1
|
Kong Y, Allison DB, Zhang Q, He D, Li Y, Mao F, Li C, Li Z, Zhang Y, Wang J, Wang C, Brainson CF, Liu X. The kinase PLK1 promotes the development of <i>Kras</i>/<i>Tp53</i>-mutant lung adenocarcinoma through transcriptional activation of the receptor RET. Sci Signal 2022; 15:eabj4009. [PMID: 36194647 PMCID: PMC9737055 DOI: 10.1126/scisignal.abj4009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased abundance of polo-like kinase 1 (PLK1) is observed in various tumor types, particularly in lung adenocarcinoma (LUAD). Here, we found that PLK1 accelerated the progression of LUAD through a mechanism that was independent of its role in mediating mitotic cell division. Analysis of human tumor databases revealed that increased PLK1 abundance in LUAD correlated with mutations in KRAS and p53, with tumor stage, and with reduced survival in patients. In a mouse model of KRAS<sup>G12D</sup>-driven, p53-deficient LUAD, PLK1 overexpression increased tumor burden, decreased tumor cell differentiation, and reduced animal survival. PLK1 overexpression in cultured cells and mice indirectly increased the expression of the gene encoding the receptor tyrosine kinase RET by phosphorylating the transcription factor TTF-1. Signaling by RET and mutant KRAS in these tumors converged to activate the mitogen-activated protein kinase (MAPK) pathway. Pharmacological inhibition of the MAPK pathway kinase MEK combined with inhibition of either RET or PLK1 markedly suppressed tumor growth. Our findings show that PLK1 can amplify MAPK signaling and reveal a potential target for stemming progression in lung cancers with high PLK1 abundance.
Collapse
Affiliation(s)
- Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Derek B. Allison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA,Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Qiongsi Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Yuntong Li
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jianlin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Christine F. Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, 40536, USA,Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536, USA,Corresponding author.
| |
Collapse
|
2
|
Canals J, Navarro A, Vila C, Canals JM, Díaz T, Acosta-Plasencia M, Cros-Font C, Han B, He Y, Monzó M. Human embryonic mesenchymal lung-conditioned medium promotes differentiation to myofibroblast and loss of stemness phenotype in lung adenocarcinoma cell lines. J Exp Clin Cancer Res 2022; 41:37. [PMID: 35081981 PMCID: PMC8790861 DOI: 10.1186/s13046-021-02206-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Background When genes responsible for normal embryonic development are abnormally expressed in adults, it can lead to tumor development. This can suggest that the same mechanism that controls embryonic differentiation can also control tumor differentiation. We hypothesize that the malignant phenotype of lung cancer cells could acquire benign characteristics when in contact with an embryonic lung microenvironment. We cultured two lung cancer cell lines in embryonic lung mesenchyme-conditioned medium and evaluated morphological, functional and molecular changes. Methods The human embryonic mesenchymal lung-conditioned medium (hEML-CM) was obtained by culturing lung cells from embryos in the pseudoglandular stage of development. The NSCLC cell lines A549 and H1299 we cultured in the hEML-CM and in a tumor-conditioned medium. Morphological changes were analyzed with optical and transmission electron microscopy. To evaluate the functional effect of conditioned medium in tumor cells, we analyzed cell proliferation, migration, colony formation capacity in 2D and 3D and in vivo tumor growth capacity. The expression of the pluripotency genes OSKM, the adenocarcinoma marker NKX2-1, the lung surfactant proteins SFTP, the myofibroblast marker MYH and DNMT3A/3B was analyzed with qRT-PCR and the presence of the myofibroblast markers vimentin and α-SMA with immunofluorescence. Transcriptomic analysis was performed using Affymetrix arrays. Results The A549 and H1299 cells cultured in hEML-CM lost their epithelial morphology, acquired mesodermal characteristics, and decreased proliferation, migration, and colony formation capacity in 2D and 3D, as well as reduced its capacity to growth in vivo. The expression of OSKM, NKX2-1 and SFTP decreased, while that of DNMT3A/3B, vimentin, α-SMA and MYH increased. Distant matrix analysis based on transcriptomic profile showed that conditioned cells were closer to myoblast and human lung fibroblast than to normal epithelial immortalized lung cells. A total of 1631 for A549 and 866 for H1299 differentially expressed genes between control and conditioned cells were identified. Conclusions To the best of our knowledge, this is the first study to report that stimuli from the embryonic lung can modulate the malignant phenotype of lung cancer cells, control their growth capacity and activate their differentiation into myofibroblasts. These findings could lead to new strategies for lung cancer management. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02206-z.
Collapse
|
3
|
Lopez-Campistrous A, Adewuyi EE, Benesch MGK, Ko YM, Lai R, Thiesen A, Dewald J, Wang P, Chu K, Ghosh S, Williams DC, Vos LJ, Brindley DN, McMullen TPW. PDGFRα Regulates Follicular Cell Differentiation Driving Treatment Resistance and Disease Recurrence in Papillary Thyroid Cancer. EBioMedicine 2016; 12:86-97. [PMID: 27682510 PMCID: PMC5078607 DOI: 10.1016/j.ebiom.2016.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022] Open
Abstract
Dedifferentiation of follicular cells is a central event in resistance to radioactive iodine and patient mortality in papillary thyroid carcinoma (PTC). We reveal that platelet derived growth factor receptor alpha (PDGFRα) specifically drives dedifferentiation in PTC by disrupting the transcriptional activity of thyroid transcription factor-1 (TTF1). PDGFRα activation dephosphorylates TTF1 consequently shifting the localization of this transcription factor from the nucleus to the cytoplasm. TTF1 is required for follicular cell development and disrupting its function abrogates thyroglobulin production and sodium iodide transport. PDGFRα also promotes a more invasive and migratory cell phenotype with a dramatic increase in xenograft tumor formation. In patient tumors we confirm that nuclear TTF1 expression is inversely proportional to PDGFRα levels. Patients exhibiting PDGFRα at time of diagnosis are three times more likely to exhibit nodal metastases and are 18 times more likely to recur within 5years than those patients lacking PDGFRα expression. Moreover, high levels of PDGFRα and low levels of nuclear TTF1 predict resistance to radioactive iodine therapy. We demonstrate in SCID xenografts that focused PDGFRα blockade restores iodide transport and decreases tumor burden by >50%. Focused PDGFRα inhibitors, combined with radioactive iodine, represent an additional avenue for treating patients with aggressive variants of PTC.
Collapse
MESH Headings
- Animals
- Biological Transport
- Carcinoma/drug therapy
- Carcinoma/genetics
- Carcinoma/mortality
- Carcinoma/pathology
- Carcinoma, Papillary
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Nucleus/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, SCID
- Models, Biological
- Neoplasm Grading
- Neoplasm Metastasis
- Neoplasm Recurrence, Local
- Phenotype
- Prognosis
- Protein Transport
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Sodium Iodide/metabolism
- Thyroglobulin/biosynthesis
- Thyroid Cancer, Papillary
- Thyroid Epithelial Cells/metabolism
- Thyroid Epithelial Cells/pathology
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/mortality
- Thyroid Neoplasms/pathology
- Transcription Factors
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | - Yi Man Ko
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| | - Jay Dewald
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Peng Wang
- Department of Internal Medicine, University of Alberta, Edmonton, Canada
| | - Karen Chu
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Sunita Ghosh
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Larissa J Vos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Todd P W McMullen
- Department of Surgery, University of Alberta, Edmonton, Canada; Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Feng Y, Singleton D, Guo C, Gardner A, Pakala S, Kumar R, Jensen E, Zhang J, Khan S. DNA homologous recombination factor SFR1 physically and functionally interacts with estrogen receptor alpha. PLoS One 2013; 8:e68075. [PMID: 23874500 PMCID: PMC3706619 DOI: 10.1371/journal.pone.0068075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/25/2013] [Indexed: 11/29/2022] Open
Abstract
Estrogen receptor alpha (ERα), a ligand-dependent transcription factor, mediates the expression of its target genes by interacting with corepressors and coactivators. Since the first cloning of SRC1, more than 280 nuclear receptor cofactors have been identified, which orchestrate target gene transcription. Aberrant activity of ER or its accessory proteins results in a number of diseases including breast cancer. Here we identified SFR1, a protein involved in DNA homologous recombination, as a novel binding partner of ERα. Initially isolated in a yeast two-hybrid screen, the interaction of SFR1 and ERα was confirmed in vivo by immunoprecipitation and mammalian one-hybrid assays. SFR1 co-localized with ERα in the nucleus, potentiated ER’s ligand-dependent and ligand-independent transcriptional activity, and occupied the ER binding sites of its target gene promoters. Knockdown of SFR1 diminished ER’s transcriptional activity. Manipulating SFR1 expression by knockdown and overexpression revealed a role for SFR1 in ER-dependent and -independent cancer cell proliferation. SFR1 differs from SRC1 by the lack of an intrinsic activation function. Taken together, we propose that SFR1 is a novel transcriptional modulator for ERα and a potential target in breast cancer therapy.
Collapse
Affiliation(s)
- Yuxin Feng
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - David Singleton
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Chun Guo
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Amanda Gardner
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Suresh Pakala
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC, United States of America
| | - Rakesh Kumar
- Department of Biochemistry and Molecular Biology, George Washington University School of Medicine, Washington, DC, United States of America
| | - Elwood Jensen
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jinsong Zhang
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Sohaib Khan
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
5
|
Yamaguchi T, Hosono Y, Yanagisawa K, Takahashi T. NKX2-1/TTF-1: an enigmatic oncogene that functions as a double-edged sword for cancer cell survival and progression. Cancer Cell 2013; 23:718-23. [PMID: 23763999 DOI: 10.1016/j.ccr.2013.04.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/19/2013] [Accepted: 04/01/2013] [Indexed: 01/30/2023]
Abstract
Emerging evidence indicates that NKX2-1, a homeobox-containing transcription factor also known as TTF-1, plays a role as a "lineage-survival" oncogene in lung adenocarcinomas. In T cell acute lymphoblastic leukemia, gene rearrangements lead to aberrant expression of NKX2-1/TTF-1. Despite accumulating evidence supporting its oncogenic role, it has become apparent that NKX2-1/TTF-1 expression also has biological and clinical functions in the opposite direction that act against tumor progression. Herein, we review recent findings showing these enigmatic double-edged characteristics, with special attention given to the roles of NKX2-1/TTF-1 in lung development and carcinogenesis.
