Eladari D, Drevensek S, Gane P, Chambrey R, Bennett V, Cartron JP, Le Van Kim C, Colin Y. The ammonium transporter RhBG: requirement of a tyrosine-based signal and ankyrin-G for basolateral targeting and membrane anchorage in polarized kidney epithelial cells. J Biol Chem 2004; 280:8221-8. [PMID: 15611082 DOI: 10.1074/jbc.m413351200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhBG is a nonerythroid member of the Rhesus (Rh) protein family, mainly expressed in the kidney and belonging to the Amt/Mep/Rh superfamily of ammonium transporters. The epithelial expression of renal RhBG is restricted to the basolateral membrane of the connecting tubule and collecting duct cells. We report here that sorting and anchoring of RhBG to the basolateral plasma membrane require a cis-tyrosine-based signal and an association with ankyrin-G, respectively. First, we show by using a model of polarized epithelial Madin-Darby canine kidney cells that the targeting of transfected RhBG depends on a YED motif localized in the cytoplasmic C terminus of the protein. Second, we reveal by yeast two-hybrid analysis a direct interaction between an FLD determinant in the cytoplasmic C-terminal tail of RhBG and the third and fourth repeat domains of ankyrin-G. The biological relevance of this interaction is supported by two observations. (i) RhBG and ankyrin-G were colocalized in vivo in the basolateral domain of epithelial cells from the distal nephron by immunohistochemistry on kidney sections. (ii) The disruption of the FLD-binding motif impaired the membrane expression of RhBG leading to retention on cytoplasmic structures in transfected Madin-Darby canine kidney cells. Mutation of both targeting signal and ankyrin-G-binding site resulted in the same cell surface but nonpolarized expression pattern as observed for the protein mutated on the targeting signal alone, suggesting the existence of a close relationship between sorting and anchoring of RhBG to the basolateral domain of epithelial cells.
Collapse
Affiliation(s)
- Claude Lopez
- INSERM, U665, Institut National de la Transfusion Sanguine, Paris F-75015, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ango F, di Cristo G, Higashiyama H, Bennett V, Wu P, Huang ZJ. Ankyrin-Based Subcellular Gradient of Neurofascin, an Immunoglobulin Family Protein, Directs GABAergic Innervation at Purkinje Axon Initial Segment. Cell 2004; 119:257-72. [PMID: 15479642 DOI: 10.1016/j.cell.2004.10.004] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 08/03/2004] [Accepted: 09/29/2004] [Indexed: 11/17/2022]
Abstract
Distinct classes of GABAergic synapses are segregated into subcellular domains (i.e., dendrite, soma, and axon initial segment-AIS), thereby differentially regulating the input, integration, and output of principal neurons. In cerebellum, for example, basket interneurons make exquisitely precise "pinceau synapses" on AIS of Purkinje neurons, but the underlying mechanism is unknown. Using BAC transgenic reporter mice, we found that basket axons always contacted Purkinje soma before innervating AIS. This synapse targeting process followed the establishment of a subcellular gradient of neurofascin186 (NF186), an L1 family immunoglobulin cell adhesion molecule (L1CAM), along the Purkinje AIS-soma axis. This gradient was dependent on ankyrinG, an AIS-restricted membrane adaptor protein that recruits NF186. In the absence of neurofascin gradient, basket axons lost directional growth along Purkinje neurons and precisely followed NF186 to ectopic locations. Disruption of NF186-ankyrinG interactions at AIS reduced pinceau synapse formation. These results implicate ankyrin-based localization of L1CAMs in subcellular organization of GABAergic synapses.
