1
|
Labanca E, Yang J, Shepherd PDA, Wan X, Starbuck MW, Guerra LD, Anselmino N, Bizzotto JA, Dong J, Chinnaiyan AM, Ravoori MK, Kundra V, Broom BM, Corn PG, Troncoso P, Gueron G, Logothethis CJ, Navone NM. Fibroblast Growth Factor Receptor 1 Drives the Metastatic Progression of Prostate Cancer. Eur Urol Oncol 2021; 5:164-175. [PMID: 34774481 DOI: 10.1016/j.euo.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND No curative therapy is currently available for metastatic prostate cancer (PCa). The diverse mechanisms of progression include fibroblast growth factor (FGF) axis activation. OBJECTIVE To investigate the molecular and clinical implications of fibroblast growth factor receptor 1 (FGFR1) and its isoforms (α/β) in the pathogenesis of PCa bone metastases. DESIGN, SETTING, AND PARTICIPANTS In silico, in vitro, and in vivo preclinical approaches were used. RNA-sequencing and immunohistochemical (IHC) studies in human samples were conducted. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS In mice, bone metastases (chi-square/Fisher's test) and survival (Mantel-Cox) were assessed. In human samples, FGFR1 and ladinin 1 (LAD1) analysis associated with PCa progression were evaluated (IHC studies, Fisher's test). RESULTS AND LIMITATIONS FGFR1 isoform expression varied among PCa subtypes. Intracardiac injection of mice with FGFR1-expressing PC3 cells reduced mouse survival (α, p < 0.0001; β, p = 0.032) and increased the incidence of bone metastases (α, p < 0.0001; β, p = 0.02). Accordingly, IHC studies of human castration-resistant PCa (CRPC) bone metastases revealed significant enrichment of FGFR1 expression compared with treatment-naïve, nonmetastatic primary tumors (p = 0.0007). Expression of anchoring filament protein LAD1 increased in FGFR1-expressing PC3 cells and was enriched in human CRPC bone metastases (p = 0.005). CONCLUSIONS FGFR1 expression induces bone metastases experimentally and is significantly enriched in human CRPC bone metastases, supporting its prometastatic effect in PCa. LAD1 expression, found in the prometastatic PCa cells expressing FGFR1, was also enriched in CRPC bone metastases. Our studies support and provide a roadmap for the development of FGFR blockade for advanced PCa. PATIENT SUMMARY We studied the role of fibroblast growth factor receptor 1 (FGFR1) in prostate cancer (PCa) progression. We found that PCa cells with high FGFR1 expression increase metastases and that FGFR1 expression is increased in human PCa bone metastases, and identified genes that could participate in the metastases induced by FGFR1. These studies will help pinpoint PCa patients who use fibroblast growth factor to progress and will benefit by the inhibition of this pathway.
Collapse
Affiliation(s)
- Estefania Labanca
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jun Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter D A Shepherd
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinhai Wan
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael W Starbuck
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leah D Guerra
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan A Bizzotto
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jiabin Dong
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Murali K Ravoori
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vikas Kundra
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geraldine Gueron
- Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christopher J Logothethis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Vélez-Aguilera G, de Dios Gómez-López J, Jiménez-Gutiérrez GE, Vásquez-Limeta A, Laredo-Cisneros MS, Gómez P, Winder SJ, Cisneros B. Control of nuclear β-dystroglycan content is crucial for the maintenance of nuclear envelope integrity and function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:406-420. [PMID: 29175376 DOI: 10.1016/j.bbamcr.2017.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 01/28/2023]
Abstract
β-Dystroglycan (β-DG) is a plasma membrane protein that has ability to target to the nuclear envelope (NE) to maintain nuclear architecture. Nevertheless, mechanisms controlling β-DG nuclear localization and the physiological consequences of a failure of trafficking are largely unknown. We show that β-DG has a nuclear export pathway in myoblasts that depends on the recognition of a nuclear export signal located in its transmembrane domain, by CRM1. Remarkably, NES mutations forced β-DG nuclear accumulation resulting in mislocalization and decreased levels of emerin and lamin B1 and disruption of various nuclear processes in which emerin (centrosome-nucleus linkage and β-catenin transcriptional activity) and lamin B1 (cell cycle progression and nucleoli structure) are critically involved. In addition to nuclear export, the lifespan of nuclear β-DG is restricted by its nuclear proteasomal degradation. Collectively our data show that control of nuclear β-DG content by the combination of CRM1 nuclear export and nuclear proteasome pathways is physiologically relevant to preserve proper NE structure and activity.
Collapse
Affiliation(s)
- Griselda Vélez-Aguilera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Juan de Dios Gómez-López
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Guadalupe E Jiménez-Gutiérrez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Alejandra Vásquez-Limeta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico; Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States
| | - Marco S Laredo-Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Pablo Gómez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
3
|
Gracida-Jiménez V, Mondragón-González R, Vélez-Aguilera G, Vásquez-Limeta A, Laredo-Cisneros MS, Gómez-López JDD, Vaca L, Gourlay SC, Jacobs LA, Winder SJ, Cisneros B. Retrograde trafficking of β-dystroglycan from the plasma membrane to the nucleus. Sci Rep 2017; 7:9906. [PMID: 28852008 PMCID: PMC5575308 DOI: 10.1038/s41598-017-09972-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/31/2017] [Indexed: 12/04/2022] Open
Abstract
β-Dystroglycan (β-DG) is a transmembrane protein with critical roles in cell adhesion, cytoskeleton remodeling and nuclear architecture. This functional diversity is attributed to the ability of β-DG to target to, and conform specific protein assemblies at the plasma membrane (PM) and nuclear envelope (NE). Although a classical NLS and importin α/β mediated nuclear import pathway has already been described for β-DG, the intracellular trafficking route by which β-DG reaches the nucleus is unknown. In this study, we demonstrated that β-DG undergoes retrograde intracellular trafficking from the PM to the nucleus via the endosome-ER network. Furthermore, we provided evidence indicating that the translocon complex Sec61 mediates the release of β-DG from the ER membrane, making it accessible for importins and nuclear import. Finally, we show that phosphorylation of β-DG at Tyr890 is a key stimulus for β-DG nuclear translocation. Collectively our data describe the retrograde intracellular trafficking route that β-DG follows from PM to the nucleus. This dual role for a cell adhesion receptor permits the cell to functionally connect the PM with the nucleus and represents to our knowledge the first example of a cell adhesion receptor exhibiting retrograde nuclear trafficking and having dual roles in PM and NE.
Collapse
Affiliation(s)
- Viridiana Gracida-Jiménez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico
| | - Ricardo Mondragón-González
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico
| | - Griselda Vélez-Aguilera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico
| | - Alejandra Vásquez-Limeta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico.,Laboratory of Protein Dynamics and Signaling, Center for Cancer Research-Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Marco S Laredo-Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico
| | - Juan de Dios Gómez-López
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Mexico, Mexico
| | - Sarah C Gourlay
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Laura A Jacobs
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Steve J Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Ciudad de México, Mexico, Mexico.
| |
Collapse
|
4
|
Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: From Biology Through Engineering to Potential Medical Applications. Crit Rev Clin Lab Sci 2008; 45:91-135. [DOI: 10.1080/10408360701713120] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Zakrzewska M, Krowarsch D, Wiedlocha A, Olsnes S, Otlewski J. Structural requirements of FGF-1 for receptor binding and translocation into cells. Biochemistry 2008; 45:15338-48. [PMID: 17176056 DOI: 10.1021/bi0618114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
FGF-1 binds to and activates specific transmembrane receptors (FGFRs) and is subsequently internalized and translocated to the interior of the cell. To elucidate the role of the receptor in the translocation process, we studied the effects of the elimination of distinct sites of the ligand-receptor interaction. On the basis of the structure of the FGF-1-FGFR1 complex, we substituted four key amino acid residues of FGF-1 from the FGF-receptor binding site with alanines, constructing four point mutants and one double mutant. We determined by in vivo assays in NIH 3T3 cells the ability of the mutants to bind to specific FGF receptors, to stimulate DNA synthesis, and to activate downstream signaling pathways. We found that correct binding to the receptor is necessary for optimal stimulation of DNA synthesis. All four single mutants became phosphorylated to different extents, indicating that they were translocated to the cytosol/nucleus with varying efficiency. This indicates that despite a low affinity for FGFR, translocation to the cytosol/nucleus can still occur. However, simultaneous substitution in two of the positions led to a total loss of biological activity of the growth factor and prevented its internalization, implying that there is only one strongly receptor-dependent, productive way of translocating FGF-1. We also found that the process of translocation did not correlate with the thermal stability of the protein. Additionally, we observed a clear negative correlation between the stability of the FGF-1 mutants and the efficiency of their phosphorylation, which strongly suggests that protein kinases prefer the unfolded state of the protein substrate.
Collapse
Affiliation(s)
- Malgorzata Zakrzewska
- Protein Engineering Laboratory, Department of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
6
|
Ohtsuki K, Hirayama K, Kawakami F, Kato T, Kawakami H. Biochemical characterization of a N-terminal fragment (p5) cleaved from fibroblast growth factor-binding protein (FGF-BP) in bovine milk in vitro. Biochim Biophys Acta Gen Subj 2007; 1770:1219-29. [PMID: 17560725 DOI: 10.1016/j.bbagen.2007.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 04/11/2007] [Accepted: 04/30/2007] [Indexed: 11/25/2022]
Abstract
By means of successive gel filtration on a Superdex 30 pg column and Mono S column chromatography, a 5-kDa polypeptide (p5) was highly purified from the low molecular weight (LMW) fraction separated from the partially purified lactoferrin (bLF) fraction of bovine milk, and biochemically characterized as a phosphate acceptor for two protein kinases [cAMP-dependent protein kinase (PKA) and casein kinase 1delta (CK1delta)] in vitro. Purified p5 was identified as a fragment (N-terminal positions 24-51, 28 amino acid residues) cleaved from fibroblast growth factor-binding protein (FGF-BP, p37). Both purified p5 and synthetic p5 (sp5) were effectively phosphorylated by PKA, and also phosphorylated by CK1delta in the presence of two sulfated lipids [sulfatide or cholesterol-3-sulfate (CH-3S), SCS] in vitro. A novel phosphorylation site (RNRRGS) for CK1delta and a potent SCS-binding site (RNRR) on p5 were identified. The PKA-mediated phosphorylation of p5 was highly stimulated when incubated with either acidic FGF (aFGF) or bLF in vitro, but this phosphorylation was more sensitive to SCS than H-89 (a specific PKA inhibitor). Immunoprecipitate experiments revealed p5, but not the phosphorylated p5, to be directly bound to aFGF in vitro. These results show that (i) p5 has a high binding affinity with aFGF as well as bLF; (ii) the binding of SCS to p5 results in the selective inhibition of its phosphorylation by PKA; and (iii) SCS functions as an effective stimulator for the phosphorylation of p5 by CK1delta in vitro. In addition, p5 may play an important physiological role as a trafficking factor for the physiological interaction between aFGF group including endothelial cell growth factors and their binding proteins in vivo.
