1
|
Yokus B, Takci A, Ercan N, Em B, Uysal E. Early prognostic markers to predict unsuccessful pregnancy in dairy cattle. Reprod Domest Anim 2024; 59:e14587. [PMID: 38812420 DOI: 10.1111/rda.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
This study aimed to investigate maternal serum levels of some angiogenic factors and certain proteins in dairy cattle for (1) early prediction of unsuccessful fertilization and (2) early detection of possible pregnancy failures (early EM) after positive insemination Serum samples were collected from the same cattle at three distinct time points: 30 days before artificial insemination (B-AI), on the day of artificial insemination (AI), and 30 days after artificial insemination (A-AI). As a result of the pregnancy examination, the cows were divided into two main groups according to whether they were pregnant. The results showed that leucyl/cystinyl aminopeptidase (LNPEP) concentration was significantly decreased B-AI and Secreted frizzled-related proteins (SFRP-3), Vascular Endothelial Growth Factor (VEGF) and LNPEP levels were significantly decreased on day of AI, while PRL level was increased, and these data have prognostic significance as early indicator of the risk of potentially failed pregnancy. Additionally, a significant decrease in LNPEP, SFRP3, and VEGF levels, along with an increase in PRL levels was also observed in A-AI. These results suggest that these biomarkers can be used as a screening test to monitor the course of pregnancy. There were no significant differences in serum levels of Insulin-Like Growth Factor 2 (IGF-2), Tissue inhibitors of metalloproteinases (TIMP-1), angiopoietin (ANG), Endoglin (ENG), Fibroblast growth factor (FGF), Inhibine-A (INH-A) and Transforming growth factors-β1 (TGF-β1) between the evaluated periods neither unsuccessful nor the successful pregnancy groups. This is the first study reporting that the maternal serum levels of LNPEP, SFRP3, VEGF, and PRL have important roles in pregnancy success and may indicate whether insemination outcome will be successful B-AI and predict the risk of unsuccessful pregnancy after AI in dairy cattle. The increase in such studies will allow the development of more specific, practical, and applicable markers.
Collapse
Affiliation(s)
- Beran Yokus
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Dicle, Diyarbakir, Turkey
| | - Abdurrahman Takci
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Cumhuriyet, Sivas, Turkey
| | - Nazli Ercan
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Cumhuriyet, Sivas, Turkey
| | - Bernan Em
- Gazi Yasargil Training and Research Hospital, University of Health Sciences, Diyarbakir, Turkey
| | - Ersin Uysal
- School of Technical Sciences, University of Dicle, Diyarbakir, Turkey
| |
Collapse
|
2
|
Gising J, Honarnejad S, Bras M, Baillie GL, McElroy SP, Jones PS, Morrison A, Beveridge J, Hallberg M, Larhed M. The Discovery of New Inhibitors of Insulin-Regulated Aminopeptidase by a High-Throughput Screening of 400,000 Drug-like Compounds. Int J Mol Sci 2024; 25:4084. [PMID: 38612894 PMCID: PMC11012289 DOI: 10.3390/ijms25074084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.
Collapse
Affiliation(s)
- Johan Gising
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (J.B.); (M.L.)
| | - Saman Honarnejad
- Pivot Park Screening Centre, Kloosterstraat 9, 5349 AB Oss, The Netherlands; (S.H.); (M.B.)
| | - Maaike Bras
- Pivot Park Screening Centre, Kloosterstraat 9, 5349 AB Oss, The Netherlands; (S.H.); (M.B.)
| | - Gemma L. Baillie
- BioAscent Discovery Ltd., Bo‘Ness Road, Newhouse, Motherwell ML1 5UH, UK; (G.L.B.); (S.P.M.); (P.S.J.); (A.M.)
| | - Stuart P. McElroy
- BioAscent Discovery Ltd., Bo‘Ness Road, Newhouse, Motherwell ML1 5UH, UK; (G.L.B.); (S.P.M.); (P.S.J.); (A.M.)
| | - Philip S. Jones
- BioAscent Discovery Ltd., Bo‘Ness Road, Newhouse, Motherwell ML1 5UH, UK; (G.L.B.); (S.P.M.); (P.S.J.); (A.M.)
| | - Angus Morrison
- BioAscent Discovery Ltd., Bo‘Ness Road, Newhouse, Motherwell ML1 5UH, UK; (G.L.B.); (S.P.M.); (P.S.J.); (A.M.)
| | - Julia Beveridge
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (J.B.); (M.L.)
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, Biomedical Centre, Uppsala University, P.O. Box 591, SE-751 24 Uppsala, Sweden;
| | - Mats Larhed
- The Beijer Laboratory, Science for Life Laboratory, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden; (J.B.); (M.L.)
| |
Collapse
|
3
|
Vear A, Thalmann C, Youngs K, Hannan N, Gaspari T, Chai SY. Development of a sandwich ELISA to detect circulating, soluble IRAP as a potential disease biomarker. Sci Rep 2023; 13:17565. [PMID: 38001104 PMCID: PMC10673851 DOI: 10.1038/s41598-023-44038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
There is growing interest in the use of the enzyme, insulin regulated aminopeptidase (IRAP), as a biomarker for conditions such as cardio-metabolic diseases and ischemic stroke, with upregulation in its tissue expression in these conditions. However, quantification of circulating IRAP has been hampered by difficulties in detecting release of the truncated, soluble form of this enzyme into the blood stream. The current study aimed to develop a sandwich ELISA using novel antibodies directed towards the soluble portion of IRAP (sIRAP), to improve accuracy in detection and quantification of low levels of sIRAP in plasma. A series of novel anti-IRAP antibodies were developed and found to be highly specific for sIRAP in Western blots. A sandwich ELISA was then optimised using two distinct antibody combinations to detect sIRAP in the low nanogram range (16-500 ng/ml) with a sensitivity of 9 ng/ml and intra-assay variability < 10%. Importantly, the clinical validity of the ELISA was verified by the detection of significant increases in the levels of sIRAP throughout gestation in plasma samples from pregnant women. The specific and sensitive sandwich ELISA described in this study has the potential to advance the development of IRAP as a biomarker for certain diseases.
Collapse
Affiliation(s)
- Anika Vear
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Claudia Thalmann
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kristina Youngs
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Natalie Hannan
- Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC, 3084, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, 3084, Australia
| | - Tracey Gaspari
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Siew Yeen Chai
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
4
|
Yoshihara M, Mizutani S, Matsumoto K, Kato Y, Masuo Y, Harumasa A, Iyoshi S, Tano S, Mizutani H, Kotani T, Mizutani E, Shibata K, Kajiyama H. The balance between fetal oxytocin and placental leucine aminopeptidase (P-LAP) controls human uterine contraction around labor onset. Eur J Obstet Gynecol Reprod Biol X 2023; 19:100210. [PMID: 37753515 PMCID: PMC10518509 DOI: 10.1016/j.eurox.2023.100210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 09/28/2023] Open
Abstract
A fetal pituitary hormone, oxytocin which causes uterine contractions, increases throughout gestation, and its increase reaches 10-fold from week 32 afterward. Oxytocin is, on the other hand, degraded by placental leucine aminopeptidase (P-LAP) which exists in both terminal villi and maternal blood. Maternal blood P-LAP increases with advancing gestation under the control of non-genomic effects of progesterone, which is also produced from the placenta. Progesterone is converted to estrogen by CYP17A1 localized in the fetal adrenal gland and placenta at term. The higher oxytocin concentrations in the fetus than in the mother demonstrate not only fetal oxytocin production but also its degradation and/or inhibition of leakage from fetus to mother by P-LAP. Until labor onset, the pregnant uterus is quiescent possibly due to the balance between increasing fetal oxytocin and P-LAP under control of progesterone. A close correlation exists between the feto-placental and maternal units in the placental circulation, although the blood in the two circulations does not necessarily mix. Fetal maturation results in progesterone withdrawal via the CYP17A1 activation accompanied with fetal oxytocin increase. Contribution of fetal oxytocin to labor onset has been acknowledged through the recognition that the effect of fetal oxytocin in the maternal blood is strictly regulated by its degradation by P-LAP under the control of non-genomic effects of progesterone. In all senses, the fetus necessarily takes the initiative in labor onset.
Collapse
Affiliation(s)
- Masato Yoshihara
- Department of Obstetrics & Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Institute, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Department of Molecular Pharmacotherapeutics, Facility of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Yusuke Masuo
- Department of Molecular Pharmacotherapeutics, Facility of Pharmacy, Kanazawa University, Kanazawa, Japan
| | | | - Shohei Iyoshi
- Department of Obstetrics & Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Sho Tano
- Department of Obstetrics & Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidesuke Mizutani
- Department of Obstetrics & Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics & Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Kiyosumi Shibata
- Department of Obstetrics & Gynecology, Bantane Hospital, Fujita Health University, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics & Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Gan HW, Leeson C, Aitkenhead H, Dattani M. Inaccuracies in plasma oxytocin extraction and enzyme immunoassay techniques. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 15:100188. [PMID: 37360277 PMCID: PMC10285453 DOI: 10.1016/j.cpnec.2023.100188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
Numerous studies have reported extensive associations between plasma oxytocin (OXT) concentrations and various human physiological and neurobehavioral processes. Measurement of OXT is fraught with difficulty due to its low molecular weight and plasma concentrations, with no consensus as to the optimal conditions for pre-analytical sample extraction, standards for immunoassay validation or the ideal protease inhibitors to prevent OXT degradation. Previous attempts at determining the efficacy of various purification techniques such as solid phase extraction (SPE) or ultrafiltration have only utilized human plasma samples, making it difficult to dissect out whether the effect of interference comes from the extraction process itself or cross-reactivity with other proteins. By testing these on pure OXT solutions, we demonstrate poor recovery efficacy and reliability of reversed phase SPE (maximum 58.1%) and ultrafiltration (<1%) techniques, and the potential for the former to introduce interference into enzyme immunoassay (EIA) measurements. The clonality of antibodies used in EIA kits also potentially contributes to the differences in the readings obtained, and we validate an EIA kit which did not require pre-analytical sample extraction with low cross-reactivity and high reliability (intraclass correlation coefficient 0.980 (95% CI 0.896-0.999). Biochemical techniques used for measuring plasma OXT concentrations must therefore be internally validated prior to translation into clinical studies.
