1
|
Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci 2024; 49:1079-1096. [PMID: 39537538 DOI: 10.1016/j.tibs.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Eph receptor tyrosine kinases, together with their cell surface-anchored ephrin ligands, constitute an important cell-cell communication system that regulates physiological and pathological processes in most cell types. This review focuses on the multiple mechanisms by which Eph receptors initiate signaling via the formation of protein complexes in the plasma membrane. Upon ephrin binding, Eph receptors assemble into oligomers that can further aggregate into large complexes. Eph receptors also mediate ephrin-independent signaling through interplay with intracellular kinases or other cell-surface receptors. The distinct characteristics of Eph receptor family members, as well as their conserved domain structure, provide a framework for understanding their functional differences and redundancies. Possible areas of interest for future investigations of Eph receptor signaling complexes are also highlighted.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
2
|
Ren LL, Wang ZW, Sen R, Dai ZT, Liao XH, Shen LJ. GRB10 is a novel factor associated with gastric cancer proliferation and prognosis. Aging (Albany NY) 2023; 15:3394-3409. [PMID: 37179120 PMCID: PMC10449302 DOI: 10.18632/aging.204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023]
Abstract
GRB10 and its family members GRB7 and GRB14 were important adaptor proteins. They regulated many cellular functions by interacting with various tyrosine kinase receptors and other phosphorus-containing amino acid proteins. More and more studies have shown that the abnormal expression of GRB10 is closely related to the occurrence and development of cancer. In our current research, expression data for 33 cancers from the TCGA database was downloaded for analysis. It was found that GRB10 was up-regulated in cholangiocarcinoma, colon adenocarcinoma, head and neck squamous carcinoma, renal chromophobe, clear renal carcinoma, hepatocellular carcinoma, lung adenocarcinoma, lung squamous carcinoma, gastric adenocarcinoma and thyroid carcinoma. Especially in gastric cancer, the high GRB10 expression was closely associated with poorer overall survival. Further research showed that the knockdown of GRB10 inhibited proliferation and migration ability in gastric cancer. Also, there was a potential binding site for miR-379-5p on the 3'UTR of GRB10. Overexpression of miR-379-5p in gastric cancer cells reduced GRB10-regulated gastric cancer proliferation and migration capacity. In addition, we found that tumor growth was slower in a mice xenograft model with knock down of GRB10 expression. These findings suggested that miR-379-5p suppresses gastric cancer development by downregulating GRB10 expression. Therefore, miR-379-5p and GRB10 were expected to be potential targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Food and Drug, Shenzhen Polytechnic, Guangdong 518055, China
| | - Zhi-Wen Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Ren Sen
- Clinical Academy, Changsha Health Vocational College, Hunan 410100, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Li-Juan Shen
- Longgang District People's Hospital of Shenzhen, Guangdong 518172, China
| |
Collapse
|
3
|
Washburn HR, Chander P, Srikanth KD, Dalva MB. Transsynaptic Signaling of Ephs in Synaptic Development, Plasticity, and Disease. Neuroscience 2023; 508:137-152. [PMID: 36460219 DOI: 10.1016/j.neuroscience.2022.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Synapse formation between neurons is critical for proper circuit and brain function. Prior to activity-dependent refinement of connections between neurons, activity-independent cues regulate the contact and recognition of potential synaptic partners. Formation of a synapse results in molecular recognition events that initiate the process of synaptogenesis. Synaptogenesis requires contact between axon and dendrite, selection of correct and rejection of incorrect partners, and recruitment of appropriate pre- and postsynaptic proteins needed for the establishment of functional synaptic contact. Key regulators of these events are families of transsynaptic proteins, where one protein is found on the presynaptic neuron and the other is found on the postsynaptic neuron. Of these families, the EphBs and ephrin-Bs are required during each phase of synaptic development from target selection, recruitment of synaptic proteins, and formation of spines to regulation of synaptic plasticity at glutamatergic spine synapses in the mature brain. These roles also place EphBs and ephrin-Bs as important regulators of human neurological diseases. This review will focus on the role of EphBs and ephrin-Bs at synapses.
Collapse
Affiliation(s)
- Halley R Washburn
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Praveen Chander
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Kolluru D Srikanth
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA
| | - Matthew B Dalva
- Department of Neuroscience, Jefferson Synaptic Biology Center, Sidney Kimmel Medical College at Thomas Jefferson University, 233 South 10th Street, Bluemle Life Sciences Building, Room 324, Philadelphia, PA 19107, USA.
| |
Collapse
|
4
|
Corrêa T, Poswar F, Santos-Rebouças CB. Convergent molecular mechanisms underlying cognitive impairment in mucopolysaccharidosis type II. Metab Brain Dis 2022; 37:2089-2102. [PMID: 34797484 DOI: 10.1007/s11011-021-00872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022]
Abstract
Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by pathogenic variants in the iduronate-2-sulfatase gene (IDS), responsible for the degradation of glycosaminoglycans (GAGs) heparan and dermatan sulfate. IDS enzyme deficiency results in the accumulation of GAGs within cells and tissues, including the central nervous system (CNS). The progressive neurological outcome in a representative number of MPSII patients (neuronopathic form) involves cognitive impairment, behavioral difficulties, and regression in developmental milestones. In an attempt to dissect part of the influence of axon guidance instability over the cognitive impairment presentation in MPS II, we used brain expression data, network propagation, and clustering algorithm to prioritize in the human interactome a disease module associated with the MPS II context. We identified new candidate genes and pathways that act in focal adhesion, integrin cell surface, laminin interactions, ECM proteoglycans, cytoskeleton, and phagosome that converge into functional mechanisms involved in early neural circuit formation defects and could indicate clues about cognitive impairment in patients with MPSII. Such molecular changes during neurodevelopment may precede the morphological and clinical evidence, emphasizing the importance of an early diagnosis and directing the development of potential drug leads. Furthermore, our data also support previous hypotheses pointing to shared pathogenic mechanisms in some neurodegenerative diseases.
Collapse
Affiliation(s)
- Thiago Corrêa
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil.
| | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Cíntia B Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Banerjee SL, Lessard F, Chartier FJM, Jacquet K, Osornio-Hernandez AI, Teyssier V, Ghani K, Lavoie N, Lavoie JN, Caruso M, Laprise P, Elowe S, Lambert JP, Bisson N. EPH receptor tyrosine kinases phosphorylate the PAR-3 scaffold protein to modulate downstream signaling networks. Cell Rep 2022; 40:111031. [PMID: 35793621 DOI: 10.1016/j.celrep.2022.111031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 11/03/2022] Open
Abstract
EPH receptors (EPHRs) constitute the largest family among receptor tyrosine kinases in humans. They are mainly involved in short-range cell-cell communication events that regulate cell adhesion, migration, and boundary formation. However, the molecular mechanisms by which EPHRs control these processes are less understood. To address this, we unravel EPHR-associated complexes under native conditions using mass-spectrometry-based BioID proximity labeling. We obtain a composite proximity network from EPHA4, -B2, -B3, and -B4 that comprises 395 proteins, most of which were not previously linked to EPHRs. We examine the contribution of several BioID-identified candidates via loss-of-function in an EPHR-dependent cell-segregation assay. We find that the signaling scaffold PAR-3 is required for cell sorting and that EPHRs directly phosphorylate PAR-3. We also delineate a signaling complex involving the C-terminal SRC kinase (CSK), whose recruitment to PAR-3 is dependent on EPHR signals. Our work describes signaling networks by which EPHRs regulate cellular phenotypes.
Collapse
Affiliation(s)
- Sara L Banerjee
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Frédéric Lessard
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - François J M Chartier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Kévin Jacquet
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Ana I Osornio-Hernandez
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Valentine Teyssier
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Karim Ghani
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Noémie Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Josée N Lavoie
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Manuel Caruso
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Patrick Laprise
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada
| | - Sabine Elowe
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Department of Pediatrics, Université Laval, Québec, QC, Canada
| | - Jean-Philippe Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Université Laval, Québec, QC, Canada; Centre de recherche en données massives de l'Université Laval, Québec, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Endocrinologie-néphrologie, Québec, QC, Canada
| | - Nicolas Bisson
- Centre de recherche du Centre Hospitalier Universitaire (CHU) de Quebec-Université Laval, Division Oncologie, Québec, QC, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC, Canada.
| |
Collapse
|
6
|
Tamura K, Chiu YW, Shiohara A, Hori Y, Tomita T. EphA4 regulates Aβ production via BACE1 expression in neurons. FASEB J 2020; 34:16383-16396. [PMID: 33090569 DOI: 10.1096/fj.202001510r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 10/02/2020] [Indexed: 01/05/2023]
Abstract
Several lines of evidence suggest that the aggregation and deposition of amyloid-β peptide (Aβ) initiate the pathology of Alzheimer's disease (AD). Recently, a genome-wide association study demonstrated that a single-nucleotide polymorphism proximal to the EPHA4 gene, which encodes a receptor tyrosine kinase, is associated with AD risk. However, the molecular mechanism of EphA4 in the pathogenesis of AD, particularly in Aβ production, remains unknown. Here, we performed several pharmacological and biological experiments both in vitro and in vivo and demonstrated that EphA4 is responsible for the regulation of Aβ production. Pharmacological inhibition of EphA4 signaling and knockdown of Epha4 led to increased Aβ levels accompanied by increased expression of β-site APP cleaving enzyme 1 (BACE1), which is an enzyme responsible for Aβ production. Moreover, EPHA4 overexpression and activation of EphA4 signaling via ephrin ligands decreased Aβ levels. In particular, the sterile-alpha motif domain of EphA4 was necessary for the regulation of Aβ production. Finally, EPHA4 mRNA levels were significantly reduced in the brains of AD patients, and negatively correlated with BACE1 mRNA levels. Our results indicate a novel mechanism of Aβ regulation by EphA4, which is involved in AD pathogenesis.
