1
|
Hunt EG, Hurst KE, Riesenberg BP, Kennedy AS, Gandy EJ, Andrews AM, Del Mar Alicea Pauneto C, Ball LE, Wallace ED, Gao P, Meier J, Serody JJ, Coleman MF, Thaxton JE. Acetyl-CoA carboxylase obstructs CD8 + T cell lipid utilization in the tumor microenvironment. Cell Metab 2024; 36:969-983.e10. [PMID: 38490211 DOI: 10.1016/j.cmet.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/10/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
The solid tumor microenvironment (TME) imprints a compromised metabolic state in tumor-infiltrating T cells (TILs), hallmarked by the inability to maintain effective energy synthesis for antitumor function and survival. T cells in the TME must catabolize lipids via mitochondrial fatty acid oxidation (FAO) to supply energy in nutrient stress, and it is established that T cells enriched in FAO are adept at cancer control. However, endogenous TILs and unmodified cellular therapy products fail to sustain bioenergetics in tumors. We reveal that the solid TME imposes perpetual acetyl-coenzyme A (CoA) carboxylase (ACC) activity, invoking lipid biogenesis and storage in TILs that opposes FAO. Using metabolic, lipidomic, and confocal imaging strategies, we find that restricting ACC rewires T cell metabolism, enabling energy maintenance in TME stress. Limiting ACC activity potentiates a gene and phenotypic program indicative of T cell longevity, engendering T cells with increased survival and polyfunctionality, which sustains cancer control.
Collapse
Affiliation(s)
- Elizabeth G Hunt
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Katie E Hurst
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Brian P Riesenberg
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Andrew S Kennedy
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Evelyn J Gandy
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alex M Andrews
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Coral Del Mar Alicea Pauneto
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lauren E Ball
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Emily D Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Peng Gao
- Department of Medicine, Metabolomics Core Facility, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jeremy Meier
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - John J Serody
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Michael F Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jessica E Thaxton
- Immunotherapy Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.
| |
Collapse
|
2
|
de Medeiros WF, Gomes AFT, Aguiar AJFC, de Queiroz JLC, Bezerra IWL, da Silva-Maia JK, Piuvezam G, Morais AHDA. Anti-Obesity Therapeutic Targets Studied In Silico and In Vivo: A Systematic Review. Int J Mol Sci 2024; 25:4699. [PMID: 38731918 PMCID: PMC11083175 DOI: 10.3390/ijms25094699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
In the age of information technology and the additional computational search tools and software available, this systematic review aimed to identify potential therapeutic targets for obesity, evaluated in silico and subsequently validated in vivo. The systematic review was initially guided by the research question "What therapeutic targets have been used in in silico analysis for the treatment of obesity?" and structured based on the acronym PECo (P, problem; E, exposure; Co, context). The systematic review protocol was formulated and registered in PROSPERO (CRD42022353808) in accordance with the Preferred Reporting Items Checklist for Systematic Review and Meta-Analysis Protocols (PRISMA-P), and the PRISMA was followed for the systematic review. The studies were selected according to the eligibility criteria, aligned with PECo, in the following databases: PubMed, ScienceDirect, Scopus, Web of Science, BVS, and EMBASE. The search strategy yielded 1142 articles, from which, based on the evaluation criteria, 12 were included in the systematic review. Only seven these articles allowed the identification of both in silico and in vivo reassessed therapeutic targets. Among these targets, five were exclusively experimental, one was exclusively theoretical, and one of the targets presented an experimental portion and a portion obtained by modeling. The predominant methodology used was molecular docking and the most studied target was Human Pancreatic Lipase (HPL) (n = 4). The lack of methodological details resulted in more than 50% of the papers being categorized with an "unclear risk of bias" across eight out of the eleven evaluated criteria. From the current systematic review, it seems evident that integrating in silico methodologies into studies of potential drug targets for the exploration of new therapeutic agents provides an important tool, given the ongoing challenges in controlling obesity.
Collapse
Affiliation(s)
- Wendjilla F. de Medeiros
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; (W.F.d.M.); (A.F.T.G.); (I.W.L.B.); (J.K.d.S.-M.)
| | - Ana Francisca T. Gomes
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; (W.F.d.M.); (A.F.T.G.); (I.W.L.B.); (J.K.d.S.-M.)
| | - Ana Júlia F. C. Aguiar
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.)
| | - Jaluza Luana C. de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.)
| | - Ingrid Wilza L. Bezerra
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; (W.F.d.M.); (A.F.T.G.); (I.W.L.B.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Juliana Kelly da Silva-Maia
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; (W.F.d.M.); (A.F.T.G.); (I.W.L.B.); (J.K.d.S.-M.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Grasiela Piuvezam
- Public Health Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-400, Brazil;
- Public Health Department, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Ana Heloneida de A. Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; (W.F.d.M.); (A.F.T.G.); (I.W.L.B.); (J.K.d.S.-M.)
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; (A.J.F.C.A.); (J.L.C.d.Q.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| |
Collapse
|
3
|
Cao M, Li X, Dong L, Wen H, Jiang M, Lu X, Huang F, Tian J. Molecular cloning and gene expression of acc2 from grass carp (Ctenopharyngodon idella) and the regulation of glucose metabolism by ACCs inhibitor. Mol Biol Rep 2024; 51:402. [PMID: 38456942 DOI: 10.1007/s11033-024-09286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA. Malonyl-CoA, which plays a key role in regulating glucose and lipid metabolism, is not only a substrate for fatty acid synthesis but also an inhibitor of the oxidation pathway. ACC exists as two isoenzymes that are encoded by two different genes. ACC1 in grass carp (Ctenopharyngodon idellus) has been cloned and sequenced. However, studies on the cloning, tissue distribution, and function of ACC2 in grass carp were still rare. METHODS AND RESULTS The full-length cDNA of acc2 was 8537 bp with a 7146 bp open reading frame encoding 2381 amino acids. ACC2 had a calculated molecular weight of 268.209 kDa and an isoelectric point of 5.85. ACC2 of the grass carp shared the closest relationship with that of the common carp (Sinocyclocheilus grahami). The expressions of acc1 and acc2 mRNA were detected in all examined tissues. The expression level of acc1 was high in the brain and fat but absent in the midgut and hindgut. The expression level of acc2 in the kidney was significantly higher than in other tissues, followed by the heart, brain, muscle, and spleen. ACCs inhibitor significantly reduced the levels of glucose, malonyl-CoA, and triglyceride in hepatocytes. CONCLUSIONS This study showed that the function of ACC2 was evolutionarily conserved from fish to mammals. ACCs inhibitor inhibited the biological activity of ACCs, and reduced fat accumulation in grass carp.
Collapse
Affiliation(s)
- Manxia Cao
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430023, China
- Key Laboratory of Freshwater Biodiversity Conservation, Yangtze River Fisheries Research Institute, The Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, No. 8, Wudayuan 1st Road, Donghu Hi-tech Development Zone, Wuhan, 430223, China
| | - Xinyuan Li
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430023, China
- Key Laboratory of Freshwater Biodiversity Conservation, Yangtze River Fisheries Research Institute, The Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, No. 8, Wudayuan 1st Road, Donghu Hi-tech Development Zone, Wuhan, 430223, China
| | - Lixue Dong
- Key Laboratory of Freshwater Biodiversity Conservation, Yangtze River Fisheries Research Institute, The Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, No. 8, Wudayuan 1st Road, Donghu Hi-tech Development Zone, Wuhan, 430223, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, Yangtze River Fisheries Research Institute, The Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, No. 8, Wudayuan 1st Road, Donghu Hi-tech Development Zone, Wuhan, 430223, China
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, Yangtze River Fisheries Research Institute, The Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, No. 8, Wudayuan 1st Road, Donghu Hi-tech Development Zone, Wuhan, 430223, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, Yangtze River Fisheries Research Institute, The Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, No. 8, Wudayuan 1st Road, Donghu Hi-tech Development Zone, Wuhan, 430223, China
| | - Feng Huang
- Key Laboratory for Animal Nutrition and Feed Science of Hubei Province, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation, Yangtze River Fisheries Research Institute, The Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, No. 8, Wudayuan 1st Road, Donghu Hi-tech Development Zone, Wuhan, 430223, China.
| |
Collapse
|
4
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Zakaria Z, Othman ZA, Nna VU, Mohamed M. The promising roles of medicinal plants and bioactive compounds on hepatic lipid metabolism in the treatment of non-alcoholic fatty liver disease in animal models: molecular targets. Arch Physiol Biochem 2023; 129:1262-1278. [PMID: 34153200 DOI: 10.1080/13813455.2021.1939387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Imbalance in hepatic lipid metabolism can lead to an abnormal triglycerides deposition in the hepatocytes which can cause non-alcoholic fatty liver disease (NAFLD). Four main mechanisms responsible for regulating hepatic lipid metabolism are fatty acid uptake, de novo lipogenesis, lipolysis and fatty acid oxidation. Controlling the expression of transcription factors at molecular level plays a crucial role in NAFLD management. This paper reviews various medicinal plants and their bioactive compounds emphasising mechanisms involved in hepatic lipid metabolism, other important NAFLD pathological features, and their promising roles in managing NAFLD through regulating key transcription factors. Although there are many medicinal plants popularly investigated for NAFLD treatment, there is still little information and scientific evidence available and there has been no research on clinical trials scrutinised on this matter. This review also aims to provide molecular information of medicinal plants in NALFD treatment that might have potentials for future scientifically controlled studies.
Collapse
Affiliation(s)
- Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
6
|
Mallick R, Bhowmik P, Duttaroy AK. Targeting fatty acid uptake and metabolism in cancer cells: A promising strategy for cancer treatment. Biomed Pharmacother 2023; 167:115591. [PMID: 37774669 DOI: 10.1016/j.biopha.2023.115591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Despite scientific development, cancer is still a fatal disease. The development of cancer is thought to be significantly influenced by fatty acids. Several mechanisms that control fatty acid absorption and metabolism are reported to be altered in cancer cells to support their survival. Cancer cells can use de novo synthesis or uptake of extracellular fatty acid if one method is restricted. This factor makes it more difficult to target one pathway while failing to treat the disease properly. Side effects may also arise if several inhibitors simultaneously target many targets. If a viable inhibitor could work on several routes, the number of negative effects might be reduced. Comparative investigations against cell viability have found several potent natural and manmade substances. In this review, we discuss the complex roles that fatty acids play in the development of tumors and the progression of cancer, newly discovered and potentially effective natural and synthetic compounds that block the uptake and metabolism of fatty acids, the adverse side effects that can occur when multiple inhibitors are used to treat cancer, and emerging therapeutic approaches.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Prasenjit Bhowmik
- Department of Chemistry, Uppsala Biomedical Centre, Uppsala University, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| |
Collapse
|
7
|
Ping P, Li J, Lei H, Xu X. Fatty acid metabolism: A new therapeutic target for cervical cancer. Front Oncol 2023; 13:1111778. [PMID: 37056351 PMCID: PMC10088509 DOI: 10.3389/fonc.2023.1111778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cervical cancer (CC) is one of the most common malignancies in women. Cancer cells can use metabolic reprogramming to produce macromolecules and ATP needed to sustain cell growth, division and survival. Recent evidence suggests that fatty acid metabolism and its related lipid metabolic pathways are closely related to the malignant progression of CC. In particular, it involves the synthesis, uptake, activation, oxidation, and transport of fatty acids. Similarly, more and more attention has been paid to the effects of intracellular lipolysis, transcriptional regulatory factors, other lipid metabolic pathways and diet on CC. This study reviews the latest evidence of the link between fatty acid metabolism and CC; it not only reveals its core mechanism but also discusses promising targeted drugs for fatty acid metabolism. This study on the complex relationship between carcinogenic signals and fatty acid metabolism suggests that fatty acid metabolism will become a new therapeutic target in CC.