Collapse
Affiliation(s)
- Hoong-Wei Gan
- Genetics & Genomic Medicine Research and Training Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Clare Leeson
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Helen Aitkenhead
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, United Kingdom
| | - Mehul Dattani
- Genetics & Genomic Medicine Research and Training Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, United Kingdom
| |
Collapse
|
6
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
7
|
Bratti M, Vibhushan S, Longé C, Koumantou D, Ménasché G, Benhamou M, Varin-Blank N, Blank U, Saveanu L, Ben Mkaddem S. Insulin-regulated aminopeptidase contributes to setting the intensity of FcR-mediated inflammation. Front Immunol 2022; 13:1029759. [PMID: 36389775 PMCID: PMC9647545 DOI: 10.3389/fimmu.2022.1029759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
The function of intracellular trafficking in immune-complex triggered inflammation remains poorly understood. Here, we investigated the role of Insulin-Regulated Amino Peptidase (IRAP)-positive endosomal compartments in Fc receptor (FcR)-induced inflammation. Less severe FcγR-triggered arthritis, active systemic anaphylaxis and FcεRI-triggered passive systemic anaphylaxis were observed in IRAP-deficient versus wild-type mice. In mast cells FcεRI stimulation induced rapid plasma membrane recruitment of IRAP-positive endosomes. IRAP-deficient cells exhibited reduced secretory responses, calcium signaling and activating SykY519/520 phosphorylation albeit receptor tyrosine phosphorylation on β and γ subunits was not different. By contrast, in the absence of IRAP, SHP1-inactivating phosphorylation on Ser591 that controls Syk activity was decreased. Ex-vivo cell profiling after FcγR-triggered anaphylaxis confirmed decreased phosphorylation of both SykY519/520 and SHP-1S591 in IRAP-deficient neutrophils and monocytes. Thus, IRAP-positive endosomal compartments, in promoting inhibition of SHP-1 during FcR signaling, control the extent of phosphorylation events at the plasma membrane and contribute to setting the intensity of immune-complex triggered inflammatory diseases.
Collapse
Affiliation(s)
- Manuela Bratti
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Shamila Vibhushan
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Cyril Longé
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1163, Paris, France
| | - Despoina Koumantou
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Gaël Ménasché
- Université Paris Cité, Imagine Institute, Laboratory of Molecular basis of altered immune homeostasis, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1163, Paris, France
| | - Marc Benhamou
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Nadine Varin-Blank
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Paris 13 Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
| | - Ulrich Blank
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
- *Correspondence: Ulrich Blank,
| | - Loredana Saveanu
- Université Paris Cité, Centre de Recherche sur l’Inflammation, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)1149, Centre National de la Recherche Scientifique (CNRS) Equipe Mixte de Recherche(EMR)-8252, Faculté de Médecine site Bichat, Paris, France
- Université Paris Cité, Laboratoire d’Excellence INFLAMEX, Paris, France
| | - Sanae Ben Mkaddem
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Paris 13 Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
- Institute of biological Sciences, Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| |
Collapse
|
8
|
Hydrogen Peroxide Induced Toxicity Is Reversed by the Macrocyclic IRAP-Inhibitor HA08 in Primary Hippocampal Cell Cultures. Curr Issues Mol Biol 2022; 44:5000-5012. [PMID: 36286055 PMCID: PMC9601255 DOI: 10.3390/cimb44100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Angiotensin IV (Ang IV), a metabolite of Angiotensin II, is a bioactive hexapeptide that inhibits the insulin-regulated aminopeptidase (IRAP). This transmembrane zinc metallopeptidase with many biological functions has in recent years emerged as a new pharmacological target. IRAP is expressed in a variety of tissues and can be found in high density in the hippocampus and neocortex, brain regions associated with cognition. Ang IV is known to improve memory tasks in experimental animals. One of the most potent IRAP inhibitors known today is the macrocyclic compound HA08 that is significantly more stable than the endogenous Ang IV. HA08 combines structural elements from Ang IV and the physiological substrates oxytocin and vasopressin, and binds to the catalytic site of IRAP. In the present study we evaluate whether HA08 can restore cell viability in rat primary cells submitted to hydrogen peroxide damage. After damaging the cells with hydrogen peroxide and subsequently treating them with HA08, the conceivable restoring effects of the IRAP inhibitor were assessed. The cellular viability was determined by measuring mitochondrial activity and lactate dehydrogenase (LDH) release. The mitochondrial activity was significantly higher in primary hippocampal cells, whereas the amount of LDH was unaffected. We conclude that the cell viability can be restored in this cell type by blocking IRAP with the potent macrocyclic inhibitor HA08, although the mechanism by which HA08 exerts its effects remains unclear.
Collapse
|
9
|
Crosstalk between foetal vasoactive peptide hormones and placental aminopeptidases regulates placental blood flow: Its significance in preeclampsia. Placenta 2022; 121:32-39. [DOI: 10.1016/j.placenta.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
|
10
|
Abstract
Oxytocin and oxytocin receptors are synthesized in the periphery where paracrine/autocrine actions have been described alongside endocrine actions effected by central release of oxytocin from the posterior pituitary. In the female reproductive system, classical actions of uterine contraction and milk ejection from mammary glands are accompanied by actions in the ovaries where roles in steroidogenesis, follicle recruitment and ovulation have been described. Steroidogenesis, contractile activity, and gamete health are similarly affected by oxytocin in the male reproductive tract. In the cardiovascular system, a local oxytocinergic system appears to play an important cardio-protective role. This role is likely associated with emerging evidence that peripheral oxytocin is an important hormone in the endocrinology of glucose homeostasis due to its actions in adipose, the pancreas, and the largely ignored oxytocinergic systems of the adrenal glands and liver. Gene polymorphisms are shown to be associated with a number of reported traits, not least factors associated with metabolic syndrome.
Collapse
Affiliation(s)
- Stephen J Assinder
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
11
|
Matsukawa T, Mizutani S, Matsumoto K, Kato Y, Yoshihara M, Kajiyama H, Shibata K. Placental Leucine Aminopeptidase as a Potential Specific Urine Biomarker for Invasive Ovarian Cancer. J Clin Med 2021; 11:jcm11010222. [PMID: 35011963 PMCID: PMC8746293 DOI: 10.3390/jcm11010222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND A non-invasive and sensitive biomarker for the detection of ovarian cancer (OvCa) is lacking. We aim to investigate if urinary placental leucine aminopeptidase (P-LAP) can serve as a reliable biomarker for OvCa. METHODS P-LAP activity was measured using a LAP assay kit (Serotech Co., Ltd., Sapporo, Japan) in the urine of 22 patients with benign or borderline malignant ovarian tumors and 18 patients with OvCa. In this assay, L-methionine was added at 20 mM because P-LAP is functional, but other aminopeptidases are inhibited at this dose of L-methionine. RESULTS The mean urinary P-LAP activity was significantly higher in the OvCa group than in the benign or borderline malignant tumor group. When the cut-off value of P-LAP was determined as 11.00 U/L, its sensitivity and specificity for differentiating invasive cancer were 77.8% and 95.5%, respectively. CONCLUSION Although the usefulness of this test should be confirmed in a larger cohort of cases and controls, our study is the first to highlight the importance of urinary P-LAP as a biomarker for OvCa.
Collapse
Affiliation(s)
- Tetsuya Matsukawa
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Aichi 454-8509, Japan;
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan;
| | | | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yukio Kato
- Department of Molecular Pharmacotherapeutics, Faculty of Pharmacy, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan;
- Correspondence: (M.Y.); (K.S.); Tel.: +81-52-744-2261 (M.Y.); +81-52-321-8171 (K.S.)