Collapse
Affiliation(s)
- Kensuke Tamura
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yung-Wen Chiu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Azusa Shiohara
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene 2019; 38:6567-6584. [PMID: 31406248 DOI: 10.1038/s41388-019-0931-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Eph receptors, the largest subfamily of receptor tyrosine kinases, are linked with proliferative disease, such as cancer, as a result of their deregulated expression or mutation. Unlike other tyrosine kinases that have been clinically targeted, the development of therapeutics against Eph receptors remains at a relatively early stage. The major reason is the limited understanding on the Eph receptor regulatory mechanisms at a molecular level. The complexity in understanding Eph signalling in cells arises due to following reasons: (1) Eph receptors comprise 14 members, two of which are pseudokinases, EphA10 and EphB6, with relatively uncharacterised function; (2) activation of Eph receptors results in dimerisation, oligomerisation and formation of clustered signalling centres at the plasma membrane, which can comprise different combinations of Eph receptors, leading to diverse downstream signalling outputs; (3) the non-catalytic functions of Eph receptors have been overlooked. This review provides a structural perspective of the intricate molecular mechanisms that drive Eph receptor signalling, and investigates the contribution of intra- and inter-molecular interactions between Eph receptors intracellular domains and their major binding partners. We focus on the non-catalytic functions of Eph receptors with relevance to cancer, which are further substantiated by exploring the role of the two pseudokinase Eph receptors, EphA10 and EphB6. Throughout this review, we carefully analyse and reconcile the existing/conflicting data in the field, to allow researchers to further the current understanding of Eph receptor signalling.
Collapse
Affiliation(s)
- Lung-Yu Liang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter W Janes
- Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
8
|
Henderson NT, Dalva MB. EphBs and ephrin-Bs: Trans-synaptic organizers of synapse development and function. Mol Cell Neurosci 2018; 91:108-121. [PMID: 30031105 PMCID: PMC6159941 DOI: 10.1016/j.mcn.2018.07.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Synapses are specialized cell-cell junctions that underlie the function of neural circuits by mediating communication between neurons. Both the formation and function of synapses require tight coordination of signaling between pre- and post-synaptic neurons. Trans-synaptic organizing molecules are important mediators of such signaling. Here we discuss how the EphB and ephrin-B families of trans-synaptic organizing proteins direct synapse formation during early development and regulate synaptic function and plasticity at mature synapses. Finally, we highlight recent evidence linking the synaptic organizing role of EphBs and ephrin-Bs to diseases of maladaptive synaptic function and plasticity.
Collapse
Affiliation(s)
- Nathan T Henderson
- The Jefferson Synaptic Biology Center, Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Hospital for Neuroscience, Suite 463, 900 Walnut St., Philadelphia, PA 19107, United States
| | - Matthew B Dalva
- The Jefferson Synaptic Biology Center, Department of Neuroscience, The Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson University, Jefferson Hospital for Neuroscience, Suite 463, 900 Walnut St., Philadelphia, PA 19107, United States.
| |
Collapse
|
9
|
García-Palmero I, Pompas-Veganzones N, Villalobo E, Gioria S, Haiech J, Villalobo A. The adaptors Grb10 and Grb14 are calmodulin-binding proteins. FEBS Lett 2017; 591:1176-1186. [PMID: 28295264 DOI: 10.1002/1873-3468.12623] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/06/2017] [Indexed: 01/24/2023]
Abstract
We identified the Grb7 family members, Grb10 and Grb14, as Ca2+ -dependent CaM-binding proteins using Ca2+ -dependent CaM-affinity chromatography as we previously did with Grb7. The potential CaM-binding sites were identified and experimentally tested using fluorescent-labeled peptides corresponding to these sites. The apparent affinity constant of these peptides for CaM, and the minimum number of calcium ions bound to CaM that are required for effective binding to these peptides were also determined. We prepared deletion mutants of the three adaptor proteins lacking the identified sites and determined that they lost or strongly diminished their CaM-binding capacity following the sequence Grb7 > > Grb14 > Grb10. More than one CaM-binding site and/or accessory CaM-binding sites appear to exist in Grb10 and Grb14, as compared to a single one present in Grb7.
Collapse
Affiliation(s)
- Irene García-Palmero
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Noemí Pompas-Veganzones
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Spain
| | - Sophie Gioria
- Plate-forme de Chimie Biologique Intégrative de Strasbourg (PCBIS), UMS 3286 CNRS-Université de Strasbourg, France
| | - Jacques Haiech
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, France
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| |
Collapse
|
10
|
Systematic biochemical characterization of the SAM domains in Eph receptor family from Mus Musculus. Biochem Biophys Res Commun 2016; 473:1281-1287. [PMID: 27086853 DOI: 10.1016/j.bbrc.2016.04.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
The Eph receptor family is the largest subfamily of receptor tyrosine kinases and well-known for their pivotal roles in axon guidance, synaptogenesis, artery/venous differentiation and tumorigenesis, etc. Activation of the Eph receptor needs multimerization of the receptors. The intracellular C-terminal SAM domain of Eph receptor was reported to mediate self-association of Eph receptors via the homo SAM-SAM interaction. In this study, we systematically expressed and purified the SAM domain proteins of all fourteen Eph receptors of Mus musculus in Escherichia coli. The FPLC (fast protein liquid chromatography) results showed the recombinant SAM domains were highly homogeneous. Using CD (circular dichroism) spectrometry, we found that the secondary structure of all the SAM domains was typically alpha helical folded and remarkably similar. The thermo-stability tests showed that they were quite stable in solution. SEC-MALS (size exclusion chromatography coupled with multiple angle light scattering) results illustrated 200 μM Eph SAM domains behaved as good monomers in the size-exclusion chromatography. More importantly, DLS (dynamic light scattering) results revealed the overwhelming majority of SAM domains was not multimerized in solution either at 200 μM or 2000 μM protein concentration, which indicating the SAM domain alone was not sufficient to mediate the polymerization of Eph receptor. In summary, our studies provided the systematic biochemical characterizations of the Eph receptor SAM domains and implied their roles in Eph receptor mediated signaling pathways.
Collapse
|
11
|
Hashimoto T, Tsuneki M, Foster TR, Santana JM, Bai H, Wang M, Hu H, Hanisch JJ, Dardik A. Membrane-mediated regulation of vascular identity. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:65-84. [PMID: 26992081 PMCID: PMC5310768 DOI: 10.1002/bdrc.21123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane-associated molecules, particularly the Eph-ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane-associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell-to-cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph- and ephrin-related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane-associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane-bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph- and ephrin-related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies.
Collapse
Affiliation(s)
- Takuya Hashimoto
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsuneki
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Trenton R. Foster
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jeans M. Santana
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Hualong Bai
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Vascular Surgery, The 1st Affiliated Hospital of Zhengzhou University, Henan, China
| | - Mo Wang
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Haidi Hu
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jesse J. Hanisch
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Alan Dardik
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
| |
Collapse
|
12
|
Borthakur S, Lee H, Kim S, Wang BC, Buck M. Binding and function of phosphotyrosines of the Ephrin A2 (EphA2) receptor using synthetic sterile α motif (SAM) domains. J Biol Chem 2014; 289:19694-703. [PMID: 24825902 DOI: 10.1074/jbc.m114.567602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The sterile α motif (SAM) domain of the ephrin receptor tyrosine kinase, EphA2, undergoes tyrosine phosphorylation, but the effect of phosphorylation on the structure and interactions of the receptor is unknown. Studies to address these questions have been hindered by the difficulty of obtaining site-specifically phosphorylated proteins in adequate amounts. Here, we describe the use of chemically synthesized and specifically modified domain-length peptides to study the behavior of phosphorylated EphA2 SAM domains. We show that tyrosine phosphorylation of any of the three tyrosines, Tyr(921), Tyr(930), and Tyr(960), has a surprisingly small effect on the EphA2 SAM structure and stability. However, phosphorylation at Tyr(921) and Tyr(930) enables differential binding to the Src homology 2 domain of the adaptor protein Grb7, which we propose will lead to distinct functional outcomes. Setting up different signaling platforms defined by selective interactions with adaptor proteins thus adds another level of regulation to EphA2 signaling.
Collapse
Affiliation(s)
| | - HyeongJu Lee
- From the Departments of Physiology and Biophysics
| | | | - Bing-Cheng Wang
- From the Departments of Physiology and Biophysics, Pharmacology, and the Rammelkamp Center for Research, MetroHealth Medical Center, Cleveland, Ohio 44109the Case Comprehensive Cancer Center, and
| | - Matthias Buck
- From the Departments of Physiology and Biophysics, the Case Comprehensive Cancer Center, and Neurosciences, the Case Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio 44106 and
| |
Collapse
|
13
|
Kabir NN, Kazi JU. Grb10 is a dual regulator of receptor tyrosine kinase signaling. Mol Biol Rep 2014; 41:1985-92. [PMID: 24420853 DOI: 10.1007/s11033-014-3046-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
The adaptor protein Grb10 is a close homolog of Grb7 and Grb14. These proteins are characterized by an N-terminal proline-rich region, a Ras-GTPase binding domain, a PH domain, an SH2 domain and a BPS domain in between the PH and SH2 domains. Human Grb10 gene encodes three splice variants. These variants show differences in functionality. Grb10 associates with multiple proteins including tyrosine kinases in a tyrosine phosphorylation dependent or independent manner. Association with multiple proteins allows Grb10 to regulate different signaling pathways resulting in different biological consequences.
