1
|
Turner M. Regulation and function of poised mRNAs in lymphocytes. Bioessays 2023; 45:e2200236. [PMID: 37009769 DOI: 10.1002/bies.202200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 04/04/2023]
Abstract
Pre-existing but untranslated or 'poised' mRNA exists as a means to rapidly induce the production of specific proteins in response to stimuli and as a safeguard to limit the actions of these proteins. The translation of poised mRNA enables immune cells to express quickly genes that enhance immune responses. The molecular mechanisms that repress the translation of poised mRNA and, upon stimulation, enable translation have yet to be elucidated. They likely reflect intrinsic properties of the mRNAs and their interactions with trans-acting factors that direct poised mRNAs away from or into the ribosome. Here, I discuss mechanisms by which this might be regulated.
Collapse
Affiliation(s)
- Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
2
|
Kwak Y, Daly CWP, Fogarty EA, Grimson A, Kwak H. Dynamic and widespread control of poly(A) tail length during macrophage activation. RNA (NEW YORK, N.Y.) 2022; 28:947-971. [PMID: 35512831 PMCID: PMC9202586 DOI: 10.1261/rna.078918.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
The poly(A) tail enhances translation and transcript stability, and tail length is under dynamic control during cell state transitions. Tail regulation plays essential roles in translational timing and fertilization in early development, but poly(A) tail dynamics have not been fully explored in post-embryonic systems. Here, we examined the landscape and impact of tail length control during macrophage activation. Upon activation, more than 1500 mRNAs, including proinflammatory genes, underwent distinctive changes in tail lengths. Increases in tail length correlated with mRNA levels regardless of transcriptional activity, and many mRNAs that underwent tail extension encode proteins necessary for immune function and post-transcriptional regulation. Strikingly, we found that ZFP36, whose protein product destabilizes target transcripts, undergoes tail extension. Our analyses indicate that many mRNAs undergoing tail lengthening are, in turn, degraded by elevated levels of ZFP36, constituting a post-transcriptional feedback loop that ensures transient regulation of transcripts integral to macrophage activation. Taken together, this study establishes the complexity, relevance, and widespread nature of poly(A) tail dynamics, and the resulting post-transcriptional regulation during macrophage activation.
Collapse
Affiliation(s)
- Yeonui Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, New York 14853, USA
| | - Ciarán W P Daly
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
3
|
de Mendonça-Vieira LR, Aníbal-Silva CE, Menezes-Neto A, Azevedo EDAN, Zanluqui NG, Peron JPS, Franca RFDO. Reactive Oxygen Species (ROS) Are Not a Key Determinant for Zika Virus-Induced Apoptosis in SH-SY5Y Neuroblastoma Cells. Viruses 2021; 13:v13112111. [PMID: 34834918 PMCID: PMC8622630 DOI: 10.3390/v13112111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: ZIKV is a highly neurotropic virus that can cause the death of infected neuroprogenitor cells through mitochondrial damage and intrinsic apoptotic signaling. In this context, the role of reactive oxygen species (ROS) in neuronal cell death caused by ZIKV still remains elusive. Objective: We aimed at evaluating the role of these cellular components in the death of human undifferentiated neuroblastoma cell line infected with ZIKV. Results: ZIKV infection resulted in the extensive death of SH-SY5Y cells with the upregulation of several genes involved in survival and apoptotic responses as well as the colocalization of mitochondrial staining with ZIKV Envelope (E) protein. Notably, levels of intracellular reactive oxygen species (ROS) were not altered during ZIKV infection in undifferentiated SH-SY5Y cells, and consistent with these results, the treatment of infected cells with the widely studied ROS scavenger N-acetylcysteine (NAC) did not prevent cell death in these cells. Conclusion: Altogether, our results suggest that excessive ROS production is not the main trigger of SH-SY5Y cells death in ZIKV infection.
Collapse
Affiliation(s)
- Leila Rodrigues de Mendonça-Vieira
- Oswaldo Cruz Foundation/Fiocruz, Aggeu Magalhães Institute, Recife 50740-465, Brazil; (A.M.-N.); (E.d.A.N.A.)
- Correspondence: (L.R.d.M.-V.); (R.F.d.O.F.)
| | | | - Armando Menezes-Neto
- Oswaldo Cruz Foundation/Fiocruz, Aggeu Magalhães Institute, Recife 50740-465, Brazil; (A.M.-N.); (E.d.A.N.A.)
| | | | - Nágela Ghabdan Zanluqui
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (N.G.Z.); (J.P.S.P.)
| | - Jean Pierre Schatzmann Peron
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (N.G.Z.); (J.P.S.P.)
| | - Rafael Freitas de Oliveira Franca
- Oswaldo Cruz Foundation/Fiocruz, Aggeu Magalhães Institute, Recife 50740-465, Brazil; (A.M.-N.); (E.d.A.N.A.)
- Correspondence: (L.R.d.M.-V.); (R.F.d.O.F.)
| |
Collapse
|
4
|
Diaz-Muñoz MD, Osma-Garcia IC. The RNA regulatory programs that govern lymphocyte development and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1683. [PMID: 34327847 DOI: 10.1002/wrna.1683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/25/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Lymphocytes require of constant and dynamic changes in their transcriptome for timely activation and production of effector molecules to combat external pathogens. Synthesis and translation of messenger (m)RNAs into these effector proteins is controlled both quantitatively and qualitatively by RNA binding proteins (RBPs). RBP-dependent regulation of RNA editing, subcellular location, stability, and translation shapes immune cell development and immunity. Extensive evidences have now been gathered from few model RBPs, HuR, PTBP1, ZFP36, and Roquin. However, recently developed methodologies for global characterization of protein:RNA interactions suggest the existence of complex RNA regulatory networks in which RBPs co-ordinately regulate the fate of sets of RNAs controlling cellular pathways and functions. In turn, RNA can also act as scaffolding of functionally related proteins modulating their activation and function. Here we review current knowledge about how RBP-dependent regulation of RNA shapes our immune system and discuss about the existence of a hidden immune cell epitranscriptome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Manuel D Diaz-Muñoz
- Toulouse Institute for Infectious and Inflammatory Diseases, Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| | - Ines C Osma-Garcia
- Toulouse Institute for Infectious and Inflammatory Diseases, Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, Toulouse, France
| |
Collapse
|
5
|
Sultana N, Hadas Y, Sharkar MTK, Kaur K, Magadum A, Kurian AA, Hossain N, Alburquerque B, Ahmed S, Chepurko E, Zangi L. Optimization of 5' Untranslated Region of Modified mRNA for Use in Cardiac or Hepatic Ischemic Injury. Mol Ther Methods Clin Dev 2020; 17:622-633. [PMID: 32300609 PMCID: PMC7150433 DOI: 10.1016/j.omtm.2020.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
Abstract
Modified mRNA (modRNA) is a gene-delivery platform for transiently introducing a single gene or several genes of interest to different cell types and tissues. modRNA is considered to be a safe vector for gene transfer, as it negligibly activates the innate immune system and does not compromise the genome integrity. The use of modRNA in basic and translational science is rising, due to the clinical potential of modRNA. We are currently using modRNA to induce cardiac regeneration post-ischemic injury. Major obstacles in using modRNA for cardiac ischemic disease include the need for the direct and single administration of modRNA to the heart and the inefficient translation of modRNA due to its short half-life. Modulation of the 5' untranslated region (5' UTR) to enhance translation efficiency in ischemic cardiac disease has great value, as it can reduce the amount of modRNA needed per delivery and will achieve higher and longer protein production post-single delivery. Here, we identified that 5' UTR, from the fatty acid metabolism gene carboxylesterase 1D (Ces1d), enhanced the translation of firefly luciferase (Luc) modRNA by 2-fold in the heart post-myocardial infarction (MI). Moreover, we identified, in the Ces1d, a specific RNA element (element D) that is responsible for the improvement of modRNA translation and leads to a 2.5-fold translation increment over Luc modRNA carrying artificial 5' UTR, post-MI. Importantly, we were able to show that 5' UTR Ces1d also enhances modRNA translation in the liver, but not in the kidney, post-ischemic injury, indicating that Ces1d 5' UTR and element D may play a wider role in translation of protein under an ischemic condition.
Collapse
Affiliation(s)
- Nishat Sultana
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yoav Hadas
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keerat Kaur
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ajit Magadum
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ann Anu Kurian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nadia Hossain
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bremy Alburquerque
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sakib Ahmed
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lior Zangi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Adipocytes Isolated from Visceral and Subcutaneous Depots of Donors Differing in BMI Crosstalk with Colon Cancer Cells and Modulate their Invasive Phenotype. Transl Oncol 2019; 12:1404-1415. [PMID: 31400580 PMCID: PMC6700440 DOI: 10.1016/j.tranon.2019.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE: Mechanisms related the crosstalk between adipocytes and colon cancer cells are still not clear. We hypothesize that molecules and adipocytokines generated from the adipose tissue of obese individuals accentuate the effect on the metabolic reprogramming in colon cancer cells, i.e. induce disarray in energy metabolism networks of the targeted affected colonic epithelial cells, prompting their malignant phenotype. METHODS: To explore the mechanistic behind this crosstalk we conducted a co-culture model system using human colon cancer cells having different malignant abilities and adipocytes from different depots and subjects. RESULTS: The results demonstrate that co-culturing aggressive colon cancer cells such as HM-7 cells, with Visceral or Subcutaneous adipocytes (VA or SA respectively) from lean/obese subjects significantly up-regulate the secretion of the adipokines IL-8, MCP1, and IL-6 from the adipocytes. Surprisingly, the response of co-culturing HM-7 cells with obese SA was substantially more significant. In addition, these effects were significantly more pronounced when using HM-7 cells as compared to the less malignant HCT116 colon cancer cells. Moreover, the results showed that HM-7 cells, co-cultured with VA or SA from obese subjects, expressed higher levels of fatty acid binding protein 4; thus, the conditioned media obtained from the wells contained HM-7 cells and adipocytes from obese subjects was significantly more efficient in promoting invasion of HM-7 cells. CONCLUSIONS: We conclude that interaction between adipocytes and colon cancer cells, especially the highly malignant cells, results in metabolic alterations in colon cancer cells and in highly hypertrophy phenotype which characterized by increasing adipokines secretion from the adipocytes.