Collapse
|
8
|
Shen Y, Wang X, Ni Z, Xu S, Qiu S, Zheng W, Zhang J. Identification of acetyl-CoA carboxylase alpha as a prognostic and targeted candidate for hepatocellular carcinoma. Clin Transl Oncol 2023:10.1007/s12094-023-03137-1. [PMID: 36976490 DOI: 10.1007/s12094-023-03137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE The de novo lipogenesis has been a longstanding observation in hepatocellular carcinoma (HCC). However, the prognostic value and carcinogenic roles of the enzyme Acetyl-CoA carboxylase alpha (ACACA) in HCC remains unknown. METHODS The proteins with remarkable prognostic significance were screened out from The Cancer Proteome Atlas Portal (TCPA) database. Furthermore, the expression characteristics and prognostic value of ACACA were evaluated in multiple databases and the local HCC cohort. The loss-of-function assays were performed to uncover the potential roles of ACACA in steering malignant behaviors of HCC cells. The underlying mechanisms were conjectured by bioinformatics and validated in HCC cell lines. RESULTS ACACA was identified as a crucial factor of HCC prognosis. Bioinformatics analyses showed that HCC patients with higher expression of ACACA protein or mRNA levels had poor prognosis. Knockdown of ACACA remarkably crippled the proliferation, colony formation, migration, invasion, epithelial-mesenchymal transition (EMT) process of HCC cells and induced the cell cycle arrest. Mechanistically, ACACA might facilitate the malignant phenotypes of HCC through aberrant activation of Wnt/β-catenin signaling pathway. In addition, ACACA expression was associated with the dilute infiltration of immune cells including plasmacytoid DC (pDC) and cytotoxic cells by utilization of relevant database analysis. CONCLUSION ACACA could be a potential biomarker and molecular target for HCC.
Collapse
Affiliation(s)
- Yiping Shen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Xin Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Zhiyu Ni
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Shiyu Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| | - Shi Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
9
|
ZHONG JIATENG, GUO JINGYU, ZHANG XINYU, FENG SHUANG, DI WENYU, WANG YANLING, ZHU HUIFANG. The remodeling roles of lipid metabolism in colorectal cancer cells and immune microenvironment. Oncol Res 2023; 30:231-242. [PMID: 37305350 PMCID: PMC10207963 DOI: 10.32604/or.2022.027900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Lipid is a key component of plasma membrane, which plays an important role in the regulation of various cell biological behaviors, including cell proliferation, growth, differentiation and intracellular signal transduction. Studies have shown that abnormal lipid metabolism is involved in many malignant processes, including colorectal cancer (CRC). Lipid metabolism in CRC cells can be regulated not only by intracellular signals, but also by various components in the tumor microenvironment, including various cells, cytokines, DNA, RNA, and nutrients including lipids. In contrast, abnormal lipid metabolism provides energy and nutrition support for abnormal malignant growth and distal metastasis of CRC cells. In this review, we highlight the remodeling roles of lipid metabolism crosstalk between the CRC cells and the components of tumor microenvironment.
Collapse
Affiliation(s)
- JIATENG ZHONG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - JINGYU GUO
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - XINYU ZHANG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - SHUANG FENG
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - WENYU DI
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, China
| | - YANLING WANG
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - HUIFANG ZHU
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
10
|
Khalifeh M, Santos RD, Oskuee RK, Badiee A, Aghaee-Bakhtiari SH, Sahebkar A. A novel regulatory facet for hypertriglyceridemia: The role of microRNAs in the regulation of triglyceride-rich lipoprotein biosynthesis. Prog Lipid Res 2023; 89:101197. [PMID: 36400247 DOI: 10.1016/j.plipres.2022.101197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the major leading global causes of death. Genetic and epidemiological studies strongly support the causal association between triacylglycerol-rich lipoproteins (TAGRL) and atherogenesis, even in statin-treated patients. Recent genetic evidence has clarified that variants in several key genes implicated in TAGRL metabolism are strongly linked to the increased ASCVD risk. There are several triacylglycerol-lowering agents; however, new therapeutic options are in development, among which are miRNA-based therapeutic approaches. MicroRNAs (miRNAs) are small non-coding RNAs (18-25 nucleotides) that negatively modulate gene expression through translational repression or degradation of target mRNAs, thereby reducing the levels of functional genes. MiRNAs play a crucial role in the development of hypertriglyceridemia as several miRNAs are dysregulated in both synthesis and clearance of TAGRL particles. MiRNA-based therapies in ASCVD have not yet been applied in human trials but are attractive. This review provides a concise overview of current interventions for hypertriglyceridemia and the development of novel miRNA and siRNA-based drugs. We summarize the miRNAs involved in the regulation of key genes in the TAGRLs synthesis pathway, which has gained attention as a novel target for therapeutic applications in CVD.
Collapse
Affiliation(s)
- Masoumeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raul D Santos
- Lipid Clinic Heart Institute (Incor), University of São Paulo, Medical School Hospital, São Paulo, Brazil
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Yu FY, Xu Q, Wei QY, Mo HY, Zhong QH, Zhao XY, Lau ATY, Xu YM. ACC2 is under-expressed in lung adenocarcinoma and predicts poor clinical outcomes. J Cancer Res Clin Oncol 2022; 148:3145-3162. [PMID: 35066671 DOI: 10.1007/s00432-021-03910-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Acetyl-CoA Carboxylases (ACCs) are key fatty acid metabolic enzymes responsible for catalyzing the carboxylation of acetyl-CoA to malonyl-CoA. The role of ACC1 has been associated with tumor biology, but the role of ACC2 in cancer remains largely uncharacterized. METHODS We conducted a transcriptomic analysis using GEPIA and Oncomine to study the expression of ACC2 in different cancers. Immunohistochemistry was used to examine the expression of ACC2 in lung cancer tissue microarray, and the correlation between ACC2 expression and clinical parameters was analyzed. Following ACC2 knockdown by RNA interference in A549 and HCC827 cells, Cell Counting Kit‑8 and transwell assays were used to detect cell proliferation and migration. Real-time PCR was used to detect cell cycle-related genes in A549 cells. GEO dataset and KM-plotter database were used to analyze the relationship between ACC2 expression and the prognosis in lung cancer patients. RESULTS We found that ACC2 is under-expressed in cancerous tissue and the expression of ACC2 is negatively correlated with tumor size, regional lymph-node metastases, and clinical stage of lung adenocarcinoma patients. In addition, knocking down ACC2 in A549 cells and HCC827 cells can promote cell proliferation and migration, and cell cycle-related genes MAD2L1 and CCNB2 were up-regulated after ACC2 was knockdown in A549 cells. Finally, we found that lung adenocarcinoma patients with under-expressed ACC2 have a worse prognosis. CONCLUSIONS Our results suggest that ACC2 is a potential diagnostic and prognostic marker that negatively correlated with clinical outcomes in lung adenocarcinoma.
Collapse
Affiliation(s)
- Fei-Yuan Yu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Qian Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Qi-Yao Wei
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Hai-Ying Mo
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Qiu-Hua Zhong
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiao-Yun Zhao
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| |
Collapse
|
12
|
Zhu Z, Wu Y, Hu W, Zheng X, Chen Y. Valorization of food waste fermentation liquid into single cell protein by photosynthetic bacteria via stimulating carbon metabolic pathway and environmental behaviour. BIORESOURCE TECHNOLOGY 2022; 361:127704. [PMID: 35908636 DOI: 10.1016/j.biortech.2022.127704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Single cell protein (SCP) production by photosynthetic bacteria (PSB) is dependent on the bioavailability of carbon source, while sufficient volatile fatty acids (VFAs) in food waste fermentation liquid might be a potential alternative. It is unclear how the fermentation liquid affects the SCP biosynthesis and the related metabolic mechanism. This work demonstrated that the SCP production could be improved effectively (2088.4 mg/L) with high conversion capacity of carbon source (0.99 mg-biomass/mg-COD) by regulating carbon source level. PSB preferred to utilize the VFAs in food waste fermentation liquid. The carbon metabolic pathways (e.g., the transformation of VFAs to acetyl-CoA, and tricarboxylic acid cycle) involved in the SCP production were enhanced under optimal condition. Moreover, optimal carbon source regulation could significantly stimulate the environmental behaviour of PSB (e.g., two-component system, quorum sensing, and ATP-binding cassette transporter) involved in adaptation to external stimulus and maintaining high bacterial activity, resulting in SCP yield promotion.
Collapse
Affiliation(s)
- Zizeng Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wanying Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
13
|
Wang Y, Yu W, Li S, Guo D, He J, Wang Y. Acetyl-CoA Carboxylases and Diseases. Front Oncol 2022; 12:836058. [PMID: 35359351 PMCID: PMC8963101 DOI: 10.3389/fonc.2022.836058] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Acetyl-CoA carboxylases (ACCs) are enzymes that catalyze the carboxylation of acetyl-CoA to produce malonyl-CoA. In mammals, ACC1 and ACC2 are two members of ACCs. ACC1 localizes in the cytosol and acts as the first and rate-limiting enzyme in the de novo fatty acid synthesis pathway. ACC2 localizes on the outer membrane of mitochondria and produces malonyl-CoA to regulate the activity of carnitine palmitoyltransferase 1 (CPT1) that involves in the β-oxidation of fatty acid. Fatty acid synthesis is central in a myriad of physiological and pathological conditions. ACC1 is the major member of ACCs in mammalian, mountains of documents record the roles of ACC1 in various diseases, such as cancer, diabetes, obesity. Besides, acetyl-CoA and malonyl-CoA are cofactors in protein acetylation and malonylation, respectively, so that the manipulation of acetyl-CoA and malonyl-CoA by ACC1 can also markedly influence the profile of protein post-translational modifications, resulting in alternated biological processes in mammalian cells. In the review, we summarize our understandings of ACCs, including their structural features, regulatory mechanisms, and roles in diseases. ACC1 has emerged as a promising target for diseases treatment, so that the specific inhibitors of ACC1 for diseases treatment are also discussed.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Weixing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Sha Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Dingyuan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
| | - Jie He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yugang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science of Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yugang Wang,
| |
Collapse
|
14
|
A “Weird” Mitochondrial Fatty Acid Oxidation as a Metabolic “Secret” of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2339584. [PMID: 35178152 PMCID: PMC8847026 DOI: 10.1155/2022/2339584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
Cancer metabolism is an extensively studied field since the discovery of the Warburg effect about 100 years ago and continues to be increasingly intriguing and enigmatic so far. It has become clear that glycolysis is not the only abnormally activated metabolic pathway in the cancer cells, but the same is true for the fatty acid synthesis (FAS) and mevalonate pathway. In the last decade, a lot of data have been accumulated on the pronounced mitochondrial fatty acid oxidation (mFAO) in many types of cancer cells. In this article, we discuss how mFAO can escape normal regulation under certain conditions and be overactivated. Such abnormal activation of mitochondrial β-oxidation can also be combined with mutations in certain enzymes of the Krebs cycle that are common in cancer. If overactivated β-oxidation is combined with other common cancer conditions, such as dysfunctions in the electron transport complexes, and/or hypoxia, this may alter the redox state of the mitochondrial matrix. We propose the idea that the altered mitochondrial redox state and/or inhibited Krebs cycle at certain segments may link mitochondrial β-oxidation to the citrate-malate shuttle instead to the Krebs cycle. We call this abnormal metabolic condition “β-oxidation shuttle”. It is unconventional mFAO, a separate metabolic pathway, unexplored so far as a source of energy, as well as a source of cataplerosis, leading to biomass accumulation, accelerated oxygen consumption, and ultimately a source of proliferation. It is inefficient as an energy source and must consume significantly more oxygen per mole of ATP produced when combined with acetyl-CoA consuming pathways, such as the FAS and mevalonate pathway.