Collapse
Affiliation(s)
- Tomoya Yamaguchi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | |
Collapse
|
6
|
Hippo-Foxa2 signaling pathway plays a role in peripheral lung maturation and surfactant homeostasis. Proc Natl Acad Sci U S A 2013; 110:7732-7. [PMID: 23620511 DOI: 10.1073/pnas.1220603110] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Respiratory distress syndrome (RDS), which is induced by insufficient production of surfactant, is the leading cause of mortality in preterm babies. Although several transcription factors are known to be involved in surfactant protein expression, the molecular mechanisms and signaling pathways upstream of these transcription factors have remained elusive. Here, using mammalian Hippo kinases (Mst1/2, mammalian sterile 20-like kinase 1/2) conditional knockout mice, we demonstrate that Mst1/2 kinases are critical for orchestration of transcription factors involved in surfactant protein homeostasis and prevention of RDS. Mice lacking Mst1/2 in the respiratory epithelium exhibited perinatal mortality with respiratory failure and their lungs contained fewer type I pneumocytes and more immature type II pneumocytes lacking microvilli, lamellar bodies, and surfactant protein expression, pointing to peripheral lung immaturity and RDS. In contrast to previous findings of YAP (Yes-associated protein)-mediated canonical Hippo signaling in the liver and intestine, loss of Mst1/2 kinases induced the defects in pneumocyte differentiation independently of YAP hyperactivity. We instead found that Mst1/2 kinases stabilized and phosphorylated the transcription factor Foxa2 (forkhead box A2), which regulates pneumocyte maturation and surfactant protein expression. Taken together, our results suggest that the mammalian Hippo kinases play crucial roles in surfactant homeostasis and coordination of peripheral lung differentiation through regulation of Foxa2 rather than of YAP.
Collapse
|
7
|
Synergistic effect of caffeine and glucocorticoids on expression of surfactant protein B (SP-B) mRNA. PLoS One 2012; 7:e51575. [PMID: 23272120 PMCID: PMC3522739 DOI: 10.1371/journal.pone.0051575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/01/2012] [Indexed: 11/19/2022] Open
Abstract
Administration of glucocorticoids and caffeine is a common therapeutic intervention in the neonatal period, but possible interactions between these substances are still unclear. The present study investigated the effect of caffeine and different glucocorticoids on expression of surfactant protein (SP)-B, crucial for the physiological function of pulmonary surfactant. We measured expression levels of SP-B, various SP-B transcription factors including erythroblastic leukemia viral oncogene homolog 4 (ErbB4) and thyroid transcription factor-1 (TTF-1), as well as the glucocorticoid receptor (GR) after administering different doses of glucocorticoids, caffeine, cAMP, or the phosphodiesterase-4 inhibitor rolipram in the human airway epithelial cell line NCI-H441. Administration of dexamethasone (1 µM) or caffeine (5 mM) stimulated SP-B mRNA expression with a maximal of 38.8±11.1-fold and 5.2±1.4-fold increase, respectively. Synergistic induction was achieved after co-administration of dexamethasone (1 mM) in combination with caffeine (10 mM) (206±59.7-fold increase, p<0.0001) or cAMP (1 mM) (213±111-fold increase, p = 0.0108). SP-B mRNA was synergistically induced also by administration of caffeine with hydrocortisone (87.9±39.0), prednisolone (154±66.8), and betamethasone (123±6.4). Rolipram also induced SP-B mRNA (64.9±21.0-fold increase). We detected a higher expression of ErbB4 and GR mRNA (7.0- and 1.7-fold increase, respectively), whereas TTF-1, Jun B, c-Jun, SP1, SP3, and HNF-3α mRNA expression was predominantly unchanged. In accordance with mRNA data, mature SP-B was induced significantly by dexamethasone with caffeine (13.8±9.0-fold increase, p = 0.0134). We found a synergistic upregulation of SP-B mRNA expression induced by co-administration of various glucocorticoids and caffeine, achieved by accumulation of intracellular cAMP. This effect was mediated by a caffeine-dependent phosphodiesterase inhibition and by upregulation of both ErbB4 and the GR. These results suggested that caffeine is able to induce the expression of SP-transcription factors and affects the signaling pathways of glucocorticoids, amplifying their effects. Co-administration of caffeine and corticosteroids may therefore be of benefit in surfactant homeostasis.
Collapse
|
8
|
Khoury T, Rivera L. Foregut duplication cysts: A report of two cases with emphasis on embryogenesis. World J Gastroenterol 2011; 17:130-4. [PMID: 21218094 PMCID: PMC3016673 DOI: 10.3748/wjg.v17.i1.130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/24/2010] [Accepted: 05/31/2010] [Indexed: 02/06/2023] Open
Abstract
Duplication cyst of the stomach with a pseudostratified columnar ciliated epithelium is extremely rare. We describe two cases of these cysts, with emphasis on their immunophenotype and embryogenesis. The first patient was a 29-year-old man who presented with cramping abdominal pain in his left lower quadrant. The second patient was a 26-year-old woman who had a history, over several years, of chronic epigastric abdominal pain radiating to her back. Both lesions were surgically removed. They showed the same histomorphology. The cysts were lined by a pseudostratified respiratory epithelium with ciliated cells. The first cyst was connected to the stomach, while the second cyst was not connected. Both cysts expressed thyroid transcription factor-1 (TTF-1) and surfactant. In this report, we explore the possible embryogenesis of these lesions in the light of TTF-1 and surfactant expression.
Collapse
|
9
|
Boggaram V, Chandru H, Gottipati KR, Thakur V, Das A, Berhane K. Transcriptional regulation of SP-B gene expression by nitric oxide in H441 lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 299:L252-62. [PMID: 20418387 PMCID: PMC2928609 DOI: 10.1152/ajplung.00062.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/20/2010] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein B (SP-B) is essential for the surface tension-lowering function of pulmonary surfactant. Surfactant dysfunction and reduced SP-B levels are associated with elevated nitric oxide (NO) in inflammatory lung diseases, such as acute respiratory distress syndrome. We previously found that NO donors decreased SP-B expression in H441 and MLE-12 lung epithelial cells by reducing SP-B promoter activity. In this study, we determined the roles of DNA elements and interacting transcription factors necessary for NO inhibition of SP-B promoter activity in H441 cells. We found that the NO donor diethylenetriamine-nitric oxide adduct (DETA-NO) decreased SP-B promoter thyroid transcription factor 1 (TTF-1), hepatocyte nuclear factor 3 (HNF-3), and Sp1 binding activities but increased activator protein 1 (AP-1) binding activity. DETA-NO decreased TTF-1, but not Sp1, levels, suggesting that reduced TTF-1 expression contributes to reduced TTF-1 binding activity. Lack of effect on Sp1 levels suggested that DETA-NO inhibits Sp1 binding activity per se. Overexpression of Sp1, but not TTF-1, blocked DETA-NO inhibition of SP-B promoter activity. DETA-NO inhibited SP-B promoter induction by exogenous TTF-1 without altering TTF-1 levels. DETA-NO decreased TTF-1 mRNA levels and gene transcription rate, indicating that DETA-NO inhibits TTF-1 expression at the transcriptional level. We conclude that NO inhibits SP-B promoter by decreasing TTF-1, Sp1, and HNF-3 binding activities and increasing AP-1 binding activity. NO inhibits TTF-1 levels and activity to decrease SP-B expression. NO inhibition of SP-B expression could be a mechanism by which surfactant dysfunction occurs in inflammatory lung diseases.
Collapse
Affiliation(s)
- Vijay Boggaram
- Center for Biomedical Research, Univ. of Texas Health Science Center at Tyler, TX 75708-3154, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Liu D, Benlhabib H, Mendelson CR. cAMP enhances estrogen-related receptor alpha (ERRalpha) transcriptional activity at the SP-A promoter by increasing its interaction with protein kinase A and steroid receptor coactivator 2 (SRC-2). Mol Endocrinol 2009; 23:772-83. [PMID: 19264843 PMCID: PMC2691680 DOI: 10.1210/me.2008-0282] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 02/24/2009] [Indexed: 01/01/2023] Open
Abstract
Estrogen-related receptor (ERRalpha) plays a critical role in basal and cAMP-induced expression of the human surfactant protein-A (SP-A) gene in lung type II cells through direct binding to an ERR response element (ERRE, 5'-TGACCTTA-3') within its 5'-flanking region. Furthermore, protein kinase A (PKA) up-regulates ERRalpha activation of the hSP-A promoter. In the present study, using cultured human fetal lung type II cells, we observed that cAMP enhanced ERRalpha phosphorylation and nuclear expression levels. cAMP/PKA stimulation of ERRalpha activation of the SP-A promoter was blocked by the PKA inhibitor, H89, whereas the MAPK P38 inhibitor, SB203580, and the MAPK kinase inhibitor, PD98059, had negligible to modest effects. This suggests that cAMP acts selectively through PKA to increase ERRalpha transcriptional activity. Of several coactivators tested, steroid receptor coactivator 2 (SRC-2) had the most pronounced effect to increase ERRalpha transcriptional activity at the SP-A promoter; this was enhanced by cotransfection with PKA catalytic subunit (PKAcat). Interestingly, SRC-2, ERRalpha, and PKAcat in type II cell nuclear extracts interacted at the ERRE; this was enhanced by cAMP and inhibited by H89. cAMP increased in vivo binding of PKAcat and SRC-2 to the ERRE genomic region in lung type II cells. In mutagenesis studies, three serines (S87, S114, and S277) were found to be critical for PKA and SRC-2 induction of ERRalpha transcriptional activity. Collectively, these findings indicate that cAMP/PKA signaling enhances ERRalpha phosphorylation and nuclear localization, recruitment to the SP-A promoter, and interaction with PKAcat and SRC-2, resulting in the up-regulation of SP-A gene transcription.
Collapse
Affiliation(s)
- Dongyuan Liu
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 75390-9038, USA
| | | | | |
Collapse
|
11
|
Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Lond) 2009; 116:27-35. [PMID: 19037882 DOI: 10.1042/cs20080068] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TTF-1 [thyroid transcription factor-1; also known as Nkx2.1, T/EBP (thyroid-specific-enhancer-binding protein) or TITF1] is a homeodomain-containing transcription factor essential for the morphogenesis and differentiation of the thyroid, lung and ventral forebrain. TTF-1 controls the expression of select genes in the thyroid, lung and the central nervous system. In the lung, TTF-1 controls the expression of surfactant proteins that are essential for lung stability and lung host defence. Human TTF-1 is encoded by a single gene located on chromosome 14 and is organized into two/three exons and one/two introns. Multiple transcription start sites and alternative splicing produce mRNAs with heterogeneity at the 5' end. The 3' end of the TTF-1 mRNA is characterized by a rather long untranslated region. The amino acid sequences of TTF-1 from human, rat, mouse and other species are very similar, indicating a high degree of sequence conservation. TTF-1 promoter activity is maintained by the combinatorial or co-operative actions of HNF-3 [hepatocyte nuclear factor-3; also known as FOXA (forkhead box A)], Sp (specificity protein) 1, Sp3, GATA-6 and HOXB3 (homeobox B3) transcription factors. There is limited information on the regulation of TTF-1 gene expression by hormones, cytokines and other biological agents. Glucocorticoids, cAMP and TGF-beta (transforming growth factor-beta) have stimulatory effects on TTF-1 expression, whereas TNF-alpha (tumour necrosis factor-alpha) and ceramide have inhibitory effects on TTF-1 DNA-binding activity in lung cells. Haplo-insufficiency of TTF-1 in humans causes hypothyroidism, respiratory dysfunction and recurring pulmonary infections, underlining the importance of optimal TTF-1 levels for the maintenance of thyroid and lung function. Recent studies have implicated TTF-1 as a lineage-specific proto-oncogene for lung cancer.