Collapse
|
7
|
Abstract
Most human genes have multiple sites at which RNA 3' end cleavage and polyadenylation can occur, enabling the expression of distinct transcript isoforms under different conditions. Novel methods to sequence RNA 3' ends have generated comprehensive catalogues of polyadenylation (poly(A)) sites; their analysis using innovative computational methods has revealed how poly(A) site choice is regulated by core RNA 3' end processing factors, such as cleavage factor I and cleavage and polyadenylation specificity factor, as well as by other RNA-binding proteins, particularly splicing factors. Here, we review the experimental and computational methods that have enabled the global mapping of mRNA and of long non-coding RNA 3' ends, quantification of the resulting isoforms and the discovery of regulators of alternative cleavage and polyadenylation (APA). We highlight the different types of APA-derived isoforms and their functional differences, and illustrate how APA contributes to human diseases, including cancer and haematological, immunological and neurological diseases.
Collapse
|
8
|
Identification of CPE and GAIT elements in 3'UTR of macrophage migration inhibitory factor (MIF) involved in inflammatory response induced by LPS in Ciona robusta. Mol Immunol 2018; 99:66-74. [PMID: 29702356 DOI: 10.1016/j.molimm.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 01/06/2023]
Abstract
Innate immune responses face infectious microorganisms by inducing inflammatory responses. Multiple genes within distinct functional categories are coordinately and temporally regulated by transcriptional 'on' and 'off' switches that account for the specificity of gene expression in response to external stimuli. Mechanisms that control transcriptional and post-transcriptional regulation are important in coordinating the initiation and resolution of inflammation. Macrophage migration inhibitory factor (MIF) is an important cytokine that, in Ciona robusta, is related to inflammatory response. It is well known that in C. robusta, formerly known as Ciona intestinalis, the pharynx is involved in the inflammatory reaction induced by lipopolysaccharide (LPS) injection in the body wall. Using this biological system, we describe the identification of two C. robusta MIFs (CrMIF1 and CrMIF2). The phylogenetic tree and modeling support a close relationship with vertebrate MIF family members. CrMIF1 and CrMIF2 possess two evolutionally conserved catalytic sites: a tautomerase and an oxidoreductase site with a conserved CXXC motif. Real-time PCR analysis shows a prompt expression induced by LPS inoculation in CrMIF1 and a late upregulation of CrMIF2 and in silico analyses of 3'UTR show a cis-acting GAIT element and a CPE element in 3'-UTR, which are not present in the 3'-UTR of CrMIF1, suggesting that different transcriptional and post-transcriptional control mechanisms are involved in the regulation of gene expression of MIF during inflammatory response in C. robusta.
Collapse
|
9
|
Shah S, Mostafa MM, McWhae A, Traves SL, Newton R. Negative Feed-forward Control of Tumor Necrosis Factor (TNF) by Tristetraprolin (ZFP36) Is Limited by the Mitogen-activated Protein Kinase Phosphatase, Dual-specificity Phosphatase 1 (DUSP1): IMPLICATIONS FOR REGULATION BY GLUCOCORTICOIDS. J Biol Chem 2015; 291:110-25. [PMID: 26546680 DOI: 10.1074/jbc.m115.697599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
TNF is central to inflammation and may play a role in the pathogenesis of asthma. The 3'-untranslated region of the TNF transcript contains AU-rich elements (AREs) that are targeted by the RNA-binding protein, tristetraprolin (also known as zinc finger protein 36 (ZFP36)), which is itself up-regulated by inflammatory stimuli, to promote mRNA degradation. Using primary human bronchial epithelial and pulmonary epithelial A549 cells, we confirm that interleukin-1β (IL1B) induces expression of dual-specificity phosphatase 1 (DUSP1), ZFP36, and TNF. Whereas IL1B-induced DUSP1 is involved in feedback control of MAPK pathways, ZFP36 exerts negative (incoherent) feed-forward control of TNF mRNA and protein expression. DUSP1 silencing increased IL1B-induced ZFP36 expression at 2 h and profoundly repressed TNF mRNA at 6 h. This was partly due to increased TNF mRNA degradation, an effect that was reduced by ZFP36 silencing. This confirms a regulatory network, whereby DUSP1-dependent negative feedback control reduces feed-forward control by ZFP36. Conversely, whereas DUSP1 overexpression and inhibition of MAPKs prevented IL1B-induced expression of ZFP36, this was associated with increased TNF mRNA expression at 6 h, an effect that was predominantly due to elevated transcription. This points to MAPK-dependent feed-forward control of TNF involving ZFP36-dependent and -independent mechanisms. In terms of repression by dexamethasone, neither silencing of DUSP1, silencing of ZFP36, nor silencing of both together prevented the repression of IL1B-induced TNF expression, thereby demonstrating the need for further repressive mechanisms by anti-inflammatory glucocorticoids. In summary, these data illustrate why understanding the competing effects of feedback and feed-forward control is relevant to the development of novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Mahmoud M Mostafa
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Andrew McWhae
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Suzanne L Traves
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
10
|
Tiedje C, Holtmann H, Gaestel M. The role of mammalian MAPK signaling in regulation of cytokine mRNA stability and translation. J Interferon Cytokine Res 2015; 34:220-32. [PMID: 24697200 DOI: 10.1089/jir.2013.0146] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular-regulated kinases and p38 mitogen-activated protein kinases are activated in innate (and adaptive) immunity and signal via different routes to alter the stability and translation of various cytokine mRNAs, enabling immune cells to respond promptly. This regulation involves mRNA elements, such as AU-rich motifs, and mRNA-binding proteins, such as tristetraprolin (TTP), HuR, and hnRNPK-homology (KH) type splicing regulatory protein (KSRP). Signal-dependent phosphorylation of mRNA-binding proteins often alters their subcellular localization or RNA-binding affinity. Furthermore, it could lead to an altered interaction with other mRNA-binding proteins and altered scaffolding properties for mRNA-modifying enzymes, such as deadenylases, polyadenylases, decapping enzymes, poly(A) binding proteins, exo- or endonucleases, and proteins of the exosome machinery. In many cases, this results in unstable mRNAs being stabilized, with their translational arrest being released and cytokine production being stimulated. Hence, components of these mechanisms are potential targets for the modulation of the inflammatory response.
Collapse
Affiliation(s)
- Christopher Tiedje
- Institute of Physiological Chemistry, Hannover Medical School , Hannover, Germany
| | | | | |
Collapse
|
11
|
Curinha A, Oliveira Braz S, Pereira-Castro I, Cruz A, Moreira A. Implications of polyadenylation in health and disease. Nucleus 2014; 5:508-19. [PMID: 25484187 DOI: 10.4161/nucl.36360] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyadenylation is the RNA processing step that completes the maturation of nearly all eukaryotic mRNAs. It is a two-step nuclear process that involves an endonucleolytic cleavage of the pre-mRNA at the 3'-end and the polymerization of a polyadenosine (polyA) tail, which is fundamental for mRNA stability, nuclear export and efficient translation during development. The core molecular machinery responsible for the definition of a polyA site includes several recognition, cleavage and polyadenylation factors that identify and act on a given polyA signal present in a pre-mRNA, usually an AAUAAA hexamer or similar sequence. This mechanism is tightly regulated by other cis-acting elements and trans-acting factors, and its misregulation can cause inefficient gene expression and may ultimately lead to disease. The majority of genes generate multiple mRNAs as a result of alternative polyadenylation in the 3'-untranslated region. The variable lengths of the 3' untranslated regions created by alternative polyadenylation are a recognizable target for differential regulation and clearly affect the fate of the transcript, ultimately modulating the expression of the gene. Over the past few years, several studies have highlighted the importance of polyadenylation and alternative polyadenylation in gene expression and their impact in a variety of physiological conditions, as well as in several illnesses. Abnormalities in the 3'-end processing mechanisms thus represent a common feature among many oncological, immunological, neurological and hematological disorders, but slight imbalances can lead to the natural establishment of a specific cellular state. This review addresses the key steps of polyadenylation and alternative polyadenylation in different cellular conditions and diseases focusing on the molecular effectors that ensure a faultless pre-mRNA 3' end formation.
Collapse
Key Words
- 3′ untranslated region
- 3′READS, 3′ Region Extraction and Deep Sequencing
- AD, Alzheimer disease
- APA, Alternative polyadenylation
- AREs, Au-rich elements
- BPV, bovine papilloma virus
- CAH, congenital adrenal hyperplasia
- CFIm25, Cleavage Factor Im 25 kDa
- COX-2, cyclooxygenase 2
- CPSF, Cleavage and Polyadenylation Specificity Factor
- CSTF2, cleavage stimulatory factor-64kDa
- DMKN, dermokine
- DSE, downstream sequence element
- ESC, embryonic stem cells
- FMR1, Fragil X mental retardation 1
- FOXP3, forkhead box P3
- FXPOI, fragile X-associated immature ovarian insufficiency
- FXS, Fragile X syndrome
- FXTAS, fragile X-associated tremor/ataxia syndrome
- HGRG-14, high-glucose-regulated gene
- IMP-1, Insulin-like growth factor 2 mRNA binding protein 1
- IPEX, immune dysfunction, polyendocrinopathy, enteropathy, X-linked
- LPS, lipopolysaccharide
- OPMD, oculopharyngeal muscular dystrophy
- PABPN1, poly(A) binding protein
- PAP, polyA polymerase
- PAS, polyA site
- PD, Parkinson disease
- PDXK, pyridoxal kinase
- PPIE, peptidylpropylisomerase E
- RBP, RNA-binding protein
- RNA Pol II, RNA polymerase II
- SLE, systemic lupus erythematosus
- SMA, Spinal Muscular Atrophy
- SMN, Survival Motor Neuron
- SNP, single nucleotide polymorphism
- StAR, steroigogenic acute regulatory
- TCF/LEF, T cell factor/lymphoid enhancer factor.