Collapse
|
15
|
Chan GCW, Zhi H, Hicks PJ, Freedman BI, Tang SCW. Acetyl-coenzyme A carboxylase beta gene polymorphism does not predict cardiovascular risk susceptibility in Chinese type 2 diabetic individuals. Nephrology (Carlton) 2021; 27:404-409. [PMID: 34939260 DOI: 10.1111/nep.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
AIM Type 2 diabetes (T2D) is associated with significant cardiovascular (CV) morbidity and mortality. A single-nucleotide polymorphism (SNP) in the acetyl-coenzyme A carboxylase beta (ACACB) gene, rs2268388, reproducibly associates with diabetic nephropathy (DN). ACACB regulates fatty-acid oxidation. As such, we assessed whether ACACB SNP rs2268388 was associated with CV disease in Chinese individuals with T2D. METHODS Chinese individuals with T2D were genotyped for SNP rs2268388. Baseline demographics were recorded and clinical data regarding coronary, carotid, and peripheral arterial disease and congestive heart failure were retrieved from electronic patient records. Statistical analyses were performed to detect associations between the rs2268388 T risk allele with CV outcomes in the cohort. RESULTS A total of 596 Chinese individuals with T2D were genotyped. Their mean age was 66.8 ± 10.9 years at the time of data extraction. Genotyping revealed 59.7%, 33.2% and 7.1% of the study population were non-carriers, heterozygous and homozygous carriers of the rs2268388 T risk allele in ACACB. No statistically significant correlations of the risk allele were observed with CV outcomes. CONCLUSION These results did not demonstrate association between rs2268388 SNP in ACACB with CV outcomes in Chinese T2D patients. The ACACB gene and its role in CV risk susceptibility, via alterations in fatty acid oxidation, remains an interesting postulate and studies with larger cohort sizes and in different ethnic groups remain warranted.
Collapse
Affiliation(s)
- Gary C W Chan
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Helen Zhi
- Department of Biostatistics and Clinical Research Methodology Unit, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pamela J Hicks
- Department of Biochemistry and Centers for Genomics and Personalized Medicine Research & Diabetes Research, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Barry I Freedman
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
16
|
Munir R, Lisec J, Swinnen JV, Zaidi N. Too complex to fail? Targeting fatty acid metabolism for cancer therapy. Prog Lipid Res 2021; 85:101143. [PMID: 34856213 DOI: 10.1016/j.plipres.2021.101143] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022]
Abstract
Given the central role of fatty acids in cancer pathophysiology, the exploitation of fatty acid metabolism as a potential antineoplastic therapy has gained much attention. Several natural and synthetic compounds targeting fatty acid metabolism were hitherto identified, and their effectiveness against cancer cell proliferation and survival was determined. This review will discuss the most clinically viable inhibitors or drugs targeting various proteins or enzymes mapped on nine interconnected fatty acid metabolism-related processes. We will discuss the general significance of each of these processes and the effects of their inhibition on cancer cell progression. Moreover, their mechanisms of action, limitations, and future perspectives will be assessed.
Collapse
Affiliation(s)
- Rimsha Munir
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan; Hormone Lab Lahore, Pakistan
| | - Jan Lisec
- Bundesanstalt für Materialforschung und -prüfung (BAM), Department of Analytical Chemistry, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Nousheen Zaidi
- Cancer Biology Lab, Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan; Cancer Research Center (CRC), University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
17
|
Valvo V, Iesato A, Kavanagh TR, Priolo C, Zsengeller Z, Pontecorvi A, Stillman IE, Burke SD, Liu X, Nucera C. Fine-Tuning Lipid Metabolism by Targeting Mitochondria-Associated Acetyl-CoA-Carboxylase 2 in BRAFV600E Papillary Thyroid Carcinoma. Thyroid 2021; 31:1335-1358. [PMID: 33107403 PMCID: PMC8558082 DOI: 10.1089/thy.2020.0311] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background: BRAFV600E acts as an ATP-dependent cytosolic kinase. BRAFV600E inhibitors are widely available, but resistance to them is widely reported in the clinic. Lipid metabolism (fatty acids) is fundamental for energy and to control cell stress. Whether and how BRAFV600E impacts lipid metabolism regulation in papillary thyroid carcinoma (PTC) is still unknown. Acetyl-CoA carboxylase (ACC) is a rate-limiting enzyme for de novo lipid synthesis and inhibition of fatty acid oxidation (FAO). ACC1 and ACC2 genes encode distinct isoforms of ACC. The aim of our study was to determine the relationship between BRAFV600E and ACC in PTC. Methods: We performed RNA-seq and DNA copy number analyses in PTC and normal thyroid (NT) in The Cancer Genome Atlas samples. Validations were performed by using assays on PTC-derived cell lines of differing BRAF status and a xenograft mouse model derived from a heterozygous BRAFWT/V600E PTC-derived cell line with knockdown (sh) of ACC1 or ACC2. Results:ACC2 mRNA expression was significantly downregulated in BRAFV600E-PTC vs. BRAFWT-PTC or NT clinical samples. ACC2 protein levels were downregulated in BRAFV600E-PTC cell lines vs. the BRAFWT/WT PTC cell line. Vemurafenib increased ACC2 (and to a lesser extent ACC1) mRNA levels in PTC-derived cell lines in a BRAFV600E allelic dose-dependent manner. BRAFV600E inhibition increased de novo lipid synthesis rates, and decreased FAO due to oxygen consumption rate (OCR), and extracellular acidification rate (ECAR), after addition of palmitate. Only shACC2 significantly increased OCR rates due to FAO, while it decreased ECAR in BRAFV600E PTC-derived cells vs. controls. BRAFV600E inhibition synergized with shACC2 to increase intracellular reactive oxygen species production, leading to increased cell proliferation and, ultimately, vemurafenib resistance. Mice implanted with a BRAFWT/V600E PTC-derived cell line with shACC2 showed significantly increased tumor growth after vemurafenib treatment, while vehicle-treated controls, or shGFP control cells treated with vemurafenib showed stable tumor growth. Conclusions: These findings suggest a potential link between BRAFV600E and lipid metabolism regulation in PTC. BRAFV600E downregulates ACC2 levels, which deregulates de novo lipid synthesis, FAO due to OCR, and ECAR rates. ShACC2 may contribute to vemurafenib resistance and increased tumor growth. ACC2 rescue may represent a novel molecular strategy for overcoming resistance to BRAFV600E inhibitors in refractory PTC.
Collapse
Affiliation(s)
- Veronica Valvo
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Asumi Iesato
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Taylor R. Kavanagh
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carmen Priolo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alfredo Pontecorvi
- Department of Medicine, Agostino Gemelli Medical School, UCSC, Rome, Italy
| | - Isaac E. Stillman
- Department of Pathology; Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne D. Burke
- Department of Medicine; Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaowen Liu
- Department of Emergency Medicine; Harvard Medical School, Boston, Massachusetts, USA
| | - Carmelo Nucera
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Center for Vascular Biology Research (CVBR); Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Address correspondence to: Carmelo Nucera, MD, PhD, Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI) Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Office: RN270K, 99 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Simeone P, Tacconi S, Longo S, Lanuti P, Bravaccini S, Pirini F, Ravaioli S, Dini L, Giudetti AM. Expanding Roles of De Novo Lipogenesis in Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3575. [PMID: 33808259 PMCID: PMC8036647 DOI: 10.3390/ijerph18073575] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
In recent years, lipid metabolism has gained greater attention in several diseases including cancer. Dysregulation of fatty acid metabolism is a key component in breast cancer malignant transformation. In particular, de novo lipogenesis provides the substrate required by the proliferating tumor cells to maintain their membrane composition and energetic functions during enhanced growth. However, it appears that not all breast cancer subtypes depend on de novo lipogenesis for fatty acid replenishment. Indeed, while breast cancer luminal subtypes rely on de novo lipogenesis, the basal-like receptor-negative subtype overexpresses genes involved in the utilization of exogenous-derived fatty acids, in the synthesis of triacylglycerols and lipid droplets, and fatty acid oxidation. These metabolic differences are specifically associated with genomic and proteomic changes that can perturb lipogenic enzymes and related pathways. This behavior is further supported by the observation that breast cancer patients can be stratified according to their molecular profiles. Moreover, the discovery that extracellular vesicles act as a vehicle of metabolic enzymes and oncometabolites may provide the opportunity to noninvasively define tumor metabolic signature. Here, we focus on de novo lipogenesis and the specific differences exhibited by breast cancer subtypes and examine the functional contribution of lipogenic enzymes and associated transcription factors in the regulation of tumorigenic processes.
Collapse
Affiliation(s)
- Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Tacconi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy; (P.S.); (P.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio”, Chieti-Pescara, 66100 Chieti, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (F.P.); (S.R.)
| | - Luciana Dini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, 73100 Lecce, Italy
| | - Anna M. Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (S.T.); (S.L.)
| |
Collapse
|
19
|
Montesdeoca N, López M, Ariza X, Herrero L, Makowski K. Inhibitors of lipogenic enzymes as a potential therapy against cancer. FASEB J 2020; 34:11355-11381. [PMID: 32761847 DOI: 10.1096/fj.202000705r] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 01/05/2023]
Abstract
Cancer cells rely on several metabolic pathways such as lipid metabolism to meet the increase in energy demand, cell division, and growth and successfully adapt to challenging environments. Fatty acid synthesis is therefore commonly enhanced in many cancer cell lines. Thus, relevant efforts are being made by the scientific community to inhibit the enzymes involved in lipid metabolism to disrupt cancer cell proliferation. We review the rapidly expanding body of inhibitors that target lipid metabolism, their side effects, and current status in clinical trials as potential therapeutic approaches against cancer. We focus on their molecular, biochemical and structural properties, selectivity and effectiveness and discuss their potential role as antitumor drugs.