Collapse
|
12
|
Abstract
The vertebrate lung consists of multiple cell types that are derived primarily from endodermal and mesodermal compartments of the early embryo. The process of pulmonary organogenesis requires the generation of precise signaling centers that are linked to transcriptional programs that, in turn, regulate cell numbers, differentiation, and behavior, as branching morphogenesis and alveolarization proceed. This review summarizes knowledge regarding the expression and proposed roles of transcription factors influencing lung formation and function with particular focus on knowledge derived from the study of the mouse. A group of transcription factors active in the endodermally derived cells of the developing lung tubules, including thyroid transcription factor-1 (TTF-1), beta-catenin, Forkhead orthologs (FOX), GATA, SOX, and ETS family members are required for normal lung morphogenesis and function. In contrast, a group of distinct proteins, including FOXF1, POD1, GLI, and HOX family members, play important roles in the developing lung mesenchyme, from which pulmonary vessels and bronchial smooth muscle develop. Lung formation is dependent on reciprocal signaling among cells of both endodermal and mesenchymal compartments that instruct transcriptional processes mediating lung formation and adaptation to breathing after birth.
Collapse
Affiliation(s)
- Yutaka Maeda
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
13
|
Das A, Boggaram V. Proteasome dysfunction inhibits surfactant protein gene expression in lung epithelial cells: mechanism of inhibition of SP-B gene expression. Am J Physiol Lung Cell Mol Physiol 2007; 292:L74-84. [PMID: 16905641 DOI: 10.1152/ajplung.00103.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant proteins maintain lung function through their actions to reduce alveolar surface tension and control of innate immune responses in the lung. The ubiquitin proteasome pathway is responsible for the degradation of majority of intracellular proteins in eukaryotic cells, and proteasome dysfunction has been linked to the development of neurodegenerative, cardiac, and other diseases. Proteasome function is impaired in interstitial lung diseases associated with surfactant protein C (SP-C) mutation mapping to the BRICHOS domain located in the proSP-C protein. In this study we determined the effects of proteasome inhibition on surfactant protein expression in H441 and MLE-12 lung epithelial cells to understand the relationship between proteasome dysfunction and surfactant protein gene expression. Proteasome inhibitors lactacystin and MG132 reduced the levels of SP-A, SP-B, and SP-C mRNAs in a concentration-dependent manner in H441 and MLE-12 cells. In H441 cells, lactacystin and MG132 inhibition of SP-B mRNA was associated with similar decreases in SP-B protein, and the inhibition was due to inhibition of gene transcription. Proteasome inhibitors decreased thyroid transcription factor-1 (TTF-1)/Nkx2.1 DNA binding activity, and the reduced TTF-1 DNA binding activity was due to reduced expression levels of TTF-1 protein. These data indicated that the ubiquitin proteasome pathway is essential for the maintenance of surfactant protein gene expression and that disruption of this pathway inhibits surfactant protein gene expression via reduced expression of TTF-1 protein.
Collapse
Affiliation(s)
- Aparajita Das
- Department of Molecular Biology, The University of Texas Health Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | | |
Collapse
|
14
|
Xu J, Tian J, Grumelli SM, Haley KJ, Shapiro SD. Stage-specific effects of cAMP signaling during distal lung epithelial development. J Biol Chem 2006; 281:38894-904. [PMID: 17018522 DOI: 10.1074/jbc.m609339200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
cAMP signaling is postulated to play a role in distal lung epithelial differentiation based on several observations. First, it enhances fibroblast growth factor-induced transdifferentiation of early tracheal epithelium into respiratory epithelium. Second, there are cAMP-responsive elements in the heterologous promoters of Sftpb and Sftpa genes. Third, cAMP augments the effect of dexamethasone in maintaining differentiation of human fetal type II pneumocyte culture. However, this concept has not been thoroughly tested in vivo. In the current study, we modulated cAMP signaling in developing distal lung epithelium in vivo using an inducible transgenic system that expressed a mutant form of Galpha(s) (Galpha(s)Q227L). We failed to demonstrate the ability of cAMP to promote distal epithelial maturation during embryonic stages. The results argue against its physiological role in this process. In addition, induction of cAMP signaling at the late pseudoglandular stage but not during the canalicular or saccular stage surprisingly delayed distal differentiation by suppressing the expression of Sftpc, Sftpa, and Aquaporin5 as well as the formation of lamellar bodies. This stage-specific inhibitory effect was observed in the absence of cellular toxicity or changes in branching. Transgenic lungs did not show significant changes in the known pathways that are important for distal differentiation. Therefore, we propose the existence of yet-to-be identified cAMP-sensitive novel regulators of early distal lung epithelial differentiation. Although the delay of differentiation seemed to be reversible at later stages, it still led to pronounced permanent postnatal airspace enlargement due to impaired paracrine function of distal epithelium in regulating alveolar myofibroblast development.
Collapse
Affiliation(s)
- Jingsong Xu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital at Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
15
|
Islam KN, Mendelson CR. Permissive effects of oxygen on cyclic AMP and interleukin-1 stimulation of surfactant protein A gene expression are mediated by epigenetic mechanisms. Mol Cell Biol 2006; 26:2901-12. [PMID: 16581766 PMCID: PMC1446958 DOI: 10.1128/mcb.26.8.2901-2912.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/17/2005] [Accepted: 01/17/2006] [Indexed: 11/20/2022] Open
Abstract
Surfactant protein A (SP-A) is important for immune defense within the alveolus. Cyclic AMP (cAMP) stimulation of SP-A expression in lung type II cells is O(2) dependent and mediated by increased phosphorylation and binding of thyroid transcription factor 1 (TTF-1) to an upstream response element (TTF-1-binding element [TBE]). Interleukin-1 (IL-1) stimulation of SP-A expression is mediated by NF-kappaB (p65/p50) activation and increased binding to the TBE. In this study, we found that O(2) also was permissive for IL-1 induction of SP-A expression and for cAMP and IL-1 stimulation of type II cell nuclear protein binding to the TBE. Using chromatin immunoprecipitation, we observed that when type II cells were cultured in 20% O(2), cAMP and IL-1 stimulated the recruitment of TTF-1, p65, CBP, and steroid receptor coactivator 1 to the TBE region of the SP-A promoter and increased local acetylation of histone H3; these effects were prevented by hypoxia. Hypoxia markedly reduced global levels of CBP and acetylated histone H3 and increased the expression of histone deacetylases. Furthermore, hypoxia caused a global increase in histone H3 dimethylated on Lys9 and increased the association of dimethyl histone H3 with the SP-A promoter. These results, together with findings that the histone deacetylase inhibitor trichostatin A and the methyltransferase inhibitor 5'-deoxy(5'-methylthio)adenosine markedly enhanced SP-A expression in lung type II cells, suggest that increased O(2) availability to type II cells late in gestation causes epigenetic changes that permit access of TTF-1 and NF-kappaB to the SP-A promoter. The binding of these transcription factors facilitates the recruitment of coactivators, resulting in the further opening of the chromatin structure and activation of SP-A transcription.
Collapse
Affiliation(s)
- Kazi Nazrul Islam
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | | |
Collapse
|
16
|
Dentice M, Luongo C, Elefante A, Ambrosio R, Salzano S, Zannini M, Nitsch R, Di Lauro R, Rossi G, Fenzi G, Salvatore D. Pendrin is a novel in vivo downstream target gene of the TTF-1/Nkx-2.1 homeodomain transcription factor in differentiated thyroid cells. Mol Cell Biol 2005; 25:10171-82. [PMID: 16260629 PMCID: PMC1280265 DOI: 10.1128/mcb.25.22.10171-10182.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thyroid transcription factor gene 1 (TTF-1) is a homeobox-containing gene involved in thyroid organogenesis. During early thyroid development, the homeobox gene Nkx-2.5 is expressed in thyroid precursor cells coincident with the appearance of TTF-1. The aim of this study was to investigate the molecular mechanisms underlying thyroid-specific gene expression. We show that the Nkx-2.5 C terminus interacts with the TTF-1 homeodomain and, moreover, that the expression of a dominant-negative Nkx-2.5 isoform (N188K) in thyroid cells reduces TTF-1-driven transcription by titrating TTF-1 away from its target DNA. This process reduced the expression of several thyroid-specific genes, including pendrin and thyroglobulin. Similarly, down-regulation of TTF-1 by RNA interference reduced the expression of both genes, whose promoters are sensitive to and directly associate with TTF-1 in the chromatin context. In conclusion, we demonstrate that pendrin and thyroglobulin are downstream targets in vivo of TTF-1, whose action is a prime factor in controlling thyroid differentiation in vivo.
Collapse
Affiliation(s)
- Monica Dentice
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sparkman L, Chandru H, Boggaram V. Ceramide decreases surfactant protein B gene expression via downregulation of TTF-1 DNA binding activity. Am J Physiol Lung Cell Mol Physiol 2005; 290:L351-8. [PMID: 16183668 DOI: 10.1152/ajplung.00275.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ceramide, a sphingolipid, is an important signaling molecule in the inflammatory response. Mediators of acute lung injury such as TNF-alpha, platelet-activating factor, and Fas/Apo ligand stimulate sphingomyelin hydrolysis to increase intracellular ceramide levels. Surfactant protein B (SP-B), a hydrophobic protein of pulmonary surfactant, is essential for surfactant function and lung stability. In this study we investigated the effects of ceramide on SP-B gene expression in H441 lung epithelial cells. Ceramide decreased SP-B mRNA levels in control and dexamethasone-treated cells after 24-h incubation and inhibition of SP-B mRNA was associated with inhibition of immunoreactive SP-B. In transient transfections assays, ceramide inhibited SP-B promoter activity, indicating that the inhibitory effects are exerted at the transcriptional level. Deletion mapping experiments showed that the ceramide-responsive region is located within the -233/-80-bp region of human SP-B promoter. Electrophoretic mobility shift and reporter assays showed that ceramide reduced the DNA binding activity and transactivation capability of thyroid transcription factor 1 (TTF-1/Nkx2.1), a key factor for SP-B promoter activity. Collectively these data showed that ceramide inhibits SP-B gene expression by reducing the DNA biding activity of TTF-1/Nkx2.1 transcription factor. Protein kinase C inhibitor bisindolylmaleimide and the protein tyrosine kinase inhibitor genistein partially reversed ceramide inhibition, indicating that protein kinases play important roles in the ceramide inhibition of SP-B gene expression. Chemical inhibitors of de novo ceramide synthesis and sphingomyelin hydrolysis had no effect on TNF-alpha inhibition of SP-B promoter activity and mRNA levels, suggesting that ceramide does not play a role in the inhibition.
