1
|
Iwaki M, Yoneda M, Wada N, Otani T, Kobayashi T, Nogami A, Saito S, Nakajima A. Emerging drugs for the treatment of hepatic fibrosis on nonalcoholic steatohepatitis. Expert Opin Emerg Drugs 2024; 29:127-137. [PMID: 38469871 DOI: 10.1080/14728214.2024.2328036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Approved drug therapies for nonalcoholic steatohepatitis (NASH) are lacking, for which various agents are currently being tested in clinical trials. Effective drugs for liver fibrosis, the factor most associated with prognosis in NASH, are important. AREAS COVERED This study reviewed the treatment of NASH with a focus on the effects of existing drugs and new drugs on liver fibrosis. EXPERT OPINION Considering the complex pathophysiology of fibrosis in NASH, drug therapy may target multiple pathways. The method of assessing fibrosis is important when considering treatment for liver fibrosis in NASH. The Food and Drug Administration considers an important fibrosis endpoint to be histological improvement in at least one fibrosis stage while preventing worsening of fatty hepatitis. To obtain approval as a drug for NASH, efficacy needs to be demonstrated on endpoints such as liver-related events and myocardial infarction. Among the current therapeutic agents for NASH, thiazolidinedione, sodium-glucose co-transporter 2, and selective peroxisome proliferator-activated receptors α modulator have been reported to be effective against fibrosis, although further evidence is required. The effects of pan-peroxisome proliferator-activated receptors, obeticholic acid, and fibroblast growth factor-21 analogs on liver fibrosis in the development stage therapeutics for NASH are of particular interest.
Collapse
Affiliation(s)
- Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naohiro Wada
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Otani
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoru Saito
- Department of Gastroenterology, Sanno Hospital, Minato-Ku, Tokyo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
2
|
Niveta JPS, John CM, Arockiasamy S. Monoamine oxidase mediated oxidative stress: a potential molecular and biochemical crux in the pathogenesis of obesity. Mol Biol Rep 2023; 51:29. [PMID: 38142252 DOI: 10.1007/s11033-023-08938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 12/25/2023]
Abstract
Obesity has become a global health concern with an increasing prevalence as years pass by but the researchers have not come to a consensus on the exact pathophysiological mechanism underlying this disease. In the past three decades, Monoamine Oxidases (MAO), has come into limelight for a possible involvement in orchestrating the genesis of obesity but the exact mechanism is not well elucidated. MAO is essentially an enzyme involved in the catabolism of neurotransmitters and other biogenic amines to form a corresponding aldehyde, hydrogen peroxide (H2O2) and ammonia. This review aims to highlight the repercussions of MAO's catabolic activity on the redox balance, carbohydrate metabolism and lipid metabolism of adipocytes which ultimately leads to obesity. The H2O2 produced by these enzymes seems to be the culprit causing oxidative stress in pre-adipocytes and goes on to mimic insulin's activity independent of its presence via the Protein Kinase B Pathway facilitating glucose influx. The H2O2 activates Sterol regulatory-element binding protein-1c and peroxisome proliferator activated receptor gamma crucial for encoding enzymes like fatty acid synthase, acetyl CoA carboxylase 1, Adenosine triphosphate-citrate lyase, phosphoenol pyruvate carboxykinase etc., which helps promoting lipogenesis at the same time inhibits lipolysis. More reactive oxygen species production occurs via NADPH Oxidases enzymes and is also able activate Nuclear Factor kappa B leading to inflammation in the adipocyte microenvironment. This chronic inflammation is the seed for insulin resistance.
Collapse
Affiliation(s)
- J P Shirley Niveta
- Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Cordelia Mano John
- Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | | |
Collapse
|
3
|
Wang J, Li J, Xu L, Tan D, Guo R, Lin W. A robust activatable two-photon fluorescent probe for endogenous formaldehyde biomarker visualization diagnosis and evaluation of diabetes mellitus. Anal Chim Acta 2023; 1266:341371. [PMID: 37244658 DOI: 10.1016/j.aca.2023.341371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Diabetes mellitus and its complications are one of the largest healthcare burdens in the world and are increasing every year. However, the lack of effective biomarkers and non-invasive real-time monitoring tools remains a great challenge for the early diagnosis of diabetes mellitus. Endogenous formaldehyde (FA) represents a key reactive carbonyl species in biological systems, and altered metabolism and functions of FA have been closely related to the pathogenesis and maintenance of diabetes. Among various noninvasive biomedical imaging techniques, the identification-responsive fluorescence (FL) imaging could greatly benefit the comprehensive multi-scale assessment of some diseases such as diabetes. Herein, we have designed a robust activatable two-photon probe DM-FA for the first highly selective monitoring of fluctuations in FA levels during diabetes mellitus. Through the density functional theory (DFT) theoretical calculations, we elucidated the rationality of the activatable fluorescent probe DM-FA turning on the FL before and after the reaction with FA. In addition, DM-FA has excellent high selectivity, high growth factor and good photostability in the process of recognizing FA. Due to the brilliant two-photon and one-photon FL imaging capabilities of DM-FA, it has been successfully used to visualize of exogenous and endogenous FA in cells and mice. Remarkably, as a powerful FL imaging visualization tool, DM-FA was introduced for the first time to visually diagnose and explore diabetes through the fluctuation of FA content. The successful application of DM-FA in two-photon and one-photon FL imaging experiments found elevated FA levels in high glucose-stimulated diabetic cell models. We successfully visualized upregulation of FA levels in diabetic mice and decreased of FA levels in diabetic mice scavenged by NaHSO3 from multiple perspectives using multiple imaging modalities. This work may provide a novel strategy for the initial diagnosis of diabetes mellitus and the evaluation of the efficacy of drug therapy for treating diabetes mellitus, which will likely have a positive impact on clinical medicine.
Collapse
Affiliation(s)
- Jiangyan Wang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Jiangfeng Li
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Lizhen Xu
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Dan Tan
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Rui Guo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
4
|
Li H, Du S, Niu P, Gu X, Wang J, Zhao Y. Vascular Adhesion Protein-1 (VAP-1)/Semicarbazide-Sensitive Amine Oxidase (SSAO): A Potential Therapeutic Target for Atherosclerotic Cardiovascular Diseases. Front Pharmacol 2021; 12:679707. [PMID: 34322017 PMCID: PMC8312380 DOI: 10.3389/fphar.2021.679707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular adhesion protein-1 (VAP-1) is a semicarbazide-sensitive amine oxidase (SSAO), whose enzymatic activity regulates the adhesion/exudation of leukocytes in/from blood vessels. Due to its abundant expressions in vascular systems and prominent roles in inflammations, increasing attentions have been paid to the roles of VAP-1/SSAO in atherosclerosis, a chronic vascular inflammation that eventually drives clinical cardiovascular events. Clinical studies have demonstrated a potential value of soluble VAP-1 (sVAP-1) for the diagnosis and prognosis of cardiovascular diseases. Recent findings revealed that VAP-1 is expressed in atherosclerotic plaques and treatment with VAP-1 inhibitors alleviates the progression of atherosclerosis. This review will focus on the roles of VAP-1/SSAO in the progression of atherosclerotic lesions and therapeutic potentials of VAP-1 inhibitors for cardiovascular diseases.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shiyu Du
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Panpan Niu
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiaosong Gu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Unzeta M, Hernàndez-Guillamon M, Sun P, Solé M. SSAO/VAP-1 in Cerebrovascular Disorders: A Potential Therapeutic Target for Stroke and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22073365. [PMID: 33805974 PMCID: PMC8036996 DOI: 10.3390/ijms22073365] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
The semicarbazide-sensitive amine oxidase (SSAO), also known as vascular adhesion protein-1 (VAP-1) or primary amine oxidase (PrAO), is a deaminating enzyme highly expressed in vessels that generates harmful products as a result of its enzymatic activity. As a multifunctional enzyme, it is also involved in inflammation through its ability to bind and promote the transmigration of circulating leukocytes into inflamed tissues. Inflammation is present in different systemic and cerebral diseases, including stroke and Alzheimer’s disease (AD). These pathologies show important affectations on cerebral vessels, together with increased SSAO levels. This review summarizes the main roles of SSAO/VAP-1 in human physiology and pathophysiology and discusses the mechanisms by which it can affect the onset and progression of both stroke and AD. As there is an evident interrelationship between stroke and AD, basically through the vascular system dysfunction, the possibility that SSAO/VAP-1 could be involved in the transition between these two pathologies is suggested. Hence, its inhibition is proposed to be an interesting therapeutical approach to the brain damage induced in these both cerebral pathologies.
Collapse
Affiliation(s)
- Mercedes Unzeta
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Auònoma de Barcelona, 08193 Barcelona, Spain;
| | - Mar Hernàndez-Guillamon
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Correspondence: ; Tel.: +34-934-896-766
| | - Ping Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| |
Collapse
|
6
|
Fontaine J, Tavernier G, Morin N, Carpéné C. Vanadium-dependent activation of glucose transport in adipocytes by catecholamines is not mediated via adrenoceptor stimulation or monoamine oxidase activity. World J Diabetes 2020; 11:622-643. [PMID: 33384769 PMCID: PMC7754167 DOI: 10.4239/wjd.v11.i12.622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Benzylamine and methylamine activate glucose uptake in adipocytes. For tyramine, this effect has even been extended to cardiomyocytes. AIM To investigate the effects of catecholamines and other amines on glucose uptake. METHODS A screening compared 25 biogenic amines on 2-deoxyglucose (2-DG) uptake activation in rat adipocytes. Pharmacological approaches and transgenic mouse models were then used to decipher the mode of action of several hits. RESULTS In rat adipocytes, insulin stimulation of 2-DG uptake was reproduced with catecholamines. 100 µmol/L or 1 mmol/L adrenaline, noradrenaline, dopamine and deoxyepinephrine, maximally activated hexose transport only when sodium orthovanadate was added at 100 µmol/L. Such activation was similar to that already reported for benzylamine, methylamine and tyramine, well-recognized substrates of semicarbazide-sensitive amine oxidase (SSAO) and monoamine oxidase (MAO). Several, but not all, tested agonists of β-adrenoreceptors (β-ARs) also activated glucose transport while α-AR agonists were inactive. Lack of blockade by α- and β-AR antagonists indicated that catecholamine-induced 2-DG uptake was not mediated by AR stimulation. Adipocytes from mice lacking β1-, β2- and β3-ARs (triple KO) also responded to millimolar doses of adrenaline or noradrenaline by activating hexose transport in the presence of 100 µmol/L vanadate. The MAO blocker pargyline, and SSAO inhibitors did not block the effects of adrenaline or noradrenaline plus vanadate, which were blunted by antioxidants. CONCLUSION Catecholamines exert unexpected insulin-like actions in adipocytes when combined with vanadium. For limiting insulin resistance by activating glucose consumption at least in fat stores, we propose that catecholamine derivatives combined with vanadium can generate novel complexes that may have low toxicity and promising anti-diabetic properties.