Collapse
Affiliation(s)
- Kenzo Ohtsuki
- Laboratory of Genetical Biochemistry and Signal Biology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 228-8555, Japan.
| | | | | | | | | |
Collapse
|
7
|
Arnoys EJ, Wang JL. Dual localization: proteins in extracellular and intracellular compartments. Acta Histochem 2007; 109:89-110. [PMID: 17257660 DOI: 10.1016/j.acthis.2006.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 10/01/2006] [Accepted: 10/09/2006] [Indexed: 12/24/2022]
Abstract
The goal of this article is to provide a comprehensive catalog of those proteins documented to exhibit dual localization, being found in both the extracellular compartment (cell surface and extracellular medium) as well as the intracellular compartment (cytosol and nucleus). A large subset of these proteins that show dual localization is found both in the nucleus and outside of cells. Proteins destined to be secreted out of the cell or to be expressed at the cell surface usually enter the endomembrane pathway on the basis of a signal sequence that targets them into the endoplasmic reticulum. Proteins destined for import into the nucleus, on the other hand, usually carry a nuclear localization signal. We have organized our catalog in terms of the presence and absence of these trafficking signals: (a) proteins that contain a signal sequence but no nuclear localization signal; (b) proteins that contain both a signal sequence as well as a nuclear localization signal; (c) proteins that contain a nuclear localization signal but lack a signal sequence; and (d) proteins containing neither a signal sequence nor a nuclear localization signal. Novel insights regarding the activities of several classes of proteins exhibiting dual localization can be derived when one targeting signal is experimentally abrogated. For example, the mitogenic activity of both fibroblasts growth factor-1 and schwannoma-derived growth factor clearly requires nuclear localization, independent of the activation of the receptor tyrosine kinase signaling pathway. In addition, there is a growing list of integral membrane receptors that undergo translocation to the nucleus, with bona fide nuclear localization signals and transcription activation activity. The information provided in this descriptive catalog will, hopefully, stimulate investigations into the pathways and mechanisms of transport between these compartments and the physiological significance of dual localization.
Collapse
Affiliation(s)
- Eric J Arnoys
- Department of Chemistry and Biochemistry, Calvin College, Grand Rapids, MI 49546, USA
| | | |
Collapse
|
8
|
Raj T, Kanellakis P, Pomilio G, Jennings G, Bobik A, Agrotis A. Inhibition of fibroblast growth factor receptor signaling attenuates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2006; 26:1845-51. [PMID: 16709940 DOI: 10.1161/01.atv.0000227689.41288.5e] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine the significance of fibroblast growth factor receptor (FGFR) expression for the development of atherosclerotic lesions in apoE-deficient (apoE-/-) mice. METHODS AND RESULTS ApoE-/- mice fed a high-fat diet were administered the FGFR tyrosine kinase inhibitor SU5402 (25 mg/kg/d sc), which inhibited neointima growth by 85%. We measured its effects on lesion size at the aortic sinus, macrophage and smooth muscle cell (SMC) accumulation, the expression of monocyte chemotactic and retention factors, as well as its effects on FGFR expression/phosphorylation. FGFR tyrosine kinase inhibition reduced phosphorylated FGFRs in lesions by 90%, associated with a 65% reduction in lesion size measured using Oil Red O. Macrophages and SMCs within lesions were reduced by 58% and 78%, respectively. Monocyte chemotactic protein-1 (MCP-1) expression was also reduced, as was the expression of hyaluronan synthase, cyclooxygenase-2, CD36, and endothelial monocyte-activating polypeptide-II. Although 3 FGFR types were expressed in lesions, the effects of SU5402 could be attributed largely to inhibition of FGFR-1 phosphorylation. CONCLUSIONS Atherosclerotic lesions in apoE-/- mice express multiple FGFRs and an active FGF:FGFR-1 signaling system that promotes atherosclerosis development via increased SMC proliferation, and by augmenting macrophage accumulation via increased expression of MCP-1 and factors promoting macrophage retention in lesions.
Collapse
Affiliation(s)
- Tina Raj
- Baker Heart Research Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria 8008, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The response of a cell to the myriad of signals that it receives is varied, and it is dependent on many different factors. The most-studied responses involve growth-factor signalling and these signalling cascades have become key targets for cancer therapy. Recent reports have indicated that growth-factor receptors and associated adaptors can accumulate in the nucleus. Are there novel functions for these proteins that might affect our understanding of their role in cancer and have implications for drug resistance?
Collapse
Affiliation(s)
- Charles Massie
- CRUK Uro-Oncology Group, Department of Oncology, University of Cambridge, c/o Hutchison/MRC Cancer Research Centre, Addenbrookes Hospital, Hills Road, Cambridge, CB2 2XZ, UK
| | | |
Collapse
|
10
|
Okano H, Toyoda KI, Bamba H, Hisa Y, Oomura Y, Imamura T, Furukawa S, Kimura H, Tooyama I. Localization of Fibroblast Growth Factor-1 in Cholinergic Neurons Innervating the Rat Larynx. J Histochem Cytochem 2006; 54:1061-71. [PMID: 16735594 DOI: 10.1369/jhc.5a6843.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholinergic neurons in the dorsal motor nucleus of the vagus (DMNV) are particularly vulnerable to laryngeal nerve damage, possibly because they lack fibroblast growth factor-1 (FGF1). To test this hypothesis, we investigated the localization of FGF1 in cholinergic neurons innervating the rat larynx by immunohistochemistry using central-type antibodies to choline acetyltransferase (cChAT) and peripheral type (pChAT) antibodies, as well as tracer experiments. In the DMNV, only 9% of cChAT-positive neurons contained FGF1, and 71% of FGF1-positive neurons colocalized with cChAT. In the nucleus ambiguus, 100% of cChAT-positive neurons were FGF1 positive. In the intralaryngeal ganglia, all ganglionic neurons contained both pChAT and FGF1. In the nodose ganglia, 66% of pChAT-positive neurons were also positive for FGF1, and 90% of FGF1-positive ganglionic cells displayed pChAT immunoreactivity. Neuronal tracing using cholera toxin B subunit (CTb) demonstrated that cholinergic neurons sending their axons from the DMNV and nucleus ambiguus to the superior laryngeal nerve were FGF1 negative and FGF1 positive, respectively. In the nodose ganglia, some FGF1-positive cells were labeled with CTb. The results indicate that for innervation of the rat larynx, FGF1 is localized to motor neurons, postganglionic parasympathetic neurons, and sensory neurons, but expression is very low in preganglionic parasympathetic cholinergic neurons.
Collapse
Affiliation(s)
- Hiroyuki Okano
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu 520-2192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang P, Greendorfer JS, Jiao J, Kelpke SC, Thompson JA. Alternatively spliced FGFR-1 isoforms differentially modulate endothelial cell activation of c-YES. Arch Biochem Biophys 2006; 450:50-62. [PMID: 16631103 DOI: 10.1016/j.abb.2006.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 03/10/2006] [Accepted: 03/14/2006] [Indexed: 11/18/2022]
Abstract
Ligand activation of fibroblast growth factor receptor-1 (FGFR-1) induces an angiogenic response following activation of multiple intracellular signaling substrates, including the Src family of nonreceptor tyrosine kinases (SFK). However, the direct association between FGFR-1 and SFK and the involvement of SFK in FGFR-1-dependent cell proliferation have been controversial. Structural variants of FGFR-1 are generated by alternative splicing which results in two major isoforms, containing either three (FGFR-1alpha) or two (FGFR-1beta) immunoglobulin-like domains in the extracellular region. To determine whether alternatively spliced FGFR-1 isoforms differentially activate SFK, we have examined FGF receptor-negative endothelial cells stably transfected with human cDNA encoding either FGFR-1alpha or FGFR-1beta. Transient activation of c-YES, the predominant SFK expressed in these endothelial cells, was restricted to FGFR-1beta transfectants following exposure to acidic fibroblast growth factor (FGF-1). Co-immunoprecipitation studies revealed that c-YES directly associated with FGFR-1beta. The Src homology (SH)2 domain (and not the SH3 domain) of c-YES was able to recognize tyrosine phosphorylated FGFR-1beta. FGFR-1beta-specific activation of c-YES was accompanied by its association with and activation of cortactin. FGF-1 treatment of both FGFR-1alpha and FGFR-1beta transfectants induced SFK-independent cellular proliferation and growth in low density cultures. At high density, under both anchorage-dependent and -independent conditions, FGF-1 failed to induce proliferation and growth of FGFR-1alpha transfectants. In contrast, FGF-1 induced proliferation, growth, and formation of cord-like structures in high density cultures of FGFR-1beta transfectants in an SFK-dependent manner. In vitro cord formation on Matrigel was restricted to FGFR-1beta transfectants in an SFK-dependent manner. Formation of vascular structures in vivo was limited to endothelial cells transfected with FGFR-1beta. Collectively, these results emphasize the roles of alternatively spliced FGFR-1 structural isoforms and activation of SFK as modulators of endothelial cell growth during the formation of neovascular structures.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Surgery and Biochemistry, The University of Alabama at Birmingham, 35294, USA
| | | | | | | | | |
Collapse
|
12
|
Zakrzewska M, Krowarsch D, Wiedlocha A, Olsnes S, Otlewski J. Highly stable mutants of human fibroblast growth factor-1 exhibit prolonged biological action. J Mol Biol 2005; 352:860-75. [PMID: 16126225 DOI: 10.1016/j.jmb.2005.07.066] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/21/2005] [Accepted: 07/27/2005] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 1 (FGF-1) shows strong angiogenic, osteogenic and tissue-injury repair properties that might be relevant to medical applications. Since FGF-1 is partially unfolded at physiological temperature we decided to increase significantly its conformational stability and test how such an improvement will affect its biological function. Using an homology approach and rational strategy we designed two new single FGF-1 mutations: Q40P and S47I that appeared to be the most strongly stabilizing substitutions among those reported so far, increasing the denaturation temperature by 7.8 deg. C and 9.0 deg. C, respectively. As our goal was to produce highly stable variants of the growth factor, we combined these two mutations with five previously described stabilizing substitutions. The multiple mutants showed denaturation temperatures up to 27 deg. C higher than the wild-type and exhibited full additivity of the mutational effects. All those mutants were biologically competent in several cell culture assays, maintaining typical FGF-1 activities, such as binding to specific cell surface receptors and activation of downstream signaling pathways. Thus, we demonstrate that the low denaturation temperature of wild-type FGF-1 is not related to its fundamental cellular functions, and that FGF-1 action is not affected by its stability. A more detailed analysis of the biological behavior of stable FGF-1 mutants revealed that, compared with the wild-type, their mitogenic properties, as probed by the DNA synthesis assay, were significantly increased in the absence of heparin, and that their half-lives were extensively prolonged. We found that the biological action of the mutants was dictated by their susceptibility to proteases, which strongly correlated with the stability. Mutants which were much more resistant to proteolytic degradation always displayed a significant improvement in the half-life and mitogenesis. Our results show that engineered stable growth factor variants exhibit enhanced and prolonged activity, which can be advantageous in terms of the potential therapeutic applications of FGF-1.