Collapse
Affiliation(s)
- Loretta Sparkman
- Dept. of Molecular Biology, University of Texas Health Center at Tyler, TX 75708-3154, USA
| | | | | |
Collapse
|
18
|
Srisodsai A, Kurotani R, Chiba Y, Sheikh F, Young HA, Donnelly RP, Kimura S. Interleukin-10 Induces Uteroglobin-related Protein (UGRP) 1 Gene Expression in Lung Epithelial Cells through Homeodomain Transcription Factor T/EBP/NKX2.1. J Biol Chem 2004; 279:54358-68. [PMID: 15485815 DOI: 10.1074/jbc.m405331200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UGRP1 is a downstream target gene for homeodomain transcription factor T/EBP/NKX2.1, which is predominantly expressed in lung epithelial cells, and may play an anti-inflammatory role in lung inflammation. To understand the role of UGRP1 in inflammation, its expression was investigated in relation to cytokine signaling. In vivo experiments using mouse embryonic lung organ culture and intranasal administration of interleukin (IL) 10 revealed that constitutive expression of Ugrp1 mRNA is enhanced by IL-10. Increase of protein levels was also demonstrated by immunohistochemistry using embryonic lungs. This IL-10 induction of Ugrp1 gene expression occurs at the transcriptional level when examined using mouse embryonic lung primary cultures. In human lung NCI-H441 cells that in contrast to mouse lung cells, do not exhibit constitutive expression of the gene, expression of the UGRP1 gene was induced in a rapid and stable fashion. Two T/EBP, but not STAT3, binding sites located in the human UGRP1 gene promoter are responsible for IL-10 induction of the UGRP1 gene as judged by transfection, gel shift, and chromatin immunoprecipitation analyses. The IL-10 receptor chains, IL-10R1 and IL-10R2, are expressed in H441 cells, however, STAT3 was only weakly activated upon IL-10 treatment. In contrast, STAT3 was strongly activated when the cells were treated with other cytokines such as IL-22 and interferon-beta but UGRP1 expression was not increased. Together these results demonstrate that IL-10 induces UGRP1 gene expression in lung epithelial cells through a T/EBP/NKX2.1-dependent pathway. The results further suggest that UGRP1 might be a target for IL-10 anti-inflammatory activities in the lung.
Collapse
Affiliation(s)
- Achara Srisodsai
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhu NL, Li C, Xiao J, Minoo P. NKX2.1 regulates transcription of the gene for human bone morphogenetic protein-4 in lung epithelial cells. Gene 2004; 327:25-36. [PMID: 14960358 DOI: 10.1016/j.gene.2003.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 10/31/2003] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
Bone morphogenetic protein 4, BMP4, plays an important role in the development of various organs including the lungs. Little is known regarding the regulation of Bmp4 gene expression in any organ. In the lung, indirect evidence indicates that NKX2.1, a homeodomain transcriptional factor with a demonstrated role in lung morphogenesis, may be a potential upstream regulator of Bmp4 gene expression. In particular, Bmp4 mRNA is reduced or absent in Nkx2.1(-/-) lungs. The human Bmp4 gene has been reported to include two regions of promoter activity in an embryonal carcinoma cell line, Tera2EC. The hBmp4.1 promoter is located upstream of exon I, whereas the second promoter, hBmp4.2, is localized within intron 1 and upstream of exon II. In the current study, we used a co-transfection assay in lung epithelial cells to examine the response of the two hBmp4 promoters to transcriptional stimulation by NKX2.1. Two DNA sequences were identified on the hBmp4.1 promoter that bind NKX2.1 and serve as functional cis-active NKX2.1-responsive elements. Similarly, NKX2.1 stimulated transcription from the hBmp4.2 promoter through two consensus binding sites localized within 412 nucleotides from the site of transcriptional initiation. Thus, both hBmp4 promoters include specific cis-active elements that bind to and mediate transcriptional regulation by NKX2.1. These findings bear functional implications regarding the regulation of a key signaling molecule by a homeodomain transcriptional regulator of lung epithelial morphogenesis.
Collapse
Affiliation(s)
- Nian Ling Zhu
- Department of Pediatrics, Women's and Children's Hospital, University of Southern California Keck School of Medicine, LAC+USC Medical Center, 1801 E Marengo Street, Room 1G1, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
20
|
Park KS, Whitsett JA, Di Palma T, Hong JH, Yaffe MB, Zannini M. TAZ Interacts with TTF-1 and Regulates Expression of Surfactant Protein-C. J Biol Chem 2004; 279:17384-90. [PMID: 14970209 DOI: 10.1074/jbc.m312569200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroid transcription factor-1 (TTF-1/Nkx-2.1) is required for formation of the lung and differentiation of peripheral respiratory epithelial cells. TTF-1 activates transcription of target genes, including the surfactant proteins critical for lung function. A recently identified protein TAZ (transcriptional co-activator with PDZ-binding motif) contains a WW domain and a COOH-terminal PDZ-binding motif that are proposed to mediate its interactions with various transcriptional proteins. To determine the role of TAZ in the regulation of gene expression in the lung, the sites of TAZ expression and the role of TAZ in the regulation of respiratory epithelial gene expression were assessed. TAZ mRNA was detected in immortalized mouse lung epithelial cells, primary isolates of mouse alveolar type II epithelial cells, and epithelial cells of fetal lung. Sites of TAZ mRNA and protein overlapped with those of TTF-1 and surfactant protein C (SP-C) in the respiratory epithelial cells of the mouse lung. In the presence of TTF-1, TAZ synergistically activated the expression of mouse SP-C-luciferase reporter constructs. Mammalian two-hybrid assays and pull-down experiments demonstrated that the TAZ directly interacted with TTF-1. Further, deletion analysis demonstrated that TAZ binds to the NH(2)-terminal domain of TTF-1. TAZ binds to TTF-1, increasing the transcriptional activity of TTF-1 on the SP-C promoter. Developmental and cell-selective regulation of TAZ provides a mechanism by which the activity of TTF-1 on target genes is modulated.
Collapse
Affiliation(s)
- Kwon-Sik Park
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
21
|
Alcorn JL, Islam KN, Young PP, Mendelson CR. Glucocorticoid inhibition of SP-A gene expression in lung type II cells is mediated via the TTF-1-binding element. Am J Physiol Lung Cell Mol Physiol 2003; 286:L767-76. [PMID: 14633512 DOI: 10.1152/ajplung.00280.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Induction of surfactant protein-A (SP-A) gene expression in fetal lung type II cells by cAMP and IL-1 is mediated by increased binding of thyroid transcription factor-1 (TTF-1) and NF-B proteins p50 and p65 to the TTF-1-binding element (TBE) at -183 bp. In type II cell transfections, dexamethasone (Dex) markedly inhibits cAMP-induced expression of rabbit SP-A:human growth hormone (hGH) fusion genes containing as little as 300 bp of the SP-A 5'-flanking sequence. Dex inhibition is blocked by RU-486, suggesting a role of the glucocorticoid receptor (GR). The present study was undertaken to define the mechanisms for GR inhibition of SP-A expression. Cotransfection of primary cultures of type II cells with a GR expression vector abrogated cAMP induction of SP-A promoter activity while, at the same time, causing a 60-fold induction of cotransfected mouse mammary tumor virus (MMTV) promoter. In lung cells transfected with a fusion gene containing three TBEs fused to the basal SP-A promoter, Dex prevented the stimulatory effect of IL-1 on TTF-1 induction of SP-A promoter activity, suggesting that the GR inhibits SP-A promoter activity through the TBE. In gel shift assays using nuclear extracts from human fetal type II cells cultured in the absence or presence of cAMP, Dex markedly reduced binding of nuclear proteins to the TBE and blocked the stimulatory effect of cAMP on TBE-binding activity. Our finding that Dex increased expression of the NF-kappaB inhibitory partner IkappaB-alpha suggests that the decrease in TBE-binding activity may be caused, in part, by GR inhibition of NF-kappaB interaction with this site.
Collapse
Affiliation(s)
- Joseph L Alcorn
- Dept. of Biochemistry, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | | | | | | |
Collapse
|
22
|
DeFelice M, Silberschmidt D, DiLauro R, Xu Y, Wert SE, Weaver TE, Bachurski CJ, Clark JC, Whitsett JA. TTF-1 phosphorylation is required for peripheral lung morphogenesis, perinatal survival, and tissue-specific gene expression. J Biol Chem 2003; 278:35574-83. [PMID: 12829717 DOI: 10.1074/jbc.m304885200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thyroid transcription factor-1 (TTF-1) is a 43-kDa, phosphorylated member of the Nkx2 family of homeodomain-containing proteins expressed selectively in lung, thyroid, and the central nervous system. To assess the role of TTF-1 and its phosphorylation during lung morphogenesis, mice bearing a mutant allele, in which seven serine phosphorylation sites were mutated, Titf1PM/PM, were generated by homologous recombination. Although heterozygous Titf1PM/+ mice were unaffected, homozygous Titf1PM/PM mice died immediately following birth. In contrast to Titf1 null mutant mice, which lack peripheral lung tissues, bronchiolar and peripheral acinar components of the lung were present in the Titf1PM/PM mice. Although lobulation and early branching morphogenesis were maintained in the mutant mice, abnormalities in acinar tubules and pulmonary hypoplasia indicated defects in lung morphogenesis later in development. Although TTF-1PM protein was readily detected within the nuclei of pulmonary epithelial cells at sites and abundance consistent with that of endogenous TTF-1, expression of a number of known TTF-1 target genes, including surfactant proteins and secretoglobulin 1A, was variably decreased in the mutant mice. Vascular endothelial growth factor mRNA was decreased in association with decreased formation of peripheral pulmonary blood vessels. Genes mediating surfactant homeostasis, vasculogenesis, host defense, fluid homeostasis, and inflammation were highly represented among those regulated by TTF-1. Thus, in contrast to the null Titf1 mutation, the Titf1PM/PM mutant substantially restored lung morphogenesis. Direct and indirect transcriptional targets of TTF-1 were identified that are likely to play important roles in lung formation and function.
Collapse
Affiliation(s)
- Mario DeFelice
- Stazione Zoologica A. Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Moorehead RA, Sanchez OH, Baldwin RM, Khokha R. Transgenic overexpression of IGF-II induces spontaneous lung tumors: a model for human lung adenocarcinoma. Oncogene 2003; 22:853-7. [PMID: 12584565 DOI: 10.1038/sj.onc.1206188] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Elevated levels of insulin-like growth factor (IGF)-II are associated with a poor prognosis in human pulmonary adenocarcinoma; however, a causal role for IGF-II in pulmonary adenocarcinoma has not been demonstrated. Here, we show that transgenic overexpression of IGF-II in lung epithelium induces lung tumors in 69% of mice older than 18 months of age. These tumors displayed morphological characteristics of human pulmonary adenocarcinoma such as their epithelial origin, tubulo-acinar architecture and expression of TTF-1, SP-B and proSP-C. Examination of signaling molecules downstream of the IGF-IR showed the activation of either the Erk1/Erk2 or p38 MAPK pathways, but not both, within the lung tumors. Notably, all lung tumors contained high levels of phosphorylated CREB, suggesting that both the Erk1/Erk2 and p38 MAPK pathways converged on this transcription factor. Moreover, IGF-II induced proliferation and CREB phosphorylation in human lung cancer cell lines, suggesting that IGF-II and CREB also contribute to the growth of human lung tumors. Thus, IGF-II is an important genetic factor in the development of lung tumorigenesis, in which activation of CREB is a ubiquitous event. The MMTV-IGF-II transgenic mice provide a critical model for elucidating the role of IGF-II in this fatal human disease.