Collapse
Affiliation(s)
- Nicolás Montesdeoca
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Marta López
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| | - Xavier Ariza
- Department of Inorganic and Organic Chemistry, School of Chemistry, Universitat de Barcelona, Barcelona, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Kamil Makowski
- School of Chemical Sciences and Engineering, Yachay Tech University, San Miguel de Urcuquí, Ecuador
| |
Collapse
|
20
|
Pataky MW, Arias EB, Wang H, Zheng X, Cartee GD. Exercise effects on γ3-AMPK activity, phosphorylation of Akt2 and AS160, and insulin-stimulated glucose uptake in insulin-resistant rat skeletal muscle. J Appl Physiol (1985) 2020; 128:410-421. [PMID: 31944891 DOI: 10.1152/japplphysiol.00428.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle. Prior research on healthy muscle suggests that enhanced postexercise ISGU depends on elevated γ3-AMPK activity leading to greater phosphorylation of Akt substrate of 160 kDa (pAS160) on an AMPK-phosphomotif (Ser704). Phosphorylation of AS160Ser704, in turn, may favor greater insulin-stimulated pAS160 on an Akt-phosphomotif (Thr642) that regulates ISGU. Accordingly, we tested if exercise-induced increases in γ3-AMPK activity and pAS160 on key regulatory sites accompany improved ISGU at 3 h postexercise (3hPEX) in insulin-resistant muscle. Rats fed a high-fat diet (HFD; 2-wk) that induces insulin resistance either performed acute swim-exercise (2 h) or were sedentary (SED). SED rats fed a low-fat diet (LFD; 2 wk) served as healthy controls. Isolated epitrochlearis muscles from 3hPEX and SED rats were analyzed for ISGU, pAS160, pAkt2 (Akt-isoform that phosphorylates pAS160Thr642), and γ1-AMPK and γ3-AMPK activity. ISGU was lower in HFD-SED muscles versus LFD-SED, but this decrement was eliminated in the HFD-3hPEX group. γ3-AMPK activity, but not γ1-AMPK activity, was elevated in HFD-3hPEX muscles versus both SED controls. Furthermore, insulin-stimulated pAS160Thr642, pAS160Ser704, and pAkt2Ser474 in HFD-3hPEX muscles were elevated above HFD-SED and equal to values in LFD-SED muscles, but insulin-independent pAS160Ser704 was unaltered at 3hPEX. These results demonstrated, for the first time in an insulin-resistant model, that the postexercise increase in ISGU was accompanied by sustained enhancement of γ3-AMPK activation and greater pAkt2Ser474. Our working hypothesis is that these changes along with enhanced insulin-stimulated pAS160 increase ISGU of insulin-resistant muscles to values equaling insulin-sensitive sedentary controls.NEW & NOTEWORTHY Earlier research focusing on signaling events linked to increased insulin sensitivity in muscle has rarely evaluated insulin resistant muscle after exercise. We assessed insulin resistant muscle after an exercise protocol that improved insulin-stimulated glucose uptake. Prior exercise also amplified several signaling steps expected to favor enhanced insulin-stimulated glucose uptake: increased γ3-AMP-activated protein kinase activity, greater insulin-stimulated Akt2 phosphorylation on Ser474, and elevated insulin-stimulated Akt substrate of 160 kDa phosphorylation on Ser588, Thr642, and Ser704.
Collapse
Affiliation(s)
- Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Xiaohua Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.,Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
21
|
Kristensen JM, Lillelund C, Kjøbsted R, Birk JB, Andersen NR, Nybo L, Mellberg K, Balendran A, Richter EA, Wojtaszewski JFP. Metformin does not compromise energy status in human skeletal muscle at rest or during acute exercise: A randomised, crossover trial. Physiol Rep 2019; 7:e14307. [PMID: 31833226 PMCID: PMC6908741 DOI: 10.14814/phy2.14307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022] Open
Abstract
5´AMP-activated protein kinase (AMPK) is a mediator of a healthy metabolic phenotype in skeletal muscle. Metformin may exacerbate the energy disturbances observed during exercise leading to enhanced AMPK activation, and these disturbances may provoke early muscular fatigue. We studied acute (1 day) and short-term (4 days) effects of metformin treatment on AMPK and its downstream signaling network, in healthy human skeletal muscle and adipose tissue at rest and during exercise, by applying a randomized blinded crossover study design in 10 lean men. Muscle and fat biopsies were obtained before and after the treatment period at rest and after a single bout of exercise. Metformin treat ment elicited peak plasma and muscle metformin concentrations of 31 μM and 11 μM, respectively. Neither of the treatments affected AMPK activity in skeletal muscle and adipose at rest or during exercise. In contrast, whole-body stress during exercise was elevated as indicated by increased plasma lactate and adrenaline concentrations as well as increased heart rate and rate of perceived exertion. Also whole-body insulin sensitivity was enhanced by 4 days metformin treatment, that is reduced fasting plasma insulin and HOMA-IR. In conclusion, acute and short-term metformin treatment does not affect energy homeostasis and AMPK activation at rest or during exercise in skeletal muscle and adipose tissue of healthy subjects. However, metformin treatment is accompanied by slightly enhanced perceived exertion and whole-body stress which may provoke a lesser desire for physical activity in the metformin-treated patients.
Collapse
Affiliation(s)
- Jonas M. Kristensen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsFaculty of ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Christian Lillelund
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsFaculty of ScienceUniversity of CopenhagenCopenhagenDenmark
- The University Hospitals Centre for Health ResearchUCSFCopenhagen University HospitalCopenhagenDenmark
| | - Rasmus Kjøbsted
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsFaculty of ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Jesper B. Birk
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsFaculty of ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Nicoline R. Andersen
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsFaculty of ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Lars Nybo
- Section of Integrative PhysiologyDepartment of Nutrition, Exercise and SportsFaculty of ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Karin Mellberg
- Astra Zeneca R&D MölndalGothenburgSweden
- Present address:
Laird Thermal SystemsGothenburgSweden
| | - Anudharan Balendran
- Astra Zeneca R&D MölndalGothenburgSweden
- Present address:
Alligator Bioscience ABLundSweden
| | - Erik A. Richter
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsFaculty of ScienceUniversity of CopenhagenCopenhagenDenmark
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular PhysiologyDepartment of Nutrition, Exercise and SportsFaculty of ScienceUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
22
|
Pataky MW, Van Acker SL, Dhingra R, Freeburg MM, Arias EB, Oki K, Wang H, Treebak JT, Cartee GD. Fiber type-specific effects of acute exercise on insulin-stimulated AS160 phosphorylation in insulin-resistant rat skeletal muscle. Am J Physiol Endocrinol Metab 2019; 317:E984-E998. [PMID: 31573845 PMCID: PMC6957376 DOI: 10.1152/ajpendo.00304.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Muscle is a heterogeneous tissue composed of multiple fiber types. Earlier research revealed fiber type-selective postexercise effects on insulin-stimulated glucose uptake (ISGU) from insulin-resistant rats (increased for type IIA, IIB, IIBX, and IIX, but not type I). In whole muscle from insulin-resistant rats, the exercise increase in ISGU is accompanied by an exercise increase in insulin-stimulated AS160 phosphorylation (pAS160), an ISGU-regulating protein. We hypothesized that, in insulin-resistant muscle, the fiber type-selective exercise effects on ISGU would correspond to the fiber type-selective exercise effects on pAS160. Rats were fed a 2-wk high-fat diet (HFD) and remained sedentary (SED) or exercised before epitrochlearis muscles were dissected either immediately postexercise (IPEX) or at 3 h postexercise (3hPEX) using an exercise protocol that previously revealed fiber type-selective effects on ISGU. 3hPEX muscles and SED controls were incubated ± 100µU/mL insulin. Individual myofibers were isolated and pooled on the basis of myosin heavy chain (MHC) expression, and key phosphoproteins were measured. Myofiber glycogen and MHC expression were evaluated in muscles from other SED, IPEX, and 3hPEX rats. Insulin-stimulated pAktSer473 and pAktThr308 were unaltered by exercise in all fiber types. Insulin-stimulated pAS160 was greater for 3hPEX vs. SED on at least one phosphosite (Ser588, Thr642, and/or Ser704) in type IIA, IIBX, and IIB fibers, but not in type I or IIX fibers. Both IPEX and 3hPEX glycogen were decreased versus SED in all fiber types. These results provided evidence that fiber type-specific pAS160 in insulin-resistant muscle may play a role in the previously reported fiber type-specific elevation in ISGU in some, but not all, fiber types.
Collapse
Affiliation(s)
- Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Sydney L Van Acker
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Rhea Dhingra
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Marina M Freeburg
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Kentaro Oki
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
24
|
Kluck GEG, Wendt CHC, Imperio GED, Araujo MFC, Atella TC, da Rocha I, Miranda KR, Atella GC. Plasmodium Infection Induces Dyslipidemia and a Hepatic Lipogenic State in the Host through the Inhibition of the AMPK-ACC Pathway. Sci Rep 2019; 9:14695. [PMID: 31604978 PMCID: PMC6789167 DOI: 10.1038/s41598-019-51193-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Malaria is a major parasitic disease of humans and is a health public problem that affects more than 100 countries. In 2017, it caused nearly half a million deaths out of 219 million infections. Malaria is caused by the protozoan parasites of the genus Plasmodium and is transmitted by female mosquitoes of the genus Anopheles. Once in the bloodstream, Plasmodium merozoites invade erythrocytes and proliferate until the cells lyses and release new parasites that invade other erythrocytes. Remarkably, they can manipulate the vertebrate host's lipid metabolism pathways, since they cannot synthesize lipid classes that are essential for their development and replication. In this study, we show that mice infected with Plasmodium chabaudi present a completely different plasma profile from control mice, with marked hyperproteinemia, hypertriglyceridemia, hypoglycemia, and hypocholesterolemia. In addition, white adipose and hepatic tissue and analyses from infected animals revealed the accumulation of triacylglycerol in both tissues and free fatty acids and free cholesterol in the liver. Hepatic mRNA and protein expression of key enzymes and transcription factors involved in lipid metabolism were also altered by P. chabaudi infection, leading to a lipogenic state. The enzyme 5' AMP-activated protein kinase (AMPK), a master regulator of cell energetic metabolism, was also modulated by the parasite, which reduced AMPK phosphorylation levels upon infection. Pretreatment with metformin for 21 days followed by infection with P. chabaudi was effective in preventing infection of mice and also lowered the hepatic accumulation of lipids while activating AMPK. Together, these results provide new and important information on the specific molecular mechanisms induced by the malaria parasite to regulate hepatic lipid metabolism in order to facilitate its development, proliferation, and lifespan in its vertebrate host.