Collapse
Affiliation(s)
- Nuzhat N Kabir
- Laboratory of Computational Biochemistry, KN Biomedical Research Institute, Bagura Road, Barisal, Bangladesh
| | | |
Collapse
|
14
|
DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex. J Neurosci 2013; 32:16637-50. [PMID: 23175819 DOI: 10.1523/jneurosci.2811-12.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Down syndrome cell adhesion molecule, or DSCAM, has been implicated in many neurodevelopmental processes including axon guidance, dendrite arborization, and synapse formation. Here we show that DSCAM plays an important role in regulating the morphogenesis of cortical pyramidal neurons in the mouse. We report that DSCAM expression is developmentally regulated and localizes to synaptic plasma membranes during a time of robust cortical dendrite arborization and spine formation. Analysis of mice that carry a spontaneous mutation in DSCAM (DSCAM(del17)) revealed gross morphological changes in brain size and shape in addition to subtle changes in cortical organization, volume, and lamination. Early postnatal mutant mice displayed a transient decrease in cortical thickness, but these reductions could not be attributed to changes in neuron production or cell death. DSCAM(del17) mutants showed temporary impairments in the branching of layer V pyramidal neuron dendrites at P10 and P17 that recovered to normal by adulthood. Defects in DSCAM(del17) dendrite branching correlated with a temporal increase in apical branch spine density and lasting changes in spine morphology. At P15 and P42, mutant mice displayed a decrease in the percentage of large, stable spines and an increase in the percentage of small, immature spines. Together, our findings suggest that DSCAM contributes to pyramidal neuron morphogenesis by regulating dendrite arborization and spine formation during cortical circuit development.
Collapse
|
15
|
FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Mol Oncol 2012; 7:402-18. [PMID: 23246379 DOI: 10.1016/j.molonc.2012.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/22/2012] [Indexed: 01/17/2023] Open
Abstract
The adaptor protein Grb10 plays important roles in mitogenic signaling. However, its roles in acute myeloid leukemia (AML) are predominantly unknown. Here we describe the role of Grb10 in FLT3-ITD-mediated AML. We observed that Grb10 physically associates with FLT3 in response to FLT3-ligand (FL) stimulation through FLT3 phospho-tyrosine 572 and 793 residues and constitutively associates with oncogenic FLT3-ITD. Furthermore endogenous Grb10-FLT3 association was observed in OCI-AML-5 cells. Grb10 expression did not alter FLT3 receptor activation or stability in Ba/F3-FLT3 cells. However, expression of Grb10 enhanced FL-induced Akt phosphorylation without affecting Erk or p38 phosphorylation in Ba/F3-FLT3-WT and Ba/F3-FLT3-ITD. Selective Grb10 depletion reduced Akt phosphorylation in Ba/F3-FLT3-WT and OCI-AML-5 cells. Grb10 transduces signal from FLT3 by direct interaction with p85 and Ba/F3-FLT3-ITD cells expressing Grb10 exhibits higher STAT5 activation. Grb10 regulates the cell cycle by increasing cell population in S-phase. Expression of Grb10 furthermore resulted in an increased proliferation and survival of Ba/F3-FLT3-ITD cells as well as increased colony formation in semisolid culture. Grb10 expression was significantly increased in AML patients compared to healthy controls and was also elevated in patients carrying FLT3-ITD mutants. The elevated Grb10 expression partially correlated to relapse as well as to poor prognosis. These results suggest that Grb10 binds to both normal and oncogenic FLT3 and induces PI3K-Akt and STAT5 signaling pathways resulting in an enhanced proliferation, survival and colony formation of hematopoietic cells.
Collapse
|
16
|
Stein E, Schoecklmann H, Daniel TO. Eph family receptors and ligands in vascular cell targeting and assembly. Trends Cardiovasc Med 2012; 7:329-34. [PMID: 21235905 DOI: 10.1016/s1050-1738(97)00095-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Members of the Eph family of receptor tyrosine kinases determine neural cell aggregation and targeting behavior, functions that are also critical in vascular assembly and remodeling. Among this class of diverse receptors, EphA2 (Eck) and EphB1 (ELK) represent prototypes for two receptor subfamilies distinguished by high-affinity interaction with either glycerophosphatidylinositol (GPI)-linked or transmembrane ligands, respectively. EphA2 participates in angiogenic responses to tumor necrosis factor (TNF) through an autocrine loop affecting endothelial cell migration. EphB1 and its ligand Ephrin-B1 (LERK-2) are important determinants of assembly of endothelial cells from the microvasculature of the kidney, where both are expressed in endothelial progenitors and in glomerular microvascular endothelial cells. Ephrin-B1 activation of EphB1 promotes assembly of these cells into capillary-like structures. Interaction trap approaches have identified downstream signaling proteins that complex with ligand-activated EphA2 or EphB1, including nonreceptor tyrosine kinases and SH2 domain-containing adapter proteins. The Grb 10 adapter is one of a subset that binds activated EphB1, but not EphA2, defining distinct signaling mechanisms for these related endothelial receptors. On the basis of observations in vascular endothelial cells and recent results defining Eph receptor and ligand roles in neural cell targeting, we propose that these receptors direct cell-cell recognition events that are critical in vasculogenesis and angiogenesis. (Trends Cardiovasc Med 1997;7:329-334). © 1997, Elsevier Science Inc.
Collapse
Affiliation(s)
- E Stein
- Department of Pharmacology, Nashville, Tennessee, USA
| | | | | |
Collapse
|
17
|
Guerriero G. Putative chitin synthases from Branchiostoma floridae show extracellular matrix-related domains and mosaic structures. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 10:197-207. [PMID: 23084775 PMCID: PMC4937987 DOI: 10.1016/j.gpb.2012.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/27/2012] [Accepted: 04/23/2012] [Indexed: 01/04/2023]
Abstract
The transition from unicellular to multicellular life forms requires the development of a specialized structural component, the extracellular matrix (ECM). In Metazoans, there are two main supportive systems, which are based on chitin and collagen/hyaluronan, respectively. Chitin is the major constituent of fungal cell walls and arthropod exoskeleton. However, presence of chitin/chitooligosaccharides has been reported in lower chordates and during specific stages of vertebrate development. In this study, the occurrence of chitin synthases (CHSs) was investigated with a bioinformatics approach in the cephalochordate Branchiostoma floridae, in which the presence of chitin was initially reported in the skeletal rods of the pharyngeal gill basket. Twelve genes coding for proteins containing conserved amino acid residues of processive glycosyltransferases from GT2 family were found and 10 of them display mosaic structures with novel domains never reported previously in a chitin synthase. In particular, the presence of a discoidin (DS) and a sterile alpha motif (SAM) domain was found in nine identified proteins. Sequence analyses and homology modelling suggest that these domains might interact with the extracellular matrix and mediate protein–protein interaction. The multi-domain putative chitin synthases from B. floridae constitute an emblematic example of the explosion of domain innovation and shuffling which predate Metazoans.
Collapse
Affiliation(s)
- Gea Guerriero
- Fungal Genetics and Genomics Unit, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Science Vienna, University and Research Center Campus Tulln-Technopol, Tulln, Austria.
| |
Collapse
|
18
|
Concepts and consequences of Eph receptor clustering. Semin Cell Dev Biol 2012; 23:43-50. [PMID: 22261642 DOI: 10.1016/j.semcdb.2012.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 12/31/2022]
Abstract
Polymeric receptor-ligand complexes between interacting Eph and ephrin-expressing cells are regarded as dynamic intercellular signalling scaffolds that control cell-to-cell contact: the resulting Eph-ephrin signalling clusters function as positional cues that facilitate cell navigation and tissue patterning during normal and oncogenic development. The considerable complexity of this task, coordinating a multitude of cell movements and cellular interactions, is achieved by accurate translation of spatial information from Eph and ephrin expression gradients into fine-tuned changes in cell-cell adhesion and position. Here we review emerging evidence suggesting that the required combinatorial diversity is not only achieved by the large number of possible Eph-ephrin interactions and selective use of Eph forward and ephrin reverse signals, but in particular through the composition and signal capacity of Eph-ephrin clusters, which is adjusted dynamically to reflect overall Eph and ephrin surface densities on interacting cells. Fine-tuning is provided through multi-layered cluster assembly, where homo- and heterotypic Eph and ephrin interactions define the composition - whilst intracellular signalling feedbacks determine the size and lifetime - of signalling clusters.
Collapse
|
19
|
Woods AG, Sokolowska I, Yakubu R, Butkiewicz M, LaFleur M, Talbot C, Darie CC. Blue Native PAGE and Mass Spectrometry as an Approach for the Investigation of Stable and Transient Protein-Protein Interactions. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1083.ch012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Alisa G. Woods
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Izabela Sokolowska
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Rama Yakubu
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Melissa Butkiewicz
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Martin LaFleur
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Christopher Talbot
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| | - Costel C. Darie
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810
- These authors contributed equally to this work
| |
Collapse
|
20
|
Deng Y, Zhang M, Riedel H. Mitogenic roles of Gab1 and Grb10 as direct cellular partners in the regulation of MAP kinase signaling. J Cell Biochem 2008; 105:1172-82. [DOI: 10.1002/jcb.21829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Monami G, Emiliozzi V, Morrione A. Grb10/Nedd4-mediated multiubiquitination of the insulin-like growth factor receptor regulates receptor internalization. J Cell Physiol 2008; 216:426-37. [PMID: 18286479 DOI: 10.1002/jcp.21405] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The adaptor protein Grb10 is an interacting partner of the IGF-I receptor (IGF-IR) and the insulin receptor (IR). Previous work from our laboratory has established the role of Grb10 as a negative regulator of IGF-IR-dependent cell proliferation. We have shown that Grb10 binds the E3 ubiquitin ligase Nedd4 and promotes IGF-I-stimulated ubiquitination, internalization, and degradation of the IGF-IR, thereby giving rise to long-term attenuation of signaling. Recent biochemical evidence suggests that tyrosine-kinase receptors (RTK) may not be polyubiquitinated but monoubiquitinated at multiple sites (multiubiquitinated). However, the type of ubiquitination of the IGF-IR is still not defined. Here we show that the Grb10/Nedd4 complex upon ligand stimulation mediates multiubiquitination of the IGF-IR, which is required for receptor internalization. Moreover, Nedd4 by promoting IGF-IR ubiquitination and internalization contributes with Grb10 to negatively regulate IGF-IR-dependent cell proliferation. We also demonstrate that the IGF-IR is internalized through clathrin-dependent and-independent pathways. Grb10 and Nedd4 remain associated with the IGF-IR in early endosomes and caveosomes, where they may participate in sorting internalized receptors. Grb10 and Nedd4, unlike the IGF-IR, which is targeted for lysosomal degradation are not degraded and likely directed into recycling endosomes. These results indicate that Grb10 and Nedd4 play a critical role in mediating IGF-IR down-regulation by promoting ligand-dependent multiubiquitination of the IGF-IR, which is required for receptor internalization and regulates mitogenesis.
