1
|
Yang Y, Zhang S, Yang J, Yao C, Li X, Dai W, Liu J. The aqueous extract of Armadillidium vulgare Latreille alleviates neuropathic pain via inhibiting neuron-astrocyte crosstalk mediated by the IL-12-IFN-γ-IFNGR-CXCL10 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119173. [PMID: 39617087 DOI: 10.1016/j.jep.2024.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Armadillidium vulgare Latreille (AV), the dried body of pillbug, was originally described in Shennong's Classic of Materia Medica. As a common analgesic in animal-based traditional Chinese medicine, it is mainly used to relieve pain, promoting diuresis, relieving fatigue and so on. Our work demonstrated that AV could alleviate various types of acute and chronic pain including neuropathic pain (NP). And transcriptome sequencing analysis revealed that AV could suppress CXCL10 to alleviate NP, however, the upstream mechanisms governing CXCL10 synthesis remain vague. AIM OF THE STUDY The research's goal was to identify the mechanism via which AV regulates CXCL10 to ameliorate NP. MATERIALS AND METHODS Chronic constriction injury (CCI) to the sciatic nerve was used to induce the NP model 14 days following surgery. To identify cell signaling pathways, various approaches were used, including transcriptome sequencing, western blotting, immunofluorescence, as well as ELISA. The in vitro assay involved the cultivation of neuron PC12 cells and astrocyte C6 cells. RESULTS Both in vivo and in vitro results demonstrated that IL-12/IL-18 enhanced IFN-γ production in spinal neurons, which acted on IFN-γ receptors on neurons and astrocytes to upregulate CXCL10 expression in these cells, illustrating the pivotal role of IL-12 in the crosstalk between neurons and astrocytes. The role of IL-12 in pain regulation was elucidated for the first time within the nervous system. Additionally, its synergistic interaction with IL-18 on the downstream IFN-γ-CXCL10 pathway dramatically altered the activation of neurons and astrocytes. And AV could suppress CXCL10 to alleviate NP by mediating the IL-12-IFN-γ-IFNGR signaling pathway. CONCLUSIONS We explored a new target for NP by regulating neuron-astrocyte crosstalk and provided a theoretical basis for AV in clinical use.
Collapse
Affiliation(s)
- Yujie Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shen Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jin Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Changheng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xue Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Wenling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
2
|
Valdés N, Espinoza D, Pareja-Barrueto C, Olate N, Barraza-Rojas F, Benavides-Larenas A, Cortés M, Imarai M. Expression and regulation of the CXCL9-11 chemokines and CXCR3 receptor in Atlantic salmon (Salmo salar). Front Immunol 2024; 15:1455457. [PMID: 39301034 PMCID: PMC11410577 DOI: 10.3389/fimmu.2024.1455457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
Chemokines are cytokines that mediate leukocyte traffic between the lymphoid organs, the bloodstream, and the site of tissue damage, which is essential for an efficient immune response. In particular, the gamma interferon (IFN- γ) inducible chemokines CXCL9, CXCL10, and CXCL11, and their receptor CXCR3, are involved in T cell and macrophage recruitment to the site of infection. The nature and function of these chemokines and their receptor are well-known in mammals, but further research is needed to achieve a similar level of understanding in fish immunity. Thus, in this study, we seek to identify the genes encoding the components of the Atlantic salmon (Salmo salar) CXCL9, CXCL10, CXCL11/CXCR3 axis (CXCL9-11/CXCR3), predict the protein structure from the amino acid sequence, and explore the regulation of gene expression as well as the response of these chemokines and their receptor to viral infections. The cxcl9, cxcl10, cxcl11, and cxcr3 gene sequences were retrieved from the databases, and the phylogenetic analysis was conducted to determine the evolutionary relationships. The study revealed an interesting pattern of clustering and conservation among fish and mammalian species. The salmon chemokine sequences clustered with orthologs from other fish species, while the mammalian sequences formed separate clades. This indicates a divergent evolution of chemokines between mammals and fish, possibly due to different evolutionary pressures. While the structural analysis of the chemokines and the CXCR3 receptor showed the conservation of critical motifs and domains, suggesting preserved functions and stability throughout evolution. Regarding the regulation of gene expression, some components of the CXCL9-11/CXCR3 axis are induced by recombinant gamma interferon (rIFN-γ) and by Infectious pancreatic necrosis virus (IPNV) infection in Atlantic salmon cells. Further studies are needed to explore the role of Atlantic salmon CXCL9-11 chemokines in regulating immune cell migration and endothelial activation, as seen in mammals. To the best of our knowledge, there have been no functional studies of chemokines to understand these effects in Atlantic salmon.