Collapse
|
24
|
Li C, Zhu NL, Tan RC, Ballard PL, Derynck R, Minoo P. Transforming growth factor-beta inhibits pulmonary surfactant protein B gene transcription through SMAD3 interactions with NKX2.1 and HNF-3 transcription factors. J Biol Chem 2002; 277:38399-408. [PMID: 12161428 DOI: 10.1074/jbc.m203188200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) represses surfactant protein B (Sp-B) gene transcription through a mechanism that remains unknown. A homeodomain and a forkhead transcription factor, NKX2.1 and HNF-3, respectively, are known activators of Sp-B transcription. Because SMADs are the effectors of TGF-beta-induced gene activation, we examined the possibility that gene repression by TGF-beta may also occur through interactions of SMADs with NKX2.1 and HNF-3. We found that lung epithelial carcinoma H441 cells contain SMAD2/3 and -4, which localize to the nucleus in response to TGF-beta treatment. The activity of a transfected Sp-B promoter/reporter construct was reduced in a dose-dependent manner by TGF-beta. Cotransfection with a mutant, constitutively activated form of the Tgf-beta type I receptor repressed Sp-B promoter activity in the absence of TGF-beta ligand. Dominant negative mutants of Smads blocked the repressor activity of TGF-beta. SMAD3, but not SMAD2, mediated the repressor activity of TGF-beta on the Sp-B promoter. Mutations within a 70-base pair domain that includes binding sites for NKX2.1, hepatocyte nuclear factor 3 (HNF-3), or cAMP response element-binding protein (CREB) eliminated SMAD3-dependent repression of Sp-B transcription. Electrophoretic mobility shift analysis showed no evidence for direct binding of SMAD3 to the Sp-B promoter, and a DNA binding mutant of SMAD3 also repressed Sp-B, suggesting that direct DNA binding of SMAD3 may not be required. Using a mammalian two hybrid assay, we found physical and functional interactions between SMAD3 and both NKX2.1 and HNF-3. Also, a glutathione S-transferase-fused SMAD3 directly binds to in vitro synthesized NKX2.1 or HNF-3, demonstrating protein-protein interactions between SMAD3 and the two transcriptional factors. The DNA binding of NKX2.1 to Sp-B promoter was reduced in response to TGF-beta treatment, although expression of Nkx2.1 was not affected. We conclude that SMAD3 interactions with the positive regulators NKX2.1 and HNF-3 underlie the molecular basis for TGF-beta-induced repression of Sp-B gene transcription.
Collapse
Affiliation(s)
- Changgong Li
- Department of Pediatrics, Women's and Children's Hospital, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
25
|
Yan C, Naltner A, Martin M, Naltner M, Fangman JM, Gurel O. Transcriptional stimulation of the surfactant protein B gene by STAT3 in respiratory epithelial cells. J Biol Chem 2002; 277:10967-72. [PMID: 11788590 DOI: 10.1074/jbc.m109986200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The function of the lung is dependent upon differentiation and proliferation of respiratory epithelial cells and the synthesis/secretion of surfactant lipids and proteins into air space. During the respiratory inflammatory response, cytokines produced by macrophages and epithelial cells in the respiratory system have significant influence on surfactant protein homeostasis. We report here that among family members of Janus family tyrosine kinase (JAK) and signal transducers and activators of transcription (STAT), only JAK 1 and STAT3 stimulated the -500 to +41 promoter activity of the surfactant protein B (SP-B) gene in respiratory epithelial cells. JAK1 and STAT3 were co-localized in alveolar type II epithelial cells where SP-B is synthesized and secreted. Interleukin 6 and interleukin 11, known to activate STAT3 synergistically, stimulated the SP-B promoter activity with retinoic acid, which is at least partially mediated through interactions between STAT3 and retinoid nuclear receptor enhanceosome proteins in pulmonary epithelial cells.
Collapse
Affiliation(s)
- Cong Yan
- Division of Pulmonary Biology, The Graduate Program for Molecular and Developmental Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Liu C, Glasser SW, Wan H, Whitsett JA. GATA-6 and thyroid transcription factor-1 directly interact and regulate surfactant protein-C gene expression. J Biol Chem 2002; 277:4519-25. [PMID: 11733512 DOI: 10.1074/jbc.m107585200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GATA-6, a member of the GATA family of zinc finger domain containing transcription factors, is expressed in endodermally derived tissues including the lung, where GATA-6 influences the transcription of target genes, TTF-1, and surfactant proteins. Whereas GATA-6 did not directly alter expression of sp-C constructs in HeLa cells, GATA-6 synergistically activated sp-C gene transcription when co-expressed with TTF-1, supporting the concept that GATA-6 and TTF-1 might directly interact to influence target gene expression. GST-GATA-6 directly co-precipitated with TTF-1 after in vitro translation and directly interacted with the TTF-1-binding element in the sp-C promoter. Binding of TTF-1 to GATA-6 required the homeodomain of TTF-1, but optimal interactions with GATA-6 required the homeodomain and either carboxyl- or amino-terminal domains of TTF-1. Interactions between TTF-1 and GATA-6 required the amino-terminal and zinc finger domains of GATA-6. Although GATA-4 also interacted with TTF-1 in two-hybrid assays, GATA-4 was not as active as GATA-6 in the activation of the sp-C promoter with TTF-1. Deletion and substitution mutations between GATA-4 and GATA-6 demonstrated that the carboxyl-terminal zinc finger domain of GATA-6 contributed to its synergistic activation of the sp-C promoter with TTF-1. GATA-6 influenced the activity of the sp-C promoter, binding and acting synergistically with TTF-1.
Collapse
Affiliation(s)
- Cong Liu
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
27
|
Alam MN, Berhane K, Boggaram V. Lung surfactant protein B promoter function is dependent on the helical phasing, orientation and combinatorial actions of cis-DNA elements. Gene 2002; 282:103-11. [PMID: 11814682 DOI: 10.1016/s0378-1119(01)00844-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Surfactant protein B (SP-B), a hydrophobic protein of lung surfactant, is essential for surfactant function, normal respiration and survival. SP-B is expressed in a cell-type specific manner by the alveolar type II and bronchiolar (Clara) epithelial cells of the lung and is developmentally induced. Our previous studies showed that the activity of the rabbit SP-B minimal promoter (-236/+39 bp) is dependent on the binding of an array of transcription factors including Sp1, Sp3, thyroid transcription factor 1, hepatocyte nuclear factor 3 and activating transcription factor/cyclic AMP response element binding protein. The SP-B minimal promoter sequence as well as the spacing and orientations of cis-DNA elements are conserved in human, rabbit and mouse SP-B genes. In the present study, we investigated the importance of spacing and orientation of cis-DNA elements on SP-B promoter function in NCI-H441 cells, a human cell line of Clara cell lineage. Further we investigated the effects of transcription factors on SP-B promoter expression by co-transfection experiments. Results showed that disruptions of helical phasing and orientation of cis-DNA elements reduced SP-B promoter activity indicating that proper alignment and orientation of cis-DNA elements are necessary for SP-B promoter function. Co-transfection experiments showed that transcription factors function in a combinatorial rather than in a synergistic manner to enhance SP-B promoter activity.
Collapse
Affiliation(s)
- M Nurul Alam
- Department of Molecular Biology, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | | | | |
Collapse
|
28
|
Affiliation(s)
- J B Shabb
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202-9037, USA.
| |
Collapse
|
29
|
Pelosi G, Fraggetta F, Pasini F, Maisonneuve P, Sonzogni A, Iannucci A, Terzi A, Bresaola E, Valduga F, Lupo C, Viale G. Immunoreactivity for thyroid transcription factor-1 in stage I non-small cell carcinomas of the lung. Am J Surg Pathol 2001; 25:363-72. [PMID: 11224607 DOI: 10.1097/00000478-200103000-00011] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thyroid transcription factor-1 (TTF-1) is a nuclear protein regulating the transcriptional activity of lung-specific genes in the normal and neoplastic bronchioloalveolar cells. It has been implicated in the normal growth and development of the lung, and the disruption of the TTF-1 locus leads to neonatal death with pulmonary hypoplasia. We evaluated retrospectively the prevalence and clinical significance of TTF-1 immunoreactivity in 222 patients with stage I non-small cell lung carcinoma (NSCLC) with a follow-up time of at least 5 years, and we investigated its relationship with other markers of tumor growth, namely cell proliferation and angiogenesis. TTF-1 immunoreactivity was documented by using the commercially available monoclonal antibody 8G7G3/1 in 72% of 97 adenocarcinomas, 5% of 119 squamous cell carcinomas, and in the glandular component of two adenosquamous carcinomas. Four large cell carcinomas were completely unreactive. In adenocarcinomas, but not squamous cell carcinomas, TTF-1 immunoreactivity correlated significantly with microvessel density (p = 0.04) and inversely with the tumor proliferation fraction assessed by Ki-67 immunostaining (p = 0.03). Also, TTF-1-immunoreactive adenocarcinomas showed a trend for a size less than 3 cm (p = 0.08). TTF-1 expression was not related to specific growth patterns, tumor grade, or tumor cell typing. TTF-1 immunoreactivity did not significantly affect patient survival, although patients with more than 75% immunoreactive neoplastic cells showed a trend for longer overall and disease-free survival. Our findings suggest that TTF-1 could be involved in the development of small pulmonary adenocarcinomas, but it has not prognostic implications in patients with stage I NSCLC.
Collapse
MESH Headings
- Adenocarcinoma/blood supply
- Adenocarcinoma/metabolism
- Adenocarcinoma/mortality
- Adenocarcinoma/pathology
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Adenosquamous/blood supply
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/mortality
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Large Cell/blood supply
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/mortality
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/blood supply
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Disease-Free Survival
- Female
- Humans
- Immunohistochemistry
- Lung Neoplasms/blood supply
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Microcirculation
- Middle Aged
- Neoplasm Staging
- Nuclear Proteins/metabolism
- Retrospective Studies
- Survival Rate
- Thyroid Nuclear Factor 1
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- G Pelosi
- Pathology and Laboratory Medicine, European Institute of Oncology and University of Milan School of Medicine, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Damante G, Tell G, Di Lauro R. A unique combination of transcription factors controls differentiation of thyroid cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:307-56. [PMID: 11051768 DOI: 10.1016/s0079-6603(00)66033-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thyroid follicular cell type is devoted to the synthesis of thyroid hormones. Several genes, whose protein products are essential for efficient hormone biosynthesis, are uniquely expressed in this cell type. A set of transcriptional regulators, unique to the thyroid follicular cell type, has been identified as responsible for thyroid specific gene expression; it comprises three transcription factors, named TTF-1, TTF-2, and Pax8, each of which is expressed also in cell types different from the thyroid follicular cells. However, the combination of these factors is unique to the thyroid hormone producing cells, strongly suggesting that they play an important role in differentiation of these cells. An overview of the molecular and biological features of these transcription factors is presented here. Data demonstrating that all three play also an important role in early thyroid development, at stages preceding expression of the differentiated phenotype, are also reviewed. The wide temporal expression, from the beginning of thyroid organogenesis to the adult state, is suggestive of a recycling of the thyroid-specific transcription factors, that is, the control of different sets of target genes at diverse developmental stages. The identification of molecular mechanisms leading to specific gene expression in thyroid cells renders this cell type an interesting model in which to address several aspects of cell differentiation and organogenesis.