Collapse
Affiliation(s)
- Fabrice Ango
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | | | |
Collapse
|
34
|
Mohler PJ, Davis JQ, Davis LH, Hoffman JA, Michaely P, Bennett V. Inositol 1,4,5-Trisphosphate Receptor Localization and Stability in Neonatal Cardiomyocytes Requires Interaction with Ankyrin-B. J Biol Chem 2004; 279:12980-7. [PMID: 14722080 DOI: 10.1074/jbc.m313979200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms required for inositol 1,4,5-trisphosphate receptor (InsP(3)R) targeting to specialized endoplasmic reticulum membrane domains are unknown. We report here a direct, high affinity interaction between InsP(3)R and ankyrin-B and demonstrate that this association is critical for InsP(3)R post-translational stability and localization in cultures of neonatal cardiomyocytes. Recombinant ankyrin-B membrane-binding domain directly interacts with purified cerebellar InsP(3)R (K(d) = 2 nm). 220-kDa ankyrin-B co-immunoprecipitates with InsP(3)R in tissue extracts from brain, heart, and lung. Alanine-scanning mutagenesis of the ankyrin-B ANK (ankyrin repeat) repeat beta-hairpin loop tips revealed that consecutive ANK repeat beta-hairpin loop tips (repeats 22-24) are required for InsP(3)R interaction, thus providing the first detailed evidence of how ankyrin polypeptides associate with membrane proteins. Pulse-chase biosynthesis experiments demonstrate that reduction or loss of ankyrin-B in ankyrin-B (+/-) or ankyrin-B (-/-) neonatal cardiomyocytes leads to approximately 3-fold reduction in half-life of newly synthesized InsP(3)R. Furthermore, interactions with ankyrin-B are required for InsP(3)R stability as abnormal InsP(3)R phenotypes, including mis-localization, and reduced half-life in ankyrin-B (+/-) cardiomyocytes can be rescued by green fluorescent protein (GFP)-220-kDa ankyrin-B but not by GFP-220-kDa ankyrin-B mutants, which do not associate with InsP(3)R. These new results provide the first physiological evidence of a molecular partner required for early post-translational stability of InsP(3)R.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Ankyrins/metabolism
- Brain/embryology
- Calcium Channels/biosynthesis
- Cattle
- Cell Line
- Cell Membrane/metabolism
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/metabolism
- Green Fluorescent Proteins
- Humans
- Inositol 1,4,5-Trisphosphate Receptors
- Kinetics
- Luminescent Proteins/metabolism
- Mice
- Microscopy, Fluorescence
- Models, Molecular
- Mutagenesis
- Mutation
- Myocytes, Cardiac/cytology
- Phenotype
- Precipitin Tests
- Protein Binding
- Protein Processing, Post-Translational
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Recombinant Proteins/chemistry
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- Peter J Mohler
- Howard Hughes Medical Institute and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Nicolas V, Le Van Kim C, Gane P, Birkenmeier C, Cartron JP, Colin Y, Mouro-Chanteloup I. Rh-RhAG/ankyrin-R, a new interaction site between the membrane bilayer and the red cell skeleton, is impaired by Rh(null)-associated mutation. J Biol Chem 2003; 278:25526-33. [PMID: 12719424 DOI: 10.1074/jbc.m302816200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies suggest that the Rh complex represents a major interaction site between the membrane lipid bilayer and the red cell skeleton, but little is known about the molecular basis of this interaction. We report here that ankyrin-R is capable of interacting directly with the C-terminal cytoplasmic domain of Rh and RhAG polypeptides. We first show that the primary defect of ankyrin-R in normoblastosis (nb/nb) spherocytosis mutant mice is associated with a sharp reduction of RhAG and Rh polypeptides. Secondly, our flow cytometric analysis of the Triton X-100 extractability of recombinant fusion proteins expressed in erythroleukemic cell lines suggests that the C-terminal cytoplasmic domains of Rh and RhAG are sufficient to mediate interaction with the erythroid membrane skeleton. Using the yeast two-hybrid system, we demonstrate a direct interaction between the cytoplasmic tails of Rh and RhAG and the second repeat domain (D2) of ankyrin-R. This finding is supported by the demonstration that the substitution of Asp-399 in the cytoplasmic tail of RhAG, a mutation associated with the deficiency of the Rh complex in one Rhnull patient, totally impaired interaction with domain D2 of ankyrin-R. These results identify the Rh/RhAG-ankyrin complex as a new interaction site between the red cell membrane and the spectrin-based skeleton, the disruption of which might result in the stomato-spherocytosis typical of Rhnull red cells.