Collapse
Affiliation(s)
- Jessica Fontaine
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| | - Geneviève Tavernier
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| | - Nathalie Morin
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
- INSERM UMR 1139 Faculté de Pharmacie, Université de Paris, Paris 75006, France
| | - Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut National de la Santé et de la Recherche Médicale, INSERM UMR1048, Université Paul Sabatier Toulouse III, Toulouse 31432, France
| |
Collapse
|
7
|
Shepherd EL, Karim S, Newsome PN, Lalor PF. Inhibition of vascular adhesion protein-1 modifies hepatic steatosis in vitro and in vivo. World J Hepatol 2020; 12:931-948. [PMID: 33312420 PMCID: PMC7701969 DOI: 10.4254/wjh.v12.i11.931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance and dyslipidaemia and currently is estimated to affect up to a third of all individuals in developed countries. Current standard of care for patients varies according to disease stage, but includes lifestyle interventions common insulin sensitizers, antioxidants and lipid modifiers. However, to date specific therapies have shown little histological or fibrosis stage improvement in large clinical trials, and there is still no licensed therapy for NAFLD. Given the high prevalence, limited treatment options and significant screening costs for the general population, new treatments are urgently required.
AIM To assess the potential for inhibition of the amine oxidase enzyme vascular adhesion protein-1 (VAP-1) to modify hepatic lipid accumulation in NAFLD.
METHODS We have used immunochemical and qPCR analysis to document expression of VAP-1 and key functional proteins and transporters across the NAFLD spectrum. We then utilised hepatocytes in culture and human precision cut liver slices in concert with selective enzyme activity inhibitors to test the effects of activating the semicarbazide-sensitive amine oxidase activity of VAP-1 on hepatic lipid uptake and triglyceride export. A murine model of NAFLD was also used to determine the consequences of VAP-1 knockout and gene expression arrays were used to quantify the effects of VAP-1 activity on key lipid modifying and proinflammatory gene expression.
RESULTS We confirmed that increasing severity of NAFLD and progression to cirrhosis was associated with a significant increase in hepatocellular VAP-1 expression. Hepatocytes in vitro exposed to recombinant VAP-1 and its substrate methylamine showed increased lipid accumulation as determined by quantification of Oil Red O uptake. This was recapitulated using hydrogen peroxide, and lipid accumulation was accompanied by changes in expression of the lipid transporter molecules FABP3, FATP6, insulin receptor subunits and PPARα. Human liver tissue exposed to recombinant VAP-1 or substrates for endo/exogenous VAP-1 produced less triglyceride than untreated tissue and demonstrated an increase in steatosis. This response could be inhibited by using bromoethylamine to inhibit the SSAO activity of VAP-1, and mice deficient in VAP-1/AOC3 also demonstrated reduced steatosis on high fat diet. Exposure of human liver tissue to methylamine to activate VAP-1 resulted in increased expression of FABP2 and 4, FATP3-5, caveolin-1, VLDLR, PPARGC1 and genes associated with the inflammatory response.
CONCLUSION Our data confirm that the elevations in hepatic VAP-1 expression reported in nonalcoholic steatohepatitis can contribute to steatosis, metabolic disturbance and inflammation. This suggests that targeting the semicarbazide sensitive amine oxidase capacity of VAP-1 may represent a useful adjunct to other therapeutic strategies in NAFLD.
Collapse
Affiliation(s)
- Emma L Shepherd
- Centre for Liver and Gastroenterology Research, Birmingham National Institute for Health Research, Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, West Midlands, United Kingdom
| | - Sumera Karim
- Centre for Liver and Gastroenterology Research, Birmingham National Institute for Health Research, Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, West Midlands, United Kingdom
| | - Philip N Newsome
- Centre for Liver and Gastroenterology Research, Birmingham National Institute for Health Research, Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, West Midlands, United Kingdom
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham, Birmingham B15 2TT, West Midlands, United Kingdom
| | - Patricia F Lalor
- Centre for Liver and Gastroenterology Research, Birmingham National Institute for Health Research, Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, West Midlands, United Kingdom
| |
Collapse
|
8
|
Semicarbazide-sensitive amine oxidase inhibition ameliorates albuminuria and glomerulosclerosis but does not improve tubulointerstitial fibrosis in diabetic nephropathy. PLoS One 2020; 15:e0234617. [PMID: 32555665 PMCID: PMC7302447 DOI: 10.1371/journal.pone.0234617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/29/2020] [Indexed: 11/19/2022] Open
Abstract
Semicarbazide-sensitive amine oxidase (SSAO) is an enzyme with a unique dual function in controlling inflammation as well as reactive oxygen species (ROS) generation. We have demonstrated benefit of SSAO inhibition in acute kidney fibrosis. However the function of SSAO in chronic kidney disease (CKD) and diabetic kidney disease (DKD) is yet to be determined. We aimed to assess the effectiveness of a SSAO inhibitor (SSAOi; PXS-4728A) as an antifibrotic agent using a diabetic model of CKD. Diabetic mice were treated with SSAOi for 24 weeks and outcomes compared with untreated diabetic mice and telmisartan treated animals as a standard of care comparator. Extracellular matrix markers, fibronectin and oxidative stress, were downregulated in diabetic mice treated with SSAOi compared with untreated diabetic mice. Expression of the pan-leukocyte marker CD45 was also supressed by SSAOi. SSAO inhibition in diabetic mice resulted in a significant reduction in glomerulosclerosis and associated albuminuria compared to untreated diabetic mice. However, the effect of SSAO inhibition was less obvious in the tubulointerstitial compartment than in the glomeruli. Therefore, SSAO may be a potential target for diabetic glomerulosclerosis.
Collapse
|
9
|
Romauch M. Zinc-α2-glycoprotein as an inhibitor of amine oxidase copper-containing 3. Open Biol 2020; 10:190035. [PMID: 32315567 PMCID: PMC6685929 DOI: 10.1098/rsob.190035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Zinc-α2-glycoprotein (ZAG) is a major plasma protein whose levels increase in chronic energy-demanding diseases and thus serves as an important clinical biomarker in the diagnosis and prognosis of the development of cachexia. Current knowledge suggests that ZAG mediates progressive weight loss through β-adrenergic signalling in adipocytes, resulting in the activation of lipolysis and fat mobilization. Here, through cross-linking experiments, amine oxidase copper-containing 3 (AOC3) is identified as a novel ZAG binding partner. AOC3-also known as vascular adhesion protein 1 (VAP-1) and semicarbazide sensitive amine oxidase (SSAO)-deaminates primary amines, thereby generating the corresponding aldehyde, H2O2 and NH3. It is an ectoenzyme largely expressed by adipocytes and induced in endothelial cells during inflammation. Extravasation of immune cells depends on amine oxidase activity and AOC3-derived H2O2 has an insulinogenic effect. The observations described here suggest that ZAG acts as an allosteric inhibitor of AOC3 and interferes with the associated pro-inflammatory and anti-lipolytic functions. Thus, inhibition of the deamination of lipolytic hormone octopamine by AOC3 represents a novel mechanism by which ZAG might stimulate lipolysis. Furthermore, experiments involving overexpression of recombinant ZAG reveal that its glycosylation is co-regulated by oxygen availability and that the pattern of glycosylation affects its inhibitory potential. The newly identified protein interaction between AOC3 and ZAG highlights a previously unknown functional relationship, which may be relevant to inflammation, energy metabolism and the development of cachexia.
Collapse
Affiliation(s)
- Matthias Romauch
- Institute of Molecular Biosciences, Karl-Franzens-University, Graz, Austria
| |
Collapse
|
10
|
Papukashvili D, Rcheulishvili N, Deng Y. Attenuation of Weight Gain and Prevention of Associated Pathologies by Inhibiting SSAO. Nutrients 2020; 12:E184. [PMID: 31936548 PMCID: PMC7019322 DOI: 10.3390/nu12010184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a worldwide prevalent metabolic disorder that is associated with diabetes, among many other diseases. Bearing this in mind, prevention and treatment ways need to be improved. Notably, activity of the enzyme semicarbazide-sensitive amine oxidase (SSAO) is found to be elevated in overweight subjects. Moreover, SSAO inhibition has resulted in an increase of histamine activity in adipose tissue and the limitation of body fat. The current review aims to overview the risks of obesity, rationalize the molecular ways of SSAO activity, and outline the strategies of inhibiting upregulated enzyme levels. It describes the differences between SSAO inhibitors and advances the prospective agents. Based on evidence, caffeine is proposed as an effective, safe, and reliable choice to inhibit SSAO activity. Furthermore, the histamine in adipocytes has been associated with SSAO activity. Therefore, it is suggested as one of the key compounds to be studied for obesity management. To conclude, inhibiting SSAO may attenuate weight gain and prevent related diseases.
Collapse
Affiliation(s)
- Dimitri Papukashvili
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
| | - Nino Rcheulishvili
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (D.P.); (N.R.)
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing 100081, China
| |
Collapse
|
11
|
Barchetta I, Cimini FA, Ciccarelli G, Baroni MG, Cavallo MG. Sick fat: the good and the bad of old and new circulating markers of adipose tissue inflammation. J Endocrinol Invest 2019; 42:1257-1272. [PMID: 31073969 DOI: 10.1007/s40618-019-01052-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
Abstract
Adipose tissue (AT) is one of the largest endocrine organs contributing to metabolic homeostasis. The functional pleiotropism of AT depends on its ability to secrete a large number of hormones, cytokines, extracellular matrix proteins and growth factors, all influencing many local and systemic physiological and pathophysiological processes. In condition of chronic positive energy balance, adipocyte expansion, hypoxia, apoptosis and stress all lead to AT inflammation and dysfunction, and it has been demonstrated that this sick fat is a main risk factor for many metabolic disorders, such as type 2 diabetes mellitus, fatty liver, cardiovascular disease and cancer. AT dysfunction is tightly associated with aberrant secretion of bioactive peptides, the adipocytokines, and their blood concentrations often reflect the expression in the AT. Despite the existence of an association between AT dysfunction and systemic pro-inflammatory state, most of the circulating molecules detectable in obese and dysmetabolic individuals do not identify specifically the condition of sick fat. Based on this premise, this review provides a concise overview of "classic" and novel promising adipocytokines associated with AT inflammation and discusses possible critical approaches to their interpretation in clinical practice.