Collapse
Affiliation(s)
- G Damante
- Dipartimento di Scienze e Tecnologie Biomediche Università di Udine
| | | | | |
Collapse
|
31
|
Yang YS, Yang MC, Wang B, Weissler JC. BR22, a novel protein, interacts with thyroid transcription factor-1 and activates the human surfactant protein B promoter. Am J Respir Cell Mol Biol 2001; 24:30-37. [PMID: 11152647 DOI: 10.1165/ajrcmb.24.1.4050] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Surfactant protein (SP)-B expression is restricted to type II pneumocytes and Clara cells in the lung. Previously, a promoter region of human SP-B gene from -64 to -118 has been identified as critical for the tissue-specific expression of this gene. Two cis-elements for thyroid transcription factor (TTF)-1 and hepatocyte nuclear factor (HNF)-3alpha binding were found within this area. Using an oligonucleotide fragment, we incorporated this region sequence into the promoter of a HIS3 reporter gene in yeast. With this modified yeast a human lung complementary DNA (cDNA) library was screened for DNA-binding proteins, other than TTF-1 and HNF-3alpha, that interacted with this promoter segment. A cDNA clone encoding a novel polypeptide, BR22, was identified that activated the reporter gene expression in yeast. This gene is expressed in many tissues and encodes a protein with bipartite nuclear localization signals. Studies using in vivo yeast two-hybrid analysis, in vitro protein-protein interactions, and coimmunoprecipitation analyses demonstrated that BR22 formed a protein complex with TTF-1. In vivo cotransfection studies further indicated that BR22 could act with TTF-1 to synergistically activate the SP-B promoter in mammalian cells. Our data suggest that BR22 is a TTF-1-associated protein. Through a protein-protein interaction with TTF-1, BR22 can form a complex and activate the human SP-B promoter in vivo.
Collapse
Affiliation(s)
- Y S Yang
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, UT Southwestern Medical Center, Dallas, Texas 75390-9034, USA.
| | | | | | | |
Collapse
|
32
|
Berhane K, Margana RK, Boggaram V. Characterization of rabbit SP-B promoter region responsive to downregulation by tumor necrosis factor-alpha. Am J Physiol Lung Cell Mol Physiol 2000; 279:L806-14. [PMID: 11053014 DOI: 10.1152/ajplung.2000.279.5.l806] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein B (SP-B) is essential for the maintenance of biophysical properties and physiological function of pulmonary surfactant. Tumor necrosis factor-alpha (TNF-alpha), an important mediator of lung inflammation, inhibits surfactant phospholipid and surfactant protein synthesis in the lung. In the present study, we investigated the TNF-alpha inhibition of rabbit SP-B promoter activity in a human lung adenocarcinoma cell line (NCI-H441). Deletion experiments indicated that the TNF-alpha response elements are located within -236 bp of SP-B 5'-flanking DNA. The TNF-alpha response region contained binding sites for nuclear factor-kappa B (NF-kappa B), Sp1/Sp3, thyroid transcription factor (TTF)-1, and hepatocyte nuclear factor (HNF)-3 transcription factors. Inhibitors of NF-kappa B activation such as dexamethasone and N-tosyl-L-phenylalanine chloromethyl ketone and mutation of the NF-kappa B element did not reverse TNF-alpha inhibition of SP-B promoter, indicating that TNF-alpha inhibition of SP-B promoter activity occurs independently of NF-kappa B activation. TNF-alpha treatment decreased the binding activities of TTF-1 and HNF-3 elements without altering the nuclear levels of TTF-1 and HNF-3 alpha proteins. Pretreatment of cells with okadaic acid reversed TNF-alpha inhibition of SP-B promoter activity. Taken together these data indicated that in NCI-H441 cells 1) TNF-alpha inhibition of SP-B promoter activity may be caused by decreased binding activities of TTF-1 and HNF-3 elements, 2) the decreased binding activities of TTF-1 and HNF-3 alpha are not due to decreased nuclear levels of the proteins, and 3) okadaic acid-sensitive phosphatases may be involved in mediating TNF-alpha inhibition of SP-B promoter activity.
Collapse
Affiliation(s)
- K Berhane
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, USA
| | | | | |
Collapse
|
33
|
Mendelson CR. Role of transcription factors in fetal lung development and surfactant protein gene expression. Annu Rev Physiol 2000; 62:875-915. [PMID: 10845115 DOI: 10.1146/annurev.physiol.62.1.875] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Branching morphogenesis of the lung and differentiation of specialized cell populations is dependent upon reciprocal interactions between epithelial cells derived from endoderm of embryonic foregut and surrounding mesenchymal cells. These interactions are mediated by elaboration and concerted actions of a variety of growth and differentiation factors binding to specific receptors. Such factors include members of the fibroblast growth factor family, sonic hedgehog, members of the transforming growth factor-beta family, epidermal growth factor, and members of the platelet-derived growth factor family. Hormones that increase cyclic AMP formation, glucocorticoids, and retinoids also play important roles in branching morphogenesis, alveolar development, and cellular differentiation. Expression of the genes encoding these morphogens and their receptors is controlled by a variety of transcription factors that also are highly regulated. Several of these transcription factors serve dual roles as regulators of genes involved in early lung development and in specialized functions of differentiated cells. Targeted null mutations of genes encoding many of these morphogens and transcription factors have provided important insight into their function during lung development. In this chapter, the cellular and molecular mechanisms that control lung development are considered, as well as those that regulate expression of the genes encoding the surfactant proteins.
Collapse
Affiliation(s)
- C R Mendelson
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas 75235-9038, USA.
| |
Collapse
|
34
|
Crisera CA, Maldonado TS, Kadison AS, Li M, Longaker MT, Gittes GK. Patterning of the "distal esophagus" in esophageal atresia with tracheo-esophageal fistula: is thyroid transcription factor 1 a player? J Surg Res 2000; 92:245-9. [PMID: 10896829 DOI: 10.1006/jsre.2000.5850] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND We have recently proposed that the "distal esophagus" in esophageal atresia with tracheo-esophageal fistula (EA/TEF) is actually embryologically derived from the middle branch of a trifurcation of the embryonic lung bud, which subsequently grows caudally in the foregut to connect with the developing stomach. We hypothesized that differential mRNA expression of the lung-specific patterning transcription factor, thyroid transcription factor 1 (TTF-1), in the developing fistula tract in TEF relative to the bronchi (the other branches of the lung bud trifurcation) might explain the unique nonbranching pattern of growth of the fistula tract. MATERIALS AND METHODS EA/TEF was induced in Sprague-Dawley rat embryos via intraperitoneal injection of 2.2 mg/kg adriamycin into pregnant dams on Days 6-9 of gestation. The foregut from embryos developing EA/TEF and from control embryos (no adriamycin) were isolated on Gestational Days 13.5, 15.5, and 17.5 (term = 21 days). Some were processed for whole-mount in situ hybridization for TTF-1, while others were embedded and sectioned for histologic analysis via in situ hybridization for TTF-1. RESULTS The expression of the respiratory-specific transcription factor TTF-1 is conserved in the epithelium of the developing fistula tract in TEF. The pattern of expression of TTF-1 in the fistula tract mirrors the expression in the large airways of the developing lungs, despite the fact that the fistula tract does not form secondary branches to give rise to a lung. CONCLUSIONS The fistula tract in TEF is a respiratory-derived structure that expresses the lung-specific transcription factor TTF-1 throughout its development in the foregut. Contrary to the patterning role that it normally plays in the developing lung, TTF-1 does not induce branching morphogenesis in the fistula tract. Thus, the nonbranching pattern of growth of the fistula tract may be attributable to local mesenchymal-epithelial interactions that override TTF-1 patterning activity.
Collapse
Affiliation(s)
- C A Crisera
- Laboratory of Developmental Biology and Repair, New York University Medical Center, New York, New York, 10016, USA
| | | | | | | | | | | |
Collapse
|
35
|
Strayer DS, Korutla L. Activation of surfactant protein-B transcription: signaling through the SP-A receptor utilizing the PI3 kinase pathway. J Cell Physiol 2000; 184:229-38. [PMID: 10867648 DOI: 10.1002/1097-4652(200008)184:2<229::aid-jcp11>3.0.co;2-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study describes receptor-activated signaling initiated by surfactant protein-A (SP-A), and the means by which it activates transcription of surfactant protein-B. Pulmonary surfactant is a mixture of lipids and associated proteins produced by type II pneumocytes. Interaction of SP-A with its cognate receptor (SPAR) on type II cells is involved in regulating surfactant secretion. This interaction also increases transcription of surfactant proteins and several other genes. To study SP-A cytokine activity, we used as a model surfactant-protein (SP-B) transcription, the activators of which have been characterized. HNF-3 and TTF-1 transcription factors are known to stimulate SP-B transcription. SP-A caused increased phosphorylation and nuclear localization of both. Corresponding increases in protein binding to the SP-B promoter were demonstrated by gel shift analysis. SP-A increased protein binding to HNF-3 and TTF-1 consensus recognition elements. Footprinting analysis indicated that SP-A-induced protein binding to SP-B promoter was greater in amount, but not different in location, from that seen in control cells, which normally transcribe SP-B. SP-A caused transient increases in PI3 kinase localization at the plasma membrane, and SP-A signaling to elicit increased SP-B transcription was blocked by LY294002, an inhibitor of PI3 kinase. Therefore, SP-A signals through PI3 kinase to increase SP-B transcription in type II pneumocytes by enhancing TTF-1 and HNF-3 activation of the SP-B promoter. SP-A activation of this signaling pathway, which affects many cellular functions and has not previously been implicated in type II cell transcriptional activity, has profound import for understanding type II cell biology.