Collapse
Affiliation(s)
- Malgorzata Zakrzewska
- Protein Engineering Laboratory, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
13
|
Trinkaus-Randall V, Walsh MT, Steeves S, Monis G, Connors LH, Skinner M. Cellular response of cardiac fibroblasts to amyloidogenic light chains. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:197-208. [PMID: 15632012 PMCID: PMC1602293 DOI: 10.1016/s0002-9440(10)62244-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amyloidoses are a group of disorders characterized by abnormal folding of proteins that impair organ function. We investigated the cellular response of primary cardiac fibroblasts to amyloidogenic light chains and determined the corresponding change in proteoglycan expression and localization. The cellular response to 11 urinary immunoglobulin light chains of kappa1, lambda6, and lambda 3 subtypes was evaluated. The localization of the light chains was monitored by conjugating them to Oregon Green 488 and performing live cell confocal microscopy. Sulfation of the proteoglycans was determined after elution over Q1-columns with a single-step salt gradient (1.5 mol/L NaCl) via dimethylmethylene blue. Light chains were detected inside cells within 4 hours and demonstrated perinuclear localization. Over 80% of the cells showed intracellular localization of the amyloid light chains. The light chains induced sulfation of the secreted glycosaminoglycans, but the cell fraction possessed only minimal sulfation. Furthermore, the light chains caused a translocation of heparan sulfate proteoglycan to the nucleus. The conformation and thermal stability of light chains was altered when they were incubated in the presence of heparan sulfate and destabilization of the amyloid light chains was detected. These studies indicate that internalization of the light chains mediates the expression and localization of heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, L904, 80 E. Concord Street, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Bryant DM, Wylie FG, Stow JL. Regulation of endocytosis, nuclear translocation, and signaling of fibroblast growth factor receptor 1 by E-cadherin. Mol Biol Cell 2005; 16:14-23. [PMID: 15509650 PMCID: PMC539147 DOI: 10.1091/mbc.e04-09-0845] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 10/14/2004] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factor (FGF) receptors (FGFRs) signal to modulate diverse cellular functions, including epithelial cell morphogenesis. In epithelial cells, E-cadherin plays a key role in cell-cell adhesion, and its function can be regulated through endocytic trafficking. In this study, we investigated the location, trafficking, and function of FGFR1 and E-cadherin and report a novel mechanism, based on endocytic trafficking, for the coregulation of E-cadherin and signaling from FGFR1. FGF induces the internalization of surface FGFR1 and surface E-cadherin, followed by nuclear translocation of FGFR1. The internalization of both proteins is regulated by common endocytic machinery, resulting in cointernalization of FGFR1 and E-cadherin into early endosomes. By blocking endocytosis, we show that this is a requisite, initial step for the nuclear translocation of FGFR1. Overexpression of E-cadherin blocks both the coendocytosis of E-cadherin and FGFR1, the nuclear translocation of FGFR1 and FGF-induced signaling to the mitogen-activated protein kinase pathway. Furthermore, stabilization of surface adhesive E-cadherin, by overexpressing p120ctn, also blocks internalization and nuclear translocation of FGFR1. These data reveal that conjoint endocytosis and trafficking is a novel mechanism for the coregulation of E-cadherin and FGFR1 during cell signaling and morphogenesis.
Collapse
Affiliation(s)
- David M Bryant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia 4072
| | | | | |
Collapse
|
15
|
Wiedłocha A, Nilsen T, Wesche J, Sørensen V, Małecki J, Marcinkowska E, Olsnes S. Phosphorylation-regulated nucleocytoplasmic trafficking of internalized fibroblast growth factor-1. Mol Biol Cell 2004; 16:794-810. [PMID: 15574884 PMCID: PMC545912 DOI: 10.1091/mbc.e04-05-0389] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fibroblast growth factor-1 (FGF-1), which stimulates cell growth, differentiation, and migration, is capable of crossing cellular membranes to reach the cytosol and the nucleus in cells containing specific FGF receptors. The cell entry process can be monitored by phosphorylation of the translocated FGF-1. We present evidence that phosphorylation of FGF-1 occurs in the nucleus by protein kinase C (PKC)delta. The phosphorylated FGF-1 is subsequently exported to the cytosol. A mutant growth factor where serine at the phosphorylation site is exchanged with glutamic acid, to mimic phosphorylated FGF-1, is constitutively transported to the cytosol, whereas a mutant containing alanine at this site remains in the nucleus. The export can be blocked by leptomycin B, indicating active and receptor-mediated nuclear export of FGF-1. Thapsigargin, but not leptomycin B, prevents the appearance of active PKCdelta in the nucleus, and FGF-1 is in this case phosphorylated in the cytosol. Leptomycin B increases the amount of phosphorylated FGF-1 in the cells by preventing dephosphorylation of the growth factor, which seems to occur more rapidly in the cytoplasm than in the nucleus. The nucleocytoplasmic trafficking of the phosphorylated growth factor is likely to play a role in the activity of internalized FGF-1.
Collapse
Affiliation(s)
- Antoni Wiedłocha
- Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
16
|
Shain SA. Exogenous Fibroblast Growth Factors Maintain Viability, Promote Proliferation, and Suppress GADD45α and GAS6 Transcript Content of Prostate Cancer Cells Genetically Modified to Lack Endogenous FGF-2. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.653.2.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Understanding processes regulating prostate cancer cell survival is critical to management of advanced disease. We used prostate cancer cell transfectants genetically modified to be deficient in either endogenous fibroblast growth factor (FGF-1) or endogenous FGF-2 to examine FGF maintenance of transfectant survival and proliferation and FGF-2-regulated expression of transfectant growth arrest DNA damage (GADD) and growth arrest sequences (GAS) family genes (known modulators of cell cycle progression and survival) and the AS3 gene (an androgen-modulated effector of prostate cell proliferation). When propagated in the absence of exogenous FGFs, FGF-2-deficient transfectants undergo exponential death, whereas FGF-1-deficient transfectants proliferate. Exogenous FGF-1, FGF-2, FGF-7, or FGF-8 promote survival and proliferation of FGF-2-deficient transfectants and enhance FGF-1-deficient transfectant proliferation. Transfectants express FGF receptor FGFR1, FGFR2(IIIb), FGFR2(IIIc), and FGFR3 transcripts, findings consistent with the effects of exogenous FGFs. FGF-2-deficient transfectants express high levels of AS3, GADD45α, GADD45γ, GAS8, and GAS11 transcripts and moderate levels of GADD153, GAS2, GAS3, and GAS6 transcripts and lack demonstrable GAS1 or GAS5 transcripts. FGF withdrawal-mediated death of FGF-2-deficient transfectants did not significantly affect cell AS3, GADD153, GADD45γ, GAS2, GAS3, GAS7, GAS8, or GAS11 transcript content, whereas GADD45α and GAS6 transcript content was elevated. These studies establish that endogenous FGF-2 dominantly regulates prostate cancer cell survival and proliferation and that exogenous FGFs may assume this function in the absence of endogenous FGF-2. Additionally, we provide the first evidence that FGFs regulate prostate GADD45α and GAS6 transcript content. The latter observations suggest that GADD45α and GAS6 proteins may be effectors of processes that regulate prostate cancer cell survival. Additional studies are required to examine this possibility in detail.
Collapse
Affiliation(s)
- Sydney A. Shain
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
17
|
Somanathan S, Stachowiak EK, Siegel AJ, Stachowiak MK, Berezney R. Nuclear matrix bound fibroblast growth factor receptor is associated with splicing factor rich and transcriptionally active nuclear speckles. J Cell Biochem 2004; 90:856-69. [PMID: 14587039 DOI: 10.1002/jcb.10672] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have used confocal microscopy combined with computer image analysis to evaluate the functional significance of a constitutively expressed form of the receptor tyrosine kinase FGFR1 (fibroblast growth factor receptor 1) in the nucleus of rapidly proliferating serum stimulated TE 671 cells, a medullobastoma human cell line. Our results demonstrate a limited number of large sites and numerous smaller sites of FGFR1 in the nuclear interior. The larger sites showed virtually complete colocalization (>90%) with splicing factor rich nuclear speckles while the smaller sites showed very limited overlap (<20%). Similar results were found for several other proliferating cell lines grown in culture. An in situ transcription assay was used to determine colocalization with transcription sites by incorporating 5-bromouridine triphosphate (BrUTP) followed by dual staining for BrUTP and FGFR1. These results combined with those from using an antibody against the large subunit of RNA polymerase II suggest a significant degree of colocalization (26-38%) over both the large and small sites. No colocalization was detected with sites of DNA replication. The spatial arrangements of FGFR1 sites and colocalization with nuclear speckles were maintained following extraction for nuclear matrix. Moreover, immunoblots indicated a significant enrichment of FGFR1 in the nuclear matrix fraction. Our findings suggest an involvement of a nuclear matrix bound FGFR1 in transcriptional and RNA processing events in the cell nucleus. We further propose that nuclear speckles, aside from a role in transcriptional/RNA processing events, may serve as fundamental regulatory factories for the integration of diverse signaling and regulatory factors that impact transcription and cellular regulation.