Collapse
Affiliation(s)
- Giada Monami
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
22
|
The tyrosine phosphatase CD148 interacts with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem J 2008; 413:193-200. [PMID: 18348712 DOI: 10.1042/bj20071317] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CD148 is a transmembrane tyrosine phosphatase that has been implicated in the regulation of cell growth and transformation. However, the signalling mechanisms of CD148 are incompletely understood. To identify the specific intracellular molecules involved in CD148 signalling, we carried out a modified yeast two-hybrid screening assay. Using the substrate-trapping mutant form of CD148 (CD148 D/A) as bait, we recovered the p85 regulatory subunit of PI3K (phosphoinositide 3-kinase). CD148 D/A, but not catalytically active CD148, interacted with p85 in a phosphorylation-dependent manner in vitro and in intact cells. Growth factor receptor and PI3K activity were also trapped by CD148 D/A via p85 from pervanadate-treated cell lysates. CD148 prominently and specifically dephosphorylated p85 in vitro. Co-expression of CD148 reduced p85 phosphorylation induced by active Src, and attenuated the increases in PI3K activity, yet CD148 did not alter the basal PI3K activity. Finally, CD148 knock-down by siRNA (short interfering RNA) increased PI3K activity on serum stimulation. Taken together, these results demonstrate that CD148 may interact with and dephosphorylate p85 when it is phosphorylated and modulate the magnitude of PI3K activity.
Collapse
|
23
|
Fang WB, Brantley-Sieders DM, Hwang Y, Ham AJL, Chen J. Identification and functional analysis of phosphorylated tyrosine residues within EphA2 receptor tyrosine kinase. J Biol Chem 2008; 283:16017-26. [PMID: 18387945 PMCID: PMC2414276 DOI: 10.1074/jbc.m709934200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/14/2008] [Indexed: 11/06/2022] Open
Abstract
EphA2 is a member of the Eph family of receptor tyrosine kinases. EphA2 mediates cell-cell communication and plays critical roles in a number of physiological and pathologic responses. We have previously shown that EphA2 is a key regulator of tumor angiogenesis and that tyrosine phosphorylation regulates EphA2 signaling. To understand the role of EphA2 phosphorylation, we have mapped phosphorylated tyrosines within the intracellular region of EphA2 by a combination of mass spectrometry analysis and phosphopeptide mapping using two-dimensional chromatography in conjunction with site-directed mutagenesis. The function of these phosphorylated tyrosine residues was assessed by mutational analysis using EphA2-null endothelial cells reconstituted with EphA2 tyrosine-to-phenylalanine or tyrosine-to-glutamic acid substitution mutants. Phosphorylated Tyr(587) and Tyr(593) bind to Vav2 and Vav3 guanine nucleotide exchange factors, whereas Tyr(P)(734) binds to the p85 regulatory subunit of phosphatidylinositol 3-kinase. Mutations that uncouple EphA2 with Vav guanine nucleotide exchange factors or p85 are defective in Rac1 activation and cell migration. Finally, EphA2 mutations in the juxtamembrane region (Y587F, Y593F, Y587E/Y593E), kinase domain (Y734F), or SAM domain (Y929F) inhibited ephrin-A1-induced vascular assembly. In addition, EphA2-null endothelial cells reconstituted with these mutants were unable to incorporate into tumor vasculature, suggesting a critical role of these phosphorylation tyrosine residues in transducing EphA2 signaling in vascular endothelial cells during tumor angiogenesis.
Collapse
Affiliation(s)
- Wei Bin Fang
- Department of Cancer Biology,
Department of Medicine, Division of
Rheumatology and Immunology,
Proteomics Laboratory, Mass
Spectrometry Research Center,
Department of Cell and Developmental
Biology, and Vanderbilt-Ingram Cancer
Center, Vanderbilt University School of Medicine, Nashville, Tennessee
37232
| | - Dana M. Brantley-Sieders
- Department of Cancer Biology,
Department of Medicine, Division of
Rheumatology and Immunology,
Proteomics Laboratory, Mass
Spectrometry Research Center,
Department of Cell and Developmental
Biology, and Vanderbilt-Ingram Cancer
Center, Vanderbilt University School of Medicine, Nashville, Tennessee
37232
| | - Yoonha Hwang
- Department of Cancer Biology,
Department of Medicine, Division of
Rheumatology and Immunology,
Proteomics Laboratory, Mass
Spectrometry Research Center,
Department of Cell and Developmental
Biology, and Vanderbilt-Ingram Cancer
Center, Vanderbilt University School of Medicine, Nashville, Tennessee
37232
| | - Amy-Joan L. Ham
- Department of Cancer Biology,
Department of Medicine, Division of
Rheumatology and Immunology,
Proteomics Laboratory, Mass
Spectrometry Research Center,
Department of Cell and Developmental
Biology, and Vanderbilt-Ingram Cancer
Center, Vanderbilt University School of Medicine, Nashville, Tennessee
37232
| | - Jin Chen
- Department of Cancer Biology,
Department of Medicine, Division of
Rheumatology and Immunology,
Proteomics Laboratory, Mass
Spectrometry Research Center,
Department of Cell and Developmental
Biology, and Vanderbilt-Ingram Cancer
Center, Vanderbilt University School of Medicine, Nashville, Tennessee
37232
| |
Collapse
|
24
|
Fasen K, Cerretti DP, Huynh-Do U. Ligand binding induces Cbl-dependent EphB1 receptor degradation through the lysosomal pathway. Traffic 2007; 9:251-66. [PMID: 18034775 DOI: 10.1111/j.1600-0854.2007.00679.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eph receptor tyrosine kinases play a critical role in embryonic patterning and angiogenesis. In the adult, they are involved in carcinogenesis and pathological neovascularization. However, the mechanisms underlying their role in tumor formation and metastasis remain to be defined. Here, we demonstrated that stimulation of EphB1 with ephrinB1/Fc led to a marked downregulation of EphB1 protein, a process blocked by the lysosomal inhibitor bafilomycin. Following ephrinB1 stimulation, the ubiquitin ligase Cbl was recruited by EphB1 and then phosphorylated. Both Cbl phosphorylation and EphB1 ubiquitination were blocked by the Src inhibitor PP2. Overexpression of wild-type Cbl, but not of 70Z mutant lacking ligase activity, enhanced EphB1 ubiquitination and degradation. This negative regulation required the tyrosine kinase activity of EphB1 as kinase-dead EphB1-K652R was resistant to Cbl. Glutathione S-transferase binding experiments showed that Cbl bound to EphB1 through its tyrosine kinase-binding domain. In aggregate, we demonstrated that Cbl induces the ubiquitination and lysosomal degradation of activated EphB1, a process requiring EphB1 and Src kinase activity. To our knowledge, this is the first study dissecting the molecular mechanisms leading to EphB1 downregulation, thus paving the way to new means of modulating their angiogenic and tumorigenic properties.
Collapse
Affiliation(s)
- Katrin Fasen
- Division of Nephrology and Department of Clinical Research, University of Bern Medical School, Inselspital, CH-3010 Bern, Switzerland
| | | | | |
Collapse
|
25
|
Porter CJ, Matthews JM, Mackay JP, Pursglove SE, Schmidberger JW, Leedman PJ, Pero SC, Krag DN, Wilce MCJ, Wilce JA. Grb7 SH2 domain structure and interactions with a cyclic peptide inhibitor of cancer cell migration and proliferation. BMC STRUCTURAL BIOLOGY 2007; 7:58. [PMID: 17894853 PMCID: PMC2131756 DOI: 10.1186/1472-6807-7-58] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 09/25/2007] [Indexed: 01/22/2023]
Abstract
Background Human growth factor receptor bound protein 7 (Grb7) is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK) that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE) has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines. Results As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding. Conclusion Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of cancer cell migration and invasion.
Collapse
Affiliation(s)
- Corrine J Porter
- School of Biomedical and Chemical Sciences, University of Western Australia, WA 6009, Australia
| | - Jacqueline M Matthews
- Department of Biochemistry and Microbiology, University of Sydney, NSW 2006, Australia
| | - Joel P Mackay
- Department of Biochemistry and Microbiology, University of Sydney, NSW 2006, Australia
| | - Sharon E Pursglove
- Department of Biochemistry and Microbiology, University of Sydney, NSW 2006, Australia
| | - Jason W Schmidberger
- School of Biomedical and Chemical Sciences, University of Western Australia, WA 6009, Australia
| | - Peter J Leedman
- Western Australian Institute of Medical Research, WA 6000, Australia
| | - Stephanie C Pero
- Department of Surgery and Vermont Cancer Center, University of Vermont, Burlington, VT, USA
| | - David N Krag
- Department of Surgery and Vermont Cancer Center, University of Vermont, Burlington, VT, USA
| | - Matthew CJ Wilce
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Jacqueline A Wilce
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| |
Collapse
|
26
|
Georgakopoulos A, Litterst C, Ghersi E, Baki L, Xu C, Serban G, Robakis NK. Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO J 2006; 25:1242-52. [PMID: 16511561 PMCID: PMC1422162 DOI: 10.1038/sj.emboj.7601031] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 02/09/2006] [Indexed: 01/08/2023] Open
Abstract
Bidirectional signaling triggered by interacting ephrinB receptors (EphB) and ephrinB ligands is crucial for development and function of the vascular and nervous systems. A signaling cascade triggered by this interaction involves activation of Src kinase and phosphorylation of ephrinB. The mechanism, however, by which EphB activates Src in the ephrinB-expressing cells is unknown. Here we show that EphB stimulates a metalloproteinase cleavage of ephrinB2, producing a carboxy-terminal fragment that is further processed by PS1/gamma-secretase to produce intracellular peptide ephrinB2/CTF2. This peptide binds Src and inhibits its association with inhibitory kinase Csk, allowing autophosphorylation of Src at residue tyr418. EphrinB2/CTF2-activated Src phosphorylates ephrinB2 and inhibits its processing by gamma-secretase. These data show that the PS1/gamma-secretase system controls Src activation and ephrinB phosphorylation by regulating production of Src activator ephrinB2/CTF2. Accordingly, gamma-secretase inhibitors prevented the EphB-induced sprouting of endothelial cells and the recruitment of Grb4 to ephrinB. PS1 FAD and gamma-secretase dominant-negative mutants inhibited the EphB-induced cleavage of ephrinB2 and Src autophosphorylation, raising the possibility that FAD mutants interfere with the functions of Src and ephrinB2 in the CNS.