Collapse
Affiliation(s)
- Virginie Nicolas
- INSERM U76, Institut National de la Transfusion Sanguine, 6 Rue Alexandre Cabanel, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Michaely P, Tomchick DR, Machius M, Anderson RG. Crystal structure of a 12 ANK repeat stack from human ankyrinR. EMBO J 2002; 21:6387-96. [PMID: 12456646 PMCID: PMC136955 DOI: 10.1093/emboj/cdf651] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ankyrins are multifunctional adaptors that link specific proteins to the membrane-associated, spectrin- actin cytoskeleton. The N-terminal, 'membrane-binding' domain of ankyrins contains 24 ANK repeats and mediates most binding activities. Repeats 13-24 are especially active, with known sites of interaction for the Na/K ATPase, Cl/HCO(3) anion exchanger, voltage-gated sodium channel, clathrin heavy chain and L1 family cell adhesion molecules. Here we report the crystal structure of a human ankyrinR construct containing ANK repeats 13-24 and a portion of the spectrin-binding domain. The ANK repeats are observed to form a contiguous spiral stack with which the spectrin-binding domain fragment associates as an extended strand. The structural information has been used to construct models of all 24 repeats of the membrane-binding domain as well as the interactions of the repeats with the Cl/HCO(3) anion exchanger and clathrin. These models, together with available binding studies, suggest that ion transporters such as the anion exchanger associate in a large central cavity formed by the ANK repeat spiral, while clathrin and cell adhesion molecules associate with specific regions outside this cavity.
Collapse
Affiliation(s)
- Peter Michaely
- Departments of Cell Biology and
Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235-9039, USA Corresponding author e-mail:
| | - Diana R. Tomchick
- Departments of Cell Biology and
Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235-9039, USA Corresponding author e-mail:
| | - Mischa Machius
- Departments of Cell Biology and
Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75235-9039, USA Corresponding author e-mail:
| | | |
Collapse
|
37
|
Sbodio JI, Chi NW. Identification of a tankyrase-binding motif shared by IRAP, TAB182, and human TRF1 but not mouse TRF1. NuMA contains this RXXPDG motif and is a novel tankyrase partner. J Biol Chem 2002; 277:31887-92. [PMID: 12080061 DOI: 10.1074/jbc.m203916200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tankyrase-1 and -2 are closely related poly(ADP-ribose) polymerases that use an ankyrin-repeat domain to bind diverse proteins, including TRF (telomere-repeat binding factor)-1, IRAP (insulin-responsive aminopeptidase), and TAB182 (182-kDa tankyrase-binding protein). TRF1 binding allows tankyrase to regulate telomere dynamics in human cells, whereas IRAP binding presumably allows tankyrase to regulate the targeting of IRAP. The mechanism by which tankyrase binds to diverse proteins has not been investigated. Herein we describe a novel RXXPDG motif shared by IRAP, TAB182, and human TRF1 that mediates their binding to tankyrases. Interestingly, mouse TRF1 lacks this motif and thus does not bind either tankyrase-1 or -2. Using the ankyrin domain of tankyrase as a bait in a yeast two-hybrid screen, we also found the RXXPDG motif in six candidate tankyrase partners, including the nuclear/mitotic apparatus protein (NuMA). We verified NuMA as an RXXPDG-mediated partner of tankyrase and suggest that this interaction contributes to the known colocalization of tankyrase and NuMA at mitotic spindle poles.