Collapse
Affiliation(s)
- D S Strayer
- Department of Pathology and Cell Biology, Jefferson Medical College, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
36
|
Ford HL, Landesman-Bollag E, Dacwag CS, Stukenberg PT, Pardee AB, Seldin DC. Cell cycle-regulated phosphorylation of the human SIX1 homeodomain protein. J Biol Chem 2000; 275:22245-54. [PMID: 10801845 DOI: 10.1074/jbc.m002446200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human SIX1 (HSIX1) is a member of the Six class of homeodomain proteins implicated in muscle, eye, head, and brain development. To further understand the role of HSIX1 in the cell cycle and cancer, we developed an HSIX1-specific antibody to study protein expression at various stages of the cell cycle. Our previous work demonstrated that HSIX1 mRNA expression increases as cells exit S phase and that overexpression of HSIX1 can attenuate a DNA damage-induced G(2) cell cycle checkpoint. Overexpression of HSIX1 mRNA was observed in 44% of primary breast cancers and 90% of metastatic lesions. Now we demonstrate that HSIX1 is a nuclear phosphoprotein that becomes hyperphosphorylated at mitosis in both MCF7 cells and in Xenopus extracts. The pattern of phosphorylation observed in mitosis is similar to that seen by treating recombinant HSIX1 with casein kinase II (CK2) in vitro. Apigenin, a selective CK2 inhibitor, diminishes interphase and mitotic phosphorylation of HSIX1. Treatment of MCF7 cells with apigenin leads to a dose-dependent arrest at the G(2)/M boundary, implicating CK2, like HSIX1, in the G(2)/M transition. HSIX1 hyperphosphorylated in vitro by CK2 loses its ability to bind the MEF3 sites of the aldolase A promoter (pM), and decreased binding to pM is observed during mitosis. Because CK2 and HSIX1 have both been implicated in cancer and in cell cycle control, we propose that HSIX1, whose activity is regulated by CK2, is a relevant target of CK2 in G(2)/M checkpoint control and that both molecules participate in the same pathway whose dysregulation leads to cancer.
Collapse
Affiliation(s)
- H L Ford
- Division of Cancer Biology, Dana-Farber Cancer Institute, the Department of Biological Chemistry and Molecular Pharmacology, and the Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Kumar AS, Gonzales LW, Ballard PL. Transforming growth factor-beta(1) regulation of surfactant protein B gene expression is mediated by protein kinase-dependent intracellular translocation of thyroid transcription factor-1 and hepatocyte nuclear factor 3. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:45-55. [PMID: 11004479 DOI: 10.1016/s0167-4781(00)00058-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transforming growth factor-beta (TGF beta) polypeptides control a variety of cellular processes including organogenesis and cellular proliferation and differentiation. In the developing lung, TGF beta(1) treatment inhibits airway branching and expression of the genes for surfactant proteins (SP). Many effects of TGF beta are mediated at the level of gene transcription but there is limited information regarding signaling pathways and target transcription factors. In this study with human pulmonary adenocarcinoma H441 cells, we investigated TGF beta(1) effects on SP-B, a protein which is essential for normal function of pulmonary surfactant. TGF beta(1) (10 ng/ml) reduced SP-B mRNA content in a time-dependent fashion, and transient transfection studies localized responsiveness to the region of the SP-B promoter (-112/-72 bp) containing binding sites for thyroid transcription factor-1 (TTF-1) and hepatocyte nuclear factor 3 (HNF3), transcription factors that are important enhancers of SP gene expression. Using electrophoretic mobility shift assay and immunofluorescence, we demonstrated rapid accumulation of these transcription factors in the cytoplasm and subsequent loss from the nucleus on TGF beta(1) treatment of both adenocarcinoma cells and cultured human fetal lung. TGF beta(1) treatment caused intracellular translocation of protein kinase C and effects of TGF beta(1) were mostly abrogated in the presence of the protein kinase inhibitor calphostin C. We conclude that TGF beta(1), acting via protein phosphorylation, blocks nuclear translocation of TTF-1 and HNF3 which results in down-regulation of the SP-B gene and presumably other pulmonary genes which are transactivated by these factors.
Collapse
Affiliation(s)
- A S Kumar
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-6068, USA
| | | | | |
Collapse
|
38
|
Li C, Cai J, Pan Q, Minoo P. Two functionally distinct forms of NKX2.1 protein are expressed in the pulmonary epithelium. Biochem Biophys Res Commun 2000; 270:462-8. [PMID: 10753648 DOI: 10.1006/bbrc.2000.2443] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The homeodomain transcriptional factor NKX2.1 is critical for normal morphogenesis of the lung, thyroid, and the brain. In the lung, NKX2. 1 binds to and activates the expression of pulmonary differentiation-specific genes SP-A, SP-B, and SP-C. The Nkx2.1 gene is comprised of three exons separated by two introns. In both thyroid and lung, the predominant Nkx2.1 transcript includes exons II and III and is translated into a 371 amino acid protein. A minor transcript also exists which includes all three exons. This transcript encodes a 401 amino acid isoform of NKX2.1. The 30 amino acid extension is highly conserved amongst various mammalian species. In the current study, we demonstrate that the two NKX2.1 isoforms are functionally distinct and their corresponding transcripts are expressed differentially during mouse embryonic lung development. The results demonstrate that the longer isoform of NKX2.1 exhibits reduced activity in transactivating an SP-C target promoter when compared to the truncated major NKX2.1 protein. Site directed mutagenesis of the 30 amino acid peptide extension suggests that this fragment alters the activity of 5E likely by steric interference.
Collapse
Affiliation(s)
- C Li
- Department of Pediatrics, Women's & Children's Hospital, University of Southern California School of Medicine, Los Angeles, California 90033, USA
| | | | | | | |
Collapse
|
39
|
Medina DL, Suzuki K, Pietrarelli M, Okajima F, Kohn LD, Santisteban P. Role of insulin and serum on thyrotropin regulation of thyroid transcription factor-1 and pax-8 genes expression in FRTL-5 thyroid cells. Thyroid 2000; 10:295-303. [PMID: 10807057 DOI: 10.1089/thy.2000.10.295] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thyrotropin (TSH), via its cyclic adenosine monophosphate (cAMP) signal, decreases thyrotropin receptor (TSHR) gene expression in FRTL-5 thyroid cells, whereas it increases expression of the thyroglobulin (Tg) gene. Despite the opposite effects of TSH on TSHR and Tg expression, both genes are positively controlled by thyroid transcription factor-1 (TTF-1) and evidence has accumulated that TSH can decrease TTF-1 mRNA levels. In this report, we further characterize the action of TSH on TTF-1 in order to understand its different activities on the TSHR and Tg genes better. The effect of TSH on the TSHR requires the presence of insulin and serum and we show here that also both factors are necessary for the TSH effect to decrease TTF-1 mRNA levels. The decrease is paralleled by a downregulation of TTF-1 protein levels as well as by a decrease in TTF-1/DNA complex when the TTF-1 site of the TSHR promoter was used as probe. Again, the decrease requires insulin and serum. The TSH downregulation of TTF-1 mRNA levels is due to a decrease in its transcription rate. Using a luciferase-linked chimera construct spanning 5.18 kb of the TTF-1 5'-flanking region, we show that TSH decreases TTF-1 promoter activity and that this effect depends on insulin and serum. These data contrast with the action of TSH on Tg and Pax-8 gene expression. TSH increases Pax-8 mRNA levels and the increase is evident whether insulin and serum are present or not. Moreover, this increase is paralleled by an increase in Pax-8 protein binding to an oligonucleotide derived from the C site of the Tg promoter, which can bind both TTF-1 and Pax-8. The present data thus show that TTF-1 gene expression is interdependently regulated by TSH and serum growth factors including insulin. They also show this interdependent-regulation is not duplicated in the case of Pax-8. We suggest that these differences may contribute to the distinct ability of TSH to regulate TSHR versus Tg gene expression in FRLT-5 thyroid cells.
Collapse
Affiliation(s)
- D L Medina
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Margana R, Berhane K, Alam MN, Boggaram V. Identification of functional TTF-1 and Sp1/Sp3 sites in the upstream promoter region of rabbit SP-B gene. Am J Physiol Lung Cell Mol Physiol 2000; 278:L477-84. [PMID: 10710519 DOI: 10.1152/ajplung.2000.278.3.l477] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein B (SP-B) is essential for the maintenance of biophysical properties and physiological function of pulmonary surfactant. SP-B mRNA is expressed in a cell type-restricted manner in alveolar type II and bronchiolar (Clara) epithelial cells of the lung and is developmentally induced. In NCI-H441 cells, a lung cell line with characteristics of Clara cells, a minimal promoter region comprising -236 to +39 nucleotides supports high-level expression of chloramphenicol acetyltransferase reporter activity. In the present investigation, we characterized the upstream promoter region, -236 to -140 nucleotides, that is essential for promoter activity. Deletion mapping identified two segments, -236 to -170 and -170 to -140 nucleotides, that are important for promoter activity. Mutational analysis and gel mobility shift experiments identified thyroid transcription factor-1, Sp1, and Sp3 as important trans-acting factors that bind to sequences in the upstream promoter region. Our data suggest that SP-B promoter activity is dependent on interactions between factors bound to upstream and downstream regions of the promoter.
Collapse
Affiliation(s)
- R Margana
- Department of Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, USA
| | | | | | | |
Collapse
|
41
|
Naltner A, Ghaffari M, Whitsett JA, Yan C. Retinoic acid stimulation of the human surfactant protein B promoter is thyroid transcription factor 1 site-dependent. J Biol Chem 2000; 275:56-62. [PMID: 10617585 DOI: 10.1074/jbc.275.1.56] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Surfactant B (SP-B) is a 79-amino acid peptide critical to postnatal respiratory adaptation. Expression of SP-B by respiratory epithelial cells is regulated by developmental and hormonal influences at the level of gene transcription. Previous studies supported the role of retinoic acids (RA) and their receptors (RARs) in SP-B gene transcription. In the present study, RARalpha was detected in mouse alveolar type II epithelial cells where SP-B is synthesized and processed. Deletion and site-specific mutagenesis analysis identified clustered retinoic acid-responsive element sites in the 5'-flanking enhancer region of the hSP-B gene that bound RARalpha proteins. RAR coactivators ACTR, SRC-1, and transcriptional intermediary factor 2 (TIF2) stimulated human (h) SP-B promoter activity in a dose-dependent fashion in pulmonary adenocarcinoma H441 cells. In addition, an RAR-associated protein, CREB-binding protein (CBP), potentiated the effects of RAR on hSP-B promoter activity in H441 cells. Importantly, RA stimulation of the hSP-B promoter depends on tissue-specific thyroid transcription factor (TTF-1) DNA-binding sites. TTF-1 protein synergistically stimulated the hSP-B promoter with RARalpha, CBP, and nuclear receptor coactivators in H441 cells. In addition, TTF-1 interacted directly with RARalpha and TIF2 in the mammalian two-hybrid system. These findings support a model in which RAR/retinoid X receptor, TTF-1, coactivators, and CBP form a transcription activation complex in the upstream enhancer region of the hSP-B gene.
Collapse
Affiliation(s)
- A Naltner
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
42
|
Romberger DJ, Heires P, Rennard SI, Wyatt TA. beta-Adrenergic agonist modulation of monocyte adhesion to airway epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 2000; 278:L139-47. [PMID: 10645901 DOI: 10.1152/ajplung.2000.278.1.l139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
beta-Adrenergic agonists are commonly used in the treatment of obstructive airway diseases and are known to modulate cAMP-dependent processes of airway epithelial cells. However, little is known regarding the ability of cAMP-dependent mechanisms to influence cell-cell interactions within the airway. Thus we investigated the role of the beta-adrenergic agonist isoproterenol in modulating the ability of human bronchial epithelial cells to support the adhesion of THP-1 cells, a monocyte/macrophage cell line, in vitro. We demonstrated that pretreatment of human bronchial epithelial cells (HBECs) with 10 microM isoproterenol or 100 microM salbutamol augments the adhesion of fluorescently labeled THP-1 cells to HBEC monolayers by approximately 40-60%. The increase in THP-1 cell adhesion occurred with 10 min of isoproterenol pretreatment of HBECs and gradually declined but persisted with up to 24 h of isoproterenol exposure. Exposure of THP-1 cells to isoproterenol or salbutamol before the adhesion assays did not result in an increase in adhesion to HBECs, suggesting that the isoproterenol modulation was primarily via changes in epithelial cells. A specific protein kinase A inhibitor, KT-5720, inhibited subsequent isoproterenol augmentation of THP-1 cell adhesion, further supporting the role of cAMP-dependent mechanisms in modulating THP-1 cell adhesion to HBECs.