Collapse
Affiliation(s)
| | - Claudia Litterst
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| | - Enrico Ghersi
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| | - Lia Baki
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| | - ChiJie Xu
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| | - Geo Serban
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| | - Nikolaos K Robakis
- Departments of Psychiatry and Neuroscience, Mount Sinai School of Medicine, NYU, New York, NY, USA
| |
Collapse
|
27
|
Serra-Pagès C, Streuli M, Medley QG. Liprin phosphorylation regulates binding to LAR: evidence for liprin autophosphorylation. Biochemistry 2006; 44:15715-24. [PMID: 16313174 PMCID: PMC2529169 DOI: 10.1021/bi051434f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The LAR transmembrane tyrosine phosphatase associates with liprin-alpha proteins and colocalizes with liprin-alpha1 at focal adhesions. LAR has been implicated in axon guidance, and liprins are involved in synapse formation and synapse protein trafficking. Several liprin mutants have weaker binding to LAR as assessed by yeast interaction trap assays, and the extents of in vitro and in vivo phosphorylation of these mutants were reduced relative to that of wild-type liprin-alpha1. Treatment of liprin-alpha1 with calf intestinal phosphatase weakened its interaction with the recombinant GST-LAR protein. A liprin LH region mutant that inhibited liprin phosphorylation did not bind to LAR as assessed by coprecipitation studies. Endogenous LAR was shown to bind phosphorylated liprin-alpha1 from MDA-486 cells labeled in vivo with [32P]orthophosphate. In further characterizing the phosphorylation of liprin, we found immunoprecipitates of liprin-alpha1 expressed in COS-7 cells to incorporate phosphate after washes of up to 4 M NaCl. Additionally, purified liprin-alpha1 derived from Sf-9 insect cells retained the ability to incorporate phosphate in in vitro phosphorylation assays, and a liprin-alpha1 truncation mutant incorporated phosphate after denaturation and/or renaturation in SDS gels. Finally, binding assays showed that liprin binds to ATP-agarose and that the interaction is challenged by free ATP, but not by free GTP. Moreover, liprin LH region mutations that inhibit liprin phosphorylation stabilized the association of liprin with ATP-agarose. Taken together, our results suggest that liprin autophosphorylation regulates its association with LAR.
Collapse
Affiliation(s)
- Carles Serra-Pagès
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Michel Streuli
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Quintus G. Medley
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115
- To whom correspondence should be addressed. Phone: 617-995-1874, fax: 617-995-2510, e-mail:
| |
Collapse
|
28
|
Dharmawardana PG, Peruzzi B, Giubellino A, Burke TR, Bottaro DP. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs 2006; 17:13-20. [PMID: 16317285 DOI: 10.1097/01.cad.0000185180.72604.ac] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Growth factor receptor-bound 2 (Grb2) is a ubiquitously expressed adapter protein that provides a critical link between cell surface growth factor receptors and the Ras signaling pathway. As such, it has been implicated in the oncogenesis of several important human malignancies. In addition to this function, research over the last decade has revealed other fundamental roles for Grb2 in cell motility and angiogenesis--processes that also contribute to tumor growth, invasiveness and metastasis. This functional profile makes Grb2 a high priority target for anti-cancer drug development. Knowledge of Grb2 protein structure, its component Src homology domains and their respective structure-function relationships has facilitated the rapid development of sophisticated drug candidates that can penetrate cells, bind Grb2 with high affinity and potently antagonize Grb2 signaling. These novel compounds offer considerable promise in our growing arsenal of rationally designed anti-cancer therapeutics.
Collapse
Affiliation(s)
- Pathirage G Dharmawardana
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1107, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The Grb proteins (growth factor receptor-bound proteins) Grb7, Grb10 and Grb14 constitute a family of structurally related multidomain adapters with diverse cellular functions. Grb10 and Grb14, in particular, have been implicated in the regulation of insulin receptor signalling, whereas Grb7 appears predominantly to be involved in focal adhesion kinase-mediated cell migration. However, at least in vitro, these adapters can bind to a variety of growth factor receptors. The highest identity within the Grb7/10/14 family occurs in the C-terminal SH2 (Src homology 2) domain, which mediates binding to activated receptors. A second well-conserved binding domain, BPS [between the PH (pleckstrin homology) and SH2 domains], can act to enhance binding to the IR (insulin receptor). Consistent with a putative adapter function, some non-receptor-binding partners, including protein kinases, have also been identified. Grb10 and Grb14 are widely, but not uniformly, expressed in mammalian tissues, and there are various isoforms of Grb10. Binding of Grb10 or Grb14 to autophosphorylated IR in vitro inhibits tyrosine kinase activity towards other substrates, but studies on cultured cell lines have been conflicting as to whether Grb10 plays a positive or negative role in insulin signalling. Recent gene knockouts in mice have established that Grb10 and Grb14 act as inhibitors of intracellular signalling pathways regulating growth and metabolism, although the phenotypes of the two knockouts are distinct. Ablation of Grb14 enhances insulin action in liver and skeletal muscle and improves whole-body tolerance, with little effect on embryonic growth. Ablation of Grb10 results in disproportionate overgrowth of the embryo and placenta involving unidentified pathways, and also impacts on hepatic glycogen synthesis, and probably on glucose homoeostasis. This review discusses the extent to which previous studies in vitro can account for the observed phenotype of knockout animals, and considers evidence that aberrant function of Grb10 or Grb14 may contribute to disorders of growth and metabolism in humans.
Collapse
Affiliation(s)
- Lowenna J Holt
- University of Cambridge, Department of Clinical Biochemistry, Addenbrooke's Hospital, Cambridge CB2 2QR, UK.
| | | |
Collapse
|
30
|
Cowan CW, Shao YR, Sahin M, Shamah SM, Lin MZ, Greer PL, Gao S, Griffith EC, Brugge JS, Greenberg ME. Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron 2005; 46:205-17. [PMID: 15848800 DOI: 10.1016/j.neuron.2005.03.019] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 02/15/2005] [Accepted: 03/22/2005] [Indexed: 10/25/2022]
Abstract
Ephrin signaling through Eph receptor tyrosine kinases can promote attraction or repulsion of axonal growth cones during development. However, the mechanisms that determine whether Eph signaling promotes attraction or repulsion are not known. We show here that the Rho family GEF Vav2 plays a key role in this process. We find that, during axon guidance, ephrin binding to Ephs triggers Vav-dependent endocytosis of the ligand-receptor complex, thus converting an initially adhesive interaction into a repulsive event. In the absence of Vav proteins, ephrin-Eph endocytosis is blocked, leading to defects in growth cone collapse in vitro and significant defects in the ipsilateral retinogeniculate projections in vivo. These findings suggest an important role for Vav family GEFs as regulators of ligand-receptor endocytosis and determinants of repulsive signaling during axon guidance.
Collapse
|
31
|
Johnston AM, Naselli G, Niwa H, Brodnicki T, Harrison LC, Góñez LJ. Harp (harmonin-interacting, ankyrin repeat-containing protein), a novel protein that interacts with harmonin in epithelial tissues. Genes Cells 2004; 9:967-82. [PMID: 15461667 DOI: 10.1111/j.1365-2443.2004.00776.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the triple PDZ domain-containing protein harmonin have been identified as the cause of Usher deafness syndrome type 1C. Independently, we identified harmonin in a screen for genes expressed in pancreatic beta cells. Using a yeast two-hybrid assay, we show that the first PDZ domain of harmonin interacts with a novel protein, designated harp for harmonin-interacting, ankyrin repeat-containing protein. This interaction was confirmed in an over-expression system and in mammalian cells, and shown to be mediated by the three C-terminal amino acids of harp. Harp is expressed in many of the same epithelia as harmonin and co-localization of native harp and harmonin was demonstrated by confocal microscopy in pancreatic duct epithelium and in a pancreatic beta-cell line. Harp, predicted molecular mass 48 kDa, has a domain structure which includes three ankyrin repeats and a sterile alpha motif. Human harp maps to chromosome 16, and its mouse homologue to chromosome 7. Sequences with similarity to harp include the sans gene, mutations of which are responsible for deafness in the Jackson shaker 2 (js) mutant mouse and in human Usher syndrome type 1G. The functional domain structures of harp and harmonin, their interaction under native conditions and their co-localization suggest they constitute a scaffolding complex to facilitate signal transduction in epithelia.