Collapse
Affiliation(s)
- Juan I Sbodio
- Department of Medicine, University of California San Diego, La Jolla, California 92093-0673, USA
| | | |
Collapse
|
38
|
Bouzidi M, Tricaud N, Giraud P, Kordeli E, Caillol G, Deleuze C, Couraud F, Alcaraz G. Interaction of the Nav1.2a subunit of the voltage-dependent sodium channel with nodal ankyrinG. In vitro mapping of the interacting domains and association in synaptosomes. J Biol Chem 2002; 277:28996-9004. [PMID: 12036953 DOI: 10.1074/jbc.m201760200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependant sodium channels at the axon initial segment and nodes of Ranvier colocalize with the nodal isoforms of ankyrin(G) (Ank(G) node). Using fusion proteins derived from the intracellular regions of the Nav1.2a subunit and the Ank repeat domain of Ank(G) node, we mapped a major interaction site in the intracellular loop separating alpha subunit domains I-II. This 57-amino acid region binds the Ank repeat region with a K(D) value of 69 nm. We identified another site in intracellular loop III-IV, and we mapped both Nav1.2a binding sites on the ankyrin repeat domain to the region encompassing repeats 12-22. The ankyrin repeat domain did not bind the beta(1) and beta(2) subunit cytoplasmic regions. We showed that in cultured embryonic motoneurons, expression of the beta(2) subunit is not necessary for the colocalization of Ank(G) node with functional sodium channels at the axon initial segment. Antibodies directed against the beta(1) subunit intracellular region, alpha subunit loop III-IV, and Ank(G) node could not co-immunoprecipitate Ank(G) node and sodium channels from Triton X-100 solubilisates of rat brain synaptosomes. Co-immunoprecipitation of sodium channel alpha subunit and of the 270- and 480-kDa AnkG node isoforms was obtained when solubilization conditions that maximize membrane protein extraction were used. However, we could not find conditions that allowed for co-immunoprecipitation of ankyrin with the sodium channel beta(1) subunit.
Collapse
Affiliation(s)
- Mourad Bouzidi
- INSERM U 464 Neurobiologie des Canaux Ioniques, Institut Jean Roche, Université de la Méditerranée, 13916 Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Gagelin C, Constantin B, Deprette C, Ludosky MA, Recouvreur M, Cartaud J, Cognard C, Raymond G, Kordeli E. Identification of Ank(G107), a muscle-specific ankyrin-G isoform. J Biol Chem 2002; 277:12978-87. [PMID: 11796721 DOI: 10.1074/jbc.m111299200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that alternatively spliced ankyrins-G, the Ank3 gene products, are expressed in skeletal muscle and localize to the postsynaptic folds and to the sarcoplasmic reticulum. Here we report the molecular cloning, tissue expression, and subcellular targeting of Ank(G107), a novel ankyrin-G from rat skeletal muscle. Ank(G107) lacks the entire ANK repeat domain and contains a 76-residue sequence near the COOH terminus. This sequence shares homology with COOH-terminal sequences of ankyrins-R and ankyrins-B, including the muscle-specific skAnk1. Despite widespread tissue expression of Ank3, the 76-residue sequence is predominantly detected in transcripts of skeletal muscle and heart, including both major 8- and 5.6-kb mRNAs of skeletal muscle. In 15-day-old rat skeletal muscle, antibodies against the 76-residue sequence localized to the sarcolemma and to the postsynaptic membrane and cross-reacted with three endogenous ankyrins-G, including one 130-kDa polypeptide that comigrated with in vitro translated Ank(G107). In adult muscle, these polypeptides appeared significantly decreased, and immunofluorescence labeling was no more detectable. Green fluorescent protein-tagged Ank(G107) transfected in primary cultures of rat myotubes was targeted to the plasma membrane. Deletion of the 76-residue insert resulted in additional cytoplasmic labeling suggestive of a reduced stability of Ank(G107) at the membrane. Recruitment of the COOH-terminal domain to the membrane was much less efficient but still possible only in the presence of the 76-residue insert. We conclude that the 76-residue sequence contributes to the localization and is essential to the stabilization of Ank(G107) at the membrane. These results suggest that tissue-dependent and developmentally regulated alternative processing of ankyrins generates isoforms with distinct sequences, potentially involved in specific protein-protein interactions during differentiation of the sarcolemma and, in particular, of the postsynaptic membrane.