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Aichi 466-8550, Japan;
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Aichi 454-8509, Japan;
- Correspondence: (M.Y.); (K.S.); Tel.: +81-52-744-2261 (M.Y.); +81-52-321-8171 (K.S.)
| |
Collapse
|
12
|
Tsujimoto M, Aoki K, Goto Y, Ohnishi A. Molecular and functional diversity of the oxytocinase subfamily of M1 aminopeptidases. J Biochem 2021; 169:409-420. [PMID: 33481005 DOI: 10.1093/jb/mvab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023] Open
Abstract
The placental leucine aminopeptidase/insulin-regulated aminopeptidase, endoplasmic reticulum aminopeptidase 1 and endoplasmic reticulum aminopeptidase 2 are part of a distinct subfamily of M1 aminopeptidases termed the 'oxytocinase subfamily'. The subfamily members show molecular diversity due to differential usage of translation initiation sites, alternative splicing and multiple single nucleotide polymorphisms. It is becoming evident that, depending on their intracellular or extracellular location, members of the oxytocinase subfamily play important roles in the maintenance of homeostasis, including the regulation of blood pressure, maintenance of normal pregnancy, retention of memory and trimming of antigenic peptides presented to major histocompatibility complex class I molecules, by acting as either aminopeptidases or binding partners of specific functional proteins in the cells. Based on their molecular diversity and moonlighting protein-like properties, it is conceivable that the subfamily members exert pleiotropic effects during evolution, to become important players in the regulation of homeostasis.
Collapse
Affiliation(s)
- Masafumi Tsujimoto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Kazuma Aoki
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Yoshikuni Goto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| | - Atsushi Ohnishi
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo 164-8530, Japan
| |
Collapse
|
13
|
Discovery of Selective Inhibitor Leads by Targeting an Allosteric Site in Insulin-Regulated Aminopeptidase. Pharmaceuticals (Basel) 2021; 14:ph14060584. [PMID: 34207179 PMCID: PMC8233869 DOI: 10.3390/ph14060584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/23/2022] Open
Abstract
Insulin-Regulated aminopeptidase (IRAP) is a zinc-dependent aminopeptidase with several important biological functions and is an emerging pharmaceutical target for cognitive enhancement and immune system regulation. Aiming to discover lead-like IRAP inhibitors with enhanced selectivity versus homologous enzymes, we targeted an allosteric site at the C-terminal domain pocket of IRAP. We compiled a library of 2.5 million commercially available compounds from the ZINC database, and performed molecular docking at the target pocket of IRAP and the corresponding pocket of the homologous endoplasmic reticulum aminopeptidase 1 (ERAP1). Of the top compounds that showed high selectivity, 305 were further analyzed by molecular dynamics simulations and free energy calculations, leading to the selection of 33 compounds for in vitro evaluation. Two orthogonal functional assays were employed: one using a small fluorogenic substrate and one following the degradation of oxytocin, a natural peptidic substrate of IRAP. In vitro evaluation suggested that several of the compounds tested can inhibit IRAP, but the inhibition profile was dependent on substrate size, consistent with the allosteric nature of the targeted site. Overall, our results describe several novel leads as IRAP inhibitors and suggest that the C-terminal domain pocket of IRAP is a promising target for developing highly selective IRAP inhibitors.
Collapse
|
14
|
Takeda R, Demura M, Sugimura Y, Miyamori I, Konoshita T, Yamamoto H. Pregnancy-associated diabetes insipidus in Japan-a review based on quoting from the literatures reported during the period from 1982 to 2019. Endocr J 2021; 68:375-385. [PMID: 33775975 DOI: 10.1507/endocrj.ej20-0745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This Review Article overviews the literature on diabetes insipidus (DI) associated with pregnancy and labor in Japan published from 1982 to 2019. The total number of patients collected was 361, however, only one-third of these cases had detailed pathophysiologic information enabling us to identify the respective etiology and subtype. Pregnancy-associated DI can be divided into 3 etiologies, central (neurogenic) DI, nephrogenic DI, and excess vasopressinase-associated DI. Neurogenic DI has various causes: for example, DI associated with tumoral lesions in the pituitary and neighboring area, DI associated with Sheehan's syndrome and/or pituitary apoplexy, and DI associated with lymphocytic infundibuloneurohypophysitis (LINH, stalkitis). Nephrogenic DI results from defective response of the kidney to normal levels of vasopressin. However, the most interesting causal factor of pregnancy-associated DI is excess vasopressinase, caused either by excess production of vasopressinase by the placenta or defective clearance of vasopressinase by the liver. Hepatic complications resulting in pregnancy-associated DI include acute fatty liver of pregnancy (AFLP) and HELLP syndrome (syndrome of hemolysis, elevated liver enzymes, low platelets), as well as pre-existing or co-incidental hepatic diseases. A possible role of glucose uptake in putative stress-induced DI and the importance of correct diagnosis and treatment of pregnancy-associated DI, including use of 1-deamino 8-D arginine vasopressin, are also discussed.
Collapse
Affiliation(s)
- Ryoyu Takeda
- Department of Internal Medicine, Kanazawa University*, Kanazawa 920-8640, Japan
- KKR† Kanazawa Hospital, Kanazawa 921-8035, Japan‡
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Science, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake 470-1192, Japan
| | - Isamu Miyamori
- Department of Internal Medicine, University of Fukui Faculty of Medical Sciences*, Fukui 910-1193, Japan
| | - Tadashi Konoshita
- Third Department of Internal Medicine, University of Fukui Faculty of Medical Sciences, Fukui 910-1193, Japan
| | | |
Collapse
|
15
|
Descamps D, Evnouchidou I, Caillens V, Drajac C, Riffault S, van Endert P, Saveanu L. The Role of Insulin Regulated Aminopeptidase in Endocytic Trafficking and Receptor Signaling in Immune Cells. Front Mol Biosci 2020; 7:583556. [PMID: 33195428 PMCID: PMC7606930 DOI: 10.3389/fmolb.2020.583556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin regulated aminopeptidase (IRAP) is a type II transmembrane protein with broad tissue distribution initially identified as a major component of Glut4 storage vesicles (GSV) in adipocytes. Despite its almost ubiquitous expression, IRAP had been extensively studied mainly in insulin responsive cells, such as adipocytes and muscle cells. In these cells, the enzyme displays a complex intracellular trafficking pattern regulated by insulin. Early studies using fusion proteins joining the IRAP cytosolic domain to various reporter proteins, such as GFP or the transferrin receptor (TfR), showed that the complex and regulated trafficking of the protein depends on its cytosolic domain. This domain contains several motifs involved in IRAP trafficking, as demonstrated by mutagenesis studies. Also, proteomic studies and yeast two-hybrid experiments showed that the IRAP cytosolic domain engages in multiple protein interactions with cytoskeleton components and vesicular trafficking adaptors. These findings led to the hypothesis that IRAP is not only a cargo of GSV but might be a part of the sorting machinery that controls GSV dynamics. Recent work in adipocytes, immune cells, and neurons confirmed this hypothesis and demonstrated that IRAP has a dual function. Its carboxy-terminal domain located inside endosomes is responsible for the aminopeptidase activity of the enzyme, while its amino-terminal domain located in the cytosol functions as an endosomal trafficking adaptor. In this review, we recapitulate the published protein interactions of IRAP and summarize the increasing body of evidence indicating that IRAP plays a role in intracellular trafficking of several proteins. We describe the impact of IRAP deletion or depletion on endocytic trafficking and the consequences on immune cell functions. These include the ability of dendritic cells to cross-present antigens and prime adaptive immune responses, as well as the control of innate and adaptive immune receptor signaling and modulation of inflammatory responses.
Collapse
Affiliation(s)
| | - Irini Evnouchidou
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Inovarion, Paris, France
| | - Vivien Caillens
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Sabine Riffault
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jou-en-Josas, France
| | - Peter van Endert
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France.,Université de Paris, INSERM Unité 1151, CNRS UMR 8253, Paris, France.,Service d'immunologie biologique, AP-HP, Hôpital Necker, Paris, France
| | - Loredana Saveanu
- Université de Paris, Centre de recherche sur l'inflammation, INSERM U1149, CNRS ERL8252, Paris, France
| |
Collapse
|
16
|
Hallberg M, Larhed M. From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase. Front Pharmacol 2020; 11:590855. [PMID: 33178027 PMCID: PMC7593869 DOI: 10.3389/fphar.2020.590855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
It was reported three decades ago that intracerebroventricular injection of angiotensin IV (Ang IV, Val-Tyr-Ile-His-Pro-Phe) improved memory and learning in the rat. There are several explanations for these positive effects of the hexapeptide and related analogues on cognition available in the literature. In 2001, it was proposed that the insulin-regulated aminopeptidase (IRAP) is a main target for Ang IV and that Ang IV serves as an inhibitor of the enzyme. The focus of this review is the efforts to stepwise transform the hexapeptide into more drug-like Ang IV peptidemimetics serving as IRAP inhibitors. Moreover, the discovery of IRAP inhibitors by virtual and substance library screening and direct design applying knowledge of the structure of IRAP and of related enzymes is briefly presented.
Collapse
Affiliation(s)
- Mathias Hallberg
- The Beijer Laboratory, Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Uppsala, Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Vear A, Gaspari T, Thompson P, Chai SY. Is There an Interplay Between the Functional Domains of IRAP? Front Cell Dev Biol 2020; 8:585237. [PMID: 33134302 PMCID: PMC7550531 DOI: 10.3389/fcell.2020.585237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/08/2020] [Indexed: 01/16/2023] Open
Abstract
As a member of the M1 family of aminopeptidases, insulin regulated aminopeptidase (IRAP) is characterized by distinct binding motifs at the active site in the C-terminal domain that mediate the catalysis of peptide substrates. However, what makes IRAP unique in this family of enzymes is that it also possesses trafficking motifs at the N-terminal domain which regulate the movement of IRAP within different intracellular compartments. Research on the role of IRAP has focused predominantly on the C-terminus catalytic domain in different physiological and pathophysiological states ranging from pregnancy to memory loss. Many of these studies have utilized IRAP inhibitors, that bind competitively to the active site of IRAP, to explore the functional significance of its catalytic activity. However, it is unknown whether these inhibitors are able to access intracellular sites where IRAP is predominantly located in a basal state as the enzyme may need to be at the cell surface for the inhibitors to mediate their effects. This property of IRAP has often been overlooked. Interestingly, in some pathophysiological states, the distribution of IRAP is altered. This, together with the fact that IRAP possesses trafficking motifs, suggest the localization of IRAP may play an important role in defining its physiological or pathological functions and provide insights into the interplay between the two functional domains of the protein.