Collapse
Affiliation(s)
- I Barchetta
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - F A Cimini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - G Ciccarelli
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy
| | - M G Baroni
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| | - M G Cavallo
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
12
|
Carpéné C, Mauriège P, Boulet N, Biron S, Grolleau JL, Garcia-Barrado MJ, Iglesias-Osma MC. Methylamine Activates Glucose Uptake in Human Adipocytes Without Overpassing Action of Insulin or Stimulating its Secretion in Pancreatic Islets. MEDICINES 2019; 6:medicines6030089. [PMID: 31409018 PMCID: PMC6789716 DOI: 10.3390/medicines6030089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/17/2022]
Abstract
Background: Methylamine, a natural soluble amine present in foods, is known to be a substrate of primary amine oxidase (PrAO) widely expressed in animal tissues. Methylamine has been reported to activate glucose transport in fat cells and to facilitate glucose disposal in rabbits but the interests and limits of such insulin-mimicking actions have not been further explored. This work aimed to perform a preclinical study of the inter-individual variations of these biological properties to study the putative link between PrAO activity and insulin resistance. Methods: Methylamine was tested on human adipocyte preparations and in rabbit pancreatic islets to determine its influence on glucose uptake and insulin release, respectively. PrAO activity and related responses were determined in adipose tissues obtained from two cohorts of non-obese and obese women. Results: Adipose tissue PrAO activity was negatively correlated with insulin resistance in high-risk obese women. PrAO-dependent activation of glucose uptake was negatively correlated with body mass index and reflected the decrease of insulin responsiveness of human fat cells with increasing obesity. Methylamine exhibited antilipolytic properties in adipocytes but was unable to directly activate insulin secretion in isolated pancreatic islets. Conclusions: PrAO activation by its substrates, e.g., methylamine, increases glucose utilization in human adipocytes in a manner that is linked to insulin responsiveness. Methylamine/PrAO interaction can therefore contribute to adipose tissue enlargement but should be considered as potentially useful for diabetes prevention since it could limit lipotoxicity and facilitate glucose handling, at the expense of favoring healthy fat accumulation.
Collapse
Affiliation(s)
- Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, France.
| | - Pascale Mauriège
- Department of Kinesiology, Faculty of Medicine, Laval University, Québec, QC G1V0A6, Canada
| | - Nathalie Boulet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, France
| | - Simon Biron
- Department of Surgery, Faculty of Medicine, Laval University, Québec, QC G1V0A6, Canada
| | | | - Maria José Garcia-Barrado
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Mari Carmen Iglesias-Osma
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, 37007 Salamanca, Spain
- Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
13
|
Yang H, Liu CN, Wolf RM, Ralle M, Dev S, Pierson H, Askin F, Steele KE, Magnuson TH, Schweitzer MA, Wong GW, Lutsenko S. Obesity is associated with copper elevation in serum and tissues. Metallomics 2019; 11:1363-1371. [PMID: 31249997 DOI: 10.1039/c9mt00148d] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Copper misbalance has been linked to fat accumulation in animals and experimental systems; however, information about copper homeostasis in human obesity is limited. In this study, the copper status of obese individuals was evaluated by measuring their levels of copper and cuproproteins in serum, adipose and hepatic tissues. The analysis of serum trace elements showed significant positive and element-specific correlation between copper and BMI after controlling for gender, age, and ethnicity. Serum copper also positively correlated with leptin, insulin, and the leptin/BMI ratio. When compared to lean controls, obese patients had elevated circulating cuproproteins, such as semucarbazide-sensitive amine oxidase (SSAO) and ceruloplasmin, and higher SSAO activity and copper levels in visceral fat. Although hepatic steatosis reduces copper levels in the liver, obese patients with no or mild steatosis have higher copper content in the liver compared to lean controls. In conclusion, obese patients evaluated in this study had altered copper status. Strong positive correlations of copper levels with BMI and leptin suggest that copper and/or cuproproteins may be functionally linked to fat accumulation.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Chin-Nung Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Risa M Wolf
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martina Ralle
- Department of Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Som Dev
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hannah Pierson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Frederic Askin
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberley E Steele
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas H Magnuson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Schweitzer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Jiang G, Li F, Wang S, Sun J, Liu Z. Positive correlation between lipid accumulation and gene expression of a copper-containing amine oxidase gene in Chlorella under nitrogen starvation. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Abstract
Significance: Vascular adhesion protein-1 (VAP-1) is an ectoenzyme that oxidates primary amines in a reaction producing also hydrogen peroxide. VAP-1 on the blood vessel endothelium regulates leukocyte extravasation from the blood into tissues under physiological and pathological conditions. Recent Advances: Inhibition of VAP-1 by neutralizing antibodies and by several novel small-molecule enzyme inhibitors interferes with leukocyte trafficking and alleviates inflammation in many experimental models. Targeting of VAP-1 also shows beneficial effects in several other diseases, such as ischemia/reperfusion, fibrosis, and cancer. Moreover, soluble VAP-1 levels may serve as a new prognostic biomarker in selected diseases. Critical Issues: Understanding the contribution of the enzyme activity-independent and enzyme activity-dependent functions, which often appear to be mediated by the hydrogen peroxide production, in the VAP-1 biology will be crucial. Similarly, there is a pressing need to understand which of the VAP-1 functions are regulated through the modulation of leukocyte trafficking, and what is the role of VAP-1 synthesized in adipose and smooth muscle cells. Future Directions: The specificity and selectivity of new VAP-1 inhibitors, and their value in animal models under therapeutic settings need to be addressed. Results from several programs studying the therapeutic potential of VAP-1 inhibition, which now are in clinical trials, will reveal the relevance of this amine oxidase in humans.
Collapse
Affiliation(s)
- Marko Salmi
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Carpéné C, Boulet N, Chaplin A, Mercader J. Past, Present and Future Anti-Obesity Effects of Flavin-Containing and/or Copper-Containing Amine Oxidase Inhibitors. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E9. [PMID: 30650583 PMCID: PMC6473341 DOI: 10.3390/medicines6010009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
Background: Two classes of amine oxidases are found in mammals: those with a flavin adenine dinucleotide as a cofactor, such as monoamine oxidases (MAO) and lysine-specific demethylases (LSD), and those with copper as a cofactor, including copper-containing amine oxidases (AOC) and lysyl oxidases (LOX). All are expressed in adipose tissue, including a semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) strongly present on the adipocyte surface. Methods: Previously, irreversible MAO inhibitors have been reported to limit food intake and/or fat extension in rodents; however, their use for the treatment of depressed patients has not revealed a clear anti-obesity action. Semicarbazide and other molecules inhibiting SSAO/VAP-1 also reduce adiposity in obese rodents. Results: Recently, a LOX inhibitor and a subtype-selective MAO inhibitor have been shown to limit fattening in high-fat diet-fed rats. Phenelzine, which inhibits MAO and AOC, limits adipogenesis in cultured preadipocytes and impairs lipogenesis in mature adipocytes. When tested in rats or mice, phenelzine reduces food intake and/or fat accumulation without cardiac adverse effects. Novel amine oxidase inhibitors have been recently characterized in a quest for promising anti-inflammatory or anti-cancer approaches; however, their capacity to mitigate obesity has not been studied so far. Conclusions: The present review of the diverse effects of amine oxidase inhibitors impairing adipocyte differentiation or limiting excessive fat accumulation indicates that further studies are needed to reveal their potential anti-obesity properties.
Collapse
Affiliation(s)
- Christian Carpéné
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse Cedex 4, France.
| | - Nathalie Boulet
- Institute of Metabolic and Cardiovascular Diseases, INSERM, UMR1048, Team 1, 31432 Toulouse, France.
- I2MC, University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse Cedex 4, France.
| | - Alice Chaplin
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Josep Mercader
- Department of Fundamental Biology and Health Sciences, University of the Balearic Islands, 07122 Palma, Spain.
- Balearic Islands Health Research Institute (IdISBa), 07122 Palma, Spain.
| |
Collapse
|
17
|
Yang H, Ralle M, Wolfgang MJ, Dhawan N, Burkhead JL, Rodriguez S, Kaplan JH, Wong GW, Haughey N, Lutsenko S. Copper-dependent amino oxidase 3 governs selection of metabolic fuels in adipocytes. PLoS Biol 2018; 16:e2006519. [PMID: 30199530 PMCID: PMC6130853 DOI: 10.1371/journal.pbio.2006519] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022] Open
Abstract
Copper (Cu) has emerged as an important modifier of body lipid metabolism. However, how Cu contributes to the physiology of fat cells remains largely unknown. We found that adipocytes require Cu to establish a balance between main metabolic fuels. Differentiating adipocytes increase their Cu uptake along with the ATP7A-dependent transport of Cu into the secretory pathway to activate a highly up-regulated amino-oxidase copper-containing 3 (AOC3)/semicarbazide-sensitive amine oxidase (SSAO); in vivo, the activity of SSAO depends on the organism's Cu status. Activated SSAO oppositely regulates uptake of glucose and long-chain fatty acids and remodels the cellular proteome to coordinate changes in fuel availability and related downstream processes, such as glycolysis, de novo lipogenesis, and sphingomyelin/ceramide synthesis. The loss of SSAO-dependent regulation due to Cu deficiency, limited Cu transport to the secretory pathway, or SSAO inactivation shifts metabolism towards lipid-dependent pathways and results in adipocyte hypertrophy and fat accumulation. The results establish a role for Cu homeostasis in adipocyte metabolism and identify SSAO as a regulator of energy utilization processes in adipocytes.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Martina Ralle
- Department of Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael J. Wolfgang
- Center for Metabolism and Obesity Research, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Neha Dhawan
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jason L. Burkhead
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska, United States of America
| | - Susana Rodriguez
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Metabolism and Obesity Research, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jack H. Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - G. William Wong
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Metabolism and Obesity Research, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Norman Haughey
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
18
|
Serum vascular adhesion protein-1 is up-regulated in hyperglycemia and is associated with incident diabetes negatively. Int J Obes (Lond) 2018; 43:512-522. [PMID: 30022055 DOI: 10.1038/s41366-018-0172-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Vascular adhesion protein-1 (VAP-1) can enhance tissue glucose uptake in cell studies and normalize hyperglycemia in animal studies. However, serum VAP-1 concentration (sVAP-1) is higher in subjects with diabetes in cross-sectional studies. In this cohort study, we test our hypothesis that sVAP-1 is increased in prediabetes to counteract hyperglycemia and is associated with incident diabetes negatively. SUBJECTS/METHODS From 2006 to 2012, 600 subjects without diabetes from Taiwan Lifestyle Study were included and followed regularly. Diabetes was diagnosed if FPG ≥ 126 mg/dL (7 mmol/L), 2-h plasma glucose (2hPG) during an oral glucose tolerance test (OGTT) ≥ 200 mg/dL (11.1 mmol/L), or hemoglobin A1c (HbA1c) ≥ 6.5%, or if the subject received anti-diabetic medications. Abdominal fat areas were measured by abdominal computed tomography and sVAP-1 was analyzed by ELISA. RESULTS sVAP-1 was higher in subjects with prediabetes (p < 0.05) and increased during an OGTT (p < 0.001). Fasting sVAP-1 was associated with the response of sVAP-1 during an OGTT (p < 0.001). Besides, sVAP-1 was associated negatively with body mass index (BMI, r = -0.1449, p = 0.003), waist circumference (r = -0.1425, p = 0.004), abdominal visceral (r = -0.1457, p = 0.003), and subcutaneous (r = -0.1025, p = 0.035) fat areas, and serum high-sensitivity C-reactive protein (hsCRP) concentration (r = -0.2035, p < 0.0001), and positively with plasma adiponectin concentration (r = 0.2086, p < 0.0001), adjusted for age and gender. After 4.7 ± 2.6 years, 73 subjects (12.2%) developed incident diabetes. High sVAP-1 predicted a lower incidence of diabetes, adjusted for age, gender, BMI, family history of diabetes, HbA1c, HOMA2-%B and HOMA2-IR (HR = 0.66, 95% CI = 0.50-0.88, p < 0.01). CONCLUSIONS sVAP-1 is increased in response to hyperglycemia. It is associated with obesity and serum hsCRP concentration negatively, and plasma adiponectin concentration positively. Besides, a high sVAP-1 is associated with a lower incidence of diabetes in human.