- TCF7L2, transcription factor 7-like 2
- TCR, T cell receptor
- TLI, tandem UTR length index
- TNF-α, tumor necrosis factor-α
- USE, upstream sequence element
- UTR, untranslated region
- WAS, Wiskott-Aldrich syndrome
- WASP, Wiskott-Aldrich syndrome protein
- aSyn, α-Synuclein
- aSynL, longest aSyn isoform
- alternative polyadenylation
- cell state
- disease
- gene expression
- miRNA, microRNA
- nuclear 1
- pA signal, polyA signal
- pA tail, polyA tail
- polyadenylation
- siRNAs, small interfering RNAs
- snRNPs, spliceosomal small nuclear ribonucleoproteins
- α-GalA, α-galactosidase A
- μ, IgM heavy-chain mRNA
Collapse
Affiliation(s)
- Ana Curinha
- a Gene Regulation Group; IBMC-Instituto de Biologia Molecular e Celular ; Universidade do Porto ; Porto , Portugal
| | | | | | | | | |
Collapse
|
12
|
Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 2014; 14:361-76. [PMID: 24854588 DOI: 10.1038/nri3682] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Innate immune responses combat infectious microorganisms by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. Multiple genes within each of these functional categories are coordinately and temporally regulated in response to distinct external stimuli. The substantial potential of these responses to drive pathological inflammation and tissue damage highlights the need for rigorous control of these responses. Although transcriptional control of inflammatory gene expression has been studied extensively, the importance of post-transcriptional regulation of these processes is less well defined. In this Review, we discuss the regulatory mechanisms that occur at the level of mRNA splicing, mRNA polyadenylation, mRNA stability and protein translation, and that have instrumental roles in controlling both the magnitude and duration of the inflammatory response.
Collapse
Affiliation(s)
- Susan Carpenter
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Emiliano P Ricci
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Blandine C Mercier
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Melissa J Moore
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Katherine A Fitzgerald
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2] Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
13
|
Veilleux-Lemieux D, Beaudry F, Hélie P, Vachon P. Effects of endotoxemia on the pharmacodynamics and pharmacokinetics of ketamine and xylazine anesthesia in Sprague-Dawley rats. VETERINARY MEDICINE-RESEARCH AND REPORTS 2012; 3:99-109. [PMID: 30101090 DOI: 10.2147/vmrr.s35666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Purpose To evaluate the effects of endotoxemia on the pharmacokinetics and pharmacodynamics of ketamine and xylazine anesthesia in Sprague-Dawley rats. Methods Sprague-Dawley rats received ketamine (80 mg/kg) and xylazine (5 mg/kg) intramuscularly following the intraperitoneal administration of different lipopolysaccharide concentrations (1, 10, and 100 µg/kg) to simulate different levels of endotoxemia. Results were compared to control animals receiving saline intraperitoneally. During anesthesia, a toe pinch was performed to evaluate anesthesia duration, and selected physiological parameters (heart and respiratory rates, oxygen saturation, and rectal temperature) were taken. Blood samples were also taken during anesthesia at selected time points for the analysis of plasmatic ketamine and xylazine concentrations by liquid chromatography-mass spectrometry. Blood samples were taken 1 week prior to and 24 hours following anesthesia for blood biochemistry. Results Anesthesia duration significantly increased for moderate (10 µg/kg) and high (100 µg/kg) lipopolysaccharide groups. Liver histopathology showed minor to moderate necrosis in all lipopolysaccharide groups in some animals. The most important physiological change that occurred was a decrease in oxygen saturation, and for blood biochemistry a decrease in serum albumin. Ketamine pharmacokinetics were not affected except for the moderate (10 µg/kg) lipopolysaccharide group where a decrease in the area under the plasma concentration-time curve from time zero to the last measurable concentration, a decrease in half-life, and an increase in the clearance were observed. For xylazine, the area under the plasma concentration-time curve increased and the clearance decreased in the moderate (10 µg/kg) and high (100 µg/kg) lipopolysaccharide groups. Conclusion During ketamine-xylazine anesthesia, endotoxemia may alter xylazine pharmacokinetics and selected biochemical and physiological parameters, suggesting that anesthetic drug dosages could be modified for a more rapid recovery.
Collapse
Affiliation(s)
- Daphnée Veilleux-Lemieux
- Department of Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe, .,Department of Veterinary Services, Laval University, Quebec
| | - Francis Beaudry
- Department of Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe,
| | - Pierre Hélie
- Department of Pathology and Microbiology, University of Montreal, Saint-Hyacinthe, Canada
| | - Pascal Vachon
- Department of Veterinary Biomedicine, University of Montreal, Saint-Hyacinthe,
| |
Collapse
|
14
|
MA L, HE YJ, LI Y, GONG MX. Actions of four organic acids in radix isatidis on endotoxin-neutralization investigated by kinetic turbidimetric assay. J TRADIT CHIN MED 2012; 32:261-6. [DOI: 10.1016/s0254-6272(13)60022-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. ACTA ACUST UNITED AC 2011; 33:309-37. [PMID: 21757510 DOI: 10.2164/jandrol.111.014167] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Posttranscriptional status of messenger RNAs (mRNA) can be affected by many factors, most of which are RNA-binding proteins (RBP) that either bind mRNA in a nonspecific manner or through specific motifs, usually located in the 3' untranslated regions. RBPs can also be recruited by small noncoding RNAs (sncRNA), which have been shown to be involved in posttranscriptional regulations and transposon repression (eg, microRNAs or P-element-induced wimpy testis-interacting RNA) as components of the sncRNA effector complex. Non-sncRNA-binding RBPs have much more diverse effects on their target mRNAs. Some can cause degradation of their target transcripts and/or repression of translation, whereas others can stabilize and/or activate translation. The splicing and exportation of transcripts from the nucleus to the cytoplasm are often mediated by sequence-specific RBPs. The mechanisms by which RBPs regulate mRNA transcripts involve manipulating the 3' poly(A) tail, targeting the transcript to polysomes or to other ribonuclear protein particles, recruiting regulatory proteins, or competing with other RBPs. Here, we briefly review the known mechanisms of posttranscriptional regulation mediated by RBPs, with an emphasis on how these mechanisms might control spermatogenesis in general.
Collapse
Affiliation(s)
- R Keegan Idler
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
16
|
de Lima-Salgado TM, Alba-Loureiro TC, do Nascimento CS, Nunes MT, Curi R. Molecular mechanisms by which saturated fatty acids modulate TNF-α expression in mouse macrophage lineage. Cell Biochem Biophys 2011; 59:89-97. [PMID: 20809180 DOI: 10.1007/s12013-010-9117-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many macrophage functions are modulated by fatty acids (FAs), including cytokine release, such as tumor necrosis factor-α (TNF-α). TNF-α is of great interest due to its role in the inflammation process observed in several diseases such as rheumatoid arthritis, atherosclerosis, and obesity. However, the mechanisms by which FA effects occur have not been completely elucidated yet. In this study, we used a mouse monocyte lineage (J774 cells) to evaluate the effect of 50 and 100 μM of saturated (palmitic and stearic acids), monounsaturated (oleic acid) and polyunsaturated (linoleic acid) FAs on TNF-α production. Alterations in gene expression, poly(A) tail length and activation of transcription factors were evaluated. Oleic and linoleic acids, usually known as neutral or pro-inflammatory FA, inhibited LPS-induced TNF-α secretion by the cells. Saturated FAs were potent inducers of TNF-α expression and secretion under basal and inflammatory conditions (in the presence of LPS). Although the effect of the saturated FA was similar, the mechanism involved in each case seem to be distinct, as palmitic acid increased EGR-1 and CREB binding activity and stearic acid increased mRNA poly(A) tail. These results may contribute to the understanding of the molecular mechanisms by which saturated FAs modulate the inflammatory response and may lead to design of associations of dietary and pharmacological strategies to counteract the pathological effects of TNF-α.
Collapse
Affiliation(s)
- Thais Martins de Lima-Salgado
- Laboratory of Clinical Emergency, Emergency Medicine Department, Medical School, University of São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
17
|
Serrano-Nascimento C, Calil-Silveira J, Nunes MT. Posttranscriptional regulation of sodium-iodide symporter mRNA expression in the rat thyroid gland by acute iodide administration. Am J Physiol Cell Physiol 2010; 298:C893-9. [PMID: 20107044 DOI: 10.1152/ajpcell.00224.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Iodide is an important regulator of thyroid activity. Its excess elicits the Wolff-Chaikoff effect, characterized by an acute suppression of thyroid hormone synthesis, which has been ascribed to serum TSH reduction or TGF-beta increase and production of iodolipids in the thyroid. These alterations take hours/days to occur, contrasting with the promptness of Wolff-Chaikoff effect. We investigated whether acute iodide administration could trigger events that precede those changes, such as reduction of sodium-iodide symporter (NIS) mRNA abundance and adenylation, and if perchlorate treatment could counteract them. Rats subjected or not to methylmercaptoimidazole treatment (0.03%) received NaI (2,000 microg/0.5 ml saline) or saline intraperitoneally and were killed 30 min up to 24 h later. Another set of animals was treated with iodide and perchlorate, in equimolar doses. NIS mRNA content was evaluated by Northern blotting and real-time PCR, and NIS mRNA poly(A) tail length by rapid amplification of cDNA ends-poly(A) test (RACE-PAT). We observed that NIS mRNA abundance and poly(A) tail length were significantly reduced in all periods of iodide treatment. Perchlorate reversed these effects, indicating that iodide was the agent that triggered the modifications observed. Since the poly(A) tail length of mRNAs is directly associated with their stability and translation efficiency, we can assume that the rapid decay of NIS mRNA abundance observed was due to a reduction of its stability, a condition in which its translation could be impaired. Our data show for the first time that iodide regulates NIS mRNA expression at posttranscriptional level, providing a new mechanism by which iodide exerts its autoregulatory effect on thyroid.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Dept. of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil
| | | | | |
Collapse
|
18
|
Yang KH, Lee MG. Effects of endotoxin derived from Escherichia coli lipopolysaccharide on the pharmacokinetics of drugs. Arch Pharm Res 2009; 31:1073-86. [DOI: 10.1007/s12272-001-1272-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 07/01/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
|
19
|
Zhang Y, Gaekwad J, Wolfert MA, Boons GJ. Synthetic tetra-acylated derivatives of lipid A from Porphyromonas gingivalis are antagonists of human TLR4. Org Biomol Chem 2008; 6:3371-81. [PMID: 18802645 PMCID: PMC2793594 DOI: 10.1039/b809090d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tetra-acylated lipid As derived from Porphyromonas gingivalis LPS have been synthesized using a key disaccharide intermediate functionalized with levulinate (Lev), allyloxycarbonate (Alloc) and anomeric dimethylthexylsilyl (TDS) as orthogonal protecting groups and 9-fluorenylmethoxycarbamate (Fmoc) and azido as amino protecting groups. Furthermore, an efficient cross-metathesis has been employed for the preparation of the unusual branched R-(3)-hydroxy-13-methyltetradecanic acid and (R)-3-hexadecanoyloxy-15-methylhexadecanoic acid of P. gingivalis lipid A. Biological studies have shown that the synthetic lipid As cannot activate human and mouse TLR2 and TLR4 to produce cytokines. However, it has been found that the compounds are potent antagonist of cytokine secretion by human monocytic cells induced by enteric LPS.