Collapse
Affiliation(s)
- Anne M Johnston
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Soriano JV, Liu N, Gao Y, Yao ZJ, Ishibashi T, Underhill C, Burke TR, Bottaro DP. Inhibition of angiogenesis by growth factor receptor bound protein 2-Src homology 2 domain bound antagonists. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1289.3.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Growth factor receptor bound protein 2 (Grb2) is an intracellular adaptor protein that participates in the signal transduction cascades of several angiogenic factors, including hepatocyte growth factor, basic fibroblast growth factor, and vascular endothelial growth factor. We described previously the potent blockade of hepatocyte growth factor–stimulated cell motility, matrix invasion, and epithelial tubulogenesis by synthetic Grb2-Src homology 2 (SH2) domain binding antagonists. Here, we show that these binding antagonists block basic morphogenetic events required for angiogenesis, including hepatocyte growth factor–, vascular endothelial growth factor–, and basic fibroblast growth factor–stimulated endothelial cell proliferation and migration, as well as phorbol 12-myristate 13-acetate–stimulated endothelial cell migration and matrix invasion. The Grb2-SH2 domain binding antagonists also impair angiogenesis in vitro, as shown by the inhibition of cord formation by macrovascular endothelial cells on Matrigel. We further show that a representative compound inhibits angiogenesis in vivo as measured using a chick chorioallantoic membrane assay. These results suggest that Grb2 is an important mediator of key proangiogenic events, with potential application to pathologic conditions where neovascularization contributes to disease progression. In particular, the well-characterized role of Grb2 in signaling cell cycle progression together with our present findings suggests that Grb2-SH2 domain binding antagonists have the potential to act as anticancer drugs that target both tumor and vascular cell compartments.
Collapse
Affiliation(s)
| | - Ningfei Liu
- 4Department of Cell Biology, Georgetown University, Washington, District of Columbia
| | - Yang Gao
- 2Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zhu-Jun Yao
- 2Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, Maryland
| | - Toshio Ishibashi
- 3Department of Otolaryngology, Social Insurance Central General Hospital, Tokyo, Japan; and
| | - Charles Underhill
- 4Department of Cell Biology, Georgetown University, Washington, District of Columbia
| | - Terrence R. Burke
- 2Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, Maryland
| | | |
Collapse
|
33
|
Noren NK, Pasquale EB. Eph receptor–ephrin bidirectional signals that target Ras and Rho proteins. Cell Signal 2004; 16:655-66. [PMID: 15093606 DOI: 10.1016/j.cellsig.2003.10.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 10/27/2003] [Accepted: 10/28/2003] [Indexed: 01/13/2023]
Abstract
The ability of cells to respond to their surrounding environment and relay signals to the cell interior is essential for numerous processes during the development and maintenance of tissues. Eph receptors and their membrane-bound ligands, the ephrins, are unique in the receptor tyrosine kinase family in that their signaling is bidirectional, through both the receptor and the ligand. Eph receptors and ephrins are essential for a variety of biological processes, and play a particularly important role in regulating cell shape and cell movement. Recent data have linked Eph receptor-ephrin signaling complexes to the Ras and Rho families of small molecular weight GTPases and also to heterotrimeric G proteins. Understanding the signaling networks involved is an important step to understand the molecular basis for normal and defective cell-cell communication through Eph receptors and ephrins.
Collapse
Affiliation(s)
- Nicole K Noren
- Neurobiology Program, Neurobiology Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
34
|
Sandvig A, Berry M, Barrett LB, Butt A, Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004; 46:225-51. [PMID: 15048847 DOI: 10.1002/glia.10315] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration is arrested in the injured central nervous system (CNS) by axon growth-inhibitory ligands expressed in oligodendrocytes/myelin, NG2-glia, and reactive astrocytes in the lesion and degenerating tracts, and by fibroblasts in scar tissue. Growth cone receptors (Rc) bind inhibitory ligands, activating a Rho-family GTPase intracellular signaling pathway that disrupts the actin cytoskeleton inducing growth cone collapse/repulsion. The known inhibitory ligands include the chondroitin sulfate proteoglycans (CSPG) Neurocan, Brevican, Phosphacan, Tenascin, and NG2, as either membrane-bound or secreted molecules; Ephrins expressed on astrocyte/fibroblast membranes; the myelin/oligodendrocyte-derived growth inhibitors Nogo, MAG, and OMgp; and membrane-bound semaphorins (Sema) produced by meningeal fibroblasts invading the scar. No definitive CSPG Rc have been identified, although intracellular signaling through the Rho family of G-proteins is probably common to all the inhibitory ligands. Ephrins bind to signalling Ephs. The ligand-binding Rc for all the myelin inhibitors is NgR and requires p75(NTR) for transmembrane signaling. The neuropilin (NP)/plexin (Plex) Rc complex binds Sema. Strategies for promoting axon growth after CNS injury are thwarted by the plethora of inhibitory ligands and the ligand promiscuity of some of their Rc. There is also paradoxical reciprocal expression of many of the inhibitory ligands/Rc in normal and damaged neurons, and NgR expression is restricted to a limited number of neuronal populations. All these factors, together with an incomplete understanding of the normal functions of many of these molecules in the intact CNS, presently confound interpretive acumen in regenerative studies.
Collapse
Affiliation(s)
- Axel Sandvig
- Laboratory of Regenerative Neurobiology, Institute for Experimental Medical Research, Ullevål University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
35
|
Wu Q, Suo Z, Risberg B, Karlsson MG, Villman K, Nesland JM. Expression of Ephb2 and Ephb4 in breast carcinoma. Pathol Oncol Res 2004; 10:26-33. [PMID: 15029258 DOI: 10.1007/bf02893405] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 02/25/2004] [Indexed: 11/26/2022]
Abstract
Eph receptor tyrosine kinases and their cell-surface-bound ligands, the ephrins, play key roles in diverse biological processes. Eph receptors comprise the largest family of receptor tyrosine kinases consisting of eight EphA receptors (with five corresponding ephrinA ligands) and six EphB receptors (with three corresponding transmembrane ephrinB ligands). Originally identified as neuronal pathfinding molecules, EphB receptors and ephrinB ligands are later proved to be crucial regulators of vasculogenesis and embryogenesis. More studies indicate that Eph receptors are involved in angiogenesis and tumorigenesis. This study aimed to investigate the expression of EphB2 and EphB4 in breast carcinomas. Semiquantitative RT-PCR and immunohistochemistry were used to examine the expression patterns of EphB2 and EphB4. Clinicopathological and survival correlations were statistically analyzed in a series of 94 breast carcinomas, 9 normal specimens and 4 breast carcinoma cell lines. 1(1%), 16(17%), 29(31%), 48(51%) of the 94 tumors were negative, weak, moderate and strong EphB2 protein expression, respectively. 6(6%), 27(29%), 28(30%), 33(35%) of the tumors were negative, weak, moderate and strong EphB4 expression, respectively. Both EphB2 and EphB4 RTPCR products could be detected in all specimens. Increased EphB2 protein expression was negatively associated with overall survival, and there was a trend that increased EphB2 protein expression was correlated with shorter disease free survival, while EphB4 protein expression was associated with histological grade and stage. EphB4 membrane staining was increased with S phase fraction and associated with DNA aneuploidy. These findings indicate that both EphB2 and EphB4 are involved in the development of breast cancer and that both molecules could be potential predictive markers.
Collapse
Affiliation(s)
- Qinghua Wu
- Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
36
|
Mao W, Luis E, Ross S, Silva J, Tan C, Crowley C, Chui C, Franz G, Senter P, Koeppen H, Polakis P. EphB2 as a Therapeutic Antibody Drug Target for the Treatment of Colorectal Cancer. Cancer Res 2004; 64:781-8. [PMID: 14871799 DOI: 10.1158/0008-5472.can-03-1047] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Analysis of human colorectal cancer specimens revealed overexpression of the EphB2 receptor tyrosine kinase. Monoclonal antibodies (MAbs) to extracellular sequence of EphB2 were raised and tested for activity against colorectal cancer cells. One of the MAbs, 2H9, effectively blocked the interaction of ephB2 with ephrin ligands and inhibited the resulting autophosphorylation of the receptor. However, this antibody did not affect the proliferation of cancer cells expressing ephB2. Immunocytochemical analysis revealed rapid internalization of the MAb 2H9 on binding ephB2, suggesting that target-dependent cell killing could be achieved with an antibody-drug conjugate. When MAb 2H9 was conjugated to monomethylauristatin E through a cathepsin B-cleavable linker, it specifically killed ephB2-expressing cancer cells in vitro and in vivo. Our results suggest that ephB2 is an attractive target for immunoconjugate cancer therapy.
Collapse
Affiliation(s)
- Weiguang Mao
- Department of Molecular Biology, Genentech, Inc., South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Backers K, Blero D, Paternotte N, Zhang J, Erneux C. The termination of PI3K signalling by SHIP1 and SHIP2 inositol 5-phosphatases. ADVANCES IN ENZYME REGULATION 2004; 43:15-28. [PMID: 12791379 DOI: 10.1016/s0065-2571(02)00043-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Katrien Backers
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | | | | | |
Collapse
|
38
|
Park EK, Warner N, Bong YS, Stapleton D, Maeda R, Pawson T, Daar IO. Ectopic EphA4 receptor induces posterior protrusions via FGF signaling in Xenopus embryos. Mol Biol Cell 2004; 15:1647-55. [PMID: 14742708 PMCID: PMC379263 DOI: 10.1091/mbc.e03-09-0674] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Eph family of receptor tyrosine kinases regulates numerous biological processes. To examine the biochemical and developmental contributions of specific structural motifs within Eph receptors, wild-type or mutant forms of the EphA4 receptor were ectopically expressed in developing Xenopus embryos. Wild-type EphA4 and a mutant lacking both the SAM domain and PDZ binding motif were constitutively tyrosine phosphorylated in vivo and catalytically active in vitro. EphA4 induced loss of cell adhesion, ventro-lateral protrusions, and severely expanded posterior structures in Xenopus embryos. Moreover, mutation of a conserved SAM domain tyrosine to phenylalanine (Y928F) enhanced the ability of EphA4 to induce these phenotypes, suggesting that the SAM domain may negatively regulate some aspects of EphA4 activity in Xenopus. Analysis of double mutants revealed that the Y928F EphA4 phenotypes were dependent on kinase activity; juxtamembrane sites of tyrosine phosphorylation and SH2 domain-binding were required for cell dissociation, but not for posterior protrusions. The induction of protrusions and expansion of posterior structures is similar to phenotypic effects observed in Xenopus embryos expressing activated FGFR1. Furthermore, the budding ectopic protrusions induced by EphA4 express FGF-8, FGFR1, and FGFR4a. In addition, antisense morpholino oligonucleotide-mediated loss of FGF-8 expression in vivo substantially reduced the phenotypic effects in EphA4Y928F expressing embryos, suggesting a connection between Eph and FGF signaling.