Collapse
Affiliation(s)
- Suryanarayan Somanathan
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
18
|
Rauch BH, Millette E, Kenagy RD, Daum G, Clowes AW. Thrombin- and Factor Xa–Induced DNA Synthesis Is Mediated by Transactivation of Fibroblast Growth Factor Receptor-1 in Human Vascular Smooth Muscle Cells. Circ Res 2004; 94:340-5. [PMID: 14670838 DOI: 10.1161/01.res.0000111805.09592.d8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thrombin and factor Xa (FXa) are agonists for G protein–coupled receptors (GPRCs) and may contribute to vascular lesion formation by stimulating proliferation of vascular smooth muscle cells (SMCs). Mitogenic signaling of GPCRs requires transactivation of receptor tyrosine kinases (RTKs). In rat SMCs, thrombin transactivates the epidermal growth factor receptor (EGFR) via a pathway that involves heparin-binding EGF-like growth factor (HB-EGF) as ligand for EGFR. The purpose of this study was to investigate in human SMCs the role of receptor transactivation in the mitogenic response to thrombin and FXa. Thrombin (10 nmol/L) and FXa (100 nmol/L) cause a 3.3- and 2.6-fold increase in DNA synthesis, respectively. In human SMCs, neither thrombin nor FXa causes EGFR phosphorylation, and blockade of EGFR kinase does not inhibit DNA synthesis. However, DNA synthesis and phosphorylation of fibroblast growth factor receptor-1 (FGFR-1) induced by thrombin or FXa are inhibited by antibodies neutralizing basic fibroblast growth factor (bFGF) or by heparin. Hirudin inhibits thrombin-, but not FXa-induced mitogenesis, indicating that FXa acts independently of thrombin. We further demonstrate by ELISA that upon thrombin and FXa stimulation, bFGF is released and binds to the extracellular matrix. Our data suggest that in human vascular SMCs, both thrombin and FXa rapidly release bFGF into the pericellular matrix. This is followed by transactivation of the FGFR-1 and increased proliferation. Heparin may inhibit the mitogenic effects of thrombin and FXa in human SMCs by preventing bFGF binding to FGFR-1.
Collapse
MESH Headings
- Blotting, Western
- Cells, Cultured
- DNA/biosynthesis
- DNA/drug effects
- Extracellular Matrix/metabolism
- Factor Xa/pharmacology
- Fibroblast Growth Factor 2/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Fibroblast Growth Factor 2/physiology
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, PAR-1/physiology
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Thrombin/pharmacology
- Transcriptional Activation
Collapse
Affiliation(s)
- Bernhard H Rauch
- Department of Surgery, University of Washington School of Medicine, Box 356410, 1959 NE Pacific St, Seattle, Wash 98195-6410, USA.
| | | | | | | | | |
Collapse
|
19
|
Suzuki N, Shibata Y, Urano T, Murohara T, Muramatsu T, Kadomatsu K. Proteasomal degradation of the nuclear targeting growth factor midkine. J Biol Chem 2004; 279:17785-91. [PMID: 14970216 DOI: 10.1074/jbc.m310772200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is widely held that growth factor signaling is terminated by lysosomal degradation of its activated receptor and the endocytosed growth factor is transported to lysosomes. Nuclear targeting is another important pathway through which signals of growth factors are mediated. However, mechanisms underlying desensitization of nuclear targeting growth factors are poorly understood. Here we report that the nuclear targeting pathway is down-regulated by the proteasome system. Degradation of endocytosed midkine, a heparin-binding growth factor, was suppressed by both proteasome and lysosome inhibitors to similar extents. By contrast, a proteasome inhibitor, but not lysosome ones, accelerated the nuclear accumulation of midkine. An expression vector of signal sequence-less midkine, which is produced in the cytosol, was constructed because endocytosed midkine may be translocated to the cytosol from cellular compartments before entering the nucleus. The cytosol-produced midkine underwent proteasomal degradation and accumulated in the nucleus as did the endocytosed midkine. It was polyubiquitinated, and its nuclear accumulation was enhanced by a proteasome inhibitor. We further dissected the midkine molecule to investigate roles in degradation and trafficking. The N-terminal half-domain of midkine was significantly more susceptible to proteasomal degradation, whereas the C-terminal half-domain was sufficient for nuclear localization. Together, these data highlight the desensitization of nuclear targeting by growth factors and indicate a critical role of the proteasome system in it.
Collapse
Affiliation(s)
- Noriyuki Suzuki
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Byrd VM, Kilkenny DM, Dikov MM, Reich MB, Rocheleau JV, Armistead WJ, Thomas JW, Miller GG. Fibroblast growth factor receptor‐1 interacts with the T‐cell receptor signalling pathway. Immunol Cell Biol 2003; 81:440-50. [PMID: 14636241 DOI: 10.1046/j.1440-1711.2003.01199.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor receptors are expressed by some T cells, and provide costimulation for these cells. Such receptors allow T cells to respond to fibroblast growth factors expressed in response to injury and inflammation and may provide a mechanism for 'context-dependent' responses to antigens within the local microenvironment. The mechanisms by which fibroblast growth factor receptors might interact with the TCR signalling pathway are not defined. Here we show that the TCR and fibroblast growth factor receptors co-localize during combined stimulation. Signalling via fibroblast growth factor receptors alone results in phosphorylation of Lck and induces nuclear translocation of nuclear factors of activated T cells. Combined stimulation via fibroblast growth factor receptors and the TCR synergistically enhances the activation of nuclear factors of activated T cells. The results suggest that peptide growth factors produced at sites of injury and inflammation can contribute to the outcome of T-cell encounters with antigen.
Collapse
Affiliation(s)
- Victor M Byrd
- Department of Medicine, Vanderbilt University Medical School, Nashville, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kovalenko D, Yang X, Nadeau RJ, Harkins LK, Friesel R. Sef inhibits fibroblast growth factor signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent ERK activation. J Biol Chem 2003; 278:14087-91. [PMID: 12604616 DOI: 10.1074/jbc.c200606200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling through fibroblast growth factor receptors (FGFRs) is essential for many cellular processes including proliferation and migration as well as differentiation events such as angiogenesis, osteogenesis, and chondrogenesis. Recently, genetic screens in Drosophila and gene expression screens in zebrafish have resulted in the identification of several feedback inhibitors of FGF signaling. One of these, Sef (similar expression to fgf genes), encodes a transmembrane protein that belongs to the FGF synexpression group. Here we show that like zebrafish Sef (zSef), mouse Sef (mSef) interacts with FGFR1 and that the cytoplasmic domain of mSef mediates this interaction. Overexpression of mSef in NIH3T3 cells results in a decrease in FGF-induced cell proliferation associated with a decrease in Tyr phosphorylation of FGFR1 and FRS2. As a consequence, there is a reduction in the phosphorylation of Raf-1 at Ser(338), MEK1/2 at Ser(217) and Ser(221), and ERK1/2 at Thr(202) and Tyr(204). Furthermore, mSef inhibits ERK activation mediated by a constitutively activated FGFR1 but not by a constitutively active Ras and decreases FGF but not PDGF-mediated activation of Akt. These results indicate that Sef exerts its inhibitory effects at the level of FGFR and upstream of Ras providing an additional level of negative regulation of FGF signaling.
Collapse
Affiliation(s)
- Dmitry Kovalenko
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough 04074-7205, USA
| | | | | | | | | |
Collapse
|
22
|
Bilak MM, Hossain WA, Morest DK. Intracellular fibroblast growth factor produces effects different from those of extracellular application on development of avian cochleovestibular ganglion cells in vitro. J Neurosci Res 2003; 71:629-47. [PMID: 12584722 DOI: 10.1002/jnr.10498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In an avian coculture system, the neuronal precursors of the cochleovestibular ganglion typically migrated from the otocyst and differentiated in response to soluble fibroblast growth factor (FGF-2), which had free access to FGF receptors on the cell surface. Free FGF-2 switched cells from a proliferation mode to migration, accompanied by increases in process outgrowth, fasciculation, and polysialic acid expression. Microsphere-bound FGF-2 had some of the same effects, but in addition it increased proliferation and decreased fasciculation and polysialic acid. As shown by immunohistochemistry, FGF-2 that was bound to latex microspheres depleted the FGF surface receptor protein, which localized with the microspheres in the cytoplasm and nucleus. For microsphere-bound FGF-2, the surface receptor-mediated responses to FGF-2 appear to be limited and the door opened to another venue of intracellular events or an intracrine mechanism.
Collapse
Affiliation(s)
- Masako M Bilak
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | |
Collapse
|
23
|
Kanda T, Funato N, Baba Y, Kuroda T. Evidence for fibroblast growth factor receptors in myofibroblasts during palatal mucoperiosteal repair. Arch Oral Biol 2003; 48:213-21. [PMID: 12648559 DOI: 10.1016/s0003-9969(02)00204-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fibroblast growth factors (FGFs) regulate cell growth and differentiation and play crucial roles in the process of tissue repair and remodelling. We have previously shown that basic FGF is widely expressed at the injured site. Since the presence of FGF receptors (FGFRs) determines cellular responsiveness, we examined the localisation of FGFR1, FGFR2 and FGFR3 expression by immunohistochemistry throughout the repair of full-thickness excisional wounds up to 28 days after wounding. Strong expression of FGFR1 was observed in the nuclei of myofibroblasts, which are characterised by alpha-smooth muscle (alpha-SM) actin expression. The weak expression of FGFR2 was also observed in the nuclei of myofibroblasts. In contrast, there was no staining for FGFR3 in fibroblasts through the wound healing process. In addition, transforming growth factor-beta1 (TGF-beta1), a potential inducer of myofibroblasts, enhanced the expression of FGFR1 and FGFR2 in the nuclei of palatal fibroblasts in vitro. These findings suggest that FGFR1 and FGFR2 in myofibroblasts may be responsible for the signal transduction of FGF during the wound healing process.