Collapse
Affiliation(s)
- Yanghui Zhang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Jidnyasa Gaekwad
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Margreet A. Wolfert
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| |
Collapse
|
20
|
Rowlett RM, Chrestensen CA, Schroeder MJ, Harp MG, Pelo JW, Shabanowitz J, DeRose R, Hunt DF, Sturgill TW, Worthington MT. Inhibition of tristetraprolin deadenylation by poly(A) binding protein. Am J Physiol Gastrointest Liver Physiol 2008; 295:G421-30. [PMID: 18467502 PMCID: PMC2536786 DOI: 10.1152/ajpgi.00508.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tristetraprolin (TTP) is the prototype for a family of RNA binding proteins that bind the tumor necrosis factor (TNF) messenger RNA AU-rich element (ARE), causing deadenylation of the TNF poly(A) tail, RNA decay, and silencing of TNF protein production. Using mass spectrometry sequencing we identified poly(A) binding proteins-1 and -4 (PABP1 and PABP4) in high abundance and good protein coverage from TTP immunoprecipitates. PABP1 significantly enhanced TNF ARE binding by RNA EMSA and prevented TTP-initiated deadenylation in an in vitro macrophage assay of TNF poly(A) stability. Neomycin inhibited TTP-promoted deadenylation at concentrations shown to inhibit the deadenylases poly(A) ribonuclease and CCR4. Stably transfected RAW264.7 macrophages overexpressing PABP1 do not oversecrete TNF; instead they upregulate TTP protein without increasing TNF protein production. The PABP1 inhibition of deadenylation initiated by TTP does not require the poly(A) binding regions in RRM1 and RRM2, suggesting a more complicated interaction than simple masking of the poly(A) tail from a 3'-exonuclease. Like TTP, PABP1 is a substrate for p38 MAP kinase. Finally, PABP1 stabilizes cotransfected TTP in 293T cells and prevents the decrease in TTP levels seen with p38 MAP kinase inhibition. These findings suggest several levels of functional antagonism between TTP and PABP1 that have implications for regulation of unstable mRNAs like TNF.
Collapse
Affiliation(s)
- Robert M. Rowlett
- Department of Medicine, Department of Pharmacology, Department of Chemistry, Department of Pathology, University of Virginia, Charlottesville, Virginia; and Division of Digestive Diseases, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carol A. Chrestensen
- Department of Medicine, Department of Pharmacology, Department of Chemistry, Department of Pathology, University of Virginia, Charlottesville, Virginia; and Division of Digestive Diseases, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melanie J. Schroeder
- Department of Medicine, Department of Pharmacology, Department of Chemistry, Department of Pathology, University of Virginia, Charlottesville, Virginia; and Division of Digestive Diseases, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary G. Harp
- Department of Medicine, Department of Pharmacology, Department of Chemistry, Department of Pathology, University of Virginia, Charlottesville, Virginia; and Division of Digestive Diseases, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jared W. Pelo
- Department of Medicine, Department of Pharmacology, Department of Chemistry, Department of Pathology, University of Virginia, Charlottesville, Virginia; and Division of Digestive Diseases, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeffery Shabanowitz
- Department of Medicine, Department of Pharmacology, Department of Chemistry, Department of Pathology, University of Virginia, Charlottesville, Virginia; and Division of Digestive Diseases, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert DeRose
- Department of Medicine, Department of Pharmacology, Department of Chemistry, Department of Pathology, University of Virginia, Charlottesville, Virginia; and Division of Digestive Diseases, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Donald F. Hunt
- Department of Medicine, Department of Pharmacology, Department of Chemistry, Department of Pathology, University of Virginia, Charlottesville, Virginia; and Division of Digestive Diseases, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas W. Sturgill
- Department of Medicine, Department of Pharmacology, Department of Chemistry, Department of Pathology, University of Virginia, Charlottesville, Virginia; and Division of Digestive Diseases, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark T. Worthington
- Department of Medicine, Department of Pharmacology, Department of Chemistry, Department of Pathology, University of Virginia, Charlottesville, Virginia; and Division of Digestive Diseases, Johns Hopkins Bayview Medical Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Argueta-Donohué J, Carrillo N, Valdés-Reyes L, Zentella A, Aguirre-García M, Becker I, Gutiérrez-Kobeh L. Leishmania mexicana: participation of NF-kappaB in the differential production of IL-12 in dendritic cells and monocytes induced by lipophosphoglycan (LPG). Exp Parasitol 2008; 120:1-9. [PMID: 18508052 DOI: 10.1016/j.exppara.2008.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 02/29/2008] [Accepted: 04/03/2008] [Indexed: 11/28/2022]
Abstract
Dendritic cells (DC) and macrophages (Mphi) are well known as important effectors of the innate immune system and their ability to produce IL-12 indicates that they possess the potential of directing acquired immunity toward a Th1-biased response. Interestingly, the intracellular parasite Leishmania has been shown to selectively suppress Mphi IL-12 production and are DC the principal source of this cytokine. The molecular details of this phenomenon remain enigmatic. In the present study we examined the effect of Leishmania mexicana lipophosphoglycan (LPG) on the production of IL-12, TNF-alpha, and IL-10 and nuclear translocation of NF-kappaB. The results show that LPG induced more IL-12 in human DC than in monocytes. This difference was due in part to nuclear translocation of NF-kappaB, since LPG induced more translocation in DC than in monocytes. These results suggest that Leishmania LPG impairs nuclear translocation of NF-kappaB in monocytes with the subsequent decrease in IL-12 production.
Collapse
Affiliation(s)
- Jesús Argueta-Donohué
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Dr. Balmis 148, Col. Doctores, México 06726, Mexico
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2006; 33:7138-50. [PMID: 16391004 PMCID: PMC1325018 DOI: 10.1093/nar/gki1012] [Citation(s) in RCA: 761] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The control of mRNA stability is an important process that allows cells to not only limit, but also rapidly adjust, the expression of regulatory factors whose over expression may be detrimental to the host organism. Sequence elements rich in A and U nucleotides or AU-rich elements (AREs) have been known for many years to target mRNAs for rapid degradation. In this survey, after briefly summarizing the data on the sequence characteristics of AREs, we present an analysis of the known ARE-binding proteins (ARE-BP) with respect to their mRNA targets and the consequences of their binding to the mRNA. In this analysis, both the changes in mRNA stability and the lesser studied effects on translation are considered. This analysis highlights the multitude of mRNAs bound by one ARE-BP and conversely the large number of ARE-BP that associate with any particular ARE-containing mRNA. This situation is discussed with respect to functional redundancies or antagonisms. The potential relationship between mRNA stability and translation is also discussed. Finally, we present several hypotheses that could unify the published data and suggest avenues for future research.
Collapse
Affiliation(s)
| | | | - H. Beverley Osborne
- To whom correspondence should be addressed. Tel: +33 223 23 4523; Fax: +33 223 23 4478;
| |
Collapse
|
24
|
Shell SA, Hesse C, Morris SM, Milcarek C. Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection. J Biol Chem 2005; 280:39950-61. [PMID: 16207706 DOI: 10.1074/jbc.m508848200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipopolysaccharide (LPS) activation of murine RAW 264.7 macrophages influences the expression of multiple genes through transcriptional and post-transcriptional mechanisms. We observed a 5-fold increase in CstF-64 expression following LPS treatment of RAW macrophages. The increase in CstF-64 protein was specific in that several other factors involved in 3'-end processing were not affected by LPS stimulation. Activation of RAW macrophages with LPS caused an increase in proximal poly(A) site selection within a reporter mini-gene containing two linked poly(A) sites that occurred concomitant with the increase in CstF-64 expression. Furthermore, forced overexpression of the CstF-64 protein also induced alternative poly(A) site selection on the reporter minigene. Microarray analysis performed on CstF-64 overexpressing RAW macrophages revealed that elevated levels of CstF-64 altered the expression of 51 genes, 14 of which showed similar changes in gene expression with LPS stimulation. Sequence analysis of the 3'-untranslated regions of these 51 genes revealed that over 45% possess multiple putative poly(A) sites. Two of these 51 genes demonstrated alternative polyadenylation under both LPS-stimulating and CstF-64-overexpressing conditions. We concluded that the physiologically increased levels of CstF-64 observed in LPS-stimulated RAW macrophages contribute to the changes in expression and alternative polyadenylation of a number of genes, thus identifying another level of gene regulation that occurs in macrophages activated with LPS.