Collapse
Affiliation(s)
- D J Romberger
- Pulmonary and Critical Care Medicine Section, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska 68198-5300, USA.
| | | | | | | |
Collapse
|
43
|
Ohmori M, Harii N, Endo T, Onaya T. Tumor necrosis factor-alpha regulation of thyroid transcription factor-1 and Pax-8 in rat thyroid FRTL-5 cells. Endocrinology 1999; 140:4651-8. [PMID: 10499522 DOI: 10.1210/endo.140.10.7021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is known to modulate the expression of thyroid-specific genes, such as thyroglobulin (TG), contributing to the pathogenesis of autoimmune thyroid disease. In the present study, we show that TNF-alpha suppresses DNA-binding activity of thyroid transcription factors, Pax-8 and thyroid transcription factor-1 (TTF-1), which is, in part, involved in TNF-alpha-induced decrease in TG gene expression. Transfected into rat thyroid FRTL-5 cells, the activity of reporter plasmid containing the rat TG promoter ligated to a luciferase gene was significantly suppressed in the presence of TNF-alpha. In gel mobility shift analyses, protein-DNA complexes formed by TTF-1 and Pax-8 were reduced when the nuclear extracts prepared from TNF-alpha-treated FRTL-5 cells were used. The suppressive effect of TNF-alpha on TTF-1-DNA complex formation is, in part, caused by suppression of TTF-1 gene transcription by TNF-alpha. Expressions of TTF-1 messenger RNA and protein, which were assessed by Northern blot and Western blot analyses, respectively, were decreased by TNF-alpha treatment of FRTL-5 cells. In contrast, TNF-alpha did not affect the expression of Pax-8 messenger RNA. Treatment of FRTL-5 cells with TNF-alpha caused a decrease in Pax-8 protein in nuclear extracts and accumulation of the protein in the cytoplasm, as assessed by Western blot analyses. Mutation of the TTF-1/Pax-8-binding site lost the TNF-alpha-induced decrease in TG promoter activity in a transfection experiment. These results indicate that TNF-alpha suppresses the activity of TTF-1 and Pax-8 by different mechanisms, which, in part, seem to be involved in TNF-alpha-induced decrease in TG gene expression.
Collapse
Affiliation(s)
- M Ohmori
- Third Department of Internal Medicine, Yamanashi Medical University, Tamaho, Japan
| | | | | | | |
Collapse
|
44
|
Bruno MD, Whitsett JA, Ross GF, Korfhagen TR. Transcriptional regulation of the murine surfactant protein-A gene by B-Myb. J Biol Chem 1999; 274:27523-8. [PMID: 10488087 DOI: 10.1074/jbc.274.39.27523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Surfactant protein A (SP-A) is selectively synthesized in subsets of cells lining the respiratory epithelium, where its expression is regulated by various transcription factors including thyroid transcription factor-1 (TTF-1). Cell-specific transcription of the mouse SP-A promoter is mediated by binding of TTF-1 at four distinct cis-active sites located in the 5'-flanking region of the gene. Mutation of TTF-1-binding sites (TBE) 1, 3, and 4 in combination markedly decreased transcriptional activity of SP-A promoter-chloramphenicol acetyltransferase constructs containing SP-A gene sequences from -256 to +45. In contrast, the same mutations enhanced transcriptional activity in constructs containing additional 5' SP-A sequences from -399 to +45 suggesting that cis-acting elements within the region -399 to -256 influence effects of TTF-1 on SP-A promoter activity. A consensus Myb-binding site was identified within the region, located at positions -380 to -371 in the mouse gene. Mutation of the Myb-binding site decreased activity of SP-A promoter constructs in MLE-15 cells. MLE-15 cells, a cell line expressing SP-A mRNA, also expressed B-Myb. B-Myb bound to the MBS in the SP-A gene as assessed by electrophoretic mobility shift assay. While co-transfection of HeLa cells with a B-Myb expression plasmid activated the transfected SP-A promoter about 3-fold, co-transfection of B-myb with cyclin A and cdk-2, to enhance phosphorylation of B-Myb, increased transcriptional activity of SP-A constructs approximately 20-fold. Taken together, the data support activation of SP-A gene promoter activity by B-Myb which acts at a cis-acting element in the SP-A gene.
Collapse
Affiliation(s)
- M D Bruno
- Division of Pulmonary Biology, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
45
|
Sever-Chroneos Z, Bachurski CJ, Yan C, Whitsett JA. Regulation of mouse SP-B gene promoter by AP-1 family members. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L79-88. [PMID: 10409233 DOI: 10.1152/ajplung.1999.277.1.l79] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The regulatory role of activator protein-1 (AP-1) family members in mouse surfactant protein (SP) B (mSP-B) promoter function was assessed in the mouse lung epithelial cell line MLE-15. Expression of recombinant Jun B and c-Jun inhibited mSP-B promoter activity by 50-75%. Although c-Fos expression did not alter mSP-B transcription, Jun D enhanced mSP-B promoter activity and reversed inhibition of mSP-B by c-Jun or Jun B. A proximal AP-1 binding site (-18 to -10 bp) was identified that overlaps a thyroid transcription factor-1 binding site. Mutation of this proximal AP-1 site blocked both Jun B inhibition and Jun D enhancement and partially blocked c-Jun inhibition of promoter activity. Promoter deletion mutants were used to identify additional sequences mediating the inhibitory effects of c-Jun in the distal region from -397 to -253 bp. The AP-1 element in this distal site (-370 to -364 bp) is part of a composite binding site wherein AP-1, cAMP response element binding protein, thyroid transcription factor-1, and nuclear factor I interact. Point mutation of the distal AP-1 binding site partially blocked c-Jun-mediated inhibition of the SP-B promoter. Both stimulatory (Jun D) and inhibitory (c-Jun/Jun B) effects of AP-1 family members on mSP-B promoter activity are mediated by distinct cis-acting elements in the mSP-B 5'-flanking region.
Collapse
Affiliation(s)
- Z Sever-Chroneos
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
46
|
Abstract
The complex process of lung formation is determined by the action of numerous genes that influence cell commitment, differentiation, and proliferation. This review summarizes current knowledge of various factors involved in lung morphogenesis correlating their temporal and spatial expression with their proposed functions at various times during the developmental process. Rapid progress in understanding the pathways involved in lung morphogenesis will likely provide the framework with which to elucidate the mechanisms contributing to lung malformations and the pathogenesis of genetic and acquired lung diseases.
Collapse
Affiliation(s)
- A K Perl
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
47
|
Perl AKT, Whitsett JA. Molecular mechanisms controlling lung morphogenesis. Clin Genet 1999. [DOI: 10.1034/j.1399-0004.2000.57si02.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Ghaffari M, Whitsett JA, Yan C. Inhibition of hSP-B promoter in respiratory epithelial cells by a dominant negative retinoic acid receptor. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L398-404. [PMID: 10070102 DOI: 10.1152/ajplung.1999.276.3.l398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoic acid (RA) receptors (RARs) belong to the nuclear hormone receptor superfamily and play important roles in lung differentiation, growth, and gene regulation. Surfactant protein (SP) B is a small hydrophobic protein synthesized and secreted by respiratory epithelial cells in the lung. Expression of the SP-B gene is modulated at the transcriptional and posttranscriptional levels. In the present work, immunohistochemical staining revealed that RAR-alpha is present on day 14.5 of gestation in the fetal mouse lung. To assess whether RAR is required for SP-B gene transcription, a dominant negative mutant human (h) RAR-alpha403 was generated. The hRAR-alpha403 mutant was transcribed and translated into the truncated protein product by reticulocyte lysate in vitro. The mutant retained DNA binding activity in the presence of retinoid X receptor-gamma to an RA response element in the hSP-B promoter. When transiently transfected into pulmonary adenocarcinoma epithelial cells (H441 cells), the mutant hRAR-alpha403 was readily detected in the cell nucleus. Cotransfection of the mutant hRAR-alpha403 repressed activity of the hSP-B promoter and inhibited RA-induced surfactant proprotein B production in H441 cells, supporting the concept that RAR is required for hSP-B gene transcription in vitro.
Collapse
Affiliation(s)
- M Ghaffari
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
49
|
Perrone L, Tell G, Di Lauro R. Calreticulin enhances the transcriptional activity of thyroid transcription factor-1 by binding to its homeodomain. J Biol Chem 1999; 274:4640-5. [PMID: 9988700 DOI: 10.1074/jbc.274.8.4640] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors are often regulated by associated protein cofactors that are able to modify their activity by several different mechanisms. In this study we show that calreticulin, a Ca2+-binding protein with chaperone activity, binds to thyroid transcription factor-1 (TTF-1), a homeodomain-containing protein implicated in the differentiation of lung and thyroid. The interaction between calreticulin and TTF-1 appears to have functional significance because it results in increased transcriptional stimulation of TTF-1-dependent promoters. Calreticulin binds to the TTF-1 homeodomain and promotes its folding, suggesting that the mechanism involved in stimulation of transcriptional activity is an increase of the steady-state concentration of active TTF-1 protein in the cell. We also demonstrate that calreticulin mRNA levels in thyroid cells are under strict control by the thyroid-stimulating hormone, thus implicating calreticulin in the modulation of thyroid gene expression by thyroid-stimulating hormone.
Collapse
Affiliation(s)
- L Perrone
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | | | | |
Collapse
|
50
|
García MA, Campillos M, Marina A, Valdivieso F, Vázquez J. Transcription factor AP-2 activity is modulated by protein kinase A-mediated phosphorylation. FEBS Lett 1999; 444:27-31. [PMID: 10037142 DOI: 10.1016/s0014-5793(99)00021-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We recently reported that APOE promoter activity is stimulated by cAMP, this effect being mediated by factor AP-2 [Garcia et al. (1996) J. Neurosci. 16, 7550-7556]. Here, we study whether cAMP-induced phosphorylation modulates the activity of AP-2. Recombinant AP-2 was phosphorylated in vitro by protein kinase A (PKA) at Ser239. Mutation of Ser239 to Ala abolished in vitro phosphorylation of AP-2 by PKA, but not the DNA binding activity of AP-2. Cotransfection studies showed that PKA stimulated the effect of AP-2 on the APOE promoter, but not that of the S239A mutant. Therefore, cAMP may modulate AP-2 activity by PKA-induced phosphorylation of this factor.
Collapse
Affiliation(s)
- M A García
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|