Collapse
Affiliation(s)
- Claire Gagelin
- Biologie Cellulaire des Membranes, Département de Biologie Cellulaire, Institut Jacques Monod, UMR 7592, CNRS/Universités Paris 6 et Paris 7, 2 place Jussieu, 75251 Paris-Cédex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mohler PJ, Gramolini AO, Bennett V. The ankyrin-B C-terminal domain determines activity of ankyrin-B/G chimeras in rescue of abnormal inositol 1,4,5-trisphosphate and ryanodine receptor distribution in ankyrin-B (-/-) neonatal cardiomyocytes. J Biol Chem 2002; 277:10599-607. [PMID: 11781319 DOI: 10.1074/jbc.m110958200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ankyrins are a closely related family of membrane adaptor proteins that are believed to participate in targeting diverse membrane proteins to specialized domains in the plasma membrane and endoplasmic reticulum. This study addresses the question of how individual ankyrin isoforms achieve functional specificity when co-expressed in the same cell. Cardiomyocytes from ankyrin-B (-/-) mice display mis-localization of inositol 1,4,5-trisphosphate receptors and ryanodine receptors along with reduced contraction rates that can be rescued by expression of green fluorescent protein (GFP)-ankyrin-B but not GFP-ankyrin-G. We developed chimeric GFP expression constructs containing all combinations of the three major domains of ankyrin-B and ankyrin-G to determine which domain(s) of ankyrin-B are required for ankyrin-B-specific functions. The death/C-terminal domain of ankyrin-B determined activity of ankyrin-B/G chimeras in localization in a striated pattern in cardiomyocytes and in restoration of a normal striated distribution of both ryanodine and inositol 1,4,5-trisphosphate receptors as well as normal beat frequency of contracting cardiomyocytes. Further deletions within the death/C-terminal domain demonstrated that the C-terminal domain determines ankyrin-B activity, whereas deletion of the death domain had no effect. C-terminal domains are the most divergent between ankyrin isoforms and are candidates to encode the signal(s) that enable ankyrins to selectively target proteins to diverse cellular sites.
Collapse
Affiliation(s)
- Peter J Mohler
- Howard Hughes Medical Institute and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
41
|
Sbodio JI, Lodish HF, Chi NW. Tankyrase-2 oligomerizes with tankyrase-1 and binds to both TRF1 (telomere-repeat-binding factor 1) and IRAP (insulin-responsive aminopeptidase). Biochem J 2002; 361:451-9. [PMID: 11802774 PMCID: PMC1222327 DOI: 10.1042/0264-6021:3610451] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The poly(ADP-ribose) polymerase (PARP) tankyrase-1 contains an ankyrin-repeat domain that binds to various partners, including the telomeric protein TRF1 (telomere-repeat-binding factor 1) and the vesicular protein IRAP (insulin-responsive aminopeptidase). TRF1 binding recruits tankyrase-1 to telomeres and allows its PARP activity to regulate telomere homoeostasis. By contrast, IRAP binding and the Golgi co-localization of tankyrase-1 with IRAP might allow tankyrase-1 to affect the targeting of IRAP-containing vesicles. A closely related protein, tankyrase-2, has also been implicated in vesicular targeting. Unlike tankyrase-1, tankyrase-2 has not been shown to have PARP activity. In addition, it has not been implicated in telomere homoeostasis, because it did not interact with TRF1 in previous studies. Here we show that tankyrase-2 contains intrinsic PARP activity and, like tankryase-1, binds to both TRF1 and IRAP. Our analysis suggests that the ankyrin (ANK) domain of tankyrase-2 comprises five subdomains that provide redundant binding sites for IRAP. Moreover, tankyrase-2 associates and co-localizes with tankyrase-1, suggesting that both tankyrases might function as a complex. Taken together, our findings indicate that tankyrase-1 and tankyrase-2 interact with the same set of proteins and probably mediate overlapping functions, both at telomeres and in vesicular compartments.