Collapse
MESH Headings
- 3' Untranslated Regions
- Algorithms
- Animals
- Binding Sites
- Blotting, Western
- Cell Proliferation
- Cells, Cultured
- Cleavage Stimulation Factor/chemistry
- Cleavage Stimulation Factor/physiology
- Gene Expression Regulation
- Genes, Reporter
- Lipopolysaccharides/metabolism
- Lipopolysaccharides/pharmacology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Models, Biological
- Models, Genetic
- Models, Statistical
- Oligonucleotide Array Sequence Analysis
- Oligonucleotides/chemistry
- Open Reading Frames
- Poly A/chemistry
- Polyadenylation
- Promoter Regions, Genetic
- Protein Binding
- Protein Conformation
- RNA/chemistry
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription, Genetic
Collapse
Affiliation(s)
- Scott A Shell
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15221, USA
| | | | | | | |
Collapse
|
25
|
Ueyama J, Nadai M, Kanazawa H, Iwase M, Nakayama H, Hashimoto K, Yokoi T, Baba K, Takagi K, Takagi K, Hasegawa T. Endotoxin from various gram-negative bacteria has differential effects on function of hepatic cytochrome P450 and drug transporters. Eur J Pharmacol 2005; 510:127-34. [PMID: 15740733 DOI: 10.1016/j.ejphar.2005.01.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 11/15/2004] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
The differential effects of endotoxin derived from Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli on hepatic cytochrome P450 (CYP)-dependent drug-metabolizing enzyme activity and on the expression of hepatic CYP3A2, CYP2C11, P-glycoprotein and multidrug resistance-associated protein 2 (Mrp2) was investigated in rats. Endotoxin from all three different pathogens significantly decreased the systemic clearance of antipyrine, reflecting reduced hepatic drug-metabolizing enzyme activity 24 h after intravenous injection (0.5 mg/kg). The degree of the decreased systemic clearance by P. aeruginosa endotoxin was smaller than that by both K. pneumoniae and E. coli endotoxin. Western blot analysis revealed that the down-regulation of CYP3A2 by K. pneumoniae and E. coli endotoxin was greater than that by P. aeruginosa endotoxin. However, the down-regulation of CYP2C11 by all three different endotoxin was almost the same. Both K. pneumoniae and P. aeruginosa endotoxin significantly down-regulated P-glycoprotein, but did not down-regulate Mrp2. E. coli endotoxin had no effect on the expression of either P-glycoprotein or Mrp2, probably due to the low dose used. The down-regulation of CYP3A2 by endotoxin was parallel to the decreased systemic clearance of antipyrine. These results suggest that endotoxin has a differential effect on the hepatic CYP-mediated drug-metabolizing enzyme activity, and on the protein levels of hepatic CYP3A2 and P-glycoprotein, probably due to bacterial source-differences in the production of some proinflammatory mediators. Endotoxin appears to regulate coordinately CYP3A2, CYP2C11 and P-glycoprotein, but not Mrp2.
Collapse
Affiliation(s)
- Jun Ueyama
- Department of Medical Technology, Nagoya University School of Health Sciences, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Adenosine- and uridine-rich elements (AREs) located in 3'-untranslated regions are the best-known determinants of RNA instability. These elements have also been shown to control translation in certain mRNAs, including mRNAs for prominent pro-inflammatory and tumor growth-related proteins, and physiological anti-inflammatory processes that target ARE-controlled translation of mRNAs coding for pro-inflammatory proteins have been described. A major research effort is now being made to understand the mechanisms by which the translation of these mRNAs is controlled and the signalling pathways involved. This review focuses on the role of ARE-containing gene translation in inflammation, and the disease models that have improved our understanding of ARE-mediated translational control.
Collapse
Affiliation(s)
- Enric Espel
- Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| |
Collapse
|
27
|
Amcheslavsky A, Zou W, Bar-Shavit Z. Toll-like receptor 9 regulates tumor necrosis factor-alpha expression by different mechanisms. Implications for osteoclastogenesis. J Biol Chem 2004; 279:54039-45. [PMID: 15485822 DOI: 10.1074/jbc.m409138200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CpG oligodeoxynucleotides (CpG-ODNs), mimicking bacterial DNA, stimulate osteoclastogenesis via Toll-like receptor 9 (TLR9) in receptor activator of NF-kappa B ligand (RANKL)-primed osteoclast precursors. This activity is mediated via tumor necrosis factor (TNF)-alpha induction by CpG-ODN. To further reveal the role of the cytokine in TLR9-mediated osteoclastogenesis, we compared the ability of CpG-ODN to induce osteoclastogenesis in two murine strains, BALB/c and C57BL/6, expressing different TNF-alpha alleles. The induction of osteoclastogenesis and TNF-alpha release by CpG-ODN was by far more noticeable in BALB/c-derived than in C57BL/6-derived osteoclast precursors. Unexpectedly, as revealed by Northern analysis, CpG-ODN induction of TNF-alpha mRNA increase was more efficient in C57BL/6-derived cells. The cytokine transcript abundance was increased due to both increased message stability and rate of transcription. The difference between the two cell types was the result of a higher transcription rate in CpG-ODN-induced C57BL/6-derived cells caused by a single nucleotide polymorphism in kappa B2a site within the TNF-alpha promoter sequence. CpG-ODN enhanced the rate of the cytokine translation in BALB/c-derived cells. Thus, CpG-ODN modulated both transcription and translation of TNF-alpha. The induction of transcription was more evident in C57BL/6-derived cells, while the induction of translation took place only in BALB/c-derived osteoclast precursors. Altogether the cytokine was induced to a larger extent in BALB/c-derived osteoclast precursors, consistent with the increased CpG-ODN osteoclastogenic effect in these cells.
Collapse
Affiliation(s)
- Alla Amcheslavsky
- H. Hubert Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University Faculty of Medicine, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
28
|
Ueyama J, Kitaichi K, Nadai M, Iwase M, Tomyo N, Kanazawa H, Suzuki R, Takagi K, Takagi K, Hasegawa T. Effect of pioglitazone on endotoxin-induced decreases in hepatic drug-metabolizing enzyme activity and expression of CYP3A2 and CYP2C11. Eur J Pharmacol 2004; 498:257-65. [PMID: 15364003 DOI: 10.1016/j.ejphar.2004.07.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2004] [Indexed: 10/26/2022]
Abstract
It has been reported that peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands ameliorate the expression of inducible nitric oxide synthase (iNOS) by endotoxin. In the present study, we investigated the effect of pioglitazone, a potent PPAR-gamma ligand, on the endotoxin-induced reduction of hepatic drug-metabolizing enzyme activity and on the down-regulation of the expression of hepatic cytochrome P450 (CYP) 3A2 and CYP2C11 proteins in rats. Endotoxin (1 mg/kg) significantly decreased hepatic drug-metabolizing enzyme activity in vivo, as represented by the systemic clearance of antipyrine and protein levels of CYP3A2 and CYP2C11 24 h after intraperitoneal injection. Pretreatment with pioglitazone (10 mg/kg, 4 times at 10-min intervals) significantly protected the endotoxin-induced decreases in the systemic clearance of antipyrine and protein levels of CYP3A2, but not CYP2C11, with no biochemical and histopathological changes in the liver. Pioglitazone alone had no effect on the systemic clearance of antipyrine and protein levels of CYP3A2 or CYP2C11. Pioglitazone significantly protected endotoxin-induced overexpression of iNOS in the liver, but not the overproduction of nitric oxide (NO) in plasma. It is unlikely that the protective effect of pioglitazone against endotoxin-induced decreases in the hepatic drug-metabolizing enzyme activity and protein levels of CYP3A2 in the liver is due to the inhibition of the overproduction of NO.
Collapse
Affiliation(s)
- Jun Ueyama
- Department of Medical Technology, Nagoya University School of Health Sciences, 1-1-20 Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mugnier B, Roudier J. Factors predicting responsiveness to anti-TNFα therapy in patients with rheumatoid arthritis: using biotherapies rationally. Joint Bone Spine 2004; 71:91-4. [PMID: 15050192 DOI: 10.1016/j.jbspin.2003.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 10/20/2003] [Indexed: 11/16/2022]
|
30
|
Newton R, Holden N. Inhibitors of p38 mitogen-activated protein kinase: potential as anti-inflammatory agents in asthma? BioDrugs 2004; 17:113-29. [PMID: 12641490 DOI: 10.2165/00063030-200317020-00004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asthma is an inflammatory disease of the airways, which in patients with mild to moderate symptoms is adequately controlled by either beta(2)-adrenoceptor agonists or corticosteroids, or a combination of both. Despite this, there are classes of patients that fail to respond to these treatments. In addition, there is a general trend towards increasing morbidity and mortality due to asthma, which suggests that there is a need for new and improved treatments. The p38 mitogen-activated protein kinases (MAPKs) represent a point of convergence for multiple signalling processes that are activated in inflammation and that impact on a diverse range of events that are important in inflammation. Small molecule pyridinyl imidazole inhibitors of p38 MAPK have proved to be highly effective in reducing various parameters of inflammation, in particular cytokine expression. Like corticosteroids, inhibitors of p38 MAPK appear to be able to repress gene expression at multiple levels, for example, by transcriptional, posttranscriptional and translational repression, and this raises the possibility of a similarly broad spectrum of anti-inflammatory activities. Indeed these molecules have proved to be effective in numerous in vitro and in vivo models of inflammation and septicaemia, which suggests that such compounds may be effective as therapeutic agents against inflammatory disorders. Despite these very promising indications of the possible therapeutic use of p38 MAPK inhibitors, a number of events that are p38-dependent are in fact also beneficial to the resolution or modulation of diseases such as asthma. We conclude that the overall effect of p38 MAPK inhibition would be beneficial in inflammatory diseases such as rheumatoid arthritis and asthma. However, these drugs may result in a complex phenotype that will require careful evaluation. Currently, a number of second or third generation inhibitors of p38 MAPK are being tested in phase I and phase II clinical trials.