Collapse
Affiliation(s)
- George Eduardo Gabriel Kluck
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila Hübner Costabile Wendt
- Laboratory of Cellular Ultrastructure Hertha Meyer, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guinever Eustaquio do Imperio
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Fernanda Carvalho Araujo
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tainá Correa Atella
- Laboratory of Comparative Neurobiology and Development, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabella da Rocha
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kildare Rocha Miranda
- Laboratory of Translational Endocrinology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
25
|
León-Del-Río A. Biotin in metabolism, gene expression, and human disease. J Inherit Metab Dis 2019; 42:647-654. [PMID: 30746739 DOI: 10.1002/jimd.12073] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/05/2019] [Indexed: 12/16/2022]
Abstract
Biotin is a water-soluble vitamin that belongs to the vitamin B complex and which is an essential nutrient of all living organisms from bacteria to man. In eukaryotic cells biotin functions as a prosthetic group of enzymes, collectively known as biotin-dependent carboxylases that catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Enzyme-bound biotin acts as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In recent years, evidence has mounted that biotin also regulates gene expression through a mechanism beyond its role as a prosthetic group of carboxylases. These activities may offer a mechanistic background to a developing literature on the action of biotin in neurological disorders. This review summarizes the role of biotin in activating carboxylases and proposed mechanisms associated with a role in gene expression and in ameliorating neurological disease.
Collapse
Affiliation(s)
- Alfonso León-Del-Río
- Programa de Investigación en Cáncer de Mama and Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
26
|
Pope ED, Kimbrough EO, Vemireddy LP, Surapaneni PK, Copland JA, Mody K. Aberrant lipid metabolism as a therapeutic target in liver cancer. Expert Opin Ther Targets 2019; 23:473-483. [PMID: 31076001 DOI: 10.1080/14728222.2019.1615883] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers. Progress has been made in treatment of HCC; however, improved outcomes are much needed. The increased metabolic needs of cancer cells underscore the importance of metabolic pathways in cancer cell survival. Lipid metabolism has a role in HCC development; aberrant overexpression of several key enzymes is seen in many solid human tumors. Areas covered: We discuss aberrant lipid metabolism and the promise of multiple targets, in particular related to HCC treatment. We searched PubMed and clinicaltrials.gov for published and unpublished studies from 2000 to 2019. These terms were used: lipids, fatty acid metabolism, lipid metabolism, liver cancer, HCC, de novo fatty acid synthesis, ATP citrate lyase, stearoyl CoA denaturase, fatty acid synthase, acetyl coenzyme A carboxylase, CD147, KLF4, monoglyceride lipase, AMP activated protein kinase. Expert opinion: The importance of dysregulation of fatty acid synthesis in cancer is a growing area of research. HCC demonstrates significant alteration in lipid metabolism, representing great potential as a target for novel therapeutics. Various agents have demonstrated promising anti-neoplastic activity. This strategy deserves further development for improved outcomes.
Collapse
Affiliation(s)
- Evans D Pope
- a Cancer Clinical Studies Unit , Mayo Clinic , Jacksonville , FL , USA
| | | | | | | | - John A Copland
- d Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| | - Kabir Mody
- c Division of Hematology and Medical Oncology , Mayo Clinic , Jacksonville , FL , USA
| |
Collapse
|
27
|
Ducommun S, Deak M, Zeigerer A, Göransson O, Seitz S, Collodet C, Madsen AB, Jensen TE, Viollet B, Foretz M, Gut P, Sumpton D, Sakamoto K. Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cell Signal 2019; 57:45-57. [PMID: 30772465 DOI: 10.1016/j.cellsig.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy homeostasis, acting as a sensor of energy and nutrient status. As such, AMPK is considered a promising drug target for treatment of medical conditions particularly associated with metabolic dysfunctions. To better understand the downstream effectors and physiological consequences of AMPK activation, we have employed a chemical genetic screen in mouse primary hepatocytes in an attempt to identify novel AMPK targets. Treatment of hepatocytes with a potent and specific AMPK activator 991 resulted in identification of 65 proteins phosphorylated upon AMPK activation, which are involved in a variety of cellular processes such as lipid/glycogen metabolism, vesicle trafficking, and cytoskeleton organisation. Further characterisation and validation using mass spectrometry followed by immunoblotting analysis with phosphorylation site-specific antibodies identified AMPK-dependent phosphorylation of Gapex-5 (also known as GTPase-activating protein and VPS9 domain-containing protein 1 (GAPVD1)) on Ser902 in hepatocytes and starch-binding domain 1 (STBD1) on Ser175 in multiple cells/tissues. As new promising roles of AMPK as a key metabolic regulator continue to emerge, the substrates we identified could provide new mechanistic and therapeutic insights into AMPK-activating drugs in the liver.
Collapse
Affiliation(s)
- Serge Ducommun
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland; School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Maria Deak
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center for Environmental Health, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Olga Göransson
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
| | - Susanne Seitz
- Institute for Diabetes and Cancer, Helmholtz Center for Environmental Health, 85764 Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Caterina Collodet
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland; School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Agnete B Madsen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris cité, Paris, France
| | - Philipp Gut
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - David Sumpton
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Kei Sakamoto
- Nestlé Research, École Polytechnique Fédérale de Lausanne (EPFL) Innovation Park, bâtiment G, 1015 Lausanne, Switzerland; School of Life Sciences, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
28
|
Zhang M, Hou C, Li M, Qian Y, Xu W, Meng F, Wang R. Modulation of lipid metabolism in juvenile yellow catfish (Pelteobagrus fulvidraco) as affected by feeding frequency and environmental ammonia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:115-122. [PMID: 30019291 DOI: 10.1007/s10695-018-0540-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
In the intensive culture systems, excessive feeding leads to ammonia accumulation, which results in lipid metabolism disorder. However, little information is available on the modulation of lipid metabolism in fish as affected by feeding frequency and ammonia stress. In this study, weight gain increased as feeding frequency increased from one to four times daily, but feed conversion ratio is opposite. The highest survival was found in ammonia group when fish was fed two times daily. Liver ammonia content increased as feeding frequency increased from one to four times daily, and the highest brain ammonia content was found when fish was fed four times daily. The highest liver 6-phospho-gluconate dehydrogenase (6PGD), fatty acid synthase (FAS), carnitine palmitoyltransferase (CPT), and lipoprotein lipase (LPL) contents were found in control group when fish was fed four times daily; in comparison, the highest liver 6PGD, FAS, CPT, and LPL contents were found in ammonia group when fish was fed two times daily. Liver 6PGD, FAS, CPT 1, SREBP-1, and PPARα mRNA expression in control group increased significantly as feeding frequency increased from one to four times daily, and the highest expression of 6PGD, G6PD, and FAS was observed in ammonia group when fish was fed two times daily. This study indicated that the optimal feeding frequency is two times daily when yellow catfish exposed to ammonia.
Collapse
Affiliation(s)
- Muzi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Chengdong Hou
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenbin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
29
|
Steenberg DE, Jørgensen NB, Birk JB, Sjøberg KA, Kiens B, Richter EA, Wojtaszewski JFP. Exercise training reduces the insulin-sensitizing effect of a single bout of exercise in human skeletal muscle. J Physiol 2018; 597:89-103. [PMID: 30325018 DOI: 10.1113/jp276735] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS A single bout of exercise is capable of increasing insulin sensitivity in human skeletal muscle. Whether this ability is affected by training status is not clear. Studies in mice suggest that the AMPK-TBC1D4 signalling axis is important for the increased insulin-stimulated glucose uptake after a single bout of exercise. The present study is the first longitudinal intervention study to show that, although exercise training increases insulin-stimulated glucose uptake in skeletal muscle at rest, it diminishes the ability of a single bout of exercise to enhance muscle insulin-stimulated glucose uptake. The present study provides novel data indicating that AMPK in human skeletal muscle is important for the insulin-sensitizing effect of a single bout of exercise. ABSTRACT Not only chronic exercise training, but also a single bout of exercise, increases insulin-stimulated glucose uptake in skeletal muscle. However, it is not well described how adaptations to exercise training affect the ability of a single bout of exercise to increase insulin sensitivity. Rodent studies suggest that the insulin-sensitizing effect of a single bout of exercise is AMPK-dependent (presumably via the α2 β2 γ3 AMPK complex). Whether this is also the case in humans is unknown. Previous studies have shown that exercise training decreases the expression of the α2 β2 γ3 AMPK complex and diminishes the activation of this complex during exercise. Thus, we hypothesized that exercise training diminishes the ability of a single bout of exercise to enhance muscle insulin sensitivity. We investigated nine healthy male subjects who performed one-legged knee-extensor exercise at the same relative intensity before and after 12 weeks of exercise training. Training increased V ̇ O 2 peak and expression of mitochondrial proteins in muscle, whereas the expression of AMPKγ3 was decreased. Training also increased whole body and muscle insulin sensitivity. Interestingly, insulin-stimulated glucose uptake in the acutely exercised leg was not enhanced further by training. Thus, the increase in insulin-stimulated glucose uptake following a single bout of one-legged exercise was lower in the trained vs. untrained state. This was associated with reduced signalling via confirmed α2 β2 γ3 AMPK downstream targets (ACC and TBC1D4). These results suggest that the insulin-sensitizing effect of a single bout of exercise is also AMPK-dependent in human skeletal muscle.