Collapse
Affiliation(s)
- T Kanda
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Japan.
| | | | | | | |
Collapse
|
24
|
Jiao J, Greendorfer JS, Zhang P, Zinn KR, Diglio CA, Thompson JA. Alternatively spliced FGFR-1 isoform signaling differentially modulates endothelial cell responses to peroxynitrite. Arch Biochem Biophys 2003; 410:187-200. [PMID: 12573278 DOI: 10.1016/s0003-9861(02)00681-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mounting experimental evidence has suggested that the trophic environment of cells in culture is an important determinant of their vulnerability to the cytotoxic effects of reactive oxidants such as peroxynitrite (ONOO(-)). However, acidic fibroblast growth factor (FGF-1)-induced signaling renders some cells more sensitive and others resistant to the cytotoxic effects of ONOO(-). To determine whether alternatively spliced fibroblast growth factor receptor (FGFR-1) isoforms are responsible for this differential response, we have stably transfected FGFR-negative rat brain-derived resistant vessel endothelial cells (RVEC) with human cDNA sequences encoding either FGFR-1 alpha or FGFR-1 beta. FGF-1 treatment of RVEC(R-1 alpha) transfectants enhanced ONOO(-)-mediated cell death in a manner dependent upon FGFR-1 tyrosine kinase, MEK/Erk 1/2 kinase, and p38 MAP kinase activities and independent of Src-family kinase (SFK) activity. FGF-1 treatment of RVEC(R-1 beta) transfectants inhibited the cytotoxic effects of ONOO(-) in a manner dependent upon FGFR-1 tyrosine kinase, MEK/Erk 1/2 kinase, and SFK activities and independent of p38 MAP kinase activity. FGF-1-induced preactivation of both FGFR-1 tyrosine and Erk 1/2 kinases was detected in both RVEC(R-1 alpha) and RVEC(R-1 beta) transfectants. FGF-1-induced preactivation of p38 MAPK was restricted to RVEC(R-1 alpha) transfectants, whereas, ligand-induced preactivation of SFK was limited to RVEC(R-1 beta) transfectants. Collectively, these results both reemphasize the role of extracellular trophic factors and their receptor-mediated signaling pathways during cellular responses to oxidant stress and provide a first indication that the alternatively spliced FGFR-1 isoforms induce differential signal transduction pathways.
Collapse
Affiliation(s)
- Jing Jiao
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
25
|
Vicario I, Schimmang T. Transfer of FGF-2 via HSV-1-based amplicon vectors promotes efficient formation of neurons from embryonic stem cells. J Neurosci Methods 2003; 123:55-60. [PMID: 12581849 DOI: 10.1016/s0165-0270(02)00339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The manipulation of embryonic stem (ES) cells has a great potential to create cell populations useful for tissue replacement and regeneration of organs. The acquirement of specific cell fates and differentiation into specialized cell types may be obtained by the application of specific growth factors. Fibroblast growth factor 2 (FGF-2) has been used for the formation of ES cell-derived CNS stem cells. In order to achieve high efficiency of gene delivery into stem cells, the use of viral vectors is presently without alternative. The aim of this study was to examine, for the first time, the ability of herpes simplex virus type-1 (HSV-1)-based amplicon vectors to mediate gene transfer into mouse ES cells and neural progenitors derived from these cells. Amplicon vectors based on HSV-1 have been shown to be a versatile tool to introduce genes into a variety of cell types and to direct their physiological behavior. Here, we show that ES cells and their derivatives can be efficiently transduced and manipulated via these vectors. Amplicon-mediated transfer of FGF-2 into ES cell-derived CNS progenitors leads to the amplification and subsequent differentiation of these precursors into neurons. Therefore, amplicon vectors may now be used to study the effects of other potential factors influencing the cell fate or differentiation of ES cells and their derivatives.
Collapse
Affiliation(s)
- Ignacio Vicario
- Center for Molecular Neurobiology Hamburg, University of Hamburg, Falkenried 94, D-20251, Hamburg, German
| | | |
Collapse
|
26
|
Olsnes S, Klingenberg O, Wiedłocha A. Transport of exogenous growth factors and cytokines to the cytosol and to the nucleus. Physiol Rev 2003; 83:163-82. [PMID: 12506129 DOI: 10.1152/physrev.00021.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years a number of growth factors, cytokines, protein hormones, and other proteins have been found in the nucleus after having been added externally to cells. This review evaluates the evidence that translocation takes place and discusses possible mechanisms. As a demonstration of the principle that extracellular proteins can penetrate cellular membranes and reach the cytosol, a brief overview of the penetration mechanism of protein toxins with intracellular sites of action is given. Then problems and pitfalls in attempts to demonstrate the presence of proteins in the cytosol and in the nucleus as opposed to intracellular vesicular compartments are discussed, and some new approaches to study this are described. A detailed overview of the evidence for translocation of fibroblast growth factor, HIV-Tat, interferon-gamma, and other proteins where there is evidence for intracellular action is given, and translocation mechanisms are discussed. It is concluded that although there are many pitfalls, the bulk of the experiments indicate that certain proteins are indeed able to enter the cytosol and nucleus. Possible roles of the internalized proteins are discussed.
Collapse
Affiliation(s)
- Sjur Olsnes
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | |
Collapse
|
27
|
Shibata Y, Muramatsu T, Hirai M, Inui T, Kimura T, Saito H, McCormick LM, Bu G, Kadomatsu K. Nuclear targeting by the growth factor midkine. Mol Cell Biol 2002; 22:6788-96. [PMID: 12215536 PMCID: PMC134045 DOI: 10.1128/mcb.22.19.6788-6796.2002] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Accepted: 06/17/2002] [Indexed: 01/08/2023] Open
Abstract
Ligand-receptor internalization has been traditionally regarded as part of the cellular desensitization system. Low-density lipoprotein receptor-related protein (LRP) is a large endocytosis receptor with a diverse array of ligands. We recently showed that LRP binds heparin-binding growth factor midkine. Here we demonstrate that LRP mediates nuclear targeting by midkine and that the nuclear targeting is biologically important. Exogenous midkine reached the nucleus, where intact midkine was detected, within 20 min. Midkine was not internalized in LRP-deficient cells, whereas transfection of an LRP expression vector restored midkine internalization and subsequent nuclear translocation. Internalized midkine in the cytoplasm bound to nucleolin, a nucleocytoplasmic shuttle protein. The midkine-binding sites were mapped to acidic stretches in the N-terminal domain of nucleolin. When the nuclear localization signal located next to the acidic stretches was deleted, we found that the mutant nucleolin not only accumulated in the cytoplasm but also suppressed the nuclear translocation of midkine. By using cells that overexpressed the mutant nucleolin, we further demonstrated that the nuclear targeting was necessary for the full activity of midkine in the promotion of cell survival. This study therefore reveals a novel role of LRP in intracellular signaling by its ligand and the importance of nucleolin in this process.
Collapse
Affiliation(s)
- Yoshihisa Shibata
- Department of Biochemistry, Nagoya University School of Medicine, Showa-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Małecki J, Więdłocha A, Wesche J, Olsnes S. Vesicle transmembrane potential is required for translocation to the cytosol of externally added FGF-1. EMBO J 2002; 21:4480-90. [PMID: 12198150 PMCID: PMC126202 DOI: 10.1093/emboj/cdf472] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Externally added fibroblast growth factor-1 (FGF-1) is capable of crossing cellular membranes to reach the cytosol and the nucleus in a number of cell types. We have monitored the translocation of the growth factor by two methods: phosphorylation of FGF-1, and prenylation of an FGF-1 mutant that contains a C-terminal prenylation signal. Inhibition of endosomal acidification by ammonium chloride or monensin did not block the translocation of FGF-1, whereas bafilomycin A1, a specific inhibitor of vacuolar proton pumps, blocked translocation completely. A combination of ionophores expected to dissipate the vesicular membrane potential (valinomycin plus monensin) also fully inhibited the translocation. The inhibition of translocation by bafilomycin A1 was overcome in the presence of monensin or nigericin, while ouabain blocked translocation under these conditions. The data indicate that translocation of FGF-1 to cytosol occurs from the lumen of intracellular vesicles possessing vacuolar proton pumps, and that a vesicular membrane potential is required. Apparently, activation of vesicular Na+/K+-ATPase by monensin or nigericin generates a membrane potential that can support translocation when the proton pump is blocked.
Collapse
Affiliation(s)
| | | | | | - Sjur Olsnes
- Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Montebello, Oslo, Norway
Corresponding author e-mail:
| |
Collapse
|
29
|
Liu L, McKeehan WL. Sequence analysis of LRPPRC and its SEC1 domain interaction partners suggests roles in cytoskeletal organization, vesicular trafficking, nucleocytosolic shuttling, and chromosome activity. Genomics 2002; 79:124-36. [PMID: 11827465 PMCID: PMC3241999 DOI: 10.1006/geno.2001.6679] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
LRPPRC (originally called LRP130) is an intracellular, 130-kD, leucine-rich protein that copurifies with the fibroblast growth factor receptor from liver cell extracts and has been detected in diverse multiprotein complexes from the cell membrane, cytoskeleton, and nucleus. Here we report results of a sequence homology analysis of LRPPRC and its SEC1 domain interactive partners. We found that 23 copies of tandem repeats that are similar to pentatricopeptide, tetratricopeptide, and huntingtin-elongation A subunit-TOR repeats characterize the LRPPRC sequence. The amino terminus exhibits multiple copies of leucine-rich nuclear transport signals followed by ENTH, DUF28, and SEC1 homology domains. We used the SEC1 domain to trap interactive partners expressed from a human liver cDNA library. Interactive C19ORF5 (XP_038600) exhibited a strong homology to microtubule-associated proteins and a potential arginine-rich mRNA binding motif. UXT (XP_033860) exhibited alpha-helical properties homologous to the actin-associated spectrin repeat and L/I heptad repeats in mobile transcription factors. C6ORF34 (XP_004305) was homologous to the non-DNA-binding carboxy terminus of the Escherichia coli Rob transcription factor. CECR2 (AAK15343) exhibited a transcription factor AT-hook motif next to two bromodomains and a homology to guanylatebinding protein-1. Together these features suggest a regulatory role of LRPPRC and its SEC1 domain-interactive partners in integration of cytoskeletal networks with vesicular trafficking, nucleocytosolic shuttling, transcription, chromosome remodeling, and cytokinesis.