Collapse
Affiliation(s)
- Anika Vear
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Tracey Gaspari
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Philip Thompson
- Department of Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Siew Yeen Chai
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
18
|
Barlow N, Thompson PE. IRAP Inhibitors: M1-Aminopeptidase Family Inspiration. Front Pharmacol 2020; 11:585930. [PMID: 33101040 PMCID: PMC7546331 DOI: 10.3389/fphar.2020.585930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
The insulin regulated aminopeptidase (IRAP) has been proposed as an important therapeutic target for indications including Alzheimer’s disease and immune disorders. To date, a number of IRAP inhibitor designs have been investigated but the total number of molecules investigated remains quite small. As a member the M1 aminopeptidase family, IRAP shares numerous structural features with the other M1 aminopeptidases. The study of those enzymes and the development of inhibitors provide key learnings and new approaches and are potential sources of inspiration for future IRAP inhibitors.
Collapse
Affiliation(s)
- Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
19
|
Georgiadis D, Ziotopoulou A, Kaloumenou E, Lelis A, Papasava A. The Discovery of Insulin-Regulated Aminopeptidase (IRAP) Inhibitors: A Literature Review. Front Pharmacol 2020; 11:585838. [PMID: 33071797 PMCID: PMC7538644 DOI: 10.3389/fphar.2020.585838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Insulin-Regulated Aminopeptidase (IRAP, EC 3.4.11.3) is a multi-tasking member of the M1 family of zinc aminopeptidases. Among its diverse biological functions, IRAP is a regulator of oxytocin levels during late stages of pregnancy, it affects cellular glucose uptake by trafficking of the glucose transporter type 4 and it mediates antigen cross-presentation by dendritic cells. Accumulating evidence show that pharmacological inhibition of IRAP may hold promise as a valid approach for the treatment of several pathological states such as memory disorders, neurodegenerative diseases, etc. Aiming to the investigation of physiological roles of IRAP and therapeutic potential of its regulation, intense research efforts have been dedicated to the discovery of small-molecule inhibitors. Moreover, reliable structure-activity relationships have been largely facilitated by recent crystal structures of IRAP and detailed computational studies. This review aims to summarize efforts of medicinal chemists toward the design and development of IRAP inhibitors, with special emphasis to factors affecting inhibitor selectivity.
Collapse
Affiliation(s)
- Dimitris Georgiadis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angeliki Ziotopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Kaloumenou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Lelis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonia Papasava
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
20
|
Goto Y, Nakamura TJ, Ogawa K, Hattori A, Tsujimoto M. Reciprocal Expression Patterns of Placental Leucine Aminopeptidase/Insulin-Regulated Aminopeptidase and Vasopressin in the Murine Brain. Front Mol Biosci 2020; 7:168. [PMID: 32793633 PMCID: PMC7393517 DOI: 10.3389/fmolb.2020.00168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
Placental leucine aminopeptidase/insulin-regulated aminopeptidase (P-LAP/IRAP) regulates vasopressin and oxytocin levels in the brain and peripheral tissues by controlled degradation of these peptides. In this study, we determined the relationship between P-LAP/IRAP and vasopressin levels in subregions of the murine brain. P-LAP/IRAP expression was observed in almost all brain regions. The expression patterns of P-LAP/IRAP and vasopressin indicated that cells expressing one of these protein/peptide were distinct from those expressing the other, although there was significant overlap between the expression regions. In addition, we found reciprocal diurnal rhythm patterns in P-LAP/IRAP and arginine vasopressin (AVP) expression in the hippocampus and pituitary gland. Further, synchronously cultured PC12 cells on treatment with nerve growth factor (NGF) showed circadian expression patterns of P-LAP/IRAP and enzymatic activity during 24 h of incubation. Considering that vasopressin is one of the most efficient peptide substrates of P-LAP/IRAP, these results suggest a possible feedback loop between P-LAP/IRAP and vasopressin expression, that regulates the function of these substrate peptides of the enzyme via translocation of P-LAP/IRAP from intracellular vesicles to the plasma membrane in brain cells. These findings provide novel insights into the functions of P-LAP/IRAP in the brain and suggest the involvement of these peptides in modulation of brain AVP functions in hyperosmolality, memory, learning, and circadian rhythm.
Collapse
Affiliation(s)
- Yoshikuni Goto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kenji Ogawa
- Laboratory of Veterinary Epizootiology, Department of Veterinary Medicine, Nihon University, Fujisawa, Japan
| | - Akira Hattori
- Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masafumi Tsujimoto
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Japan
| |
Collapse
|
21
|
Ali A, Alzeyoudi SAR, Almutawa SA, Alnajjar AN, Vijayan R. Molecular basis of the therapeutic properties of hemorphins. Pharmacol Res 2020; 158:104855. [PMID: 32438036 DOI: 10.1016/j.phrs.2020.104855] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
Hemorphins are endogenous peptides, 4-10 amino acids long, belonging to the family of atypical opioid peptides released during the sequential cleavage of hemoglobin protein. Hemorphins have been shown to exhibit diverse therapeutic effects in both human and animal models. However, the precise cellular and molecular mechanisms involved in such effects remain elusive. In this review, we summarize and propose potential mechanisms based on studies that investigated the biological activity of hemorphins of different lengths on multiple therapeutic targets. Special emphasis is given to molecular events related to renin-angiotensin system (RAS), opioid receptors and insulin-regulated aminopeptidase receptor (IRAP). This review provides a comprehensive coverage of the molecular mechanisms that underpin the therapeutic potential of hemorphins. Furthermore, it highlights the role of various hemorphin residues in pathological conditions, which could be explored further for therapeutic purposes.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | | | - Shamma Abdulla Almutawa
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Alya Nasir Alnajjar
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
22
|
Barlow N, Vanga SR, Sävmarker J, Sandström A, Burns P, Hallberg A, Åqvist J, Gutiérrez-de-Terán H, Hallberg M, Larhed M, Chai SY, Thompson PE. Macrocyclic peptidomimetics as inhibitors of insulin-regulated aminopeptidase (IRAP). RSC Med Chem 2020; 11:234-244. [PMID: 33479630 DOI: 10.1039/c9md00485h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022] Open
Abstract
Macrocyclic analogues of the linear hexapeptide, angiotensin IV (AngIV) have proved to be potent inhibitors of insulin-regulated aminopeptidase (IRAP, oxytocinase, EC 3.4.11.3). Along with higher affinity, macrocycles may also offer better metabolic stability, membrane permeability and selectivity, however predicting the outcome of particular cycle modifications is challenging. Here we describe the development of a series of macrocyclic IRAP inhibitors with either disulphide, olefin metathesis or lactam bridges and variations of ring size and other functionality. The binding mode of these compounds is proposed based on molecular dynamics analysis. Estimation of binding affinities (ΔG) and relative binding free energies (ΔΔG) with the linear interaction energy (LIE) method and free energy perturbation (FEP) method showed good general agreement with the observed inhibitory potency. Experimental and calculated data highlight the cumulative importance of an intact N-terminal peptide, the specific nature of the macrocycle, the phenolic oxygen and the C-terminal functionality.
Collapse
Affiliation(s)
- Nicholas Barlow
- Department of Medicinal Chemistry , BMC , Uppsala University , P.O. Box 574 , SE-751 23 Uppsala , Sweden.,Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Parkville , Victoria 3052 , Australia .
| | - Sudarsana Reddy Vanga
- Department of Cell and Molecular Biology , BMC , Uppsala University , Box 596 , SE-751 24 Uppsala , Sweden
| | - Jonas Sävmarker
- The Beijer Laboratory , Department of Medicinal Chemistry , BMC , Uppsala University , P.O. Box 574 , SE-751 23 Uppsala , Sweden
| | - Anja Sandström
- The Beijer Laboratory , Department of Medicinal Chemistry , BMC , Uppsala University , P.O. Box 574 , SE-751 23 Uppsala , Sweden
| | - Peta Burns
- Biomedicine Discovery Institute , Department of Physiology , Monash University , Clayton , Victoria 3800 , Australia
| | - Anders Hallberg
- Department of Medicinal Chemistry , BMC , Uppsala University , P.O. Box 574 , SE-751 23 Uppsala , Sweden
| | - Johan Åqvist
- Department of Cell and Molecular Biology , BMC , Uppsala University , Box 596 , SE-751 24 Uppsala , Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology , BMC , Uppsala University , Box 596 , SE-751 24 Uppsala , Sweden
| | - Mathias Hallberg
- The Beijer Laboratory , Department of Pharmaceutical Biosciences , Division of Biological Research on Drug Dependence , BMC , Uppsala University , P.O. Box 591 , SE-751 24 Uppsala , Sweden
| | - Mats Larhed
- Department of Medicinal Chemistry , BMC , Uppsala University , P.O. Box 574 , SE-751 23 Uppsala , Sweden.,Science for Life Laboratory , Department of Medicinal Chemistry , BMC , Uppsala University , SE-751 24 Uppsala , Sweden
| | - Siew Yeen Chai
- Biomedicine Discovery Institute , Department of Physiology , Monash University , Clayton , Victoria 3800 , Australia
| | - Philip E Thompson
- Medicinal Chemistry , Monash Institute of Pharmaceutical Sciences , Parkville , Victoria 3052 , Australia .