Collapse
Affiliation(s)
- Dorte E Steenberg
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Nichlas B Jørgensen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Wang H, Arias EB, Pataky MW, Goodyear LJ, Cartee GD. Postexercise improvement in glucose uptake occurs concomitant with greater γ3-AMPK activation and AS160 phosphorylation in rat skeletal muscle. Am J Physiol Endocrinol Metab 2018; 315:E859-E871. [PMID: 30130149 PMCID: PMC6293165 DOI: 10.1152/ajpendo.00020.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A single exercise session can increase insulin-stimulated glucose uptake (GU) by skeletal muscle, concomitant with greater Akt substrate of 160 kDa (AS160) phosphorylation on Akt-phosphosites (Thr642 and Ser588) that regulate insulin-stimulated GU. Recent research using mouse skeletal muscle suggested that ex vivo 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or electrically stimulated contractile activity-inducing increased γ3-AMPK activity and AS160 phosphorylation on a consensus AMPK-motif (Ser704) resulted in greater AS160 Thr642 phosphorylation and GU by insulin-stimulated muscle. Our primary goal was to determine whether in vivo exercise that increases insulin-stimulated GU in rat skeletal muscle would also increase γ3-AMPK activity and AS160 site-selective phosphorylation (Ser588, Thr642, and Ser704) immediately postexercise (IPEX) and/or 3 h postexercise (3hPEX). Epitrochlearis muscles isolated from sedentary and exercised (2-h swim exercise; studied IPEX and 3hPEX) rats were incubated with 2-deoxyglucose to determine GU (without insulin at IPEX; without or with insulin at 3hPEX). Muscles were also assessed for γ1-AMPK activity, γ3-AMPK activity, phosphorylated AMPK (pAMPK), and phosphorylated AS160 (pAS160). IPEX versus sedentary had greater γ3-AMPK activity, pAS160 (Ser588, Thr642, Ser704), and GU with unaltered γ1-AMPK activity. 3hPEX versus sedentary had greater γ3-AMPK activity, pAS160 Ser704, and GU with or without insulin; greater pAS160 Thr642 only with insulin; and unaltered γ1-AMPK activity. These results using an in vivo exercise protocol that increased insulin-stimulated GU in rat skeletal muscle are consistent with the hypothesis that in vivo exercise-induced enhancement of γ3-AMPK activation and AS160 Ser704 IPEX and 3hPEX are important for greater pAS160 Thr642 and enhanced insulin-stimulated GU by skeletal muscle.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
| | - Mark W Pataky
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
| | - Laurie J Goodyear
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan , Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
- Institute of Gerontology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
31
|
Maher M, Diesch J, Casquero R, Buschbeck M. Epigenetic-Transcriptional Regulation of Fatty Acid Metabolism and Its Alterations in Leukaemia. Front Genet 2018; 9:405. [PMID: 30319689 PMCID: PMC6165860 DOI: 10.3389/fgene.2018.00405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/03/2018] [Indexed: 12/26/2022] Open
Abstract
In recent years fatty acid metabolism has gained greater attention in haematologic cancers such as acute myeloid leukaemia. The oxidation of fatty acids provides fuel in the form of ATP and NADH, while fatty acid synthesis provides building blocks for cellular structures. Here, we will discuss how leukaemic cells differ from healthy cells in their increased reliance on fatty acid metabolism. In order to understand how these changes are achieved, we describe the main pathways regulating fatty acid metabolism at the transcriptional level and highlight the limited knowledge about related epigenetic mechanisms. We explore these mechanisms in the context of leukaemia and consider the relevance of the bone marrow microenvironment in disease management. Finally, we discuss efforts to interfere with fatty acid metabolism as a therapeutic strategy along with the use of metabolic parameters as biomarkers.
Collapse
Affiliation(s)
- Michael Maher
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jeannine Diesch
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Casquero
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marcus Buschbeck
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol-Universitat Autònoma de Barcelona, Barcelona, Spain
- Program for Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
32
|
Nishiura Y, Matsumura A, Kobayashi N, Shimazaki A, Sakamoto S, Kitade N, Tonomura Y, Ino A, Okuno T. Discovery of a novel olefin derivative as a highly potent and selective acetyl-CoA carboxylase 2 inhibitor with in vivo efficacy. Bioorg Med Chem Lett 2018; 28:2498-2503. [DOI: 10.1016/j.bmcl.2018.05.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/22/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023]
|
33
|
Takagi H, Ikehara T, Kashiwagi Y, Hashimoto K, Nanchi I, Shimazaki A, Nambu H, Yukioka H. ACC2 Deletion Enhances IMCL Reduction Along With Acetyl-CoA Metabolism and Improves Insulin Sensitivity in Male Mice. Endocrinology 2018; 159:3007-3019. [PMID: 29931154 DOI: 10.1210/en.2018-00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Intramyocellular lipid (IMCL) accumulation in skeletal muscle greatly contributes to lipid-induced insulin resistance. Because acetyl-coenzyme A (CoA) carboxylase (ACC) 2 negatively modulates mitochondrial fatty acid oxidation (FAO) in skeletal muscle, ACC2 inhibition is expected to reduce IMCL via elevation of FAO and to attenuate insulin resistance. However, the concept of substrate competition suggests that enhanced FAO results in reduced glucose use because of an excessive acetyl-CoA pool in mitochondria. To identify how ACC2-regulated FAO affects IMCL accumulation and glucose metabolism, we generated ACC2 knockout (ACC2-/-) mice and investigated skeletal muscle metabolites associated with fatty acid and glucose metabolism, as well as whole-body glucose metabolism. ACC2-/- mice displayed higher capacity of glucose disposal at the whole-body levels. In skeletal muscle, ACC2-/- mice exhibited enhanced acylcarnitine formation and reduced IMCL levels without alteration in glycolytic intermediate levels. Notably, these changes were accompanied by decreased acetyl-CoA content and enhanced mitochondrial pathways related to acetyl-CoA metabolism, such as the acetylcarnitine production and tricarboxylic acid cycle. Furthermore, ACC2-/- mice exhibited lower levels of IMCL and acetyl-CoA even under HFD conditions and showed protection against HFD-induced insulin resistance. Our findings suggest that ACC2 deletion leads to IMCL reduction without suppressing glucose use via an elevation in acetyl-CoA metabolism even under HFD conditions and offer new mechanistic insight into the therapeutic potential of ACC2 inhibition on insulin resistance.
Collapse
Affiliation(s)
- Hiroyuki Takagi
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Tatsuya Ikehara
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Yuto Kashiwagi
- Biomarker Research and Development Department, Shionogi & Co., Ltd., Osaka, Japan
| | - Kumi Hashimoto
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Isamu Nanchi
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Atsuyuki Shimazaki
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hirohide Nambu
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| | - Hideo Yukioka
- Drug Discovery and Disease Research Laboratory, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
34
|
Jang S, Gornicki P, Marjanovic J, Bass E, P Iurcotta T, Rodriguez P, Austin J, Haselkorn R. Activity and structure of human acetyl-CoA carboxylase targeted by a specific inhibitor. FEBS Lett 2018; 592:2048-2058. [PMID: 29772612 DOI: 10.1002/1873-3468.13097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 01/01/2023]
Abstract
We have studied a series of human acetyl-CoA carboxylase (ACC) 1 and ACC2 proteins with deletions and/or Ser to Ala substitutions of the known phosphorylation sites. In vitro dephosphorylation/phosphorylation experiments reveal a substantial level of phosphorylation of human ACCs produced in insect cells. Our results are consistent with AMPK phosphorylation of Ser29 , Ser80 , Ser1,201 , and Ser1,216 . Phosphorylation of the N-terminal regulatory domain decreases ACC1 activity, while phosphorylation of residues in the ACC central domain has no effect. Inhibition of the activity by phosphorylation is significantly more profound at citrate concentrations below 2 mm. Furthermore, deletion of the N-terminal domain facilitates structural changes induced by citrate, including conversion of ACC dimers to linear polymers. We have also identified ACC2 amino acid mutations affecting specific inhibition of the isozyme by compound CD-017-0191. They form two clusters separated by 60-90 Å: one located in the vicinity of the BC active site and the other one in the vicinity of the ACC1 phosphorylation sites in the central domain, suggesting a contribution of the interface of two ACC dimers in the polymer to the inhibitor binding site.
Collapse
Affiliation(s)
- SoRi Jang
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Piotr Gornicki
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jasmina Marjanovic
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Ethan Bass
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Toni P Iurcotta
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Pedro Rodriguez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jotham Austin
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Robert Haselkorn
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
35
|
Han B, Liang W, Liu L, Li Y, Sun D. Genetic association of the ACACB gene with milk yield and composition traits in dairy cattle. Anim Genet 2018. [PMID: 29521460 DOI: 10.1111/age.12651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, we re-sequenced the whole genomes of eight Holstein bulls with high or low milk protein and fat percentage, and we detected two indels in the ACACB (acetyl-CoA carboxylase beta) gene that were polymorphic between the two groups. Thus, we considered ACACB as a promising candidate gene potentially affecting milk composition traits. Herein, we verified the genetic effects of ACACB on five milk traits in a Chinese Holstein population. We identified six SNPs in the 5'-promoter region, five in the 5'- untranslated region (UTR), 11 in exons, four in the 3'-UTR and three in the 3'-flanking region by re-sequencing the entire coding and regulatory regions of ACACB. One of these SNPs (ss1987461005) is reported here for the first time, and three of the SNPs (rs109482081, rs110819816 and rs109281947) were predicted to result in amino acid replacements. Genotype-phenotype association analyses showed that all the identified SNPs, except for ss1987461005, rs208919019 and rs134447911, were significantly associated with milk yield, fat yield, fat percentage, protein yield or protein percentage (P < 0.0001 to 0.0484). Linkage disequilibrium analyses were conducted among the identified SNPs to confirm the genetic associations. Two SNPs-rs135874354 (g.66218726T>C) and rs210928430 (g.66218117G>A)-were predicted to alter transcription factor binding sites in the 5'-promoter region of ACACB. A luciferase activity assay showed that the promoter activity of haplotype TG was significantly higher than that of CG (P = 0.0002) and that the promoter activity of haplotype TA was remarkably higher than that of CA (P = 7.4285E-09), showing that the T allele of rs135874354 increased promoter activity. Thus, rs135874354 was considered to be a potentially functional mutation. Our findings have, for the first time, profiled the genetic effect of ACACB on milk production traits in dairy cattle and revealed a potentially causal mutation that requires further the in-depth validation.
Collapse
Affiliation(s)
- B Han
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - W Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| | - L Liu
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - Y Li
- Beijing Dairy Cattle Center, Beijing, 100192, China
| | - D Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
36
|
Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci 2018; 11:10. [PMID: 29410613 PMCID: PMC5787076 DOI: 10.3389/fnmol.2018.00010] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS.