Collapse
Affiliation(s)
- Robert Newton
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
31
|
Gazin V, Kerdine S, Grillon G, Pallardy M, Raoul H. Uranium induces TNFα secretion and MAPK activation in a rat alveolar macrophage cell line. Toxicol Appl Pharmacol 2004; 194:49-59. [PMID: 14728979 DOI: 10.1016/j.taap.2003.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Uranium is a toxic heavy metal found mainly in the nuclear industry, but it is also used in the manufacturing of military munitions. Inhalation studies using animal models have demonstrated that long-term exposure to uranium can lead to the development of neoplasia and fibrosis at the pulmonary level. Because it has been demonstrated that such effects are often associated with inflammation, the effect of uranium on TNFalpha, IL-1beta, and IL-10 synthesis by macrophages was assessed in vitro using the NR8383 cell line. Our results show that a significant TNFalpha secretion was induced by uranium but not by other metals such as gadolinium. However, IL-1beta and IL-10 secretions were unaffected by uranium treatment. TNFalpha secretion was detectable since 50 microM of uranium and was maximal after 24 h of exposure. Determination of the mechanisms of uranium-induced TNFalpha production was assessed through the evaluation of protein kinases activation. Our results showed that uranium treatment induced c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) activation. The use of pharmacological inhibitors suggested that both p38 MAPK and protein kinase C (PKC) participate in the signal transduction of uranium-induced TNFalpha secretion. The regulation of TNFalpha secretion involves TNFalpha mRNA accumulation at least through the stabilization of TNFalpha mRNA, but p38 MAPK did not appear to be involved in this stabilization. However, this observation does not exclude regulation of TNFalpha synthesis at the transcriptional level, which remains to be demonstrated. Taking together, these results suggest that uranium can induce TNFalpha secretion by macrophages, thus contributing to a better understanding of the pathological effect of uranium on the lung.
Collapse
Affiliation(s)
- Vincent Gazin
- Laboratoire de Radiotoxicologie, Commissariat à l'Energie Atomique, DSV/DRR, Bruyères le Châtel, France
| | | | | | | | | |
Collapse
|
32
|
Vassiliou E, Jing H, Ganea D. Prostaglandin E2 inhibits TNF production in murine bone marrow-derived dendritic cells. Cell Immunol 2003; 223:120-32. [PMID: 14527510 DOI: 10.1016/s0008-8749(03)00158-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to pathogens induces dendritic cells to release inflammatory cytokines and chemokines. The inflammatory response is controlled by endogenous agents such as anti-inflammatory cytokines, glucocorticoids, anti-inflammatory neuropeptides, and lipid mediators. This study is the first report on the inhibition by prostaglandin E2 (PGE2) of TNF release from bone marrow-derived dendritic cells stimulated with lipopolysaccharide (LPS), a TLR4 ligand, or peptidoglycan, a TLR2 ligand. The inhibition of TNF occurs at both mRNA and protein level. The inhibitory effect of PGE2 is mediated by the EP2 and EP4 receptors, and involves both PKA signaling and mediation by DC-derived IL-10. Intraperitoneal administration of PGE2 together with LPS results in a reduction in serum TNF and intracellular TNF in peritoneal exudate cells, compared to LPS alone. In addition, administration of PGE2 in vivo reduces the numbers of CD11c+ DCc that accumulate in the peritoneal cavity in response to LPS. The various implications of the PGE2-induced reduction in TNF are discussed.
Collapse
Affiliation(s)
- Evros Vassiliou
- Department of Biological Sciences, Rutgers University, 101 Warren St, Newark, NJ 07102, USA
| | | | | |
Collapse
|
33
|
Abstract
Molecular genetics and genomics have become highly relevant tools in the field of pediatric critical care medicine. The most immediate examples involve the use of molecular genetics as routine diagnostic tests (eg, detection of herpes simplex virus by PCR). Perhaps the most exciting and promising examples involve the research efforts based in these fields, which hold the potential to gain novel insight regarding the complex mechanisms involved in critical illness. Ultimately, the generation of more comprehensive and fundamental knowledge can lead to the design of more effective and specific therapeutic strategies.
Collapse
Affiliation(s)
- Thomas P Shanley
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
34
|
Demchenko AV, Wolfert MA, Santhanam B, Moore JN, Boons GJ. Synthesis and biological evaluation of Rhizobium sin-1 lipid A derivatives. J Am Chem Soc 2003; 125:6103-12. [PMID: 12785841 DOI: 10.1021/ja029316s] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly convergent strategy for the synthesis of several derivatives of the lipid A of Rhizobium sin-1 has been developed. The approach employed the advanced intermediate 3-O-acetyl-6-O-(3-O-acetyl-4,6-O-benzylidene-2-deoxy-2-phthalimido-beta-d-glucopyrano-syl)-2-azido-4-O-benzyl-2-deoxy-1-thio-alpha-d-glucopyranoside (5), which is protected in such a way that the anomeric center, the C-2 and C-2' amino groups, and the C-3 and C-3' hydroxyls can be selectively functionalized. The synthetic strategy was used for the preparation of 2-deoxy-6-O-[2-deoxy-3-O-[(R)-3-hydroxy-hexadecanoyl]-2-[(R)-3-octacosanoyloxy-hexadecan]amido-beta-d-glucopyranosyl]-2-[(R)-3-hydroxy-hexadecan]amido-3-O-[(R)-3-hydroxy-hexadecanoyl]-alpha-d-glucopyranose (11) and 2-deoxy-6-O-[2-deoxy-3-O-[(R)-3-hydroxy-hexadecanoyl]-2-[(R)-3-octacosanoyloxy-hexadecan]amido-beta-d-glucopyranosyl]-2-[(R)-3-hydroxy-hexadecan]amido-3-O-[(R)-3-hydroxy-hexadecanoyl]-d-glucono-1,5-lactone (13), which contain an unusual octacosanoic acid moiety and differ in the oxidation state of the anomeric center. The results of biological studies indicate that 11 and 13 lack the proinflammatory effects of Escherichia coli lipopolysaccharides (LPS). Furthermore, 13 emulated the ability of heterogeneous R. sin-1 LPS to antagonize enteric LPS, providing evidence for the critical role of the gluconolactone moiety of R. sin-1 LPS in mediating this antagonistic effect. Compound 13 is the first example of a lipid A derivative that is devoid of phosphate but possesses antagonistic properties, making it an attractive lead compound for development of a drug to use in the treatment of Gram-negative septicemia.
Collapse
Affiliation(s)
- Alexei V Demchenko
- Complex Carbohydrate Research Center, The University of Georgia, 220 Riverbend Road, Athens 30602, USA
| | | | | | | | | |
Collapse
|
35
|
Hakim I, Bar-Shavit Z. Modulation of TNF-alpha expression in bone marrow macrophages: involvement of vitamin D response element. J Cell Biochem 2003; 88:986-98. [PMID: 12616536 DOI: 10.1002/jcb.10453] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The calcium-regulating hormone, 1,25(OH)(2)D(3), induces tumor necrosis factor-alpha (TNF-alpha) synthesis and release from bone marrow macrophages (BMMs). To investigate the mechanism of this regulation, we have examined the effects of 1,25(OH)(2)D(3) on the cytokine message. 1,25(OH)(2)D(3) increased TNF-alpha mRNA abundance in a dose- and time-dependent manner. The combined treatment of BMMs with LPS and 1,25(OH)(2)D(3) resulted in a synergistic increase of TNF-alpha. The steroid also increased the expression of CD14 (LPS receptor). Vitamin D receptors (VDRs) mediate 1,25(OH)(2)D(3) genomic effects by forming homodimers or heterodimers with retinoic acid receptors (RARs) or retinoic X receptors (RXRs). The RXR ligand, 9-cis retinoic acid (9cRA), reduced TNF-alpha mRNA abundance in BMMs, but increased CD14 mRNA levels. 1,25(OH)(2)D(3) or LPS did not affect TNF-alpha transcript stability. 9cRA, however, caused TNF-alpha mRNA destabilization. Next, we searched for potential vitamin D response elements (VDREs) in the promoter region (1.2 kb) of the TNF-alpha gene, and identified six such sequences. Using electrophoresis mobility shift assay (EMSA) we identified one of those sequences (-1008 to -994) as a likely candidate to be a VDRE (tnfVDRE). The binding of tnfVDRE to BMM-derived nuclear extract was increased following cell treatment with 1,25(OH)(2)D(3). No induction was observed with 9cRA treatment, but the retinoid enhanced the activity of 1,25(OH)(2)D(3) when added together. Previously characterized VDREs (mouse osteopontin and rat osteocalcin) competed effectively with tnfVDRE, demonstrating the nature of the TNF-alpha-derived sequence as a VDRE. We observed super-shift and block-shift of the complex in the presence of either anti-VDR or anti-RXR antibodies. Our data suggest that 1,25(OH)(2)D(3) increases TNF-alpha transcript abundance in BMMs via a transcriptional mechanism; 9cRA decreases TNF-alpha mRNA by destabilizing the transcript, and possibly also by forming transcriptionally inactive complex with 1,25(OH)(2)D(3) on the tnfVDRE. The receptor complex interacting with tnfVDRE found in the promoter of the cytokine gene is probably composed of VDR-RXR heterodimer.
Collapse
Affiliation(s)
- Imad Hakim
- The H Hubert Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
36
|
Su Y, Ganea D, Peng X, Jonakait GM. Galanin down-regulates microglial tumor necrosis factor-alpha production by a post-transcriptional mechanism. J Neuroimmunol 2003; 134:52-60. [PMID: 12507772 DOI: 10.1016/s0165-5728(02)00397-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The neuropeptide galanin (GAL) is up-regulated following neuronal axotomy or inflammation. Since other neuropeptides act as immunomodulatory agents, we sought to determine whether GAL might affect the murine microglial cell line BV2, which expresses the GAL2 receptor. Even at very low concentrations, GAL inhibited tumor necrosis factor-alpha (TNF alpha) release but not TNF alpha mRNA levels in LPS-stimulated BV2 cells. Northern blot analysis showed that GAL inhibited the addition of a poly(A) tail, and stability assays showed that it also destabilized TNF alpha mRNA. Thus, GAL inhibits TNF alpha production by a post-transcriptional mechanism that both prevents the efficient addition of the poly(A) tail and accelerates TNF alpha mRNA degradation.