| |
Collapse
|
23
|
Burns P, Bowditch J, McFadyen J, Loiacono R, Albiston AL, Pham V, Chai SY. Social behaviour is altered in the insulin-regulated aminopeptidase knockout mouse. Behav Brain Res 2019; 376:112150. [DOI: 10.1016/j.bbr.2019.112150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022]
|
24
|
Mizutani S, Matsumoto K, Kato Y, Mizutani E, Mizutani H, Iwase A, Shibata K. New insights into human endometrial aminopeptidases in both implantation and menstruation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140332. [PMID: 31765716 DOI: 10.1016/j.bbapap.2019.140332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 01/16/2023]
Abstract
The endometrium cycle involves proliferation of endometrial epithelial cells in preparation for implantation of fertilized ovum. With ovulation, the endometrium secretes nutrients such as peptides and amino acids into the endometrial cavity. The histological evidence of ovulation in normal menstrual cycle includes subnuclear glycogen vacuoles surrounded by placental leucine aminopeptidase (P-LAP) in endometrial epithelial cells. P-LAP is an essentially involved in intracellular trafficking of glucose transporter (GLUT) 4 which is primarily important for glucose uptake in skeletal muscles and fat tissues. On the other hand, glucose influx from blood into endometrial epithelial cells is not mainly mediated by GLUTs, but by coincident appearing progesterone just after ovulation. Progesterone increases permeability of not only plasma membranes, but also lysosomal membranes, and this may be primarily involved in glucose influx. Progesterone also expands the exocytosis in the endometrium after ovulation, and endometrial secretion after ovulation is possibly apocrine and holocrine, which is augmented and exaggerated exocytosis of the lysosomal contents. The endometrial spiral arteries/arterioles are surrounded by endometrial stromal cells which are differentiated into decidual/pre-decidual cells. Decidual cells are devoid of aminopeptidase A (APA), possibly leading to enhancement of Angiotensin-II action in decidual cell area due to loss of its degradation by APA. Angiotensin-II is thought to exert growth-factor-like effects in post-implantation embryos in decidual cells, thereby contributing to implantation. Without implantation, angiotensin-II constricts the endometrial spiral arteries/arterioles to promote menstruation. Thus, P-LAP and APA may be involved in homeostasis in uterus via regulating glucose transport and vasoconstrictive peptides.
Collapse
Affiliation(s)
- Shigehiko Mizutani
- Daiyabilding Lady's Clinic, 3-15-1 Meieki, Nakamura-ku, Nagoya 450-0002, Japan; Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan.
| | - Kunio Matsumoto
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Department of Molecular Pharmacotherapeutics, Faculty of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Eita Mizutani
- Daiyabilding Lady's Clinic, 3-15-1 Meieki, Nakamura-ku, Nagoya 450-0002, Japan; Department of Obstetrics and Gynecology, Bantane Hospital, Fujita Health University, 3-6-10 Odobashi, Nakagawa-ku, Nagoya 454-8509, Japan
| | - Hidesuke Mizutani
- Department of Obstetrics and Gynecology, Okazaki Municipal Hospital, 3-1 Koryuji-cho, Okazaaki 444-8553, Japan
| | - Akira Iwase
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, 3-39-22, Showa-machi, Maebashi 371-8511, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Bantane Hospital, Fujita Health University, 3-6-10 Odobashi, Nakagawa-ku, Nagoya 454-8509, Japan
| |
Collapse
|
25
|
Vasopressin inactivation: Role of insulin-regulated aminopeptidase. VITAMINS AND HORMONES 2019; 113:101-128. [PMID: 32138946 DOI: 10.1016/bs.vh.2019.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological importance of vasopressin inactivation has long been appreciated, but the mechanisms and potential pathophysiologic roles of this process remain active subjects of research. Human Placental Leucine Aminopeptidase (P-LAP, encoded by the LNPEP gene) is an important determinant of vasopressinase activity during pregnancy and is associated with gestational diabetes insipidus and preeclampsia. Insulin-Regulated Aminopeptidase (IRAP), the rodent homologue of P-LAP, is coregulated with the insulin-responsive glucose transporter, GLUT4, in adipose and muscle cells. Recently, the Tether containing a UBX domain for GLUT4 (TUG) protein was shown to mediate the coordinated regulation of water and glucose homeostasis. TUG sequesters IRAP and GLUT4 intracellularly in the absence of insulin. Insulin and other stimuli cause the proteolytic cleavage of TUG to mobilize these proteins to the cell surface, where IRAP acts to terminate the activity of circulating vasopressin. Intriguingly, genetic variation in LNPEP is associated with the vasopressin response and mortality during sepsis, and increased copeptin, a marker of vasopressin secretion, is associated with cardiovascular and metabolic disease. We propose that in the setting of insulin resistance in muscle, increased cell-surface IRAP and accelerated vasopressin degradation cause a compensatory increase in vasopressin secretion. The increased vasopressin concentrations present at the kidneys then contribute to hypertension in the metabolic syndrome. Further analyses of metabolism and of vasopressin and copeptin may yield novel insights into a unified pathophysiologic mechanism linking insulin resistance and hypertension, and potentially other components of the metabolic syndrome, in humans.
Collapse
|
26
|
Pan X, Meriin A, Huang G, Kandror KV. Insulin-responsive amino peptidase follows the Glut4 pathway but is dispensable for the formation and translocation of insulin-responsive vesicles. Mol Biol Cell 2019; 30:1536-1543. [PMID: 30943117 PMCID: PMC6724691 DOI: 10.1091/mbc.e18-12-0792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In fat and skeletal muscle cells, insulin-responsive amino peptidase (IRAP) along with glucose transporter 4 (Glut4) and sortilin, represents a major component protein of the insulin-responsive vesicles (IRVs). Here, we show that IRAP, similar to Glut4 and sortilin, is retrieved from endosomes to the trans-Golgi network by retromer. Unlike Glut4, retrograde transport of IRAP does not require sortilin, as retromer can directly bind to the cytoplasmic tail of IRAP. Ablation of IRAP in 3T3-L1 adipocytes shifts the endosomal pool of Glut4 to more acidic endosomes, but does not affect IRV targeting, stability, and insulin responsiveness of Glut4.
Collapse
Affiliation(s)
- Xiang Pan
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Anatoli Meriin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Guanrong Huang
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | - Konstantin V. Kandror
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118,*Address correspondence to: K. V. Kandror ()
| |
Collapse
|
27
|
Hanson AL, Morton CJ, Parker MW, Bessette D, Kenna TJ. The genetics, structure and function of the M1 aminopeptidase oxytocinase subfamily and their therapeutic potential in immune-mediated disease. Hum Immunol 2019; 80:281-289. [DOI: 10.1016/j.humimm.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
|
28
|
Ding C, Leow MKS, Magkos F. Oxytocin in metabolic homeostasis: implications for obesity and diabetes management. Obes Rev 2019; 20:22-40. [PMID: 30253045 PMCID: PMC7888317 DOI: 10.1111/obr.12757] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Oxytocin was once understood solely as a neuropeptide with a central role in social bonding, reproduction, parturition, lactation and appetite regulation. Recent evidence indicates that oxytocin enhances glucose uptake and lipid utilization in adipose tissue and skeletal muscle, suggesting that dysfunction of the oxytocin system could underlie the pathogenesis of insulin resistance and dyslipidaemia. Murine studies revealed that deficiencies in oxytocin signalling and oxytocin receptor expression lead to obesity despite normal food intake, motor activity and increased leptin levels. In addition, plasma oxytocin concentration is notably lower in obese individuals with diabetes, which may suggest an involvement of the oxytocin system in the pathogenesis of cardiometabolic disease. More recently, small scale studies demonstrated that intranasal administration of oxytocin was associated with significant weight loss as well as improvements in insulin sensitivity and pancreatic β-cell responsivity in human subjects. The multi-pronged effects of oxytocin signalling on improving peripheral insulin sensitivity, pancreatic function and lipid homeostasis strongly suggest a role for this system as a therapeutic target in obesity and diabetes management. The complexity of obesity aetiology and the pathogenesis of obesity-related metabolic complications underscore the need for a systems approach to better understand the role of oxytocin in metabolic function.