Collapse
|
19
|
Amani M, Barzegar A, Mazani M. Osmolytic Effect of Sucrose on Thermal Denaturation of Pea Seedling Copper Amine Oxidase. Protein J 2017; 36:147-153. [PMID: 28315108 DOI: 10.1007/s10930-017-9706-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Protein stability is a subject of interest by many researchers. One of the common methods to increase the protein stability is using the osmolytes. Many studies and theories analyzed and explained osmolytic effect by equilibrium thermodynamic while most proteins undergo an irreversible denaturation. In current study we investigated the effect of sucrose as an osmolyte on the thermal denaturation of pea seedlings amine oxidase by the enzyme activity, fluorescence spectroscopy, circular dichroism, and differential scanning calorimetry. All experiments are in agreement that pea seedlings amine oxidase denaturation is controlled kinetically and its kinetic stability is increased in presence of sucrose. Differential scanning calorimetry experiments at different scanning rates showed that pea seedlings amine oxidase unfolding obeys two-state irreversible model. Fitting the differential scanning calorimetry data to two-state irreversible model showed that unfolding enthalpy and T *, temperature at which rate constant equals unit per minute, are increased while activation energy is not affected by increase in sucrose concentration. We concluded that osmolytes decrease the molecular oscillation of irreversible proteins which leads to decline in unfolding rate constant.
Collapse
Affiliation(s)
- Mojtaba Amani
- Department of Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences (ArUMS), Daneshgah Street, Ardabil, 5618985991, Iran.
| | - Aboozar Barzegar
- Department of Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences (ArUMS), Daneshgah Street, Ardabil, 5618985991, Iran
| | - Mohammad Mazani
- Department of Biochemistry, Faculty of Medicine, Ardabil University of Medical Sciences (ArUMS), Daneshgah Street, Ardabil, 5618985991, Iran
| |
Collapse
|
20
|
Ayala-Lopez N, Thompson JM, Watts SW. Perivascular Adipose Tissue's Impact on Norepinephrine-Induced Contraction of Mesenteric Resistance Arteries. Front Physiol 2017; 8:37. [PMID: 28228728 PMCID: PMC5296360 DOI: 10.3389/fphys.2017.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 01/22/2023] Open
Abstract
Background: Perivascular adipose tissue (PVAT) can decrease vascular contraction to NE. We tested the hypothesis that metabolism and/or uptake of vasoactive amines by mesenteric PVAT (MPVAT) could affect NE-induced contraction of the mesenteric resistance arteries. Methods: Mesenteric resistance vessels (MRV) and MPVAT from male Sprague-Dawley rats were used. RT-PCR and Western blots were performed to detect amine metabolizing enzymes. The Amplex® Red Assay was used to quantify oxidase activity by detecting the oxidase reaction product H2O2 and the contribution of PVAT on the mesenteric arteries' contraction to NE was measured by myography. Results: Semicarbazide sensitive amine oxidase (SSAO) and monoamine oxidase A (MAO-A) were detected in MRV and MPVAT by Western blot. Addition of the amine oxidase substrates tyramine or benzylamine (1 mM) resulted in higher amine oxidase activity in the MRV, MPVAT, MPVAT's adipocyte fraction (AF), and the stromal vascular fraction (SVF). Inhibiting SSAO with semicarbazide (1 mM) decreased amine oxidase activity in the MPVAT and AF. Benzylamine-driven, but not tyramine-driven, oxidase activity in the MRV was reduced by semicarbazide. By contrast, no reduction in oxidase activity in all sample types was observed with use of the monoamine oxidase inhibitors clorgyline (1 μM) or pargyline (1 μM). Inhibition of MAO-A/B or SSAO individually did not alter contraction to NE. However, inhibition of both MAO and SSAO increased the potency of NE at mesenteric arteries with PVAT. Addition of MAO and SSAO inhibitors along with the H2O2 scavenger catalase reduced PVAT's anti-contractile effect to NE. Inhibition of the norepinephrine transporter (NET) with nisoxetine also reduced PVAT's anti-contractile effect to NE. Conclusions: PVAT's uptake and metabolism of NE may contribute to the anti-contractile effect of PVAT. MPVAT and adipocytes within MPVAT are a source of SSAO.
Collapse
Affiliation(s)
- Nadia Ayala-Lopez
- Department of Pharmacology and Toxicology, Michigan State UniversityEast Lansing, MI, USA
| | | | | |
Collapse
|
21
|
Expression of the semicarbazide-sensitive amine oxidase in articular cartilage: its role in terminal differentiation of chondrocytes in rat and human. Osteoarthritis Cartilage 2016; 24:1223-34. [PMID: 26851450 DOI: 10.1016/j.joca.2016.01.340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Semicarbazide-sensitive amine oxidase (SSAO) catalyzes the oxidation of primary amines into ammonia and reactive species (hydrogen peroxide, aldehydes). It is highly expressed in mammalian tissues, especially in vascular smooth muscle cells and adipocytes, where it plays a role in cell differentiation and glucose transport. The study aims at characterizing the expression and the activity of SSAO in rat and human articular cartilage of the knee, and to investigate its potential role in chondrocyte terminal differentiation. DESIGN SSAO expression was examined by immunohistochemistry and western blot. Enzyme activity was measured using radiolabeled benzylamine as a substrate. Primary cell cultures of rat chondrocytes were treated for 21 days by a specific SSAO inhibitor, LJP 1586. Terminal chondrocyte differentiation markers were quantified by RT-qPCR. The basal and IL1β-stimulated glucose transport was monitored by the entrance of (3)[H]2-deoxyglucose in chondrocytes. RESULTS SSAO was expressed in chondrocytes of rat and human articular cartilage. SSAO expression was significantly enhanced during the hypertrophic differentiation of chondrocytes characterized by an increase in MMP13 and in alkaline phosphatase (ALP) expressions. SSAO inhibition delayed the late stage of chondrocyte differentiation without cell survival alteration and diminished the basal and IL1β-stimulated glucose transport. Interestingly, SSAO activity was strongly increased in human osteoarthritic cartilage. CONCLUSIONS SSAO was expressed as an active form in rat and human cartilage. The results suggest the involvement of SSAO in rat chondrocyte terminal differentiation via a modulation of the glucose transport. In man, the increased SSAO activity detected in osteoarthritic patients may trigger hypertrophy and cartilage degeneration.
Collapse
|
22
|
Pannecoeck R, Serruys D, Benmeridja L, Delanghe JR, van Geel N, Speeckaert R, Speeckaert MM. Vascular adhesion protein-1: Role in human pathology and application as a biomarker. Crit Rev Clin Lab Sci 2015; 52:284-300. [PMID: 26287391 DOI: 10.3109/10408363.2015.1050714] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Vascular adhesion protein-1 (VAP-1) is a member of the copper-containing amine oxidase/semicarbazide-sensitive amine oxidase (AOC/SSAO) enzyme family. SSAO enzymes catalyze oxidative deamination of primary amines, which results in the production of the corresponding aldehyde, hydrogen peroxide and ammonium. VAP-1 is continuously expressed as a transmembrane glycoprotein in the vascular wall during development and facilitates the accumulation of inflammatory cells into the inflamed environment in concert with other leukocyte adhesion molecules. The soluble form of VAP-1 is released into the circulation mainly from vascular endothelial cells. Over- and under-expression of sVAP-1 result in alterations of the reported reaction product levels, which are involved in the pathogenesis of multiple human diseases. The combination of enzymatic and adhesion capacities as well as its strong association with inflammatory pathologies makes VAP-1 an interesting therapeutic target for drug discovery. In this article, we will review the general characteristics and biological functions of VAP-1, focusing on its important role as a prognostic biomarker in human pathologies. In addition, the potential therapeutic application of VAP-1 inhibitors will be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Nanja van Geel
- c Department of Dermatology , Ghent University Hospital , Gent , Belgium
| | | | | |
Collapse
|
23
|
Solé M, Miñano-Molina AJ, Unzeta M. A cross-talk between Aβ and endothelial SSAO/VAP-1 accelerates vascular damage and Aβ aggregation related to CAA-AD. Neurobiol Aging 2015; 36:762-75. [DOI: 10.1016/j.neurobiolaging.2014.09.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/18/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
|
24
|
Weston CJ, Shepherd EL, Claridge LC, Rantakari P, Curbishley SM, Tomlinson JW, Hubscher SG, Reynolds GM, Aalto K, Anstee QM, Jalkanen S, Salmi M, Smith DJ, Day CP, Adams DH. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest 2014; 125:501-20. [PMID: 25562318 DOI: 10.1172/jci73722] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/13/2014] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a range of manifestations, including steatosis and cirrhosis. Progressive disease is characterized by hepatic leukocyte accumulation in the form of steatohepatitis. The adhesion molecule vascular adhesion protein-1 (VAP-1) is a membrane-bound amine oxidase that promotes leukocyte recruitment to the liver, and the soluble form (sVAP-1) accounts for most circulating monoamine oxidase activity, has insulin-like effects, and can initiate oxidative stress. Here, we determined that hepatic VAP-1 expression is increased in patients with chronic liver disease and that serum sVAP-1 levels are elevated in patients with NAFLD compared with those in control individuals. In 4 murine hepatic injury models, an absence or blockade of functional VAP-1 reduced inflammatory cell recruitment to the liver and attenuated fibrosis. Moreover, disease was reduced in animals expressing a catalytically inactive form of VAP-1, implicating enzyme activity in the disease pathogenesis. Within the liver, hepatic stromal cells expressed functional VAP-1, and evaluation of cultured cells revealed that sVAP-1 promotes leukocyte migration through catalytic generation of ROS, which depended on VAP-1 enzyme activity. VAP-1 enhanced stromal cell spreading and wound closure and modulated expression of profibrotic genes. Together, these results link the amine oxidase activity of VAP-1 with hepatic inflammation and fibrosis and suggest that targeting VAP-1 has therapeutic potential for NAFLD and other chronic fibrotic liver diseases.