Collapse
Affiliation(s)
- Yaming Su
- Department of Biological Sciences, Rutgers University and New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
37
|
Wolfert MA, Murray TF, Boons GJ, Moore JN. The origin of the synergistic effect of muramyl dipeptide with endotoxin and peptidoglycan. J Biol Chem 2002; 277:39179-86. [PMID: 12151399 DOI: 10.1074/jbc.m204885200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the basis for the high mortality rate for patients with mixed bacterial infections is likely to be multifactorial, there is evidence for a synergistic effect of muramyldipeptide (MDP) with lipopolysaccharide (LPS) on the synthesis of proinflammatory cytokines by mononuclear phagocytes. In this study, co-incubation of human Mono Mac 6 cells with MDP and either LPS or peptidoglycan (PGN) resulted in an apparent synergistic effect on tumor necrosis factor-alpha (TNF-alpha) secretion. Although incubation of cells with MDP alone produced minimal TNF-alpha, it caused significant expression of TNF-alpha mRNA. These findings suggest that the majority of TNF-alpha mRNA induced by MDP alone is not translated into protein. Furthermore, simultaneous incubation of cells with MDP and either LPS or PGN resulted in TNF-alpha mRNA expression that approximated the sum of the amounts expressed in response to MDP, LPS, and PGN individually. These findings indicate that the apparent synergistic effect of MDP on TNF-alpha production induced by either LPS or PGN is due to removal of a block in translation of the mRNA expressed in response to MDP. In subsequent studies, the effects of MDP alone and its effect on the production of TNF-alpha by LPS and PGN were determined to be independent of CD14, Toll-like receptor 2, and Toll-like receptor 4. These findings indicate that MDP acts through receptor(s) other than those primarily responsible for transducing the effects of LPS and PGN. Successful treatment of patients having mixed bacterial infections is likely to require interventions that address the mechanisms involved in responses induced by a variety of bacterial cell wall components.
Collapse
Affiliation(s)
- Margreet A Wolfert
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
38
|
MacKenzie S, Fernàndez‐Troy N, Espel E. Post‐transcriptional regulation of TNF‐α during in vitro differentiation of human monocytes/macrophages in primary culture. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.6.1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Simon MacKenzie
- Dept. de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | - Enric Espel
- Dept. de Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| |
Collapse
|
39
|
Gao JJ, Xue Q, Papasian CJ, Morrison DC. Bacterial DNA and lipopolysaccharide induce synergistic production of TNF-alpha through a post-transcriptional mechanism. THE JOURNAL OF IMMUNOLOGY 2001; 166:6855-60. [PMID: 11359845 DOI: 10.4049/jimmunol.166.11.6855] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
LPS is well recognized for its potent capacity to activate mouse macrophages to produce TNF-alpha, an important inflammatory mediator in bacterial infection-related diseases such as septic shock. We demonstrate here that while inducing only low levels of TNF-alpha alone, DNA from both Gram-negative and Gram-positive bacteria synergizes with subthreshold concentrations of LPS (0.3 ng/ml) to induce TNF-alpha in the RAW 264.7 macrophage-like cell line. The bacterial DNA effects are mimicked by synthetic CpG-containing oligodeoxynucleotides, but not non-CpG-containing oligodeoxynucleotides. Pretreatment of macrophages with either DNA for 2-8 h inhibits macrophage TNF-alpha production in responses to DNA/LPS. However, when pretreatment was extended to 24 h, DNA/LPS synergy on TNF-alpha is further enhanced. RT-PCR analysis indicates that mRNA levels of the TNF-alpha gene, however, are not synergistically induced by bacterial DNA and LPS. Analyses of the half-life of TNF-alpha mRNA indicate that TNF-alpha message has a longer half-life in bacterial DNA- and LPS-treated macrophages than that in bacterial DNA- or LPS-treated macrophages. These findings indicate that the temporally controlled, synergistic induction of TNF-alpha by bacterial DNA and LPS is not mediated at the transcriptional level. Instead, this synergy may occur via a post-transcriptional mechanism.
Collapse
Affiliation(s)
- J J Gao
- Department of Basic Medical Sciences, University of Missouri, Kansas City, MO 64111, USA
| | | | | | | |
Collapse
|
40
|
Butcher BA, Kim L, Johnson PF, Denkers EY. Toxoplasma gondii tachyzoites inhibit proinflammatory cytokine induction in infected macrophages by preventing nuclear translocation of the transcription factor NF-kappa B. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2193-201. [PMID: 11490005 DOI: 10.4049/jimmunol.167.4.2193] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Control of microbial infection requires regulated induction of NF-kappaB-dependent proinflammatory cytokines such as IL-12 and TNF-alpha. Activation of this important transcription factor is driven by phosphorylation-dependent degradation of the inhibitory IkappaB molecule, an event which enables NF-kappaB translocation from the cytoplasm to the nucleus. In this study, we show that intracellular infection of macrophages with the protozoan parasite Toxoplasma gondii induces rapid IkappaB phosphorylation and degradation. Nevertheless, NF-kappaB failed to translocate to the nucleus, enabling the parasite to invade cells without triggering proinflammatory cytokine induction. Infected cells subsequently subjected to LPS triggering were severely crippled in IL-12 and TNF-alpha production, a result of tachyzoite-induced blockade of NF-kappaB nuclear translocation. Our results are the first to demonstrate the ability of an intracellular protozoan to actively interfere with the NF-kappaB activation pathway in macrophages, an activity that may enable parasite survival within the host.
Collapse
Affiliation(s)
- B A Butcher
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
41
|
Abstract
Cytokines appear to be major regulators of adipose tissue metabolism. Therapeutic modulation of cytokine systems offers the possibility of major changes in adipose tissue behaviour. Cytokines within adipose tissue originate from adipocyte, preadipocyte and other cell types. mRNA expression studies show that adipocytes can synthesise both tumour necrosis factor alpha (TNF-alpha) and several interleukins (IL), notably IL-1beta and IL-6. Other adipocyte products with 'immunological' actions include complement system products and macrophage colony-stimulating factor. Cytokine secretion within adipocytes appears similar to that of other cells. There is general agreement that circulating TNF-alpha and IL-6 concentrations are mildly elevated in obesity. Most studies suggest increased TNF-alpha mRNA expression or secretion in vitro in adipose tissue from obese subjects. The factors regulating cytokine release within adipose tissue appear to include usual 'inflammatory' stimuli such as lipopolysaccaride, but also the size of the fat cells per se and catecholamines. There is conflicting data about whether insulin and cortisol regulate TNF-alpha. The effects of cytokines within adipose tissue include some actions that might be characterised as metabolic. TNF-alpha and IL-6 inhibit lipoprotein lipase, and TNF-alpha additionally stimulates hormone-sensitive lipase and induces uncoupling protein expression. TNF-alpha also down regulates insulin-stimulated glucose uptake via effects on glucose transporter 4, insulin receptor autophosphorylation and insulin receptor substrate-1. All these effects will tend to reduce lipid accumulation within adipose tissue. Other effects appear more 'trophic', and include the induction of apoptosis, regulation of cell size and induction of de-differentiation (the latter involving reduced peroxisome proliferator-activated receptor gamma). Cytokines are important stimulators and repressors of other cytokines. In addition, cytokines appear to modulate other regulatory systems. Examples of the latter include effects on leptin secretion (probably stimulation followed by inhibition) and reduction of beta3-adrenoceptor expression. There seems to be no clear agreement as to which cytokines derived from adipose tissue act as remote regulators, i.e. hormones. Leptin, which is structurally a cytokine, is also a hormone. IL-6 appears to be released systemically by adipose tissue, but TNF-alpha is probably not. Both leptin and IL-6 appear to act on the hypothalamus, IL-6 acts on the liver, while leptin may have actions on the pancreas. The importance of the immune system in whole-body energy balance provides a rationale for the links between cytokines and adipose tissue. It seems clear that TNF-alpha is a powerful autocrine and paracrine regulator of adipose tissue. Other cytokines, notably leptin, and possibly IL-6, have lesser actions on adipose tissue. These cytokines act as hormones, reporting the state of adipose tissue stores throughout the body.
Collapse
Affiliation(s)
- S W Coppack
- Academic Medical Unit, St Bartholomew's and The Royal London School of Medicine, Whitechapel, UK.