Collapse
Affiliation(s)
- C Ding
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Singapore
| | - M K-S Leow
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Singapore.,Department of Endocrinology, Tan Tock Seng Hospital, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - F Magkos
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR) and National University Health System, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| |
Collapse
|
29
|
Elkins EA, Walti KA, Newberry KE, Lema SC. Identification of an oxytocinase/vasopressinase-like leucyl-cystinyl aminopeptidase (LNPEP) in teleost fish and evidence for hypothalamic mRNA expression linked to behavioral social status. Gen Comp Endocrinol 2017; 250:58-69. [PMID: 28596078 DOI: 10.1016/j.ygcen.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/03/2017] [Accepted: 06/04/2017] [Indexed: 02/06/2023]
Abstract
The vasotocin/vasopressin and isotocin/mesotocin/oxytocin family of nonapeptides regulate social behaviors and physiological functions associated with reproductive physiology and osmotic balance. While experimental and correlative studies provide evidence for these nonapeptides as modulators of behavior across all classes of vertebrates, mechanisms for nonapeptide inactivation in regulating these functions have been largely overlooked. Leucyl-cystinyl aminopeptidase (LNPEP) - also known as vasopressinase, oxytocinase, placental leucine aminopeptidase (P-LAP), and insulin-regulated aminopeptidase (IRAP) - is a membrane-bound zinc-dependent metalloexopeptidase enzyme that inactivates vasopressin, oxytocin, and select other cyclic polypeptides. In humans, LNPEP plays a key role in the clearance of oxytocin during pregnancy. However, the evolutionary diversity, expression distribution, and functional roles of LNPEP remain unresolved for other vertebrates. Here, we isolated and sequenced a full-length cDNA encoding a LNPEP-like polypeptide of 1033 amino acids from the ovarian tissue of Amargosa pupfish, Cyprinodon nevadensis. This deduced polypeptide exhibited high amino acid identity to human LNPEP both in the protein's active domain that includes the peptide binding site and zinc cofactor binding motif (53.1% identity), and in an intracellular region that distinguishes LNPEP from other aminopeptidases (70.3% identity). Transcripts encoding this LNPEP enzyme (lnpep) were detected at highest relative abundance in the gonads, hypothalamus, forebrain, optic tectum, gill and skeletal muscle of adult pupfish. Further evaluation of lnpep transcript abundance in the brain of sexually-mature pupfish revealed that lnpep mRNAs were elevated in the hypothalamus of socially subordinate females and males, and at lower abundance in the telencephalon of socially dominant males compared to dominant females. These findings provide evidence of an association between behavioral social status and hypothalamic lnpep transcript abundance and suggest that variation in the rate of VT/IT peptide inactivation by LNPEP may be a contributing component in the mechanism whereby nonapeptides regulate social behavior.
Collapse
Affiliation(s)
- Emma A Elkins
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kayla A Walti
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kathryn E Newberry
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
30
|
Slamkova M, Zorad S, Krskova K. Alternative renin-angiotensin system pathways in adipose tissue and their role in the pathogenesis of obesity. Endocr Regul 2016; 50:229-240. [DOI: 10.1515/enr-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Adipose tissue expresses all the renin-angiotensin system (RAS) components that play an important role in the adipogenesis, lipid and glucose metabolism regulation in an auto/paracrine manner. The classical RAS has been found to be over-activated during the adipose tissue enlargement, thus elevated generation of angiotensin II (Ang II) may contribute to the obesity pathogenesis. The contemporary view on the RAS has become more complex with the discovery of alternative pathways, including angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor, (pro)renin receptor, as well as angiotensin IV(Ang IV)/AT4 receptor. Ang-(1-7) via Mas receptor counteracts with most of the deleterious effects of the Ang II-mediated by AT1 receptor implying its beneficial role in the glucose and lipid metabolism, oxidative stress, inflammation, and insulin resistance. Pro(renin) receptor may play a role (at least partial) in the pathogenesis of the obesity by increasing the local production of Ang II in adipose tissue as well as triggering signal transduction independently of Ang II. In this review, modulation of alternative RAS pathways in adipose tissue during obesity is discussed and the involvement of Ang-(1-7), (pro)renin and AT4 receptors in the regulation of adipose tissue homeostasis and insulin resistance is summarized.
Collapse
Affiliation(s)
- M Slamkova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - S Zorad
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - K Krskova
- Institute of Experimental Endocrinology, Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
31
|
Tian C, Huang Z, Wen Z. Associations between serum placental leucine aminopeptidase and pregnancy outcomes. Int J Gynaecol Obstet 2016; 135:255-258. [DOI: 10.1016/j.ijgo.2016.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/17/2016] [Accepted: 08/09/2016] [Indexed: 02/05/2023]
|
32
|
Kobayashi H, Nomura S, Mitsui T, Ito T, Kuno N, Ohno Y, Kadomatsu K, Muramatsu T, Nagasaka T, Mizutani S. Tissue Distribution of Placental Leucine Aminopeptidase/Oxytocinase During Mouse Pregnancy. J Histochem Cytochem 2016; 52:113-21. [PMID: 14688222 DOI: 10.1177/002215540405200111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Placental leucine aminopeptidase (P-LAP), also called oxytocinase, is an enzyme responsible for hydrolyzing oxytocin. This enzyme is identical to cystine aminopeptidase. We examined the tissue distribution of P-LAP in normal adult mice and also in mothers and fetuses during mouse pregnancy using immunohistochemical (IHC) analysis. P-LAP-immunoreactive protein was expressed in various organs in a cell- and gestational stage-dependent manner. In the kidney, P-LAP was located in distal and collecting tubules but not in proximal tubules. The islet of Langerhans in the maternal pancreas stained positively for P-LAP in the periphery in early gestation. This staining pattern changed so that both the periphery and inner cells were positive during mid-gestation and finally only inner cells were positive in late gestation. Among the hematopoietic cells in the fetal liver, only megakaryocytes showed strong expression of P-LAP. The staining intensity increased with gestation on the apical surface of trophoblasts in the placental labyrinth. These data demonstrate that P-LAP is present in a variety of tissues, and its presence is affected by pregnancy and fetal development. Therefore, P-LAP may play a significant role in various physiological processes in non-pregnant, pregnant, and fetal mice.
Collapse
Affiliation(s)
- Honami Kobayashi
- Departments of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Alponti RF, Alves PL, Silveira PF. Novel adipocyte aminopeptidases are selectively upregulated by insulin in healthy and obese rats. J Endocrinol 2016; 228:97-104. [PMID: 26577934 DOI: 10.1530/joe-15-0266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
The lack of a complete assembly of the sensitivity of subcellular aminopeptidase (AP) activities to insulin in different pathophysiological conditions has hampered the complete view of the adipocyte metabolic pathways and its implications in these conditions. Here we investigated the influence of insulin on basic AP (APB), neutral puromycin-sensitive AP (PSA), and neutral puromycin-insensitive AP (APM) in high and low density microsomal and plasma membrane fractions from adipocytes of healthy and obese rats. Catalytic activities of these enzymes were fluorometrically monitoring in these fractions with or without insulin stimulus. Canonical traffic such as insulin-regulated AP was not detected for these novel adipocyte APs in healthy and obese rats. However, insulin increased APM in low density microsomal and plasma membrane fractions from healthy rats, APB in high density microsomal fraction from obese rats and PSA in plasma membrane fraction from healthy rats. A new concept of intracellular compartment-dependent upregulation of AP enzyme activities by insulin emerges from these data. This relatively selective regulation has pathophysiological significance, since these enzymes are well known to act as catalysts and receptor of peptides directly related to energy metabolism. Overall, the regulation of each one of these enzyme activities reflects certain dysfunction in obese individuals.
Collapse
Affiliation(s)
- Rafaela Fadoni Alponti
- Laboratory of PharmacologyUnit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Avenida Vital Brasil, 1500, CEP05503-900 Sao Paulo, BrazilDepartment of PhysiologyUniversidade de Sao Paulo, Sao Paulo, Brazil Laboratory of PharmacologyUnit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Avenida Vital Brasil, 1500, CEP05503-900 Sao Paulo, BrazilDepartment of PhysiologyUniversidade de Sao Paulo, Sao Paulo, Brazil
| | - Patricia Lucio Alves
- Laboratory of PharmacologyUnit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Avenida Vital Brasil, 1500, CEP05503-900 Sao Paulo, BrazilDepartment of PhysiologyUniversidade de Sao Paulo, Sao Paulo, Brazil
| | - Paulo Flavio Silveira
- Laboratory of PharmacologyUnit of Translational Endocrine Physiology and Pharmacology, Instituto Butantan, Avenida Vital Brasil, 1500, CEP05503-900 Sao Paulo, BrazilDepartment of PhysiologyUniversidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
34
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
35
|
Malinauskas M, Wallenius V, Fändriks L, Casselbrant A. Local expression of AP/AngIV/IRAP and effect of AngIV on glucose-induced epithelial transport in human jejunal mucosa. J Renin Angiotensin Aldosterone Syst 2015; 16:1101-8. [PMID: 26311161 DOI: 10.1177/1470320315599514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/12/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recently it was shown that the classic renin-angiotensin system (RAS) is locally expressed in small intestinal enterocytes and exerts autocrine control of glucose transport. The aim of this study was to investigate if key components for the Angiotensin III (AngIII) and IV (AngIV) formation enzymes and the AngIV receptor, insulin-regulated aminopeptidase (IRAP), are present in the healthy jejunal mucosa. A second aim was to investigate AngIV effects on glucose-induced mucosal transport in vitro. MATERIAL AND METHODS Enteroscopy with mucosal biopsy sampling was performed in healthy volunteers. ELISA, Western blotting and immunohistochemistry were used to assess the protein levels and localization. The functional effect of AngIV was examined in Ussing chambers. RESULTS The substrate Angiotensin II, the enzymes aminopeptidases-A, B, M as well as IRAP were detected in the jejunal mucosa. Immunohistochemistry localized the enzymes to the apical brush-border membrane whereas IRAP was localized in the subapical cytosolic compartment in the enterocyte. AngIV increased the glucose-induced electrogenic transport in vitro. CONCLUSION The present study indicates the presence of substrates and enzymes necessary for AngIV formation as well as the receptor IRAP in the jejunal mucosa. The functional data suggest that AngIV regulates glucose uptake in the healthy human small intestine.