Collapse
|
25
|
Karim S, Liaskou E, Fear J, Garg A, Reynolds G, Claridge L, Adams DH, Newsome PN, Lalor PF. Dysregulated hepatic expression of glucose transporters in chronic disease: contribution of semicarbazide-sensitive amine oxidase to hepatic glucose uptake. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1180-90. [PMID: 25342050 PMCID: PMC4269679 DOI: 10.1152/ajpgi.00377.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Insulin resistance is common in patients with chronic liver disease (CLD). Serum levels of soluble vascular adhesion protein-1 (VAP-1) are also increased in these patients. The amine oxidase activity of VAP-1 stimulates glucose uptake via translocation of transporters to the cell membrane in adipocytes and smooth muscle cells. We aimed to document human hepatocellular expression of glucose transporters (GLUTs) and to determine if VAP-1 activity influences receptor expression and hepatic glucose uptake. Quantitative PCR and immunocytochemistry were used to study human liver tissue and cultured cells. We also used tissue slices from humans and VAP-1-deficient mice to assay glucose uptake and measure hepatocellular responses to stimulation. We report upregulation of GLUT1, -3, -5, -6, -7, -8, -9, -10, -11, -12, and -13 in CLD. VAP-1 expression and enzyme activity increased in disease, and provision of substrate to hepatic VAP-1 drives hepatic glucose uptake. This effect was sensitive to inhibition of VAP-1 and could be recapitulated by H2O2. VAP-1 activity also altered expression and subcellular localization of GLUT2, -4, -9, -10, and -13. Therefore, we show, for the first time, alterations in hepatocellular expression of glucose and fructose transporters in CLD and provide evidence that the semicarbazide-sensitive amine oxidase activity of VAP-1 modifies hepatic glucose homeostasis and may contribute to patterns of GLUT expression in chronic disease.
Collapse
Affiliation(s)
- Sumera Karim
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Evaggelia Liaskou
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Janine Fear
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Abhilok Garg
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Gary Reynolds
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - Lee Claridge
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| | - David H. Adams
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and ,2Liver and Hepatobiliary Unit, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom
| | - Philip N. Newsome
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and ,2Liver and Hepatobiliary Unit, Queen Elizabeth Hospital, Edgbaston, Birmingham, United Kingdom
| | - Patricia F. Lalor
- 1Centre for Liver Research and National Institute for Health Research Biomedical Research Unit, Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom; and
| |
Collapse
|
26
|
Aalto K, Havulinna AS, Jalkanen S, Salomaa V, Salmi M. Soluble vascular adhesion protein-1 predicts incident major adverse cardiovascular events and improves reclassification in a finnish prospective cohort study. ACTA ACUST UNITED AC 2014; 7:529-35. [PMID: 24850810 DOI: 10.1161/circgenetics.113.000543] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Vascular adhesion protein-1 (VAP-1) associates to subclinical atherosclerotic manifestations in young people, but its association to incident major adverse cardiovascular events (MACEs) and cardiovascular mortality in a general population is not known. METHODS AND RESULTS We used a newly developed ELISA to measure soluble VAP-1 (sVAP-1) levels in 2775 participants (mean age, 60 years) from a prospective cohort study (the FINRISK 2002). During a mean follow-up of 9 years, 265 participants underwent a MACE, and these participants had higher levels of sVAP-1 than those without MACE (868 ng/mL and 824 ng/mL, respectively, P<0.001). In multivariate-adjusted Cox proportional hazard model including traditional Framingham risk factors (age, sex, systolic blood pressure, cholesterol, high-density lipoprotein cholesterol, smoking, prevalent diabetes mellitus, and antihypertensive treatment), sVAP-1 independently predicted incident MACE (P=0.0046) and MACE mortality (P=0.026). The impact of sVAP-1 in predicting the 9-year absolute risk of MACE was analyzed using integrated discrimination improvement and net reclassification improvement with 10-fold cross-validation. Inclusion of sVAP-1 in the Framingham model improved integrated discrimination improvement (P=0.042), and the clinical net reclassification improvement by correctly reclassifying 9% (P=0.0019) of people in the intermediate risk (5%-20%) group. CONCLUSIONS sVAP-1 associated with increased risk of MACE and MACE mortality in people aged >50 years without prior MACE, and inclusion of sVAP-1 in the risk prediction model improved the clinical net reclassification improvement of incident MACE. Thus, sVAP-1 may be a potential new biomarker for cardiovascular diseases.
Collapse
Affiliation(s)
- Kristiina Aalto
- From the MediCity Research Laboratory, and Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland (K.A., S.J., M.S.), and Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku and Helsinki, Finland (A.S.H., S.J., V.S., M.S.)
| | - Aki S Havulinna
- From the MediCity Research Laboratory, and Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland (K.A., S.J., M.S.), and Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku and Helsinki, Finland (A.S.H., S.J., V.S., M.S.)
| | - Sirpa Jalkanen
- From the MediCity Research Laboratory, and Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland (K.A., S.J., M.S.), and Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku and Helsinki, Finland (A.S.H., S.J., V.S., M.S.)
| | - Veikko Salomaa
- From the MediCity Research Laboratory, and Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland (K.A., S.J., M.S.), and Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku and Helsinki, Finland (A.S.H., S.J., V.S., M.S.)
| | - Marko Salmi
- From the MediCity Research Laboratory, and Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland (K.A., S.J., M.S.), and Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku and Helsinki, Finland (A.S.H., S.J., V.S., M.S.).
| |
Collapse
|
27
|
Wong MYW, Saad S, Pollock C, Wong MG. Semicarbazide-sensitive amine oxidase and kidney disease. Am J Physiol Renal Physiol 2013; 305:F1637-44. [PMID: 24173357 DOI: 10.1152/ajprenal.00416.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With better understanding of the molecular mechanisms underpinning chronic kidney disease, the roles of inflammation and fibrosis are becoming increasingly inseparable. The progression of renal disease is characterized by pathomorphological changes that consist of early inflammatory responses followed by tubulointerstitial fibrosis, tubular atrophy, and glomerular and vascular sclerosis. Currently available therapies that reduce hypertension, proteinuria, hyperglycemia, and interruption of the renin-angiotensin-aldosterone system are at best only partially effective. Hence, there remains a need to explore agents targeting nonrenin-angiotensin-aldosterone system pathways. In this review, we discuss mechanistic aspects in the physiological and pathological role of semicarbazide-sensitive amine oxidase, a protein enzyme involved in cellular trafficking and inflammation, with respect to the kidney. We explore the evidence for the use of semicarbazide-sensitive amine oxidase inhibitors as potential agents in renal fibrosis to delay the onset and progression of chronic kidney disease.
Collapse
Affiliation(s)
- May Y W Wong
- Kolling Institute of Medical Research, Level 7 Kolling Bldg., Royal North Shore Hospital, St Leonards 2065, NSW, Australia.
| | | | | | | |
Collapse
|
28
|
Klema VJ, Solheid CJ, Klinman JP, Wilmot CM. Structural analysis of aliphatic versus aromatic substrate specificity in a copper amine oxidase from Hansenula polymorpha. Biochemistry 2013; 52:2291-301. [PMID: 23452079 DOI: 10.1021/bi3016845] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper amine oxidases (CAOs) are responsible for the oxidative deamination of primary amines to their corresponding aldehydes. The CAO catalytic mechanism can be divided into two half-reactions: a reductive half-reaction in which a primary amine substrate is oxidized to its corresponding aldehyde with the concomitant reduction of the organic cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ) and an oxidative half-reaction in which reduced TPQ is reoxidized with the reduction of molecular oxygen to hydrogen peroxide. The reductive half-reaction proceeds via Schiff base chemistry, in which the primary amine substrate first attacks the C5 carbonyl of TPQ, forming a series of covalent Schiff base intermediates. The X-ray crystal structures of copper amine oxidase-1 from the yeast Hansenula polymorpha (HPAO-1) in complex with ethylamine and benzylamine have been determined to resolutions of 2.18 and 2.25 Å, respectively. These structures reveal the two amine substrates bound at the back of the active site coincident with TPQ in its two-electron-reduced aminoquinol form. Rearrangements of particular amino acid side chains within the substrate channel and specific protein-substrate interactions provide insight into the substrate specificity of HPAO-1. These changes begin to account for this CAO's kinetic preference for small, aliphatic amines over the aromatic amines or whole peptides preferred by some of its homologues.
Collapse
Affiliation(s)
- Valerie J Klema
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
29
|
Vascular cell lines expressing SSAO/VAP-1: a new experimental tool to study its involvement in vascular diseases. Biol Cell 2012; 103:543-57. [PMID: 21819380 DOI: 10.1042/bc20110049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND INFORMATION PrAO (primary amine oxidase), also known as SSAO (semicarbazide-sensitive amine oxidase)/VAP-1 (vascular adhesion protein-1), is an enzyme (EC 1.4.3.21) that is highly expressed in blood vessels and participates in many cell processes, including glucose handling or inflammatory leucocyte recruitment. High activity levels of this enzyme are associated with diabetes, atherosclerosis, AD (Alzheimer's disease) or stroke, among others, thus meaning that studies concerning SSAO as a therapeutic target are becoming more frequent. However, the study of this enzyme is difficult, owing to its loss of expression in cell cultures. RESULTS We have developed an endothelial cell line that stably expresses the human SSAO/VAP-1 to be used as endothelial cell model for the study of this enzyme. The transfected protein is mainly expressed as a dimer in the membrane of these cells, and we demonstrate its specific localization in the lipid rafts of endothelial cells. The protein shows levels of enzymatic activity and kinetic parameters comparable with those observed in vivo by the same cell type. The transfected SSAO/VAP-1 is also able to mediate the adhesion of leucocytes to the endothelium, a known function of this protein under inflammatory conditions. This distinctive function is not exerted by the SSAO/VAP-1 transfected protein in a smooth muscle cell line that expresses 3-fold higher protein levels. These differences have been widely reported to exist in vivo. Furthermore, using this endothelial cell model, we describe for the first time the involvement of the leucocyte-adhesion activity of SSAO/VAP-1 in the Aβ (amyloid β-peptide)-mediated pro-inflammatory effect. CONCLUSIONS The characterization of this new cell line shows the correct behaviour of the transfected protein and endorses the use of these cellular models for the in-depth study of the currently poorly understood functions of SSAO/VAP-1 and its involvement in the above-mentioned pathologies. This cellular model will be also useful for the evaluation of potential compounds that could modulate its activity for therapeutic purposes.