Collapse
Affiliation(s)
- Juan I Sbodio
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0673, USA
| | | | | |
Collapse
|
42
|
Jenkins SM, Bennett V. Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J Cell Biol 2001; 155:739-46. [PMID: 11724816 PMCID: PMC2150881 DOI: 10.1083/jcb.200109026] [Citation(s) in RCA: 352] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The axon initial segment is an excitable membrane highly enriched in voltage-gated sodium channels that integrates neuronal inputs and initiates action potentials. This study identifies Nav1.6 as the voltage-gated sodium channel isoform at mature Purkinje neuron initial segments and reports an essential role for ankyrin-G in coordinating the physiological assembly of Nav1.6, betaIV spectrin, and the L1 cell adhesion molecules (L1 CAMs) neurofascin and NrCAM at initial segments of cerebellar Purkinje neurons. Ankyrin-G and betaIV spectrin appear at axon initial segments by postnatal day 2, whereas L1 CAMs and Nav1.6 are not fully assembled at continuous high density along axon initial segments until postnatal day 9. L1 CAMs and Nav1.6 therefore do not initiate protein assembly at initial segments. betaIV spectrin, Nav1.6, and L1 CAMs are not clustered in adult Purkinje neuron initial segments of mice lacking cerebellar ankyrin-G. These results support the conclusion that ankyrin-G coordinates the physiological assembly of a protein complex containing transmembrane adhesion molecules, voltage-gated sodium channels, and the spectrin membrane skeleton at axon initial segments.
Collapse
Affiliation(s)
- S M Jenkins
- Howard Hughes Medical Institute and Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
43
|
Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 2001; 81:1353-92. [PMID: 11427698 DOI: 10.1152/physrev.2001.81.3.1353] [Citation(s) in RCA: 718] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
44
|
Bennett V, Chen L. Ankyrins and cellular targeting of diverse membrane proteins to physiological sites. Curr Opin Cell Biol 2001; 13:61-7. [PMID: 11163135 DOI: 10.1016/s0955-0674(00)00175-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ankyrins are spectrin-binding proteins that associate via ANK repeats with a variety of ion channels/pumps, calcium release channels and cell adhesion molecules. Recent studies in mice indicate that ankyrins have a physiological role in restricting voltage-gated sodium channels and members of the L1 CAM family of cell adhesion molecules to excitable membranes in the central nervous system and in targeting calcium-release channels to the calcium homeostasis compartment of striated muscle.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute and the Departments of Cell Biology and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
45
|
Chi NW, Lodish HF. Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J Biol Chem 2000; 275:38437-44. [PMID: 10988299 DOI: 10.1074/jbc.m007635200] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poly(ADP-ribose) polymerase tankyrase was originally described as a telomeric protein whose catalytic activity was proposed to regulate telomere function. Subsequent studies revealed that most tankyrase is actually extranuclear, but a discordant pattern of cytoplasmic targeting was reported. Here we used fractionation and immunofluorescence to show in 3T3-L1 fibroblasts that tankyrase is a peripheral membrane protein associated with the Golgi. We further colocalized tankyrase with GLUT4 storage vesicles in the juxtanuclear region of adipocytes. Consistent with this colocalization, we found that tankyrase binds specifically to a resident protein of GLUT4 vesicles, IRAP (insulin-responsive amino peptidase). The binding of tankyrase to IRAP involves the ankyrin repeats of tankyrase and a defined sequence ((96)RQSPDG(101)) in the IRAP cytosolic domain (IRAP(1-109)). Tankyrase is a novel signaling target of mitogen-activated protein kinase (MAPK); it is stoichiometrically phosphorylated upon insulin stimulation. Phosphorylation enhances the poly(ADP-ribose) polymerase activity of tankyrase but apparently does not mediate the acute effect of insulin on GLUT4 targeting. Taken together, tankyrase is a novel target of MAPK signaling in the Golgi, where it is tethered to GLUT4 vesicles by binding to IRAP. We speculate that tankyrase may be involved in the long term effect of the MAPK cascade on the metabolism of GLUT4 vesicles.
Collapse
Affiliation(s)
- N W Chi
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
46
|
Magowan C, Nunomura W, Waller KL, Yeung J, Liang J, Van Dort H, Low PS, Coppel RL, Mohandas N. Plasmodium falciparum histidine-rich protein 1 associates with the band 3 binding domain of ankyrin in the infected red cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1502:461-70. [PMID: 11068188 DOI: 10.1016/s0925-4439(00)00069-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Infection of erythrocytes by the malaria parasite Plasmodium falciparum results in the export of several parasite proteins into the erythrocyte cytoplasm. Changes occur in the infected erythrocyte due to altered phosphorylation of proteins and to novel interactions between host and parasite proteins, particularly at the membrane skeleton. In erythrocytes, the spectrin based red cell membrane skeleton is linked to the erythrocyte plasma membrane through interactions of ankyrin with spectrin and band 3. Here we report an association between the P. falciparum histidine-rich protein (PfHRP1) and phosphorylated proteolytic fragments of red cell ankyrin. Immunochemical, biochemical and biophysical studies indicate that the 89 kDa band 3 binding domain and the 62 kDa spectrin-binding domain of ankyrin are co-precipitated by mAb 89 against PfHRP1, and that native and recombinant ankyrin fragments bind to the 5' repeat region of PfHRP1. PfHRP1 is responsible for anchoring the parasite cytoadherence ligand to the erythrocyte membrane skeleton, and this additional interaction with ankyrin would strengthen the ability of PfEMP1 to resist shear stress.