Collapse
Affiliation(s)
- Leyuan Liu
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030, USA
| | | |
Collapse
|
30
|
Phillips BT, Bolding K, Riley BB. Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction. Dev Biol 2001; 235:351-65. [PMID: 11437442 DOI: 10.1006/dbio.2001.0297] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the fibroblast growth factor (FGF) family of peptide ligands have been implicated in otic placode induction in several vertebrate species. Here, we have functionally analyzed the roles of fgf3 and fgf8 in zebrafish otic development. The role of fgf8 was assessed by analyzing acerebellar (ace) mutants. fgf3 function was disrupted by injecting embryos with antisense morpholino oligomers (MO) specifically designed to block translation of fgf3 transcripts. Disruption of either fgf3 or fgf8 causes moderate reduction in the size of the otic vesicle. Injection of fgf3-MO into ace/ace mutants causes much more severe reduction or complete loss of otic tissue. Moreover, preplacode cells fail to express pax8 and pax2.1, indicating disruption of early stages of otic induction in fgf3-depleted ace/ace mutants. Both fgf3 and fgf8 are normally expressed in the germring by 50% epiboly and are induced in the primordium of rhombomere 4 by 80% epibloy. In addition, fgf3 is expressed during the latter half of gastrulation in the prechordal plate and paraxial cephalic mesendoderm, tissues that either pass beneath or persist near the prospective otic ectoderm. Conditions that alter the pattern of expression of fgf3 and/or fgf8 cause corresponding changes in otic induction. Loss of maternal and zygotic one-eyed pinhead (oep) does not alter expression of fgf3 or fgf8 in the hindbrain, but ablates mesendodermal sources of fgf signaling and delays otic induction by several hours. Conversely, treatment of wild-type embryos with retinoic acid greatly expands the periotic domains of expression of fgf3, fgf8, and pax8 and leads to formation of supernumerary and ectopic otic vesicles. These data support the hypothesis that fgf3 and fgf8 cooperate during the latter half of gastrulation to induce differentiation of otic placodes.
Collapse
Affiliation(s)
- B T Phillips
- Biology Department, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | |
Collapse
|
31
|
Richardson TP, Trinkaus-Randall V, Nugent MA. Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. J Cell Sci 2001; 114:1613-23. [PMID: 11309193 DOI: 10.1242/jcs.114.9.1613] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) regulate multiple cellular processes and mediate the cellular uptake of numerous molecules. While heparan sulphate glycosaminoglycan chains are known to modulate receptor binding of several heparin-binding proteins, here we show that distinct extracellular matrices direct HSPG to the nucleus. We analyzed HSPG localization in primary corneal fibroblasts, cultured on fibronectin or collagen type I matrices, using confocal laser scanning microscopy and cell fractionation. Image analysis revealed that the nuclear localization of HSPG core proteins was greater when cells were cultured on fibronectin versus collagen. Matrices containing the heparin-binding domain of fibronectin, but not the integrin-activating domain, demonstrated increased nuclear staining of core proteins. Furthermore, activation of protein kinase C with phorbol 12-myristate 13-acetate inhibited nuclear targeting of HSPG in cells on fibronectin, whereas inhibition of protein kinase C with Ro-31-8220 greatly enhanced nuclear localization of HSPG in cells on both collagen and fibronectin. We propose a matrix-dependent mechanism for nuclear localization of cell surface HSPG involving protein kinase C-mediated signaling. Nuclear localization of HSPG might play important roles in regulating nuclear function.
Collapse
Affiliation(s)
- T P Richardson
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
32
|
Tortorella LL, Milasincic DJ, Pilch PF. Critical proliferation-independent window for basic fibroblast growth factor repression of myogenesis via the p42/p44 MAPK signaling pathway. J Biol Chem 2001; 276:13709-17. [PMID: 11279003 DOI: 10.1074/jbc.m100091200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many cell types including myoblasts, growth factors control proliferation and differentiation, in part, via the mitogen-activated protein kinase (MAPK) pathway (also known as the extracellular regulated kinase (Erk) pathway). In C2C12 myoblast cells, insulin-like growth factor-1 and basic fibroblast growth factor (bFGF) activate MAPK/Erk, and both growth factors promote myoblast proliferation. However, these factors have opposing roles with respect to differentiation; insulin-like growth factor-1 enhances muscle cell differentiation, whereas bFGF inhibits the expression of the muscle-specific transcription factors MyoD and myogenin. Cells treated with bFGF and PD98059, a specific inhibitor of the MAPK pathway, show enhanced expression of the muscle-specific transcription factors MyoD and myogenin as compared with cells not exposed to this inhibitor. Inhibiting MAPK activity also enhances myoblast fusion and the expression of the late differentiation marker myosin heavy chain. Basic FGF mediated repression of muscle-specific genes does not result from continued cell proliferation, since bFGF-treated cells progress through only one round of cell division. We have identified a critical boundary 16 to 20 h after plating during which bFGF induced MAPK activity is able to repress myogenic gene expression and differentiation. Thus, the targets of MAPK that regulate myogenesis are functional at this time and their identification is in progress.
Collapse
Affiliation(s)
- L L Tortorella
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
33
|
Prudovsky I, Landriscina M, Soldi R, Bellum S, Small D, Andreeva V, Maciag T. Fusions to members of fibroblast growth factor gene family to study nuclear translocation and nonclassic exocytosis. Methods Enzymol 2001; 327:369-82. [PMID: 11044997 DOI: 10.1016/s0076-6879(00)27290-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- I Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, South Portland 04106, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Grieb TA, Burgess WH. The mitogenic activity of fibroblast growth factor-1 correlates with its internalization and limited proteolytic processing. J Cell Physiol 2000; 184:171-82. [PMID: 10867641 DOI: 10.1002/1097-4652(200008)184:2<171::aid-jcp4>3.0.co;2-j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The fibroblast growth factor-1 (FGF-1) mitogenic signal transduction pathway is not well characterized, and evidence indicates that FGF-1 binding to and activation of cell-surface receptors is not solely sufficient for a full mitogenic response. Although initiation of the phosphorylation signaling cascades are likely important in FGF-1-induced mitogenic signaling, there appear to be additional signaling requirements. In this study, we demonstrate that FGF-1 internalization and subsequent processing correlates with the mitogenic potential of the growth factor on NIH 3T3 cells. Using site-directed mutants of FGF-1 and inhibitors of the endocytic and degradative pathways, we provide evidence for growth factor internalization and exposure to an acidic environment as necessary components of FGF-1-induced mitogenesis. In addition, a protease-sensitive event(s) appears critical for a complete mitogenic response to FGF-1, whereas, this protease sensitivity was not detected under the same conditions for serum-stimulated mitogenesis. Therefore, proteolytic modification of internalized FGF-1 may result in the activation of additional, intracellular signaling events.
Collapse
Affiliation(s)
- T A Grieb
- Department of Tissue Biology, Holland Laboratory, American Red Cross, Rockville, Maryland, USA
| | | |
Collapse
|
35
|
Abstract
Insulin (Ins) and various other hormones and growth factors have been shown to be rapidly internalized and translocated to the cell nucleus. This review summarizes the mechanisms that are involved in the translocation of Ins to the nucleus, and discusses its possible role in Ins action, based on observations by the authors and others. Ins is internalized to endosomes by both receptor-mediated and fluid-phase endocytosis, the latter occurring only at high Ins concentrations. The authors recently demonstrated the caveolae are the primary cell membrane locations responsible for initiating the signal transduction cascade induced by Ins. Once Ins is internalized, Ins dissociates from the Ins receptor in the endosome, and is translocated to the cytoplasm, where most Ins is degraded by Ins-degrading enzyme (IDE), although how the polypeptides cross the lipid bilayer is unknown. Some Ins escapes the degradation and binds to cytosolic Ins-binding proteins (CIBPs), in addition to IDE. IDE and some CIBPs are known to be binding proteins for other hormones or their receptors, and are involved in gene regulation, suggesting physiological relevance of CIBPs in the signaling of Ins and other hormones. Ins is eventually translocated through the nuclear pore to the nucleus, where Ins tightly associates with nuclear matrix. The role of Ins internalization and translocation to the nucleus is still controversial, although there is substantial evidence to support its role in cellular responses caused by Ins. Many studies indicate that nuclear translocation of various growth factors and hormones plays an important role in cell proliferation or DNA synthesis. It would be reasonable to suggest that Ins internalization, its association with CIBPs, and its translocation to the nucleus may be essential for the regulation of nuclear events by Ins.
Collapse
Affiliation(s)
- S Harada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | | | |
Collapse
|
36
|
Klingenberg O, Wiedlocha A, Rapak A, Khnykin D, Citores L, Olsnes S. Requirement for C-terminal end of fibroblast growth factor receptor 4 in translocation of acidic fibroblast growth factor to cytosol and nucleus. J Cell Sci 2000; 113 ( Pt 10):1827-38. [PMID: 10769213 DOI: 10.1242/jcs.113.10.1827] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of COS cells to bind and internalise acidic fibroblast growth factor (aFGF) was studied after transient transfection of the cells with wild-type and mutated fibroblast growth factor receptor 4. In one case the tyrosine kinase of the receptor was inactivated by a point mutation in the active site, whereas in other cases parts of the receptor were deleted to remove various parts of the cytoplasmic domain. In all cases the receptors were expressed at the cell surface at a high level and the cells bound labelled growth factor efficiently and internalised it by endocytosis. Translocation of externally added aFGF across cellular membranes to reach the cytosol and nucleus was measured as transport of labelled growth factor to the nuclear fraction obtained by centrifugation, by farnesylation of growth factor modified to carry a CAAX motif, and by phosphorylation of the growth factor at a site specific for protein kinase C. Whereas both full-length receptors (with and without an active kinase domain) facilitated translocation of the growth factor to the cytosol and nucleus, as assessed by these methods, the mutants of the receptor where the C terminus was deleted, were unable to do so. In contrast, a receptor containing only the 57 most C-terminal amino acids of the cytoplasmic domain in addition to the juxtamembrane, transmembrane and extracellular domains, was in fact able to mediate translocation of aFGF to the cytosol. These data indicate that information contained in the C terminus of the receptor is required for translocation.