Collapse
Affiliation(s)
- Eui Kyun Park
- Regulation of Cell Growth Laboratory, National Cancer Institute-Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Grimshaw SJ, Mott HR, Stott KM, Nielsen PR, Evetts KA, Hopkins LJ, Nietlispach D, Owen D. Structure of the Sterile α Motif (SAM) Domain of the Saccharomyces cerevisiae Mitogen-activated Protein Kinase Pathway-modulating Protein STE50 and Analysis of Its Interaction with the STE11 SAM. J Biol Chem 2004; 279:2192-201. [PMID: 14573615 DOI: 10.1074/jbc.m305605200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sterile alpha motif (SAM) is a 65-70-amino acid domain found in over 300 proteins that are involved in either signal transduction or transcriptional activation and repression. SAM domains have been shown to mediate both homodimerization and heterodimerization and in some cases oligomerization. Here, we present the solution structure of the SAM domain of the Saccharomyces cerevisiae protein, Ste50p. Ste50p functions as a modulator of the mitogen-activated protein kinase (MAPK) cascades in S. cerevisiae, which control mating, pseudohyphal growth, and osmo-tolerance. This is the first example of the structure of a SAM domain from a MAPK module protein. We have studied the associative behavior of Ste50p SAM in solution and shown that it is monomeric. We have examined the SAM domain from Ste11p, the MAPK kinase kinase that associates with Ste50p in vivo, and shown that it forms dimers with a self-association K(d) of approximately 0.5 mm. We have also analyzed the interaction of Ste50p SAM with Ste11p SAM and the effects of mutations at Val-37, Asp-38, Pro-71, Leu-73, Leu-75, and Met-99 of STE50 on the heterodimerization properties of Ste50p SAM. We have found that L73A and L75A abrogate the Ste50p interaction with Ste11p, and we compare these data with the known interaction sites defined for other SAM domain interactions.
Collapse
Affiliation(s)
- Simon J Grimshaw
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kollmar M, Glöckner G. Identification and phylogenetic analysis of Dictyostelium discoideum kinesin proteins. BMC Genomics 2003; 4:47. [PMID: 14641909 PMCID: PMC305348 DOI: 10.1186/1471-2164-4-47] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 11/27/2003] [Indexed: 11/21/2022] Open
Abstract
Background Kinesins constitute a large superfamily of motor proteins in eukaryotic cells. They perform diverse tasks such as vesicle and organelle transport and chromosomal segregation in a microtubule- and ATP-dependent manner. In recent years, the genomes of a number of eukaryotic organisms have been completely sequenced. Subsequent studies revealed and classified the full set of members of the kinesin superfamily expressed by these organisms. For Dictyostelium discoideum, only five kinesin superfamily proteins (Kif's) have already been reported. Results Here, we report the identification of thirteen kinesin genes exploiting the information from the raw shotgun reads of the Dictyostelium discoideum genome project. A phylogenetic tree of 390 kinesin motor domain sequences was built, grouping the Dictyostelium kinesins into nine subfamilies. According to known cellular functions or strong homologies to kinesins of other organisms, four of the Dictyostelium kinesins are involved in organelle transport, six are implicated in cell division processes, two are predicted to perform multiple functions, and one kinesin may be the founder of a new subclass. Conclusion This analysis of the Dictyostelium genome led to the identification of eight new kinesin motor proteins. According to an exhaustive phylogenetic comparison, Dictyostelium contains the same subset of kinesins that higher eukaryotes need to perform mitosis. Some of the kinesins are implicated in intracellular traffic and a small number have unpredictable functions.
Collapse
Affiliation(s)
- Martin Kollmar
- Abteilung NMR basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Faβberg 11, D-37077 Göttingen, Germany
| | - Gernot Glöckner
- Abteilung Genom-Analyse, Institut für Molekulare Biotechnologie, Beutenbergstr. 11, D-07745 Jena, Germany
| |
Collapse
|
41
|
Morrione A. Grb10 adapter protein as regulator of insulin-like growth factor receptor signaling. J Cell Physiol 2003; 197:307-11. [PMID: 14566960 DOI: 10.1002/jcp.10363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Grb10 is a member of a superfamily of adapter proteins that includes Grb10, 7, 14, and a protein of Caenorhabditis elegans called Mig10. Grb10 proteins are binding partners for several trans-membrane tyrosine-kinase receptors, including the insulin-like growth factor receptor (IGF-IR) and the insulin receptor (IR). Many recent reports have suggested a very important role of Grb10 in regulating IGF-IR signaling. In this review, we will focus on the role of Grb10 in IGF-I-induced mitogenesis and we will discuss the recent findings that show the involvement of Grb10 in the regulation of ligand-induced ubiquitination, internalization, and stability of the IGF-IR.
Collapse
Affiliation(s)
- Andrea Morrione
- Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
42
|
Abstract
The Eph receptors comprise the largest group of receptor tyrosine kinases and are found in a wide variety of cell types in developing and mature tissues. Their ligands are the ephrins, a family of membrane-bound proteins found in lipid rafts. In the past decade, Eph receptors and ephrins have been implicated in a vast array of cellular processes. Unlike other receptor tyrosine kinases, however, the Eph receptors seem to be geared towards regulating cell shape and movement rather than proliferation. Studies have uncovered intricate signaling networks that center around the ligand-receptor complex, and this may account for the broad repertoire of functions of Eph proteins. Deciphering the bi-directional pathways emanating from an Eph receptor-ephrin complex will not only help us to understand basic biological processes, but may also provide important insight into disease.
Collapse
Affiliation(s)
- Keith K Murai
- The Burnham Institute, Neurobiology Program, La Jolla, CA 92037, USA
| | | |
Collapse
|
43
|
Vecchione A, Marchese A, Henry P, Rotin D, Morrione A. The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol Cell Biol 2003; 23:3363-72. [PMID: 12697834 PMCID: PMC153198 DOI: 10.1128/mcb.23.9.3363-3372.2003] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The adapter protein Grb10 belongs to a superfamily of related proteins, including Grb7, -10, and -14 and Caenorhabditis elegans Mig10. Grb10 is an interacting partner of the insulin-like growth factor I receptor (IGF-IR) and the insulin receptor (IR). Previous work showed an inhibitory effect of mouse Grb10 (mGrb10alpha) on IGF-I-mediated mitogenesis (A. Morrione et al., J. Biol. Chem. 272:26382-26387, 1997). With mGrb10alpha as bait in a yeast two-hybrid screen, mouse Nedd4 (mNedd4-1), a ubiquitin protein ligase, was previously isolated as an interacting protein of Grb10 (A. Morrione et al., J. Biol. Chem. 274:24094-24099, 1999). However, Grb10 is not ubiquitinated by Nedd4 in cells. Here we show that in mouse embryo fibroblasts overexpressing Grb10 and the IGF-IR (p6/Grb10), there is a strong ligand-dependent increase in ubiquitination of the IGF-IR compared with that in parental cells (p6). This increased ubiquitination is associated with a shorter half-life and increased internalization of the IGF-IR. The IGF-IR is stabilized following treatment with both MG132 and chloroquine, indicating that both the proteasome and lysosomal pathways mediate degradation of the receptor. Ubiquitination of the IGF-IR likely occurs at the plasma membrane, prior to the formation of endocytic vesicles, as it is insensitive to dansylcadaverine, an inhibitor of early endosome formation in IGF-IR endocytosis. Grb10 coimmunoprecipitates with the IGF-IR and endogenous Nedd4 in p6/Grb10 cells, suggesting the presence of a Grb10/Nedd4/IGF-IR complex. Ubiquitination of the IGF-IR in p6/Grb10 cells is severely impaired by overexpression of a catalytically inactive Nedd4 mutant (Nedd4-CS), which also stabilizes the receptor. Likewise, overexpression of a Grb10 mutant lacking the Src homology 2 (SH2) domain impaired ubiquitination of the IGF-IR in parental p6 and p6/Grb10 cells, indicating that Grb10 binding to Nedd4 is critical for ubiquitination of the receptor. These results suggest a role for the Grb10/Nedd4 complex in regulating ubiquitination and stability of the IGF-IR, and they suggest that Grb10 serves as an adapter to form a bridge between Nedd4 and the IGF-IR. This is the first demonstration of regulation of stability of a tyrosine kinase receptor by the Nedd4 (HECT) family of E3 ligases.
Collapse
Affiliation(s)
- Andrea Vecchione
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
44
|
Stein EG, Ghirlando R, Hubbard SR. Structural basis for dimerization of the Grb10 Src homology 2 domain. Implications for ligand specificity. J Biol Chem 2003; 278:13257-64. [PMID: 12551896 DOI: 10.1074/jbc.m212026200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Grb7, Grb10, and Grb14 are members of a distinct family of adapter proteins that interact with various receptor tyrosine kinases upon receptor activation. Proteins in this family contain several modular signaling domains including a pleckstrin homology (PH) domain, a BPS (between PH and SH2) domain, and a C-terminal Src homology 2 (SH2) domain. Although SH2 domains are typically monomeric, we show that the Grb10 SH2 domain and also full-length Grb10 gamma are dimeric in solution under physiologic conditions. The crystal structure of the Grb10 SH2 domain at 1.65-A resolution reveals a non-covalent dimer whose interface comprises residues within and flanking the C-terminal alpha helix, which are conserved in the Grb7/Grb10/Grb14 family but not in other SH2 domains. Val-522 in the BG loop (BG3) and Asp-500 in the EF loop (EF1) are positioned to interfere with the binding of the P+3 residue of a phosphopeptide ligand. These structural features of the Grb10 SH2 domain will favor binding of dimeric, turn-containing phosphotyrosine sequences, such as the phosphorylated activation loops in the two beta subunits of the insulin and insulin-like growth factor-1 receptors. Moreover, the structure suggests the mechanism by which the Grb7 SH2 domain binds selectively to pTyr-1139 (pYVNQ) in Her2, which along with Grb7 is co-amplified in human breast cancers.