Collapse
|
30
|
Aalto K, Maksimow M, Juonala M, Viikari J, Jula A, Kähönen M, Jalkanen S, Raitakari OT, Salmi M. Soluble vascular adhesion protein-1 correlates with cardiovascular risk factors and early atherosclerotic manifestations. Arterioscler Thromb Vasc Biol 2011; 32:523-32. [PMID: 22116093 DOI: 10.1161/atvbaha.111.238030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Vascular adhesion protein-1 is an endothelial enzyme that regulates leukocyte traffic and contributes to vascular damage in animal models. The relations of soluble vascular adhesion protein-1 (sVAP-1) with cardiovascular risk factors and markers of subclinical atherosclerosis at a population level have not been studied. METHODS AND RESULTS We developed a new high-throughput method and measured sVAP-1 activities in serum of 2183 persons (The Cardiovascular Risk in Young Finns Study). In women, sVAP-1 activity correlated indirectly with body mass index (r=-0.15, P<0.0001), triglycerides (r=-0.13, P<0.0001), C-reactive protein (r=-0.23; P<0.0001), and brachial artery flow-mediated vasodilatation (r=-0.076, P=0.0089) and directly with carotid plaques (r=0.066, P=0.023). None of these correlations was significant in men. In women, all these univariate correlations remained significant after adjustment for body mass index, and direct correlations with LDL-cholesterol (r=0.094, P=0.0014) and carotid intima-media thickness (r=0.075, P=0.010) became evident. In men, sVAP-1 activity associated directly with glucose (r=0.074, P=0.020), intima-media thickness (r=0.072, P=0.025), metabolic syndrome (P=0.016), and type 1 (P=0.0002) and type 2 (P<0.0001) diabetes. In multivariable analyses, sVAP-1 activity was an independent determinant of carotid intima-media thickness (P=0.0072) and plaques [odds ratio 1.71 (95% confidence interval 1.07-2.72, P=0.025] in women, but not in men. CONCLUSIONS sVAP-1 activity correlates directly with intima-media thickness and carotid plaques in general population and may play a role in the pathophysiology of preclinical atherosclerosis.
Collapse
Affiliation(s)
- Kristiina Aalto
- MediCity Research Laboratory, Tykistökatu 6A, 20520 Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pidoux G, Witczak O, Jarnæss E, Myrvold L, Urlaub H, Stokka AJ, Küntziger T, Taskén K. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J 2011; 30:4371-86. [PMID: 21983901 DOI: 10.1038/emboj.2011.365] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 09/07/2011] [Indexed: 12/16/2022] Open
Abstract
Adrenergic stimulation of adipocytes yields a cAMP signal that activates protein kinase A (PKA). PKA phosphorylates perilipin, a protein localized on the surface of lipid droplets that serves as a gatekeeper to regulate access of lipases converting stored triglycerides to free fatty acids and glycerol in a phosphorylation-dependent manner. Here, we report a new function for optic atrophy 1 (OPA1), a protein known to regulate mitochondrial dynamics, as a dual-specificity A-kinase anchoring protein associated with lipid droplets. By a variety of protein interaction assays, immunoprecipitation and immunolocalization experiments, we show that OPA1 organizes a supramolecular complex containing both PKA and perilipin. Furthermore, by a combination of siRNA-mediated knockdown, reconstitution experiments using full-length OPA1 with or without the ability to bind PKA or truncated OPA1 fused to a lipid droplet targeting domain and cellular delivery of PKA anchoring disruptor peptides, we demonstrate that OPA1 targeting of PKA to lipid droplets is necessary for hormonal control of perilipin phosphorylation and lipolysis.
Collapse
Affiliation(s)
- Guillaume Pidoux
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Heuts DPHM, Gummadova JO, Pang J, Rigby SEJ, Scrutton NS. Reaction of vascular adhesion protein-1 (VAP-1) with primary amines: mechanistic insights from isotope effects and quantitative structure-activity relationships. J Biol Chem 2011; 286:29584-93. [PMID: 21737458 DOI: 10.1074/jbc.m111.232850] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human vascular adhesion protein-1 (VAP-1) is an endothelial copper-dependent amine oxidase involved in the recruitment and extravasation of leukocytes at sites of inflammation. VAP-1 is an important therapeutic target for several pathological conditions. We expressed soluble VAP-1 in HEK293 EBNA1 cells at levels suitable for detailed mechanistic studies with model substrates. Using the model substrate benzylamine, we analyzed the steady-state kinetic parameters of VAP-1 as a function of solution pH. We found two macroscopic pK(a) values that defined a bell-shaped plot of turnover number k(cat,app) as a function of pH, representing ionizable groups in the enzyme-substrate complex. The dependence of (k(cat)/K(m))(app) on pH revealed a single pK(a) value (∼9) that we assigned to ionization of the amine group in free benzylamine substrate. A kinetic isotope effect (KIE) of 6 to 7.6 on (k(cat)/K(m))(app) over the pH range of 6 to 10 was observed with d(2)-benzylamine. Over the same pH range, the KIE on k(cat) was found to be close to unity. The unusual KIE values on (k(cat)/K(m))(app) were rationalized using a mechanistic scheme that includes the possibility of multiple isotopically sensitive steps. We also report the analysis of quantitative structure-activity relationships (QSAR) using para-substituted protiated and deuterated phenylethylamines. With phenylethylamines we observed a large KIE on k(cat,app) (8.01 ± 0.28 with phenylethylamine), indicating that C-H bond breakage is limiting for 2,4,5-trihydroxyphenylalanine quinone reduction. Poor correlations were observed between steady-state rate constants and QSAR parameters. We show the importance of combining KIE, QSAR, and structural studies to gain insight into the complexity of the VAP-1 steady-state mechanism.
Collapse
Affiliation(s)
- Dominic P H M Heuts
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Weston CJ, Adams DH. Hepatic consequences of vascular adhesion protein-1 expression. J Neural Transm (Vienna) 2011; 118:1055-64. [DOI: 10.1007/s00702-011-0647-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/10/2011] [Indexed: 01/09/2023]
|
34
|
Salmi M, Jalkanen S. Homing-associated molecules CD73 and VAP-1 as targets to prevent harmful inflammations and cancer spread. FEBS Lett 2011; 585:1543-50. [DOI: 10.1016/j.febslet.2011.04.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 01/01/2023]
|
35
|
Iffiú-Soltész Z, Mercader J, Daviaud D, Boucher J, Carpéné C. Increased primary amine oxidase expression and activity in white adipose tissue of obese and diabetic db-/- mice. J Neural Transm (Vienna) 2011; 118:1071-7. [PMID: 21298297 DOI: 10.1007/s00702-011-0586-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/16/2011] [Indexed: 10/18/2022]
Abstract
The major form of primary amine oxidase expressed in adipose tissue (AT) is encoded by AOC3 gene and is known as semicarbazide-sensitive amine oxidase, identical to vascular adhesion protein-1 (SSAO/VAP-1). Exogenous substrates of SSAO/VAP-1 (e.g. benzylamine) stimulate glucose transport in adipocytes and improve glucose tolerance when injected in diabetic rodents. Numerous reports on the circulating, soluble SSAO/VAP-1 have univocally evidenced an increase in diabetic conditions. However, only scarce studies have investigated whether obesity and/or diabetes is accompanied with variations of AOC3 expression in AT. Therefore, we compared the SSAO/VAP-1 content in different fat depots of db-/- mice (lacking leptin receptor and being hyperphagic, diabetic and obese) and db+/- littermates (normoglycemic and lean). AOC3 expression was increased in perigonadal and subcutaneous AT of db-/- mice, while the maximal velocity of benzylamine oxidation (V (max), expressed as pmoles of hydrogen peroxide produced/min/mg protein) increased only in the latter. Indeed, the relative abundance of primary amine oxidase was increased in subcutaneous AT of db-/- mice at all the levels: mRNA, protein and activity. While considering the overall capacity to oxidise amines contained in each depot, there was an increase in the hypertrophic fat pads of the obese db-/- mice, irrespective of their anatomical location, as a result of their dramatically larger mass than in lean db+/- control. Such higher amount of AT-bound primary amine oxidase warrants further studies to determine whether SSAO/VAP-1 inhibition or activation may be useful in treating metabolic diseases.
Collapse
Affiliation(s)
- Zsuzsa Iffiú-Soltész
- Université de Toulouse, UPS, Institut de Médecine Moléculaire de Rangueil (I2MC), Toulouse, France
| | | | | | | | | |
Collapse
|
36
|
Desai KM, Chang T, Wang H, Banigesh A, Dhar A, Liu J, Untereiner A, Wu L. Oxidative stress and aging: is methylglyoxal the hidden enemy? Can J Physiol Pharmacol 2011; 88:273-84. [PMID: 20393592 DOI: 10.1139/y10-001] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aging is a multifactorial process that involves changes at the cellular, tissue, organ and the whole body levels resulting in decreased functioning, development of diseases, and ultimately death. Oxidative stress is believed to be a very important factor in causing aging and age-related diseases. Oxidative stress is caused by an imbalance between oxidants such as reactive oxygen species (ROS) and antioxidants. ROS are produced from the mitochondrial electron transport chain and many oxidative reactions. Methylglyoxal (MG) is a highly reactive dicarbonyl metabolite formed during glucose, protein and fatty acid metabolism. MG levels are elevated in hyperglycemia and other conditions. An excess of MG formation can increase ROS production and cause oxidative stress. MG reacts with proteins, DNA and other biomolecules, and is a major precursor of advanced glycation end products (AGEs). AGEs are also associated with the aging process and age-related diseases such as cardiovascular complications of diabetes, neurodegenerative diseases and connective tissue disorders. AGEs also increase oxidative stress. In this review we discuss the potential role of MG in the aging process through increasing oxidative stress besides causing AGEs formation. Specific and effective scavengers and crosslink breakers of MG and AGEs are being developed and can become potential treatments to slow the aging process and prevent many diseases.