Collapse
Affiliation(s)
- C Magowan
- Lawrence Berkeley National Laboratory Life Sciences Division, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Expression of the L1 family cell adhesion molecule neuroglian in Drosophila S2 cells leads to cell aggregation and polarized ankyrin accumulation at sites of cell-cell contact. Thus neuroglian adhesion generates a spatial cue for polarized assembly of ankyrin and the spectrin cytoskeleton. Here we characterized a chimera of the extracellular and transmembrane domains of rat CD2 fused to the cytoplasmic domain of neuroglian. The chimera was used to test the hypothesis that clustering of neuroglian at sites of adhesion generates the signal that activates ankyrin binding. Abundant expression of the chimera at the plasma membrane was not a sufficient cue to drive ankyrin assembly, since ankyrin remained diffusely distributed throughout the cytoplasm of CD2-neuroglian-expressing cells. However, ankyrin became highly enriched at sites of antibody-induced capping of CD2-neuroglian. Spectrin codistributed with ankyrin at capped sites. A green fluorescent protein-tagged ankyrin was used to monitor ankyrin distribution in living cells. Enhanced green fluorescent protein-ankyrin behaved identically to antibody-stained endogenous ankyrin, proving that the polarized accumulation of ankyrin was not an artifact of fixing and staining cells. We propose a model in which clustering of neuroglian induces a conformational change in the cytoplasmic domain that drives polarized assembly of the spectrin cytoskeleton.
Collapse
Affiliation(s)
- G Jefford
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
48
|
Bourguignon LY, Zhu H, Shao L, Chen YW. Ankyrin-Tiam1 interaction promotes Rac1 signaling and metastatic breast tumor cell invasion and migration. J Cell Biol 2000; 150:177-91. [PMID: 10893266 PMCID: PMC2185563 DOI: 10.1083/jcb.150.1.177] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/1999] [Accepted: 06/01/2000] [Indexed: 01/19/2023] Open
Abstract
Tiam1 (T-lymphoma invasion and metastasis 1) is one of the known guanine nucleotide (GDP/GTP) exchange factors (GEFs) for Rho GTPases (e.g., Rac1) and is expressed in breast tumor cells (e.g., SP-1 cell line). Immunoprecipitation and immunoblot analyses indicate that Tiam1 and the cytoskeletal protein, ankyrin, are physically associated as a complex in vivo. In particular, the ankyrin repeat domain (ARD) of ankyrin is responsible for Tiam1 binding. Biochemical studies and deletion mutation analyses indicate that the 11-amino acid sequence between amino acids 717 and 727 of Tiam1 ((717)GEGTDAVKRS(727)L) is the ankyrin-binding domain. Most importantly, ankyrin binding to Tiam1 activates GDP/GTP exchange on Rho GTPases (e.g., Rac1). Using an Escherichia coli-derived calmodulin-binding peptide (CBP)-tagged recombinant Tiam1 (amino acids 393-728) fragment that contains the ankyrin-binding domain, we have detected a specific binding interaction between the Tiam1 (amino acids 393-738) fragment and ankyrin in vitro. This Tiam1 fragment also acts as a potent competitive inhibitor for Tiam1 binding to ankyrin. Transfection of SP-1 cell with Tiam1 cDNAs stimulates all of the following: (1) Tiam1-ankyrin association in the membrane projection; (2) Rac1 activation; and (3) breast tumor cell invasion and migration. Cotransfection of SP1 cells with green fluorescent protein (GFP)-tagged Tiam1 fragment cDNA and Tiam1 cDNA effectively blocks Tiam1-ankyrin colocalization in the cell membrane, and inhibits GDP/GTP exchange on Rac1 by ankyrin-associated Tiam1 and tumor-specific phenotypes. These findings suggest that ankyrin-Tiam1 interaction plays a pivotal role in regulating Rac1 signaling and cytoskeleton function required for oncogenic signaling and metastatic breast tumor cell progression.