Collapse
Affiliation(s)
- M Malinauskas
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - V Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - L Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - A Casselbrant
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
36
|
ERp44 Exerts Redox-Dependent Control of Blood Pressure at the ER. Mol Cell 2015; 58:1015-27. [DOI: 10.1016/j.molcel.2015.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 01/16/2015] [Accepted: 03/31/2015] [Indexed: 01/09/2023]
|
37
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
38
|
Hermans SJ, Ascher DB, Hancock NC, Holien JK, Michell BJ, Chai SY, Morton CJ, Parker MW. Crystal structure of human insulin-regulated aminopeptidase with specificity for cyclic peptides. Protein Sci 2014; 24:190-9. [PMID: 25408552 DOI: 10.1002/pro.2604] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/10/2014] [Indexed: 11/12/2022]
Abstract
Insulin-regulated aminopeptidase (IRAP or oxytocinase) is a membrane-bound zinc-metallopeptidase that cleaves neuroactive peptides in the brain and produces memory enhancing effects when inhibited. We have determined the crystal structure of human IRAP revealing a closed, four domain arrangement with a large, mostly buried cavity abutting the active site. The structure reveals that the GAMEN exopeptidase loop adopts a very different conformation from other aminopeptidases, thus explaining IRAP's unique specificity for cyclic peptides such as oxytocin and vasopressin. Computational docking of a series of IRAP-specific cognitive enhancers into the crystal structure provides a molecular basis for their structure-activity relationships and demonstrates that the structure will be a powerful tool in the development of new classes of cognitive enhancers for treating a variety of memory disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Stefan J Hermans
- ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Victoria, 3065, Australia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Borhade SR, Rosenström U, Sävmarker J, Lundbäck T, Jenmalm-Jensen A, Sigmundsson K, Axelsson H, Svensson F, Konda V, Sköld C, Larhed M, Hallberg M. Inhibition of Insulin-Regulated Aminopeptidase (IRAP) by Arylsulfonamides. ChemistryOpen 2014; 3:256-63. [PMID: 25558444 PMCID: PMC4280825 DOI: 10.1002/open.201402027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 01/07/2023] Open
Abstract
The inhibition of insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) by angiotenesin IV is known to improve memory and learning in rats. Screening 10 500 low-molecular-weight compounds in an enzyme inhibition assay with IRAP from Chinese Hamster Ovary (CHO) cells provided an arylsulfonamide (N-(3-(1H-tetrazol-5-yl)phenyl)-4-bromo-5-chlorothiophene-2-sulfonamide), comprising a tetrazole in the meta position of the aromatic ring, as a hit. Analogues of this hit were synthesized, and their inhibitory capacities were determined. A small structure-activity relationship study revealed that the sulfonamide function and the tetrazole ring are crucial for IRAP inhibition. The inhibitors exhibited a moderate inhibitory potency with an IC50=1.1±0.5 μm for the best inhibitor in the series. Further optimization of this new class of IRAP inhibitors is required to make them attractive as research tools and as potential cognitive enhancers.
Collapse
Affiliation(s)
- Sanjay R Borhade
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Ulrika Rosenström
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Jonas Sävmarker
- Beijer Laboratory, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Thomas Lundbäck
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Annika Jenmalm-Jensen
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Kristmundur Sigmundsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Hanna Axelsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm 171 77 (Sweden)
| | - Fredrik Svensson
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Vivek Konda
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Christian Sköld
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Mats Larhed
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University P.O. Box 574, 751 23 Uppsala (Sweden)
| | - Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, BMC, Uppsala University P.O. Box 591, 751 24 Uppsala (Sweden) E-mail:
| |
Collapse
|
40
|
Tobin VA, Arechaga G, Brunton PJ, Russell JA, Leng G, Ludwig M, Douglas AJ. Oxytocinase in the female rat hypothalamus: a novel mechanism controlling oxytocin neurones during lactation. J Neuroendocrinol 2014; 26:205-16. [PMID: 24612105 DOI: 10.1111/jne.12141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/11/2014] [Accepted: 02/22/2014] [Indexed: 01/09/2023]
Abstract
In addition to its peripheral actions, oxytocin released within the brain is important for birth and essential for milk ejection. The oxytocinase enzyme (placental leucine aminopeptidase; P-LAP) is expressed both peripherally and centrally. P-LAP controls oxytocin degradation in the uterus, placenta and plasma during pregnancy, although its role in the hypothalamus is unclear. We investigated P-LAP expression and activity in the hypothalamus in virgin, pregnant and lactating rats, as well as its role in vivo during the milk-ejection reflex. P-LAP mRNA and protein were expressed in magnocellular neurones of the supraoptic (SON) and paraventricular (PVN) nuclei. Oxytocin neurones co-expressed P-LAP without strong subcellular co-localisation of oxytocin and P-LAP, indicating that they are packaged in separate vesicles. Examination of the intracellular distribution of oxytocin and P-LAP showed a redistribution of P-LAP to within 1 μm of the plasma membrane in the somata of oxytocin neurones during lactation. Both P-LAP mRNA expression and hypothalamic leucyl/cystinyl aminopeptidase activity in the soluble fraction were higher during lactation than in late pregnant or virgin states. Inhibition of central enzyme activity by i.c.v. injection of amastatin in anaesthetised suckling mothers increased the frequency of reflex milk ejections. Because hypothalamic P-LAP expression and activity increase in lactation, and the prevention of its action mimics central oxytocin administration, we conclude that P-LAP regulates auto-excitatory oxytocin actions during the suckling-induced milk-ejection reflex.
Collapse
Affiliation(s)
- V A Tobin
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Gajdosechova L, Krskova K, Segarra AB, Spolcova A, Suski M, Olszanecki R, Zorad S. Hypooxytocinaemia in obese Zucker rats relates to oxytocin degradation in liver and adipose tissue. J Endocrinol 2014; 220:333-43. [PMID: 24389591 DOI: 10.1530/joe-13-0417] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The metabolic action of oxytocin has recently been intensively studied to assess the ability of the peptide to regulate energy homeostasis. Despite the obvious weight-reducing effect of oxytocin observed in experimental studies, plasma oxytocin levels were found to be unchanged or even elevated in human obesity. The aim of our study was to evaluate the changes in the oxytocin system in Zucker rats, an animal model closely mirroring morbid obesity in humans. Plasma oxytocin levels were measured in obese Zucker rats and lean controls by enzyme immunoassay after plasma extraction. The expression of oxytocin and oxytocin receptor (OXTR) was assessed at the mRNA and protein levels by quantitative real-time PCR and immunoblotting respectively. Plasma and tissue activity of oxytocinase, the main enzyme involved in oxytocin degradation, were measured by fluorometric assay using an arylamide derivate as the substrate. Obese Zucker rats displayed a marked reduction in plasma oxytocin levels. Elevated liver and adipose tissue oxytocinase activity was noticed in obese Zucker rats. Hypothalamic oxytocin gene expression was not altered by the obese phenotype. OXTR mRNA and protein levels were upregulated in the adipose tissue of obese animals in contrast to the reduced OXTR protein levels in skeletal muscle. Our results show that obesity is associated with reduced plasma oxytocin due to increased peptide degradation by liver and adipose tissue rather than changes in hormone synthesis. This study highlights the importance of the oxytocin system in the pathogenesis of obesity and suggests oxytocinase inhibition as a candidate approach in the therapy of obesity.
Collapse
Affiliation(s)
- Lucia Gajdosechova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 83306 Bratislava, Slovakia Unit of Physiology, Department of Health Sciences, University of Jaen, 23071 Jaen, Spain Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic Chair of Pharmacology, Jagiellonian University Medical College, 31531 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
42
|
Hattori A, Tsujimoto M. Endoplasmic reticulum aminopeptidases: biochemistry, physiology and pathology. J Biochem 2013; 154:219-28. [PMID: 23946506 DOI: 10.1093/jb/mvt066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The human endoplasmic reticulum aminopeptidase (ERAP) 1 and 2 proteins were initially identified as homologues of human placental leucine aminopeptidase/insulin-regulated aminopeptidase. They are categorized as a unique class of proteases based on their subcellular localization on the luminal side of the endoplasmic reticulum. ERAPs play an important role in the N-terminal processing of the antigenic precursors that are presented on the major histocompatibility complex (MHC) class I molecules. ERAPs are also implicated in the regulation of a wide variety of physiological phenomena and pathogenic conditions. In this review, the current knowledge on ERAPs is summarized.