Collapse
Affiliation(s)
- O Klingenberg
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Norway
| | | | | | | | | | | |
Collapse
|
37
|
Klingenberg O, Wiedocha A, Citores L, Olsnes S. Requirement of phosphatidylinositol 3-kinase activity for translocation of exogenous aFGF to the cytosol and nucleus. J Biol Chem 2000; 275:11972-80. [PMID: 10766827 DOI: 10.1074/jbc.275.16.11972] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acidic fibroblast growth factor (aFGF) is a potent mitogen for many cells. Exogenous aFGF is able to enter the cytosol and nucleus of sensitive cells. There are indications that both activation of the receptor tyrosine kinase and translocation of aFGF to the nucleus are of importance for mitogenesis. However, the mechanism of transport of aFGF from the cell surface to the nucleus is poorly understood. In this work we demonstrate that inhibition of phosphatidylinositol (PI) 3-kinase by chemical inhibitors and by expression of a dominant negative mutant of PI 3-kinase blocks translocation of aFGF to the cytosol and nucleus. Translocation to the cytosol and nucleus was monitored by cell fractionation, by farnesylation of aFGF modified to contain a farnesylation signal, and by phosphorylation by protein kinase C of aFGF added externally to cells. If aFGF is fused to diphtheria toxin A-fragment, it can be artificially translocated from the cell surface to the cytoplasm by the diphtheria toxin pathway. Upon further incubation, the fusion protein enters the nucleus due to a nuclear localization sequence in aFGF. We demonstrate here that upon inhibition of PI 3-kinase the fusion protein remains in the cytosol. We also provide evidence that the phosphorylation status of the fusion protein does not regulate its nucleocytoplasmic distribution.
Collapse
Affiliation(s)
- O Klingenberg
- Department of Biochemistry at The Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
38
|
Sperinde GV, Nugent MA. Mechanisms of fibroblast growth factor 2 intracellular processing: a kinetic analysis of the role of heparan sulfate proteoglycans. Biochemistry 2000; 39:3788-96. [PMID: 10736179 DOI: 10.1021/bi992243d] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of fibroblast growth factor 2 (FGF-2) with heparan sulfate proteoglycans (HSPG) has been demonstrated to enhance receptor binding and alter the intracellular distribution of internalized FGF-2. In the present study, the intracellular fate of FGF-2 was analyzed in vascular smooth muscle cells (VSMC) under native and HSPG-deficient conditions. HSPG-deficient cells were generated by treatment with sodium chlorate. Cells were incubated with FGF-2 at 37 degrees C for prolonged periods (0-48 h) to allow for FGF-2 uptake and processing. Processing of FGF-2 occurred in stages. Initially a family of low molecular weight (LMW) fragments (4-10 kDa) were detected that accumulated to much higher ( approximately 10-fold) levels in native compared to heparan sulfate-deficient cells. Pulse-chase experiments revealed that the half-life of these LMW intermediates was significantly greater in native ( approximately 18 h) compared to HSPG-deficient cells ( approximately 4 h). Rate constants for FGF-2 processing were derived by modeling the uptake and processing of FGF-2 as a set of first-order differential equations. The kinetic analysis indicated that the greatest differences between native and HSPG-deficient VSMC was in the formation of LMW and further suggested that these FGF-2 products appear to represent a stable subpool of internal FGF-2 that is favored in cells that contain HSPG. Thus, HSPG might function as a cellular switch between immediate and prolonged signal activation by heparin-binding growth factors such as FGF-2. In the absence of HSPG, FGF-2 can interact with and activate its receptor, yet in the presence of HSPG, FGF-2 might be able to mediate prolonged or unique biological responses through intracellular processes.
Collapse
Affiliation(s)
- G V Sperinde
- Departments of Biochemistry and Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
39
|
Bailly K, Soulet F, Leroy D, Amalric F, Bouche G. Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor. FASEB J 2000. [DOI: 10.1096/fasebj.14.2.333] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Karine Bailly
- Institut de Pharmacologie et de Biologie Structurale du CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4 France
| | - Fabienne Soulet
- Institut de Pharmacologie et de Biologie Structurale du CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4 France
| | - Didier Leroy
- Commissariat á l'Energie atomiqueBiochimie des Régulations Cellulaires EndocrinesINSERM U244 CEN/Grenoble, F‐38054 Grenoble Cedex 9 France
| | - Francois Amalric
- Institut de Pharmacologie et de Biologie Structurale du CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4 France
| | - Gerard Bouche
- Institut de Pharmacologie et de Biologie Structurale du CNRS, 205 Route de Narbonne, 31077 Toulouse Cedex 4 France
| |
Collapse
|
40
|
Munoz-Sanjuan I, Smallwood PM, Nathans J. Isoform diversity among fibroblast growth factor homologous factors is generated by alternative promoter usage and differential splicing. J Biol Chem 2000; 275:2589-97. [PMID: 10644718 DOI: 10.1074/jbc.275.4.2589] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor (FGF) homologous factors-1, -2, -3, and -4 (FHFs 1-4; also referred to as FGFs 11-14) comprise a separate branch of the FGF family and have been implicated in the development of the nervous system and limbs. We report here the characterization of multiple isoforms of FHF-1, -2, -3, and -4 which are generated through the use of alternative start sites of transcription and splicing of one or more of a series of alternative 5'-exons. Several isoforms show different subcellular distributions when expressed in transfected tissue culture cells, and the corresponding differentially spliced transcripts show distinct expression patterns in developing and adult mouse tissues. Together with the evolutionary conservation of the FHF isoforms among human, mouse, and chicken, these data indicate that alternative promoter use and differential splicing are important regulatory processes in controlling the activities of this subfamily of FGFs.
Collapse
Affiliation(s)
- I Munoz-Sanjuan
- Department of Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
41
|
Aloni-Grinstein R, Seddon A, Yayon A. Reconstitution of fibroblast growth factor receptor interactions in the yeast two hybrid system. Mol Biotechnol 1999; 11:213-20. [PMID: 10503237 DOI: 10.1007/bf02788679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibroblast growth factors (FGF) activate their receptors through the formation of trimolecular complexes, composed of a ligand, a receptor, and a heparan sulfate oligosaccharide, all of which are members of particularly large families capable of multiple interactions in a combinatorial fashion. Understanding this large network of interactions not only presents a great challenge, but is practically beyond the capacity of most classical techniques routinely used to study ligand receptor interactions. We have used the yeast two hybrid system to study protein-protein interactions in the FGF family. Both ligand and receptor ectodomains are properly folded and functional in the yeast. Basic FGF (bFGF) expressed in the yeast dimerizes spontaneously. This self-assembly occurs at low affinity, which can be greatly enhanced by the introduction of heparin, supporting a defined role for heparin in bFGF dimerization. Screening a rat embryo cDNA library with bFGF in the yeast two hybrid system identified a short variant of FGF receptor 1, found most frequently in embryonal and tumor cells and which possesses affinity toward bFGF that is significantly greater than that of the more abundant, full-length receptor. We find the yeast two hybrid system, a most suitable alternative method for the analysis of growth factor-receptor interactions as well as for screening for novel interacting proteins and modulators of FGF and its receptors.
Collapse
Affiliation(s)
- R Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
42
|
Affiliation(s)
- M Keresztes
- Department of Biochemistry, Albert Szent-Györgyi Medical University, Szeged, Hungary
| | | |
Collapse
|
43
|
Xu X, Li C, Takahashi K, Slavkin HC, Shum L, Deng CX. Murine fibroblast growth factor receptor 1alpha isoforms mediate node regression and are essential for posterior mesoderm development. Dev Biol 1999; 208:293-306. [PMID: 10191046 DOI: 10.1006/dbio.1999.9227] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alternative splicing in the fibroblast growth factor receptor 1 (Fgfr1) locus generates a variety of splicing isoforms, including FGFR1alpha isoforms, which contain three immunoglobulin-like loops in the extracellular domain of the receptor. It has been previously shown that embryos carrying targeted disruptions of all major isoforms die during gastrulation, displaying severe growth retardation and defective mesodermal structures. Here we selectively disrupted the FGFR1alpha isoforms and found that they play an essential role in posterior mesoderm formation during gastrulation. We show that the mutant embryos lack caudal somites, develop spina bifida, and die at 9.5-12.5 days of embryonic development because they are unable to establish embryonic circulation. The primary defect is a failure of axial mesoderm cell migration toward the posterior portions of the embryos during gastrulation, as revealed by regional marker analysis and DiI labeling. In contrast, the anterior migration of the notochord is unaffected and the embryonic structures rostral to the forelimb are relatively normal. These data demonstrate that FGF/FGFR1alpha signals are posteriorizing factors that control node regression and posterior embryonic development.