| |
Collapse
|
42
|
Syrovets T, Jendrach M, Rohwedder A, Schüle A, Simmet T. Plasmin-induced expression of cytokines and tissue factor in human monocytes involves AP-1 and IKKbeta-mediated NF-kappaB activation. Blood 2001; 97:3941-50. [PMID: 11389038 DOI: 10.1182/blood.v97.12.3941] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously shown that plasmin activates human peripheral monocytes in terms of lipid mediator release and chemotactic migration. Here it is demonstrated that plasmin induces proinflammatory cytokine release and tissue factor (TF) expression by monocytes. Plasmin 0.043 to 1.43 CTA U/mL, but not active site-blocked plasmin, triggered concentration-dependent expression of mRNA for interleukin-1alpha (IL-1alpha), IL-1beta, tumor necrosis factor-alpha (TNF-alpha), and TF with maximum responses after 4 hours. Plasmin-mediated mRNA expression was inhibited in a concentration-dependent manner by the lysine analogue trans-4-(aminomethyl)cyclohexane-1-carboxylic acid (t-AMCA). Increases in mRNA levels were followed by concentration- and time-dependent release of IL-1alpha, IL-1beta and TNF-alpha and by TF expression on monocyte surfaces. Neither cytokines nor TF could be detected when monocytes were preincubated with actinomycin D or cycloheximide. Electrophoretic mobility shift assays indicated plasmin-induced activation of NF-kappaB; DNA-binding complexes were composed of p50, p65, and c-Rel, as shown by supershift experiments. Nuclear translocation of NF-kappaB/Rel proteins coincided with IkappaBalpha degradation. At variance with endotoxic lipopolysaccharide, plasmin elicited the rapid degradation of another cytoplasmic NF-kappaB inhibitor, p105. Proteolysis of NF-kappaB inhibitors was apparently due to transient activation of IkappaB kinase (IKK) beta that reached maximum activity at 1 hour after plasmin stimulation. In addition, AP-1 binding was increased in plasmin-treated monocytes, with most complexes composed of JunD, c-Fos, and FosB. These findings further substantiate the role of plasmin as a proinflammatory activator of human monocytes and reveal an important new link between the plasminogen-plasmin system and inflammation. (Blood. 2001;97:3941-3950)
Collapse
Affiliation(s)
- T Syrovets
- Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Helmholtzstrasse 20, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
43
|
Lee JY, Sullivan KE. Gamma interferon and lipopolysaccharide interact at the level of transcription to induce tumor necrosis factor alpha expression. Infect Immun 2001; 69:2847-52. [PMID: 11292697 PMCID: PMC98233 DOI: 10.1128/iai.69.5.2847-2852.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lipopolysaccharide (LPS) is a very potent inducer of tumor necrosis factor alpha (TNF-alpha) expression from monocytes and macrophages. Another inflammatory cytokine, gamma interferon (IFN-gamma), can potentiate the effects of LPS, but the mechanism is not thoroughly understood. Previous reports emphasized the ability of IFN-gamma to upregulate CD14 expression (the receptor for LPS), and nearly all studies have utilized sequential stimulation with IFN-gamma followed by LPS to exploit this phenomenon. This study demonstrates that IFN-gamma can upregulate the effect of LPS at the level of transcription. Human monoblastic Mono-Mac-6 cells produced up to threefold-greater levels of TNF-alpha when simultaneously stimulated with LPS and IFN-gamma compared to treatment with LPS alone. RNase protection studies showed a similar increase in RNA beginning as early as within 30 min. The synthesis of TNF-alpha mRNA in IFN-gamma- and LPS-treated Mono-Mac-6 cells was also temporally prolonged even though the message turnover rate was identical to that seen in LPS stimulated cells. The modulatory effect of IFN-gamma may be mediated by Jak2.
Collapse
Affiliation(s)
- J Y Lee
- Division of Immunologic and Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
44
|
de Moor CH, Richter JD. Translational control in vertebrate development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:567-608. [PMID: 11131527 DOI: 10.1016/s0074-7696(01)03017-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translational control plays a large role in vertebrate oocyte maturation and contributes to the induction of the germ layers. Translational regulation is also observed in the regulation of cell proliferation and differentiation. The features of an mRNA that mediate translational control are found both in the 5' and in the 3' untranslated regions (UTRs). In the 5' UTR, secondary structure, the binding of proteins, and the presence of upstream open reading frames can interfere with the association of initiation factors with the cap, or with scanning of the initiation complex. The 3' UTR can mediate translational activation by directing cytoplasmic polyadenylation and can confer translational repression by interference with the assembly of initiation complexes. Besides mRNA-specific translational control elements, the nonspecific RNA-binding proteins contribute to the modulation of translation in development. This review discusses examples of translational control and their relevance for developmental regulation.
Collapse
Affiliation(s)
- C H de Moor
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- P Anderson
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Brook M, Sully G, Clark AR, Saklatvala J. Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett 2000; 483:57-61. [PMID: 11033356 DOI: 10.1016/s0014-5793(00)02084-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The translation of tumour necrosis factor alpha (TNFalpha) mRNA is regulated by the stress-activated protein kinase p38, which also controls the stability of several pro-inflammatory mRNAs. The regulation of TNFalpha gene expression in a mouse macrophage cell line RAW264.7 was re-examined using an inhibitor of stress-activated protein kinases. Stimulation of these cells with bacterial lipopolysaccharide resulted in stabilisation of TNFalpha mRNA, which was reversed by specific inhibition of p38. An adenosine/uridine-rich element from the TNFalpha 3' untranslated region conferred p38-sensitive decay in a tetracycline-regulated mRNA stability assay. Therefore the p38 pathway also controls TNFalpha mRNA turnover.
Collapse
Affiliation(s)
- M Brook
- Kennedy Institute of Rheumatology Division, Imperial College School of Medicine, 1 Aspenlea Road, Hammersmith, W6 8LH, London, UK
| | | | | | | |
Collapse
|
47
|
Mijatovic T, Houzet L, Defrance P, Droogmans L, Huez G, Kruys V. Tumor necrosis factor-alpha mRNA remains unstable and hypoadenylated upon stimulation of macrophages by lipopolysaccharides. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6004-12. [PMID: 10998061 DOI: 10.1046/j.1432-1327.2000.01676.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
TNF-alpha gene expression is regulated at transcriptional and post-transcriptional levels in mouse macrophages. The post-transcriptional regulation is mediated by the AU-rich element (ARE) located in the TNF-alpha mRNA 3' untranslated region (UTR), which controls its translation and stability. In resting macrophages, the ARE represses TNF-alpha mRNA translation. Activation of macrophages with various agents [for example lipopolysaccharide (LPS), viruses] results in translational derepression, leading to the production of high levels of TNF-alpha. TNF-alpha ARE has also been shown to confer mRNA instability as its deletion from the mouse genome leads to an increase in the TNF-alpha mRNA half-life [Kontoyiannis, D., Pasparakis, M., Pizzaro, T., Cominelli, F. & Kollias, G. (1999) Immunity 10, 387-398]. In this study, we measured the half-life as well as the poly(A) tail length of TNF-alpha mRNA in the course of macrophage activation by LPS. We report that TNF-alpha mRNA is short lived even in conditions of maximal TNF-alpha synthesis. Moreover, TNF-alpha mRNA is hypoadenylated in a constitutive manner. These results reveal that TNF-alpha mRNA rapid turnover does not constitute a regulatory step of TNF-alpha biosynthesis in macrophages and that TNF-alpha mRNA translational activation upon LPS stimulation is not accompanied by a change of poly(A) tail length.
Collapse
Affiliation(s)
- T Mijatovic
- Laboratoire de Chimie Biologique IBMM, Université Libre de Bruxelles, Gosselies, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Piecyk M, Wax S, Beck AR, Kedersha N, Gupta M, Maritim B, Chen S, Gueydan C, Kruys V, Streuli M, Anderson P. TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J 2000; 19:4154-63. [PMID: 10921895 PMCID: PMC306595 DOI: 10.1093/emboj/19.15.4154] [Citation(s) in RCA: 408] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
TIA-1 and TIAR are related proteins that bind to an AU-rich element (ARE) in the 3' untranslated region of tumor necrosis factor alpha (TNF-alpha) transcripts. To determine the functional significance of this interaction, we used homologous recombination to produce mutant mice lacking TIA-1. Although lipopolysaccharide (LPS)-stimulated macrophages derived from wild-type and TIA-1(-/-) mice express similar amounts of TNF-alpha transcripts, macrophages lacking TIA-1 produce significantly more TNF-alpha protein than wild-type controls. The half-life of TNF-alpha transcripts is similar in wild-type and TIA-1(-/-) macrophages, indicating that TIA-1 does not regulate transcript stability. Rather, the absence of TIA-1 significantly increases the proportion of TNF-alpha transcripts that associate with polysomes, suggesting that TIA-1 normally functions as a translational silencer. TIA-1 does not appear to regulate the production of interleukin 1 beta, granulocyte-macrophage colony-stimulating factor or interferon gamma, indicating that its effects are, at least partially, transcript specific. Mice lacking TIA-1 are hypersensitive to the toxic effects of LPS, indicating that this translational control pathway may regulate the organismal response to microbial stress.
Collapse
Affiliation(s)
- M Piecyk
- Division of Rheumatology and Immunology, Brigham and Women's Hospital, Smith 652, One Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- R Newton
- Department of Thoracic Medicine, National Heart & Lung Institute, Imperial College School of Medicine, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
50
|
Singh IS, Viscardi RM, Kalvakolanu I, Calderwood S, Hasday JD. Inhibition of tumor necrosis factor-alpha transcription in macrophages exposed to febrile range temperature. A possible role for heat shock factor-1 as a negative transcriptional regulator. J Biol Chem 2000; 275:9841-8. [PMID: 10734139 DOI: 10.1074/jbc.275.13.9841] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported that expression of tumor necrosis factor-alpha (TNFalpha) was attenuated in macrophages exposed to febrile range temperatures. In this study, we analyzed the influence of temperature on TNFalpha transcription in the Raw 264.7 macrophage cell line during incubation at 37 and 39.5 degrees C. The initial activation of TNFalpha transcription in response to endotoxin (LPS) was comparable in the 37 and 39.5 degrees C cell cultures, peaking within 10 min of LPS stimulation. However, the duration of transcriptional activation was markedly reduced in the 39.5 degrees C cells (30-60 min) compared with the 37 degrees C cells (2-4 h). Deletion mapping of the TNFalpha gene revealed that the proximal 85-nucleotide promoter sequence and the 5'-untranslated region were sufficient for temperature sensitivity. This sequence contains six heat shock response element (HRE) half-sites but no complete HREs. Electrophoretic mobility shift and immunoblot assays demonstrated that nuclear transclocation of heat shock factor (HSF) and its activation to a DNA-binding form occurred in the 39.5 degrees C cells in the absence of heat shock protein-70 gene activation. The proximal TNFalpha promoter/5'-untranslated region sequence competed for HSF binding to a classic HRE. Overexpression of HSF-1 reduced activity of the TNFalpha promoter. These data suggest that partial activation of HSF-1 during exposure to febrile, sub-heat shock temperatures may block TNFalpha transcription by binding to its proximal promoter or 5'-untranslated region.
Collapse
Affiliation(s)
- I S Singh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, the University of Maryland at Baltimore Cytokine Core Laboratory, Maryland 21201, USA
| | | | | | | | | |
Collapse
|