Collapse
Affiliation(s)
- Akira Hattori
- Division of Bioinformatics and Chemical Genomics, Department of System Chemotherapy and Molecular Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | | |
Collapse
|
43
|
Mizutani S, Tsunemi T, Mizutani E, Hattori A, Tsujimoto M, Kobayashi H. New insights into the role of aminopeptidases in the treatment for both preeclampsia and preterm labor. Expert Opin Investig Drugs 2013; 22:1425-36. [PMID: 23931642 DOI: 10.1517/13543784.2013.825248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Evidence elucidating the pathophysiology and pharmacology of conventional drugs, β-2 stimulants and magnesium sulfate, on safety and effectiveness for preeclampsia and preterm labor are rarely found. Both compounds pass through the placental barrier and could exert their adverse effects on the fetus. Exposure to these agents could be problematic long after the birth, and possibly result in diseases such as autism and cardiomyopathy. Since 1970 the possible roles of placental aminopeptidases, which degrade peptide hormones, in preeclampsia and preterm labor have been studied. AREAS COVERED Many studies reveal that the fetus secretes peptide hormones, such as angiotensin II, vasopressin, and oxytocin, under hypoxia (stress) during the course of its growth, suggesting the critical effects these hormones have during pregnancy. The roles of placental aminopeptidases, the enzymes which degrade fetal hormones without passing through the placental barrier, were clarified. A first-step production system for recombinant aminopeptidases was established, by which engineered recombinant aminopeptidases were used for further experiments testing expected efficacy on controlling the level of hormones. EXPERT OPINION The authors conclude that both aminopeptidase A and placental leucine aminopeptidase could be potentially safe and effective drugs for patients and their babies in the treatment of preeclampsia and preterm labor.
Collapse
Affiliation(s)
- Shigehiko Mizutani
- Daiya Building Ladys' Clinic , 1F, No.2, 3-15-1, Meieki, Nakamura-ku, Nagoya, 450-0002 , Japan
| | | | | | | | | | | |
Collapse
|
44
|
Chow LH, Tao PL, Chen JC, Liao RM, Chang EP, Huang EYK. A possible correlation between oxytocin-induced and angiotensin IV-induced anti-hyperalgesia at the spinal level in rats. Peptides 2013; 39:21-8. [PMID: 23142109 DOI: 10.1016/j.peptides.2012.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022]
Abstract
In our previous study, we showed that intrathecal (i.t.) administration of angiotensin IV (Ang IV), an insulin-regulated aminopeptidase (IRAP) inhibitor, attenuated inflammatory hyperalgesia in rats. Using the plantar test in rats with carrageenan-induced paw inflammation, we investigated the possible mechanism(s) of this effect. Because i.t. oxytocin was reported to produce a dose-dependent anti-hyperalgesia in rats with inflammation, we speculate that there is a possible correlation between oxytocin-induced and Ang IV-induced anti-hyperalgesia. Using i.t. co-administered atosiban (oxytocin receptor antagonist), the anti-hyperalgesia by Ang IV was completely abolished. This indicated that oxytocin could be the major IRAP substrate responsible for the anti-hyperalgesia by Ang IV. When Ang IV was co-administered with a low dose of oxytocin, there was a significant enhancing effect of Ang IV on oxytocin-induced anti-hyperalgesia. In recent reports, electrical stimulation on the paraventricular hypothalamic nucleus (PVN) was proved to increase oxytocin release at the spinal cord. Our results also showed that Ang IV could prolong the anti-hyperalgesia induced by PVN stimulation. This suggests a possible protective effect of Ang IV on endogenous oxytocin degradation/dysfunctioning. Moreover, we examined the local effect of intraplantarly injected Ang IV in the same model. Our results showed no effect of local Ang IV on hyperalgesia and paw edema, indicating that Ang IV may not regulate the peripheral inflammatory process. Overall, our study suggests that Ang IV may act through the inhibition of the activity of IRAP to reduce the degradation of oxytocin at the spinal cord, thereby leading to anti-hyperalgesia in rats with inflammation.
Collapse
Affiliation(s)
- Lok-Hi Chow
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The third edition of the Handbook of Proteolytic Enzymes aims to be a comprehensive reference work for the enzymes that cleave proteins and peptides, and contains over 850 chapters. Each chapter is organized into sections describing the name and history, activity and specificity, structural chemistry, preparation, biological aspects, and distinguishing features for a specific peptidase. The subject of Chapter 79 is Aminopeptidase N. Keywords Actinonin, amastatin, angiogenesis, angiotensin, bestatin, brush border, cancer, CD13, coronavirus, cysteinyl-glycinase, dipeptidyl peptidase IV, enkephalin, glutathione, neprilysin, puromycin, stem cells.
Collapse
|
46
|
Discovery of inhibitors of insulin-regulated aminopeptidase as cognitive enhancers. Int J Hypertens 2012; 2012:789671. [PMID: 23304452 PMCID: PMC3529497 DOI: 10.1155/2012/789671] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022] Open
Abstract
The hexapeptide angiotensin IV (Ang IV) is a metabolite of angiotensin II (Ang II) and plays a central role in the brain. It was reported more than two decades ago that intracerebroventricular injection of Ang IV improved memory and learning in the rat. Several hypotheses have been put forward to explain the positive effects of Ang IV and related analogues on cognition. It has been proposed that the insulin-regulated aminopeptidase (IRAP) is the main target of Ang IV. This paper discusses progress in the discovery of inhibitors of IRAP as potential enhancers of cognitive functions. Very potent inhibitors of the protease have been synthesised, but pharmacokinetic issues (including problems associated with crossing the blood-brain barrier) remain to be solved. The paper also briefly presents an overview of the status in the discovery of inhibitors of ACE and renin, and of AT1R antagonists and AT2R agonists, in order to enable other discovery processes within the RAS system to be compared. The paper focuses on the relationship between binding affinities/inhibition capacity and the structures of the ligands that interact with the target proteins.
Collapse
|
47
|
Wright JW, Harding JW. Importance of the brain Angiotensin system in Parkinson's disease. PARKINSON'S DISEASE 2012; 2012:860923. [PMID: 23213621 PMCID: PMC3503402 DOI: 10.1155/2012/860923] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) has become a major health problem affecting 1.5% of the world's population over 65 years of age. As life expectancy has increased so has the occurrence of PD. The primary direct consequence of this disease is the loss of dopaminergic (DA) neurons in the substantia nigra and striatum. As the intensity of motor dysfunction increases, the symptomatic triad of bradykinesia, tremors-at-rest, and rigidity occur. Progressive neurodegeneration may also impact non-DA neurotransmitter systems including cholinergic, noradrenergic, and serotonergic, often leading to the development of depression, sleep disturbances, dementia, and autonomic nervous system failure. L-DOPA is the most efficacious oral delivery treatment for controlling motor symptoms; however, this approach is ineffective regarding nonmotor symptoms. New treatment strategies are needed designed to provide neuroprotection and encourage neurogenesis and synaptogenesis to slow or reverse this disease process. The hepatocyte growth factor (HGF)/c-Met receptor system is a member of the growth factor family and has been shown to protect against degeneration of DA neurons in animal models. Recently, small angiotensin-based blood-brain barrier penetrant mimetics have been developed that activate this HGF/c-Met system. These compounds may offer a new and novel approach to the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| | - Joseph W. Harding
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| |
Collapse
|
48
|
Structural approaches to probing metal interaction with proteins. J Inorg Biochem 2012; 115:138-47. [DOI: 10.1016/j.jinorgbio.2012.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/02/2012] [Accepted: 02/20/2012] [Indexed: 12/13/2022]
|
49
|
Cheng BC, Tao PL, Cheng YY, Huang EYK. LVV-hemorphin 7 and angiotensin IV in correlation with antinociception and anti-thermal hyperalgesia in rats. Peptides 2012; 36:9-16. [PMID: 22484286 DOI: 10.1016/j.peptides.2012.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 12/01/2022]
Abstract
Hemorphins, a family of atypical endogenous opioid peptides, are produced by the cleavage of hemoglobin β-chain. Hemorphins were proved to bind to the μ-opioid receptors (agonist) and angiotensin IV receptors (insulin-regulated aminopeptidase; IRAP) (inhibitor). Among the hemorphins, LVV-hemorphin-7 (LVV-H7) was found to be abundant and with a longer half life in the CNS. Using intrathecal and intracerebroventricular injections, LVV-H7 and angiotensin IV were given to the rats, which were then subjected to the plantar test and the tail-flick test. Our results showed that LVV-H7 attenuated carrageenan-induced hyperalgesia at the spinal level, which could not be reversed by the co-administration of naloxone. At the supraspinal level, LVV-H7 also produced a significant anti-hyperalgesia effect but with a lower extent. Angiotensin IV showed a similar anti-hyperalgesia effect at the spinal level, but had no effect at the supraspinal level. In the tail-flick test and paw edema test, both peptides showed no effect. These results suggest that LVV-H7 mainly exert the anti-hyperalgesia effect at the spinal level, possibly through IRAP but not μ-opioid receptors. In addition, we observed the expression of IRAP in the CNS of animals with/without carrageenan-induced hyperalgesia. Our results showed a significant expression of IRAP in the spinal cord of rats. However, there was no significant quantitative change of IRAP after the development of hyperalgesia. The serum level of LVV-H7 was also found to be with no change caused by hyperalgesia. These results indicated that the endogenous LVV-H7 and IRAP may not regulate the severity of hyperalgesia through a quantitative change.
Collapse
Affiliation(s)
- Bor-Chih Cheng
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | | | | | | |
Collapse
|
50
|
Wright JW, Harding JW. The brain renin–angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch 2012; 465:133-51. [DOI: 10.1007/s00424-012-1102-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 12/14/2022]
|