Collapse
Affiliation(s)
- Evan G Stein
- Skirball Institute of Biomolecular Medicine and Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
45
|
Tong J, Elowe S, Nash P, Pawson T. Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity. J Biol Chem 2003; 278:6111-9. [PMID: 12486127 DOI: 10.1074/jbc.m208972200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Signaling by the Eph family of receptor tyrosine kinases (RTKs) is complex, because they can interact with a variety of intracellular targets, and can potentially induce distinct responses in different cell types. In NG108 neuronal cells, activated EphB2 recruits p120RasGAP, in a fashion that is associated with down-regulation of the Ras-Erk mitogen-activated kinase (MAPK) pathway and neurite retraction. To pursue the role of the Ras-MAPK pathway in EphB2-mediated growth cone collapse, and to explore the biochemical and biological functions of Eph receptors, we sought to re-engineer the signaling properties of EphB2 by manipulating its regulatory motifs and SH2 binding sites. An EphB2 mutant that retained juxtamembrane (JM) RasGAP binding sites but incorporated a Grb2 binding motif at an alternate RasGAP binding site within the kinase domain had little effect on basal Erk MAPK activation. In contrast, elimination of all RasGAP binding sites, accompanied by the addition of a Grb2 binding site within the kinase domain, led to an increase in phospho-Erk levels in NG108 cells following ephrin-B1 stimulation. Functional assays indicated a correlation between neurite retraction and the ability of the EphB2 mutants to down-regulate Ras-Erk MAPK signaling. These data suggest that EphB2 can be designed to repress, stabilize, or activate the Ras-Erk MAPK pathway by the manipulation of RasGAP and Grb2 SH2 domain binding sites and support the notion that Erk MAPK regulation plays a significant role in axon guidance. The behavior of EphB2 variants with mutations in the JM region and kinase domains suggests an intricate pattern of regulation and target recognition by Eph receptors.
Collapse
Affiliation(s)
- Jiefei Tong
- Programe in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5
| | | | | | | |
Collapse
|
46
|
Nakamoto M, Bergemann AD. Diverse roles for the Eph family of receptor tyrosine kinases in carcinogenesis. Microsc Res Tech 2002; 59:58-67. [PMID: 12242697 DOI: 10.1002/jemt.10177] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Eph family of receptor tyrosine kinases and their cell-presented ligands, the ephrins, are frequently overexpressed in a wide variety of cancers, including breast, small-cell lung and gastrointestinal cancers, melanomas, and neuroblastomas. In particular, one Eph family member, EphA2, is overexpressed in many cancers, including 40% of breast cancers. EphA2 can also transform breast epithelial cells in vitro to display properties commonly associated with the development of metastasis. Remarkably, the oncogenic properties of EphA2 contravene traditional dogma with regard to the oncogenic properties of a growth factor and its receptor tyrosine kinase: while stimulation of EphA2 by its ligand (ephrin-A1) results in EphA2 autophosphorylation, the stimulation reverses the oncogenic transformation. As will be discussed in this review, the apparent dependence of oncogenicity on the dephosphorylated state of EphA2 most probably reflects the unique nature of Eph signaling. In particular, oncogenecity may depend on the capacity of unactivated EphA2 to interact with a variety of signaling molecules. As well as acting in oncogenic transformation, a growing body of evidence supports the importance of the concerted actions of ephrins and Eph molecules in tumor angiogenesis. Genetic studies, using targeted mutagenesis in mice, reveal that ephrin-B1, ephrin-B2, and EphB4 are essential for the normal morphogenesis of the embryonic vasculature into a sophisticated network of arteries, veins, and capillaries. Initial studies indicate that these molecules are also angiogenic in tumors, and as such represent important new targets for the development of chemotherapeutic treatments.
Collapse
Affiliation(s)
- Masaru Nakamoto
- Department of Neurosciences/NC30, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
47
|
Nagashima KI, Endo A, Ogita H, Kawana A, Yamagishi A, Kitabatake A, Matsuda M, Mochizuki N. Adaptor protein Crk is required for ephrin-B1-induced membrane ruffling and focal complex assembly of human aortic endothelial cells. Mol Biol Cell 2002; 13:4231-42. [PMID: 12475948 PMCID: PMC138629 DOI: 10.1091/mbc.e02-04-0181] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Endothelial cell migration is an essential step in vasculogenesis and angiogenesis, in which receptor tyrosine kinases play a pivotal role. We investigated the mechanism by which ephrin-B1 promotes membrane ruffling in human aortic endothelial cells, because membrane ruffling heralds cell body migration. We especially focused on the role of Crk adaptor protein in EphB-mediated signaling. Using DsRed-tagged Crk and a fluorescent time-lapse microscope, we showed that Crk was recruited to the nascent focal complex after ephrin-B1 stimulation. Furthermore, we found that p130(Cas), but not paxillin, recruited Crk to the nascent focal complex. The necessity of Crk in ephrin-B1-induced membrane ruffling was shown both by the overexpression of dominant negative Crk mutants and by the depletion of Crk by using RNA interference. Then, we examined the role of two major downstream molecules of Crk, Rac1 and Rap1. The dominant negative mutant of Rac1 completely inhibited ephrin-B1-induced membrane ruffling and focal complex assembly. In contrast, rap1GAPII, a negative regulator of Rap1, did not inhibit ephrin-B1-induced membrane ruffling. However, in rap1GAPII-expressing cells, ephrin-B1 did not induce membrane spreading, probably due to instability of the focal complex. These results indicated that Crk plays a critical role in Rac1-induced membrane ruffling and Rap1-mediated nascent focal complex stabilization contributing to ephrin-B1-induced human aortic endothelial cells migration.
Collapse
Affiliation(s)
- Ken-Ichiro Nagashima
- Department of Structural Analysis, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Han DC, Shen TL, Miao H, Wang B, Guan JL. EphB1 associates with Grb7 and regulates cell migration. J Biol Chem 2002; 277:45655-61. [PMID: 12223469 DOI: 10.1074/jbc.m203165200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
EphB1 is a member of the Eph family of receptor tyrosine kinases that play important roles in diverse biological processes including nervous system development, angiogenesis, and neural synapsis formation and maturation. Grb7 is an adaptor molecule implicated in the regulation of cell migration. Here we report identification of an interaction between Grb7 and the cytoplasmic domain of EphB1 by using Grb7 as a "bait" in a yeast two-hybrid screening. Co-immunoprecipitation was used to confirm the interaction of Grb7 with the cytoplasmic domain of EphB1 as well as the full-length receptor in intact cells. This interaction is mediated by the SH2 domain of Grb7 and requires tyrosine autophosphorylation of EphB1. Furthermore, Tyr-928 of EphB1 was identified as the primary binding site for Grb7. Stimulation of endogenous EphB1 in embryonal carcinoma P19 cells with its ligand ephrinB1 increased its association with Grb7, which is consistent with a role for the autophosphorylation of EphB1. We also found that EphB1 could phosphorylate Grb7 and mutation of either Tyr-928 or Tyr-594 to Phe decreased this activity. Finally, we show that EphB1 could stimulate fibroblast motility on extracellular matrix in a kinase-dependent manner, which also correlated with its association with Grb7. Consistent with this, co-expression of Grb7 with EphB1 further enhanced cell motility, whereas co-expression of the Grb7 SH2 domain abolished EphB1-stimulated cell migration. Together, our results identified a novel interaction between EphB1 with the adaptor molecule Grb7 and suggested that this interaction may play a role in the regulation of cell migration by EphB1.
Collapse
Affiliation(s)
- Dong Cho Han
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
49
|
Prevost N, Woulfe D, Tanaka T, Brass LF. Interactions between Eph kinases and ephrins provide a mechanism to support platelet aggregation once cell-to-cell contact has occurred. Proc Natl Acad Sci U S A 2002; 99:9219-24. [PMID: 12084815 PMCID: PMC123121 DOI: 10.1073/pnas.142053899] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Indexed: 12/21/2022] Open
Abstract
Eph kinases are receptor tyrosine kinases whose ligands, the ephrins, are also expressed on the surface of cells. Interactions between Eph kinases and ephrins on adjacent cells play a central role in neuronal patterning and vasculogenesis. Here we examine the expression of ephrins and Eph kinases on human blood platelets and explore their role in the formation of the hemostatic plug. The results show that human platelets express EphA4 and EphB1, and the ligand, ephrinB1. Forced clustering of EphA4 or ephrinB1 led to cytoskeletal reorganization, adhesion to fibrinogen, and alpha-granule secretion. Clustering of ephrinB1 also caused activation of the Ras family member, Rap1B. In platelets that had been activated by ADP and allowed to aggregate, EphA4 formed complexes with two tyrosine kinases, Fyn and Lyn, and the cell adhesion molecule, L1. Blockade of Eph/ephrin interactions prevented the formation of these complexes and caused platelet aggregation at low ADP concentrations to become more readily reversible. We propose that when sustained contacts between platelets have occurred in response to agonists such as collagen, ADP, and thrombin, the binding of ephrins to Eph kinases on adjacent platelets provides a mechanism to perpetuate signaling and promote stable platelet aggregation.
Collapse
Affiliation(s)
- Nicolas Prevost
- Department of Medicine and Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
50
|
Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 2002; 3:475-86. [PMID: 12094214 DOI: 10.1038/nrm856] [Citation(s) in RCA: 889] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Klas Kullander
- AstraZeneca Transgenics & Comparative Genomics, S-431 83 Mölndal, Sweden.
| | | |
Collapse
|