Collapse
Affiliation(s)
- Timothy J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Tanaka Y, Kume S, Maeda S, Osawa N, Takeda N, Chin-Kanasaki M, Isshiki K, Ugi S, Oshima I, Uzu T, Maegawa H, Araki SI. Overexpression of acetyl CoA carboxylase β exacerbates podocyte injury in the kidney of streptozotocin-induced diabetic mice. Biochem Biophys Res Commun 2017; 495:1115-1121. [PMID: 29175208 DOI: 10.1016/j.bbrc.2017.11.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
A single nucleotide polymorphism (SNP) within the acetyl CoA carboxylase (ACC) β gene (ACACB), rs2268388, has been shown to be associated with susceptibility to development of proteinuria in patients with type 2 diabetes. To investigate the biological roles of ACCβ in the pathogenesis of diabetic nephropathy, we examined the effects of overexpression of ACACB using podocyte-specific ACACB-transgenic mice or ACACB-overexpressing murine podocytes. Podocyte-specific ACACB-transgenic mice or littermate mice were treated with streptozotocin (STZ) to induce diabetes, and 12 weeks after induction of diabetes, we examined the expression of podocyte markers to evaluate the degree of podocyte injury in these mice. We also examined the effects of ACCβ on podocyte injury in ACACB- or LacZ-overexpressing murine podocytes. Podocyte-specific ACACB overexpression did not cause visible podocyte injury in non-diabetic mice. In STZ-induced diabetic mice, ACACB-transgenic mice showed a significant increase in urinary albumin excretion, accompanied by decreased synaptopodin expression and podocin mislocalization in podocytes, compared with wild-type mice. In cultured murine podocytes, overexpression of ACACB significantly decreased synaptopodin expression and reorganized stress fibers under high glucose conditions, but not in normal glucose conditions. The decrease of synaptopodin expression and reorganized stress fibers observed in ACACB overexpressing cells cultured under high glucose conditions was reversed by a treatment of 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR), activator of AMP-activated protein kinase (AMPK). The excess of ACCβ might contribute to exacerbation of podocyte injury in the kidney of an animal model for diabetes mellitus, and the AMPK/ACCβ pathway may be a novel therapeutic target for the prevention of diabetes-related podocyte injury.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Shiro Maeda
- Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine, Yokohama, Japan; Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan; Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus, Nishihara, Japan
| | - Norihisa Osawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Naoko Takeda
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | - Keiji Isshiki
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Itsuki Oshima
- Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Takashi Uzu
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Shin-Ichi Araki
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
38
|
Dietary zinc addition influenced zinc and lipid deposition in the fore- and mid-intestine of juvenile yellow catfishPelteobagrus fulvidraco. Br J Nutr 2017; 118:570-579. [DOI: 10.1017/s0007114517002446] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractThe present study explored the mechanisms of dietary Zn influencing Zn and lipid deposition in the fore- and mid- intestine in yellow catfishPelteobagrus fulvidraco, and investigated whether the mechanism was intestinal-region dependent. For this purpose, yellow catfish were fed three diets containing Zn levels of 8·83, 19·20 and 146·65 mg Zn/kg, respectively. Growth performance, intestinal TAG and Zn contents as well as activities and mRNA expression of enzymes and genes involved in Zn transport and lipid metabolism in the fore- and mid-intestine were analysed. Dietary Zn increased Zn accumulation as well as activities of Cu-, Zn-superoxide dismutase and ATPase in the fore- and mid-intestine. In the fore-intestine, dietary Zn up-regulated mRNA levels of ZnT1, ZnT5, ZnT7, metallothionein (MT) and metal response element-binding transcription factor-1 (MTF-1), but down-regulated mRNA levels of ZIP4 and ZIP5. In the mid-intestine, dietary Zn up-regulated mRNA levels of ZnT1, ZnT5, ZnT7, MT and MTF-1, but down-regulated mRNA levels of ZIP4 and ZIP5. Dietary Zn reduced TAG content, down-regulated activities of 6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and fatty acid synthase (FAS) activities, and reduced mRNA levels of 6PGD, G6PD, FAS, PPARγand sterol-regulator element-binding protein (SREBP-1), but up-regulated mRNA levels of carnitine palmitoyltransferase IA, hormone-sensitive lipase (HSLa), adipose TAG lipase (ATGL) and PPARαin the fore-intestine. In the mid-intestine, dietary Zn reduced TAG content, activities of G6PD, ME, isocitrate dehydrogenase and FAS, down-regulated mRNA levels of 6PGD, G6PD, FAS, acetyl-CoA carboxylase a, PPARγand SREBP-1, but up-regulated mRNA expression of HSLa, ATGL and PPARγ. The reduction in TAG content following Zn addition was attributable to reduced lipogenesis and increased lipolysis, and similar regulatory mechanisms were observed between the fore- and mid-intestine.
Collapse
|
39
|
PHD3 Loss in Cancer Enables Metabolic Reliance on Fatty Acid Oxidation via Deactivation of ACC2. Mol Cell 2017; 63:1006-20. [PMID: 27635760 DOI: 10.1016/j.molcel.2016.08.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 07/18/2016] [Accepted: 08/09/2016] [Indexed: 12/18/2022]
Abstract
While much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching. Here, we reveal that PHD3 rapidly triggers repression of FAO in response to nutrient abundance via hydroxylation of acetyl-coA carboxylase 2 (ACC2). We find that PHD3 expression is strongly decreased in subsets of cancer including acute myeloid leukemia (AML) and is linked to a reliance on fat catabolism regardless of external nutrient cues. Overexpressing PHD3 limits FAO via regulation of ACC2 and consequently impedes leukemia cell proliferation. Thus, loss of PHD3 enables greater utilization of fatty acids but may also serve as a metabolic and therapeutic liability by indicating cancer cell susceptibility to FAO inhibition.
Collapse
|
40
|
Chen GH, Luo Z, Chen F, Shi X, Song YF, You WJ, Liu X. PPARα, PPARγ and SREBP-1 pathways mediated waterborne iron (Fe)-induced reduction in hepatic lipid deposition of javelin goby Synechogobius hasta. Comp Biochem Physiol C Toxicol Pharmacol 2017; 197:8-18. [PMID: 28411055 DOI: 10.1016/j.cbpc.2017.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 01/20/2023]
Abstract
The 42-day experiment was conducted to investigate the effects and mechanism of waterborne Fe exposure influencing hepatic lipid deposition in Synechogobius hasta. For that purpose, S. hasta were exposed to four Fe concentrations (0 (control), 0.36, 0.72 and 1.07μM Fe) for 42days. On days 21 and 42, morphological parameters, hepatic lipid deposition and Fe contents, and activities and mRNA levels of enzymes and genes related to lipid metabolism, including lipogenic enzymes (6PGD, G6PD, ME, ICDH, FAS and ACC) and lipolytic enzymes (CPTI, HSL), were analyzed. With the increase of Fe concentration, hepatic Fe content tended to increase but HSI and lipid content tended to decrease. On day 21, Fe exposure down-regulated the lipogenic activities of 6PGD, G6PD, ICDH and FAS as well as the mRNA levels of G6PD, ACCa, FAS, SREBP-1 and PPARγ, but up-regulated CPT I, HSLa and PPARα mRNA levels. On day 42, Fe exposure down-regulated the lipogenic activities of 6PGD, G6PD, ICDH and FAS as well as the mRNA levels of 6PGD, ACCa, FAS and SREBP-1, but up-regulated CPT I, HSLa, PPARα and PPARγ mRNA levels. Using primary S. hasta hepatocytes, specific pathway inhibitors (GW6471 for PPARα and fatostatin for SREBP-1) and activator (troglitazone for PPARγ) were used to explore the signaling pathways of Fe reducing lipid deposition. The GW6471 attenuated the Fe-induced down-regulation of mRNA levels of 6PGD, G6PD, ME, FAS and ACCa, and attenuated the Fe-induced up-regulation of mRNA levels of CPT I, HSLa and PPARα. Compared with single Fe-incubated group, the mRNA levels of G6PD, ME, FAS, ACCa, ACCb and PPARγ were up-regulated while the CPT I mRNA levels were down-regulated after troglitazone pre-treatment; fatostatin pre-treatment down-regulated the mRNA levels of 6PGD, ME, FAS, ACCa, ACCb and SREBP-1, and increased the CPT I and HSLa mRNA levels. Based on these results above, our study indicated that Fe exposure reduced hepatic lipid deposition by down-regulating lipogenesis and up-regulating lipolysis, and PPARα, PPARγ and SREBP-1 pathways mediated the Fe-induced reduction of hepatic lipid deposition in S. hasta.
Collapse
Affiliation(s)
- Guang-Hui Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Feng Chen
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Shi
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Feng Song
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Jing You
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Liu
- Postgraduate Research Base, Panjin Guanghe Fishery Co. Ltd., Panjin 124200, China
| |
Collapse
|
41
|
Singh U, Gangwal RP, Dhoke GV, Prajapati R, Damre M, Sangamwar AT. 3D-QSAR and molecular docking analysis of (4-piperidinyl)-piperazines as acetyl-CoA carboxylases inhibitors. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2012.10.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
42
|
Muscle Carnitine Palmitoyltransferase II Deficiency: A Review of Enzymatic Controversy and Clinical Features. Int J Mol Sci 2017; 18:ijms18010082. [PMID: 28054946 PMCID: PMC5297716 DOI: 10.3390/ijms18010082] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022] Open
Abstract
CPT (carnitine palmitoyltransferase) II muscle deficiency is the most common form of muscle fatty acid metabolism disorders. In contrast to carnitine deficiency, it is clinically characterized by attacks of myalgia and rhabdomyolysis without persistent muscle weakness and lipid accumulation in muscle fibers. The biochemical consequences of the disease-causing mutations are still discussed controversially. CPT activity in muscles of patients with CPT II deficiency ranged from not detectable to reduced to normal. Based on the observation that in patients, total CPT is completely inhibited by malony-CoA, a deficiency of malonyl-CoA-insensitive CPT II has been suggested. In contrast, it has also been shown that in muscle CPT II deficiency, CPT II protein is present in normal concentrations with normal enzymatic activity. However, CPT II in patients is abnormally sensitive to inhibition by malonyl-CoA, Triton X-100 and fatty acid metabolites. A recent study on human recombinant CPT II enzymes (His6-N-hCPT2 and His6-N-hCPT2/S113L) revealed that the wild-type and the S113L variants showed the same enzymatic activity. However, the mutated enzyme showed an abnormal thermal destabilization at 40 and 45 °C and an abnormal sensitivity to inhibition by malony-CoA. The thermolability of the mutant enzyme might explain why symptoms in muscle CPT II deficiency mainly occur during prolonged exercise, infections and exposure to cold. In addition, the abnormally regulated enzyme might be mostly inhibited when the fatty acid metabolism is stressed.
Collapse
|
43
|
Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson MM, Rovira II, Castro L, Trostchansky A, Moreno M, Cao L, Finkel T, Quijano C. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys 2016; 613:12-22. [PMID: 27983949 DOI: 10.1016/j.abb.2016.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022]
Abstract
We sought to explore the fate of the fatty acid synthesis pathway in human fibroblasts exposed to DNA damaging agents capable of inducing senescence, a state of irreversible growth arrest. Induction of premature senescence by doxorubicin or hydrogen peroxide led to a decrease in protein and mRNA levels of acetyl-CoA carboxylase 1 (ACC1), the enzyme that catalyzes the rate-limiting step in fatty-acid biosynthesis. ACC1 decay accompanied the activation of the DNA damage response (DDR), and resulted in decreased lipid synthesis. A reduction in protein and mRNA levels of ACC1 and in lipid synthesis was also observed in human primary fibroblasts that underwent replicative senescence. We also explored the consequences of inhibiting fatty acid synthesis in proliferating non-transformed cells. Using shRNA technology, we knocked down ACC1 in human fibroblasts. Interestingly, this metabolic perturbation was sufficient to arrest proliferation and trigger the appearance of several markers of the DDR and increase senescence associated β-galactosidase activity. Reactive oxygen species and p38 mitogen activated protein kinase phosphorylation participated in the induction of senescence. Similar results were obtained upon silencing of fatty acid synthase (FAS) expression. Together our results point towards a tight coordination of fatty acid synthesis and cell proliferation in human fibroblasts.