Collapse
Affiliation(s)
- Kaushik M Desai
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Toxicity of derivatives from semicarbazide-sensitive amine oxidase-mediated deamination of methylamine against Toxoplasma gondii after infection of differentiated 3T3-L1 cells. Toxicol In Vitro 2009; 24:809-14. [PMID: 20025955 DOI: 10.1016/j.tiv.2009.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 11/10/2009] [Accepted: 12/14/2009] [Indexed: 11/22/2022]
Abstract
Adipose tissue plays an active role in normal metabolic homeostasis as well as in the development of human diseases such as atherosclerosis and diabetes. We report here antimicrobial activities of the metabolites from adipocytes. Specifically, semicarbazide-sensitive amine oxidase of differentiated 3T3-L1 cells was found to utilize methylamine for producing formaldehyde and hydrogen peroxide, accounting for the inhibition of infectivity of Toxoplasma gondii and its replication in these cells. This was demonstrated by the findings that semicarbazide-sensitive amine oxidase was extremely high in differentiated 3T3-L1 cells; and that the infection of these cells by T. gondii and its intracellular replication were decreased to 33% and 37% of the control, respectively, when methylamine was provided in micromolar concentrations as the substrate to the aminoxidase. Only one of the two reaction products expected was found inhibitory against T. gondii when added to the infected pre-adipocytes of 3T3-L1. Intracellular replication of this parasite was inhibited by formaldehyde in the range of 10-100 microM and stimulated by hydrogen peroxide at 1-10 microM. The finding indicates that T. gondii may be useful as a sensitive and convenient sentinel for screening agents toxic to eukaryotic cells.
Collapse
|
39
|
Kaitaniemi S, Elovaara H, Grön K, Kidron H, Liukkonen J, Salminen T, Salmi M, Jalkanen S, Elima K. The unique substrate specificity of human AOC2, a semicarbazide-sensitive amine oxidase. Cell Mol Life Sci 2009; 66:2743-57. [PMID: 19588076 PMCID: PMC11115939 DOI: 10.1007/s00018-009-0076-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/08/2009] [Accepted: 06/12/2009] [Indexed: 12/01/2022]
Abstract
Semicarbazide-sensitive amine oxidases (SSAOs) catalyze oxidative deamination of primary amines, but the true physiological function of these enzymes is still poorly understood. Here, we have studied the functional and structural characteristics of a human cell-surface SSAO, AOC2, which is homologous to the better characterized family member, AOC3. The preferred in vitro substrates of AOC2 were found to be 2-phenylethylamine, tryptamine and p-tyramine instead of methylamine and benzylamine, the favored substrates of AOC3. Molecular modeling suggested structural differences between AOC2 and AOC3, which provide AOC2 with the capability to use the larger monoamines as substrates. Even though AOC2 mRNA was expressed in many tissues, the only tissues with detectable AOC2-like enzyme activity were found in the eye. Characterization of AOC2 will help in evaluating the contribution of this enzyme to the pathological processes attributed to the SSAO activity and in designing specific inhibitors for the individual members of the SSAO family.
Collapse
Affiliation(s)
- Sam Kaitaniemi
- MediCity Research Laboratory, University of Turku, and National Institute for Health and Welfare, Tykistökatu 6, 20520 Turku, Finland
| | - Heli Elovaara
- MediCity Research Laboratory, University of Turku, and National Institute for Health and Welfare, Tykistökatu 6, 20520 Turku, Finland
| | - Kirsi Grön
- MediCity Research Laboratory, University of Turku, and National Institute for Health and Welfare, Tykistökatu 6, 20520 Turku, Finland
| | - Heidi Kidron
- Department of Biochemistry and Pharmacy, Åbo Akademi University, 20520 Turku, Finland
| | - Janne Liukkonen
- Department of Ophthalmology, Turku University Hospital, 20521 Turku, Finland
| | - Tiina Salminen
- Department of Biochemistry and Pharmacy, Åbo Akademi University, 20520 Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, and National Institute for Health and Welfare, Tykistökatu 6, 20520 Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, and National Institute for Health and Welfare, Tykistökatu 6, 20520 Turku, Finland
| | - Kati Elima
- MediCity Research Laboratory, University of Turku, and National Institute for Health and Welfare, Tykistökatu 6, 20520 Turku, Finland
| |
Collapse
|
40
|
Yraola F, Zorzano A, Albericio F, Royo M. Structure-activity relationships of SSAO/VAP-1 arylalkylamine-based substrates. ChemMedChem 2009; 4:495-503. [PMID: 19266512 DOI: 10.1002/cmdc.200800393] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 (SSAO/VAP-1) substrates show insulin-mimetic effects and are therefore potentially valuable molecules for the treatment of diabetes mellitus. Herein we review several structural and electronic aspects of SSAO arylalkylamine-based substrates. Two main modifications directly affect amine oxidase (AO) activity: 1) variation in ring substitution modulates the biological activity of the arylalkylamine ligand by converting a substrate into a substrate-like inhibitor, and 2) variation in the number of methylene units between the aromatic ring and the ammonium groups of the arylalkylamine substrates dramatically alters the oxidation rate between species. Furthermore, we review relevant information about mammalian SSAO/VAP-1 substrate selectivity and specificity over monoamine oxidases (MAOs).
Collapse
|
41
|
Chiche F, Le Guillou M, Chétrite G, Lasnier F, Dugail I, Carpéné C, Moldes M, Fève B. Antidepressant phenelzine alters differentiation of cultured human and mouse preadipocytes. Mol Pharmacol 2009; 75:1052-61. [PMID: 19201819 DOI: 10.1124/mol.108.052563] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Change in body weight is a frequent side effect of antidepressants and is considered to be mediated by central effects on food intake and energy expenditure. The antidepressant phenelzine (Nardil) potently inhibits both monoamine oxidase and semicarbazide-sensitive amine oxidase activities, two enzymes that are highly expressed in adipose tissue, raising the possibility that it could directly alter adipocyte biology. Treatment with this compound is rather associated with weight gain. The aim of this work was to examine the effects of phenelzine on differentiation and metabolism of cultured human and mouse preadipocytes and to characterize the mechanisms involved in these effects. In all preadipocyte models, phenelzine induced a time- and dose-dependent reduction in differentiation and triglyceride accumulation. Modulation of lipolysis or glucose transport was not involved in phenelzine action. This effect was supported by the reduced expression in the key adipogenic transcription factors peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and CCAAT/enhancer binding protein-alpha, which was observed only at the highest drug concentrations (30-100 microM). The PPAR-gamma agonists thiazolidinediones did not reverse phenelzine effects. By contrast, the reduction in both cell triglycerides and sterol regulatory element-binding protein-1c (SREBP-1c) was detectable at lower phenelzine concentrations (1-10 microM). Phenelzine effect on triglyceride content was prevented by providing free fatty acids to the cells and was partially reversed by overexpression of a dominant-positive form of SREBP-1c, showing the privileged targeting of the lipogenic pathway. When considered together, these findings demonstrate that an antidepressant directly and potently inhibits adipocyte lipid storage and differentiation, which could contribute to psychotropic drug side effects on energy homeostasis.
Collapse
Affiliation(s)
- Françoise Chiche
- Institut National de la Santé et de la Recherche Médicale U693, University Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zorzano A, Palacín M, Marti L, García-Vicente S. Arylalkylamine vanadium salts as new anti-diabetic compounds. J Inorg Biochem 2009; 103:559-66. [PMID: 19246098 DOI: 10.1016/j.jinorgbio.2009.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/24/2008] [Accepted: 01/16/2009] [Indexed: 01/27/2023]
Abstract
Vanadium compounds show insulin-like effects in vivo and in vitro. Several clinical studies have shown the efficacy of vanadium compounds in type 2 diabetic subjects. However, a major concern is safety, which calls for the development of more potent vanadium compounds. For that reason different laboratories develop strategies to decrease the therapeutic dose of vanadate. One of these strategies use substrates of semicarbazide-sensitive amine oxidase (SSAO)/vascular adhesion protein-1 (VAP-1), a bifunctional protein with amine oxidase activity and adhesive properties implicated in lymphocyte homing at inflammation sites. Substrates of SSAO combined with low concentrations of vanadate strongly stimulate glucose transport and GLUT4 glucose transporter recruitment to the plasma membrane in 3T3-L1 adipocytes and in rat adipocytes. This combination also shows anti-diabetic effects in various animal models of type 1 and type 2 diabetes. Benzylamine/vanadate administration generates peroxovanadium locally in pancreatic islets, which stimulates insulin secretion, and also produces peroxovanadium in adipose tissue, thereby activating glucose metabolism in adipocytes and in neighboring muscle. This opens up the possibility of using the SSAO/VAP-1 activity as a local generator of protein tyrosine phosphatase inhibitors in anti-diabetic therapy. More recently a novel class of arylalkylaminevanadium salts have shown potent insulin-mimetic effects downstream of the insulin receptor. Administration of these compounds lowers glycemia and normalizes the plasma lipid profile in type 1 and type 2 models of diabetes. The combination of different approaches to decrease vanadium doses, among them chelating agents and SSAO substrates, should permit to develop safe and efficient vanadium based agents safe for diabetes treatment.
Collapse
Affiliation(s)
- Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, Barcelona, Spain.
| | | | | | | |
Collapse
|
43
|
Solé M, Hernandez-Guillamon M, Boada M, Unzeta M. p53 phosphorylation is involved in vascular cell death induced by the catalytic activity of membrane-bound SSAO/VAP-1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1085-94. [PMID: 18348872 DOI: 10.1016/j.bbamcr.2008.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/30/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Semicarbazide sensitive amine oxidase (SSAO) is a multifunctional enzyme present mainly in adipocytes, endothelial and smooth muscle cells. It metabolizes primary aliphatic and aromatic amines generating products able to contribute to cellular oxidative stress. SSAO is expressed in a membrane-bound form and is also present as a soluble enzyme in plasma. Both isoforms are increased in several pathologies, and the catalytic products generated by the soluble enzymatic activity can induce cytotoxicity of vascular cells in culture. We have analyzed whether the transmembrane form of the enzyme is able to produce a cytotoxic effect through methylamine oxidation. Since cells in culture lose the expression of this enzyme, we used an SSAO stably transfected smooth muscle cell line. Herein we report that cell treatment with the substrate methylamine induced a dose and time dependent cytotoxic effect. The tumor suppressor protein p53 played an important role in the molecular pathway involved in this cell death. Moreover, we also observed the induction of PUMA-alpha expression with mitochondrial Bcl-2 family proteins being affected, and final effector caspases being activated.