Collapse
Affiliation(s)
- L Y Bourguignon
- Department of Cell Biology and Anatomy, School of Medicine, University of Miami, Miami, Florida 33136, USA.
| | | | | | | |
Collapse
|
49
|
Zhu D, Bourguignon LY. Interaction between CD44 and the repeat domain of ankyrin promotes hyaluronic acid-mediated ovarian tumor cell migration. J Cell Physiol 2000; 183:182-95. [PMID: 10737894 DOI: 10.1002/(sici)1097-4652(200005)183:2<182::aid-jcp5>3.0.co;2-o] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The adhesion molecule, CD44, interacts with ankyrin within its cytoplasmic domain and binds to hyaluronic acid (HA) at its extracellular domain. In this study, we focused on the functional domain in ankyrin (in particular, the ankyrin repeat domain [ARD]) responsible for CD44 binding and its role in regulating HA-mediated ovarian tumor cell function. Using recombinant fragments of ankyrin (e.g., ARD and subdomain 1 [S1, aa1-aa217], subdomain 2 [S2, aa218-aa381], subdomain 3 [S3, aa382-aa612], and subdomain 4 [S4, aa613-aa834]) and in vitro binding assays, we determined that the S2 but not S1, S3, or S4 of ARD is the primary ankyrin binding region for CD44. Microinjection of antiglutathione S-transferase (GST)-tagged S2 or GST-tagged ARD fusion protein into CD44-positive ovarian tumor cells (e.g., SKOV3 cell line) promotes ankyrin association with CD44 in plaque-like structures and membrane projections. Additionally, we demonstrated that transfection of SKOV3 cells with S2cDNA or ARD cDNA results in an upregulation of HA-mediated tumor cell migration. Taken together, we believe that the S2 of the ARD plays a pivotal role in the direct binding to CD44 and promotes the cytoskeleton activation required for HA-mediated function such as ovarian tumor cell migration.
Collapse
Affiliation(s)
- D Zhu
- Department of Cell Biology and Anatomy, University of Miami Medical School, Miami, FL 33101, USA
| | | |
Collapse
|
50
|
Dubreuil RR, Wang P, Dahl S, Lee J, Goldstein LS. Drosophila beta spectrin functions independently of alpha spectrin to polarize the Na,K ATPase in epithelial cells. J Cell Biol 2000; 149:647-56. [PMID: 10791978 PMCID: PMC2174857 DOI: 10.1083/jcb.149.3.647] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1999] [Accepted: 03/23/2000] [Indexed: 11/22/2022] Open
Abstract
Spectrin has been proposed to function as a sorting machine that concentrates interacting proteins such as the Na,K ATPase within specialized plasma membrane domains of polarized cells. However, little direct evidence to support this model has been obtained. Here we used a genetic approach to directly test the requirement for the beta subunit of the alphabeta spectrin molecule in morphogenesis and function of epithelial cells in Drosophila. beta Spectrin mutations were lethal during late embryonic/early larval development and they produced subtle defects in midgut morphology and stomach acid secretion. The polarized distributions of alphabeta(H) spectrin and ankyrin were not significantly altered in beta spectrin mutants, indicating that the two isoforms of Drosophila spectrin assemble independently of one another, and that ankyrin is upstream of alphabeta spectrin in the spectrin assembly pathway. In contrast, beta spectrin mutations had a striking effect on the basolateral accumulation of the Na,K ATPase. The results establish a role for beta spectrin in determining the subcellular distribution of the Na, K ATPase and, unexpectedly, this role is independent of alpha spectrin.
Collapse
Affiliation(s)
- R R Dubreuil
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|