Collapse
MESH Headings
- Abnormalities, Multiple
- Animals
- Brain/abnormalities
- Cell Communication
- Cell Movement
- Crosses, Genetic
- Embryo, Mammalian/pathology
- Gastrula
- Genes, Lethal
- Genotype
- Mesoderm/cytology
- Mice
- Mice, Mutant Strains/embryology
- Mutagenesis, Site-Directed
- Mutation
- Protein Isoforms/deficiency
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptor Protein-Tyrosine Kinases/deficiency
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/deficiency
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Somites
- Spinal Dysraphism/etiology
- Spinal Dysraphism/genetics
Collapse
Affiliation(s)
- X Xu
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kalyani AJ, Mujtaba T, Rao MS. Expression of EGF receptor and FGF receptor isoforms during neuroepithelial stem cell differentiation. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(19990205)38:2<207::aid-neu4>3.0.co;2-g] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Yoshimura N, Sano H, Hashiramoto A, Yamada R, Nakajima H, Kondo M, Oka T. The expression and localization of fibroblast growth factor-1 (FGF-1) and FGF receptor-1 (FGFR-1) in human breast cancer. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1998; 89:28-34. [PMID: 9756721 DOI: 10.1006/clin.1998.4551] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor-1 (FGF-1) is an inducer of angiogenesis, the growth of new blood vessels. The expression and localization of FGF-1 (acidic FGF) and FGF receptor (FGFR)-1 in mammary tissues from patients with breast cancer was investigated using Western blot analysis and immunohistochemistry. The affinity-purified FGF-1 antibody which did not have cross-reactivity to FGF-2 (basic FGF) was used in this study. Western blot analysis demonstrated the presence of FGF-1 protein in all of the samples from breast cancer, but not benign tumors such as mastopathy and fibroadenoma. To assess the localization of FGF-1 in cancer tissues, immunostaining with specific antibody was performed. All samples from breast cancer displayed significantly intense staining with FGF-1 antibody. The extent and intensity of immunoreactive FGF-1 polypeptides in cancer cells was statistically much greater than those of cells from fibroadenoma or mastopathy. Control immunostaining with normal rabbit serum or anti-FGF-1 antibody adsorbed with the recombinant FGF-1 polypeptide was completely negative. In contrast to FGF-1, Western blot analysis demonstrated the presence of FGFR-1 protein in all of the samples from breast cancer and benign tumors. By immunohistochemical analysis, the enhanced expression of FGFR-1 was observed in breast cancer cells. Benign tumor cells or interstitial cells displayed a faint expression of FGFR-1. These results demonstrated that breast cancer cells not only generated FGF-1, but also expressed FGFR-1, and FGF-1 might play a role in the proliferation of breast cancer cells not only by paracrine but also by autocrine mechanism.
Collapse
Affiliation(s)
- N Yoshimura
- The Second Department of Surgery, First Department of Internal Medicine, Kyoto Prefectural University of Medicine, 465 Hirokoji, Kawaramachi, Kamigyo-ku, Kyoto city, Kyoto, 602-081, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Szebenyi G, Fallon JF. Fibroblast growth factors as multifunctional signaling factors. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 185:45-106. [PMID: 9750265 DOI: 10.1016/s0074-7696(08)60149-7] [Citation(s) in RCA: 356] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fibroblast growth factor (FGF) family consists of at least 15 structurally related polypeptide growth factors. Their expression is controlled at the levels of transcription, mRNA stability, and translation. The bioavailability of FGFs is further modulated by posttranslational processing and regulated protein trafficking. FGFs bind to receptor tyrosine kinases (FGFRs), heparan sulfate proteoglycans (HSPG), and a cysteine-rich FGF receptor (CFR). FGFRs are required for most biological activities of FGFs. HSPGs alter FGF-FGFR interactions and CFR participates in FGF intracellular transport. FGF signaling pathways are intricate and are intertwined with insulin-like growth factor, transforming growth factor-beta, bone morphogenetic protein, and vertebrate homologs of Drosophila wingless activated pathways. FGFs are major regulators of embryonic development: They influence the formation of the primary body axis, neural axis, limbs, and other structures. The activities of FGFs depend on their coordination of fundamental cellular functions, such as survival, replication, differentiation, adhesion, and motility, through effects on gene expression and the cytoskeleton.
Collapse
Affiliation(s)
- G Szebenyi
- Anatomy Department, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
47
|
Sperinde GV, Nugent MA. Heparan sulfate proteoglycans control intracellular processing of bFGF in vascular smooth muscle cells. Biochemistry 1998; 37:13153-64. [PMID: 9748322 DOI: 10.1021/bi980600z] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Basic fibroblast growth factor (bFGF) is a potent mitogen for vascular smooth muscle cells (VSMC) and has been implicated in a number of vascular disorders. bFGF interacts with high-affinity receptors and heparan sulfate proteoglycans (HSPG) at the cell surface. HSPG have been demonstrated to enhance bFGF binding to its receptors, yet no known role for HSPG in modulating postbinding events has been identified. In the present study, we analyzed bFGF internalization, intracellular distribution, degradation, and stimulation of DNA synthesis within native and HSPG-deficient VSMC. HSPG-deficient VSMC were generated by treating cells with sodium chlorate to inhibit the sulfation of HSPG. We found that stimulation of DNA synthesis by bFGF in chlorate-treated VSMC was markedly reduced as compared with native cells, even at doses of bFGF where receptor binding was similar in the two conditions. This was not a general lack of mitogenic potential, as the addition of calf serum, or epidermal growth factor, stimulated DNA synthesis to a similar extent in native and chlorate-treated cells. Analysis of the accumulation of internalized bFGF within cytoplasmic and nuclear fractions of native and HSPG-deficient VSMC showed striking differences. At early time points (0-2 h), nearly identical amounts of bFGF were observed in the cytoplasmic fractions under both conditions, yet significant amounts of bFGF were only found in the nuclear fractions of native cells. At later time points (2-48 h), the amount of cytoplasmic bFGF was significantly greater in the native compared to HSPG-deficient cells, and nuclear deposition of bFGF began to reach similar levels under both conditions. Furthermore, the intracellular half-life of bFGF was dramatically prolonged in native compared to HSPG-deficient cells, in part, due to decreased bFGF degradation in native cells. Thus, HSPG appears to accelerate nuclear localization, increase cytoplasmic capacity, and inhibit intracellular degradation of bFGF in VSMC. Modulation of intracellular processing of bFGF by HSPG might control the biological activity of bFGF in VSMC.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Cells, Cultured
- Chlorates/pharmacology
- DNA/antagonists & inhibitors
- DNA/biosynthesis
- DNA/drug effects
- Fibroblast Growth Factor 2/drug effects
- Fibroblast Growth Factor 2/metabolism
- Heparan Sulfate Proteoglycans/deficiency
- Heparan Sulfate Proteoglycans/physiology
- Humans
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Mice
- Mice, Inbred BALB C
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Protein Binding
- Protein Processing, Post-Translational/drug effects
- Receptors, Fibroblast Growth Factor/metabolism
- Temperature
Collapse
Affiliation(s)
- G V Sperinde
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118, USA
| | | |
Collapse
|
48
|
Takami K, Matsuo A, Terai K, Walker DG, McGeer EG, McGeer PL. Fibroblast growth factor receptor-1 expression in the cortex and hippocampus in Alzheimer's disease. Brain Res 1998; 802:89-97. [PMID: 9748519 DOI: 10.1016/s0006-8993(98)00552-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Localization of fibroblast growth receptor (FGFR)-1 immunoreactivity was investigated immunochemically in postmortem brain tissue of Alzheimer's disease (AD) and age-matched control cases using a rabbit polyclonal antibody and a mouse monoclonal antibody specific for FGFR-1. In control cases, FGFR-1 immunoreactivity was identified in astrocytes in white matter and in hippocampal pyramidal neurons. In AD cases, the immunoreactivity in reactive astrocytes surrounding senile plaques was increased. The pattern of FGFR-1 immunoreactivity was confirmed in selected cases by in situ hybridization for FGFR-1 mRNA. Immunoreactivity using a monoclonal antibody demonstrated a similar distribution pattern. The localization of FGFR-1 is consistent with previous reports on the involvement of FGF-1 and FGF-2 in AD.
Collapse
Affiliation(s)
- K Takami
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
49
|
LaVallee TM, Prudovsky IA, McMahon GA, Hu X, Maciag T. Activation of the MAP kinase pathway by FGF-1 correlates with cell proliferation induction while activation of the Src pathway correlates with migration. J Cell Biol 1998; 141:1647-58. [PMID: 9647656 PMCID: PMC2133001 DOI: 10.1083/jcb.141.7.1647] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1997] [Revised: 05/10/1998] [Indexed: 02/08/2023] Open
Abstract
FGF regulates both cell migration and proliferation by receptor-dependent induction of immediate-early gene expression and tyrosine phosphorylation of intracellular polypeptides. Because little is known about the disparate nature of intracellular signaling pathways, which are able to discriminate between cell migration and proliferation, we used a washout strategy to examine the relationship between immediate-early gene expression and tyrosine phosphorylation with respect to the potential of cells either to migrate or to initiate DNA synthesis in response to FGF-1. We demonstrate that transient exposure to FGF-1 results in a significant decrease in Fos transcript expression and a decrease in tyrosine phosphorylation of the FGFR-1, p42(mapk), and p44(mapk). Consistent with these biochemical effects, we demonstrate that attenuation in the level of DNA synthesis such that a 1.5-h withdrawal is sufficient to return the population to a state similar to quiescence. In contrast, the level of Myc mRNA, the activity of Src, the tyrosine phosphorylation of cortactin, and the FGF-1-induced redistribution of cortactin and F-actin were unaffected by transient FGF-1 stimulation. These biochemical responses are consistent with an implied uncompromised migratory potential of the cells in response to growth factor withdrawal. These results suggest a correlation between Fos expression and the mitogen-activated protein kinase pathway with initiation of DNA synthesis and a correlation between high levels of Myc mRNA and Src kinase activity with the regulation of cell migration.
Collapse
Affiliation(s)
- T M LaVallee
- Department of Molecular Biology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
The role of membrane receptors is regarded as being to transduce the signal represented by ligand binding from the external cell surface across the membrane into the cell. Signals are subsequently conveyed from the cytoplasm to the nucleus through a combination of second-messenger molecules, kinase/phosphorylation cascades, and transcription factor (TF) translocation to effect changes in gene expression. Mounting evidence suggests that through direct targeting to the nucleus, polypeptide ligands and their receptors may have an important additional signaling role. Ligands such as those of the platelet-derived and fibroblast growth factor classes, as well as cytokines such as interferon-gamma and interleukins-1 and -5, have been found to localize in the nucleus through the action of nuclear localization sequences (NLSs). Where tested, these NLSs appear to be essential for full signaling activity and may be responsible for cotranslocating receptors to the nucleus in complexes with their ligands. The implication is that, subsequent to endocytosis at the membrane, particular polypeptide ligands or their receptors, or both, may translocate to the nucleus to participate directly in gene regulation.
Collapse
Affiliation(s)
- D A Jans
- Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra, Australia.
| | | |
Collapse
|