Collapse
Affiliation(s)
- Inés Marmisolle
- Center for Free Radical and Biomedical Research and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jennyfer Martínez
- Center for Free Radical and Biomedical Research and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jie Liu
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mauricio Mastrogiovanni
- Center for Free Radical and Biomedical Research and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María M Fergusson
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ilsa I Rovira
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura Castro
- Center for Free Radical and Biomedical Research and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Andrés Trostchansky
- Center for Free Radical and Biomedical Research and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Moreno
- Laboratory for Vaccine Research, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de la República, Uruguay
| | - Liu Cao
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Celia Quijano
- Center for Free Radical and Biomedical Research and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
44
|
Wu K, Tan XY, Xu YH, Shi X, Fan YF, Li DD, Liu X. JAK family members: Molecular cloning, expression profiles and their roles in leptin influencing lipid metabolism in Synechogobius hasta. Comp Biochem Physiol B Biochem Mol Biol 2016; 203:122-131. [PMID: 27789245 DOI: 10.1016/j.cbpb.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 01/09/2023]
Abstract
Janus kinase (JAK) is a family of non-receptor tyrosine kinases that participate in transducing cytokine signals from the external environment to the nucleus in various biological processes. Currently, information about their genes structure and evolutionary history has been extensively studied in mammals as well as in several fish species. By contrast, limited reports have addressed potential role of diverse JAK in signaling responses to leptin in fish. In this study, we identified and characterized five JAK members of Synechogobius hasta. Compared to mammals, more members of the JAK family were found in S. hasta, which provided evidence that the JAK family members had arisen by the whole genome duplications during vertebrate evolution. For protein structure, all of these members possessed similar domains compared with those of mammals. Their mRNAs were expressed in a wide range of tissues, but at the different levels. Incubation in vitro of freshly isolated hepatocytes of S. hasta with different concentrations of recombinant human leptin decreased the intracellular triglyceride content and lipogenic genes expression, and increased mRNA expression of several JAK and lipolytic genes. AG490, a specific inhibitor of JAK, reversed leptin-induced effects on TG content and JAK2a, JAK2b, hormone-sensitive lipase (HSL2) and acetyl-CoA carboxylase (ACCa), indicating that the JAK2a/b may have mediated the actions of leptin on lipid metabolism at transcriptional level.
Collapse
Affiliation(s)
- Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Ying Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovative Center for Efficient and Health Production of Fisheries in Hunan Province, Changde 415000, China.
| | - Yi-Huan Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Shi
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao-Fang Fan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan-Dan Li
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Liu
- Panjin Guanghe Crab Co., Ltd., Panjin 124200, China
| |
Collapse
|
45
|
Ducheix S, Vegliante MC, Villani G, Napoli N, Sabbà C, Moschetta A. Is hepatic lipogenesis fundamental for NAFLD/NASH? A focus on the nuclear receptor coactivator PGC-1β. Cell Mol Life Sci 2016; 73:3809-22. [PMID: 27522544 PMCID: PMC11108573 DOI: 10.1007/s00018-016-2331-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver diseases are the hepatic manifestation of metabolic syndrome. According to the classical pattern of NAFLD progression, de novo fatty acid synthesis has been incriminated in NAFLD progression. However, this hypothesis has been challenged by the re-evaluation of NAFLD development mechanisms together with the description of the role of lipogenic genes in NAFLD and with the recent observation that PGC-1β, a nuclear receptor/transcription factor coactivator involved in the transcriptional regulation of lipogenesis, displays protective effects against NAFLD/NASH progression. In this review, we focus on the implication of lipogenesis and triglycerides synthesis on the development of non-alcoholic fatty liver diseases and discuss the involvement of these pathways in the protective role of PGC-1β toward these hepatic manifestations.
Collapse
Affiliation(s)
- Simon Ducheix
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
- IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco 65, 70124, Bari, Italy
| | - Maria Carmela Vegliante
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Nicola Napoli
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Carlo Sabbà
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Clinica Medica "Cesare Frugoni", Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy.
- IRCCS Istituto Tumori "Giovanni Paolo II", Viale O. Flacco 65, 70124, Bari, Italy.
| |
Collapse
|
46
|
Kaulage M, Maji B, Bhat J, Iwasaki Y, Chatterjee S, Bhattacharya S, Muniyappa K. Discovery and Structural Characterization of G-quadruplex DNA in Human Acetyl-CoA Carboxylase Gene Promoters: Its Role in Transcriptional Regulation and as a Therapeutic Target for Human Disease. J Med Chem 2016; 59:5035-50. [PMID: 27058681 DOI: 10.1021/acs.jmedchem.6b00453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Accumulating evidence suggests that G-quadruplexes play vital roles in gene expression, DNA replication, and recombination. Three distinct promoters (PI, PII, and PIII) regulate human acetyl-CoA carboxylase 1 (ACC1) gene expression. In this study, we asked whether the G-rich sequences within the human ACC1 (PI and PII) promoters can form G-quadruplex structures and regulate normal DNA transactions. Using multiple complementary methods, we show that G-rich sequences of PI and PII promoters form intramolecular G-quadruplex structures and then establish unambiguously the topologies of these structures. Importantly, G-quadruplex formation in ACC1 gene promoter region blocks DNA replication and suppresses transcription, and this effect was further augmented by G-quadruplex stabilizing ligands. Altogether, these results are consistent with the notion that G-quadruplex structures exist within the human ACC1 gene promoter region, whose activity can be suppressed by G-quadruplex stabilizing ligands, thereby revealing a novel regulatory mechanism of ACC1 gene expression and as a possible therapeutic target.
Collapse
Affiliation(s)
| | | | - Jyotsna Bhat
- Department of Biophysics, Bose Institute , Kolkata 700054, India
| | - Yasumasa Iwasaki
- Department of Endocrinology, Metabolism, and Nephrology, Kochi Medical School, Kochi University , Nankoku 780-8520, Japan
| | | | | | | |
Collapse
|
47
|
Zhou Y, Li Z, Tang F, Ge R. Proteomics annotate therapeutic properties of a traditonal Tibetan medicine - Tsantan Sumtang targeting and regulating multiple perturbed pathways. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:108-117. [PMID: 26707570 DOI: 10.1016/j.jep.2015.12.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/29/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tsantan Sumtang is a traditional Tibetan medicine, which has been traditionally used as medicine for the treatment of cardiopyretic disease which is similar to angina. However, the precise and comprehensive mechanism of it pretreatment remain elusive, so in this study, we used proteomics to systematically analyse the therapeutic mechanism of it. MATERAL AND METHODS Rats were divided into three groups (n=6): Tsantan Sumtang group (2g/kg), the model group, the control group (distilled water, 10ml/kg). Drugs were treated once a day for 20 days. After the last administration of drug, left anterior descending coronary artery ligation in vivo was performed. 5 days latter, the hearts were harvested and we applied HPLC- MS/MS using an isobaric TMTs proteomics technology to analyse the differentially expressed proteins among groups. RESULTS We comfirmed from the data that 752 proteins were differentially expressed in model group when compared with the control group, 314 proteins showed the recovery of the values by Tsantan Sumtang treatment. The differential proteins were analysed by gene ontology, cellular pathways and clustering analyses, most of them were metabolic enzymes. These included glycolytic enzymes, enzymes implicated in fatty acids oxidation and the tricarboxylic acid cycle, various subunits of different mitochondrial electron transfer chain complexes, as well as enzymes involved in antioxidation system. CONCLUSION Tsantan Sumtang can target and regulate multiple metabolic perturbed pathways, especially it can partially inhibite fatty acid β-oxidation, stimulate glucose metabolism, oxidative phosphorylation and ATP utilization to protect the injured heart. This helped us to understand the molecular therapeutic mechanisms of Tsantan Sumtang on mycardial ischemia.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Tibetan Medicine Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhanqiang Li
- Department of Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Feng Tang
- Department of Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Rili Ge
- Department of Tibetan Medicine Pharmacology, Shenyang Pharmaceutical University, Shenyang, China; Department of Research Center for High Altitude Medicine, Qinghai University, Xining, China.
| |
Collapse
|
48
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Wu K, Tan XY, Xu YH, Chen QL, Pan YX. JAK and STAT members of yellow catfish Pelteobagrus fulvidraco and their roles in leptin affecting lipid metabolism. Gen Comp Endocrinol 2016; 226:14-26. [PMID: 26704851 DOI: 10.1016/j.ygcen.2015.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023]
Abstract
The present study clones and characterizes the full-length cDNA sequences of members in JAK-STAT pathway, explores their mRNA tissue expression and the biological role in leptin influencing lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Full-length cDNA sequences of five JAKs and seven STAT members, including some splicing variants, were obtained from yellow catfish. Compared to mammals, more members of the JAKs and STATs family were found in yellow catfish, which provided evidence that the JAK and STAT family members had arisen by the whole genome duplications during vertebrate evolution. All of these members were widely expressed across the eleven tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, testis and ovary) but at the variable levels. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin changed triglyceride content and mRNA expression of several JAKs and STATs members, and genes involved in lipid metabolism. AG490, a specific inhibitor of JAK2-STAT pathway, partially reversed leptin-induced effects, indicating that the JAK2a/b-STAT3 pathway exerts main regulating actions of leptin on lipid metabolism at transcriptional level. Meanwhile, the different splicing variants were differentially regulated by leptin incubation. Thus, our data suggest that leptin activated the JAK/STAT pathway and increases the expression of target genes, which partially accounts for the leptin-induced changes in lipid metabolism in yellow catfish.
Collapse
Affiliation(s)
- Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Xiao-Ying Tan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China.
| | - Yi-Huan Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Qi-Liang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| |
Collapse
|
50
|
Huang C, Luo Z, Hogstrand C, Chen F, Shi X, Chen QL, Song YF, Pan YX. Effect and mechanism of waterborne prolonged Zn exposure influencing hepatic lipid metabolism in javelin gobySynechogobius hasta. J Appl Toxicol 2015; 36:886-95. [DOI: 10.1002/jat.3261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/22/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Chao Huang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of People's Republic of China, Fishery College; Huazhong Agricultural University, Wuhan 430070 and Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province; Wuhan 430070 People's Republic of China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of People's Republic of China, Fishery College; Huazhong Agricultural University, Wuhan 430070 and Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province; Wuhan 430070 People's Republic of China
- Department of Animal Sciences; Cornell University; Ithaca 14853 NY USA
| | - Christer Hogstrand
- Diabetes and Nutritional Sciences Division, School of Medicine; King's College London; Franklin-Wilkins Building, 150 Stamford Street London SE1 9NH UK
| | - Feng Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of People's Republic of China, Fishery College; Huazhong Agricultural University, Wuhan 430070 and Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province; Wuhan 430070 People's Republic of China
| | - Xi Shi
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of People's Republic of China, Fishery College; Huazhong Agricultural University, Wuhan 430070 and Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province; Wuhan 430070 People's Republic of China
| | - Qi-Liang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of People's Republic of China, Fishery College; Huazhong Agricultural University, Wuhan 430070 and Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province; Wuhan 430070 People's Republic of China
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of People's Republic of China, Fishery College; Huazhong Agricultural University, Wuhan 430070 and Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province; Wuhan 430070 People's Republic of China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of People's Republic of China, Fishery College; Huazhong Agricultural University, Wuhan 430070 and Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province; Wuhan 430070 People's Republic of China
| |
Collapse
|