Collapse
Affiliation(s)
- Montse Solé
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, (08193) Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
44
|
Iffiú-Soltész Z, Prévot D, Grès S, Bour S, Szökö E, Knauf C, Burcelin R, Fernández-Quintela A, Lomba A, Milagro FI, Carpéné C. Influence of acute and chronic administration of benzylamine on glucose tolerance in diabetic and obese mice fed on very high-fat diet. J Physiol Biochem 2007; 63:305-15. [DOI: 10.1007/bf03165762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
O'Rourke AM, Wang EY, Miller A, Podar EM, Scheyhing K, Huang L, Kessler C, Gao H, Ton-Nu HT, Macdonald MT, Jones DS, Linnik MD. Anti-inflammatory effects of LJP 1586 [Z-3-fluoro-2-(4-methoxybenzyl)allylamine hydrochloride], an amine-based inhibitor of semicarbazide-sensitive amine oxidase activity. J Pharmacol Exp Ther 2007; 324:867-75. [PMID: 17993604 DOI: 10.1124/jpet.107.131672] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Semicarbazide-sensitive amine oxidase (SSAO, amine oxidase, copper-containing 3, and vascular adhesion protein-1) is a copper-containing enzyme that catalyzes the oxidative deamination of primary amines to an aldehyde, ammonia, and hydrogen peroxide. SSAO is also involved in leukocyte migration to sites of inflammation, and the enzymatic activity of SSAO is essential to this role. Thus, inhibition of SSAO enzyme activity represents a target for the development of small molecule anti-inflammatory compounds. Here, we have characterized the novel SSAO inhibitor, Z-3-fluoro-2-(4-methoxybenzyl)allylamine hydrochloride (LJP 1586), and assessed its anti-inflammatory activity. LJP 1586 is a potent inhibitor of rodent and human SSAO activity, with IC(50) values between 4 and 43 nM. The selectivity of LJP 1586 was confirmed with a broad panel of receptors and enzymes that included the monoamine oxidases A and B. Oral administration of LJP 1586 resulted in complete inhibition of rat lung SSAO, with an ED(50) between 0.1 and 1 mg/kg, and a pharmacodynamic half-life of greater than 24 h. In a mouse model of inflammatory leukocyte trafficking oral dosing with LJP 1586 resulted in significant dose-dependent inhibition of neutrophil accumulation, with an effect comparable to that of anti-leukocyte function-associated antigen-1 antibody. In a rat model of LPS-induced lung inflammation, administration of 10 mg/kg LJP 1586 resulted in a 55% significant reduction in transmigrated cells recovered by bronchoalveolar lavage. The results demonstrate that a selective, orally active small molecule inhibitor of SSAO is an effective anti-inflammatory compound in vivo and provide further support for SSAO as a therapeutic anti-inflammatory target.
Collapse
Affiliation(s)
- Anne M O'Rourke
- La Jolla Pharmaceutical Company, 6455 Nancy Ridge Drive, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Minet-Ringuet J, Even PC, Valet P, Carpéné C, Visentin V, Prévot D, Daviaud D, Quignard-Boulange A, Tomé D, de Beaurepaire R. Alterations of lipid metabolism and gene expression in rat adipocytes during chronic olanzapine treatment. Mol Psychiatry 2007; 12:562-71. [PMID: 17211438 DOI: 10.1038/sj.mp.4001948] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although antipsychotics are established drugs in schizophrenia treatment, they are admittedly known to induce side effects favoring the onset of obesity and worsening its complications. Despite potential involvement of histamine receptor antagonism, or of other neurotransmitter systems, the mechanism by which antipsychotic drugs increase body weight is not elucidated. The aim of the present study was to investigate whether chronic antipsychotic treatments can directly alter the regulation of two main functions of white adipose tissue: lipolysis and glucose utilization. The influence of a classical antipsychotic (haloperidol) was compared to that of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (ziprasidone). Cell size, lipolytic capacity and glucose transport activity were determined in white adipocytes of rats subjected to 5-week oral treatment with these antipsychotics. Gene expression of adipocyte proteins involved in glucose transport or fat storage and mobilization, such as glucose transporters (GLUT1 and GLUT4), leptin, matrix metallo-proteinase-9 (MMP9), hormone-sensitive lipase (HSL) and fatty acid synthase (FAS) was also evaluated. Adipocytes from chronic olanzapine-treated rats exhibited decreased lipolytic activity, lowered HSL expression and increased FAS expression. These changes were concomitant to enlarged fat deposition and adipocyte size. Alterations were observed in adipocytes from olanzapine-treated rats whereas the other antipsychotics did not induce any notable disorder. Our results therefore show evidence of an effect of chronic antipsychotic treatment on rat adipocyte metabolism. Thus, impairment of fat cell lipolysis should be considered as a side effect of certain antipsychotics, leading, along with the already documented hyperphagia, to the excessive weight gain observed in patients under prolonged treatment..
Collapse
Affiliation(s)
- J Minet-Ringuet
- Laboratoire de Psychopharmacologie, Centre Hospitalier Paul Guiraud, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chang T, Wu L. Methylglyoxal, oxidative stress, and hypertension. Can J Physiol Pharmacol 2007; 84:1229-38. [PMID: 17487230 DOI: 10.1139/y06-077] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathogenic mechanisms for essential hypertension are unclear despite striking efforts from numerous research teams over several decades. Increased production of reactive oxygen species (ROS) has been associated with the development of hypertension and the role of ROS in hypertension has been well documented in recent years. In this context, it is important to better understand pathways and triggering factors for increased ROS production in hypertension. This review draws a causative linkage between elevated methylglyoxal level, methylglyoxal-induced production of ROS, and advanced glycation end products in the development of hypertension. It is proposed that elevated methylglyoxal level and resulting protein glycation and ROS production may be the upstream links in the chain reaction leading to the development of hypertension.
Collapse
Affiliation(s)
- Tuanjie Chang
- Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | | |
Collapse
|
48
|
O'Sullivan J, O'Sullivan MI, Tipton KE, Davey G. Inhibition of amine oxidases by the histamine-1 receptor antagonist hydroxyzine. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2007:105-12. [PMID: 17447421 DOI: 10.1007/978-3-211-33328-0_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
The effects of the drug hydroxyzine on the activities of the rat liver monoamine oxidases (EC 1.4.3.6; MAO) and the membrane-bound and soluble forms of bovine semicarbazide-sensitive amine oxidase (EC 1.4.3.6; SSAO) were studied. Hydroxyzine was found to be a competitive inhibitor of MAO-B (Ki - 38 microM), whereas it had a low potency towards MAO-A (IC50 > 630 microM). Although it was a relatively potent competitive inhibitor of bovine plasma SSAO (Ki approximately 1.5 microM), it was a weak inhibitor of the membrane-bound form of the enzyme from bovine lung (IC50 approximately 1 mM). These findings extend our knowledge of the drug binding capabilities of the amine oxidases and suggest that these interactions may contribute to the complex actions of this drug.
Collapse
Affiliation(s)
- J O'Sullivan
- Department of Biochemistry, Trinity College, Dublin, Ireland.
| | | | | | | |
Collapse
|
49
|
McDonald A, Tipton K, O'Sullivan J, Olivieri A, Davey G, Coonan AM, Fu W. Modelling the roles of MAO and SSAO in glucose transport. J Neural Transm (Vienna) 2007; 114:783-6. [PMID: 17406961 DOI: 10.1007/s00702-007-0688-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 12/20/2006] [Indexed: 12/29/2022]
Abstract
Amine oxidase substrates such as benzylamine and methylamine have been shown to stimulate glucose uptake by increasing the recruitment of the glucose transporter GLUT4 from vesicles within the cell to the cell surface. Inhibition of this effect by the presence of semicarbazide and catalase led to the suggestion that the process is mediated by the H(2)O(2) produced in the oxidation of these amines. Tyramine, which is a substrate for both MAO and SSAO, can also stimulate this process and in that case both MAO and SSAO inhibitors attenuate the effect. Benzylamine does not occur physiologically and tyramine is normally present in only very low amounts. We have suggested that adrenaline, which also stimulates glucose metabolism through adrenoceptors, may act as the physiological substrate for GLUT4 recruitment. It is a substrate for MAO but not SSAO. However, oxidation of adrenaline by MAO releases both H(2)O(2) and methylamine for further oxidation by SSAO. In order to gain a fuller understanding of this process we have performed simulation studies that may be used to assess the contributions of the amine oxidases to the process under a variety of conditions. The results are consistent with the experimentally observed behaviour. This approach not only helps to establish the feasibility of this process but also allows behaviour prediction and the identification of further experimental approaches.
Collapse
Affiliation(s)
- A McDonald
- Department of Biochemistry, School of Biochemistry and Immunology, Trinity College, Dublin, Ireland.
| | | | | | | | | | | | | |
Collapse
|
50
|
Bour S, Prévot D, Guigné C, Stolen C, Jalkanen S, Valet P, Carpéné C. Semicarbazide-sensitive amine oxidase substrates fail to induce insulin-like effects in fat cells from AOC3 knockout mice. J Neural Transm (Vienna) 2007; 114:829-33. [PMID: 17406965 DOI: 10.1007/s00702-007-0671-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Accepted: 11/15/2006] [Indexed: 01/04/2023]
Abstract
Substrates of semicarbazide-sensitive amine oxidases (SSAO) stimulate glucose transport in adipocytes. To definitively demonstrate the involvement of SSAO in this insulin-like effect, glucose transport has been studied in fat cells from mice with a targeted deletion of AOC3, a gene encoding a SSAO called vascular adhesion protein-1. SSAO activity was present in white adipose tissues of wild type (WT) but was absent in AOC3KO mice. The SSAO-substrates benzylamine and methylamine were unable to stimulate hexose transport in adipocytes isolated from AOC3KO mice while they were active in WT adipocytes, especially in combination with vanadate. Impairment of amine-dependent glucose uptake was also observed with tyramine while there was no change in insulin responsiveness. These observations prove that the effects of exogenous or biogenic amines on glucose transport are not receptor-mediated but are oxidation-dependent. They also confirm that the major SSAO form expressed in mouse adipocytes is encoded by the AOC3 gene.
Collapse
Affiliation(s)
- S Bour
- Institut National de la Santé et de la Recherche Médicale, U586 INSERM, IFR 31, CHU Rangueil, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|