Collapse
Affiliation(s)
- Natalia Valdés
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Daniela Espinoza
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Pareja-Barrueto
- Departamento de Hematología y Oncología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Olate
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Barraza-Rojas
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Almendra Benavides-Larenas
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcos Cortés
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Mónica Imarai
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
3
|
Liang R, Li P, Yang N, Xiao X, Gong J, Zhang X, Bai Y, Chen Y, Xie Z, Liao Q. Parabacteroides distasonis-Derived Outer Membrane Vesicles Enhance Antitumor Immunity Against Colon Tumors by Modulating CXCL10 and CD8 + T Cells. Drug Des Devel Ther 2024; 18:1833-1853. [PMID: 38828018 PMCID: PMC11144014 DOI: 10.2147/dddt.s457338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Given the potent immunostimulatory effects of bacterial outer membrane vesicles (OMVs) and the significant anti-colon tumor properties of Parabacteroides distasonis (Pd), this study aimed to elucidate the role and potential mechanisms of Pd-derived OMVs (Pd-OMVs) against colon cancer. Methods This study isolated and purified Pd-OMVs from Pd cultures and assessed their characteristics. The effects of Pd-OMVs on CT26 cell uptake, proliferation, and invasion were investigated in vitro. In vivo, a CT26 colon tumor model was used to investigate the anti-colon tumor effects and underlying mechanisms of Pd-OMVs. Finally, we evaluated the biosafety of Pd-OMVs. Results Purified Pd-OMVs had a uniform cup-shaped structure with an average size of 165.5 nm and a zeta potential of approximately -9.56 mV, and their proteins were associated with pathways related to immunity and apoptosis. In vitro experiments demonstrated that CT26 cells internalized the Pd-OMVs, resulting in a significant decrease in their proliferation and invasion abilities. Further in vivo studies confirmed the accumulation of Pd-OMVs in tumor tissues, which significantly inhibited the growth of colon tumors. Mechanistically, Pd-OMVs increased the expression of CXCL10, promoting infiltration of CD8+ T cells into tumor tissues and expression of pro-inflammatory factors TNF-α, IL-1β, and IL-6. Notably, Pd-OMVs demonstrated a high level of biosafety. Conclusion This paper elucidates that Pd-OMVs can exert significant anti-colon tumor effects by upregulating the expression of the chemokine CXCL10, thereby increasing the infiltration of CD8+ T cells into tumors and enhancing antitumor immune responses. This suggests that Pd-OMVs may be developed as a novel nanoscale potent immunostimulant with great potential for application in tumor immunotherapy. As well as developed as a novel nano-delivery carrier for combination with other antitumor drugs.
Collapse
Affiliation(s)
- Rongyao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiaoyi Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yunuan Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
4
|
Jiao H, Pang B, Liu A, Chen Q, Pan Q, Wang X, Xu Y, Chiang YC, Ren R, Hu H. Structural insights into the activation and inhibition of CXC chemokine receptor 3. Nat Struct Mol Biol 2024; 31:610-620. [PMID: 38177682 PMCID: PMC11026165 DOI: 10.1038/s41594-023-01175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/03/2023] [Indexed: 01/06/2024]
Abstract
The chemotaxis of CD4+ type 1 helper cells and CD8+ cytotoxic lymphocytes, guided by interferon-inducible CXC chemokine 9-11 (CXCL9-11) and CXC chemokine receptor 3 (CXCR3), plays a critical role in type 1 immunity. Here we determined the structures of human CXCR3-DNGi complexes activated by chemokine CXCL11, peptidomimetic agonist PS372424 and biaryl-type agonist VUF11222, and the structure of inactive CXCR3 bound to noncompetitive antagonist SCH546738. Structural analysis revealed that PS372424 shares a similar orthosteric binding pocket to the N terminus of CXCL11, while VUF11222 buries deeper and activates the receptor in a distinct manner. We showed an allosteric binding site between TM5 and TM6, accommodating SCH546738 in the inactive CXCR3. SCH546738 may restrain the receptor at an inactive state by preventing the repacking of TM5 and TM6. By revealing the binding patterns and the pharmacological properties of the four modulators, we present the activation mechanisms of CXCR3 and provide insights for future drug development.
Collapse
Affiliation(s)
- Haizhan Jiao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Bin Pang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Qiang Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Qi Pan
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
- School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Xiankun Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Yunong Xu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| |
Collapse
|
5
|
Nagura Y, Suzuki T, Matsuura K, Ogawa S, Kawamura H, Kuno K, Fujiwara K, Nojiri S, Nagaoka K, Iio E, Watanabe T, Kataoka H, Tanaka Y. Serum inducible protein 10 kDa/C-X-C motif chemokine 10 levels predict regression of M2BPGi-based liver fibrosis after hepatitis C virus eradication by direct-acting antiviral agents. Hepatol Res 2024; 54:32-42. [PMID: 37638483 DOI: 10.1111/hepr.13962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
AIM It is desirable to identify predictors of regression of liver fibrosis after achieving sustained virological response by anti-hepatitis C virus (anti-HCV) therapy. We retrospectively investigated the serum interferon-γ inducible protein 10 kDa (IP-10) level as a predictive indicator of regression of liver fibrosis after successful hepatitis C virus eradication by direct-acting antiviral agents (DAAs) therapy. METHODS The study participants were recruited from a historical cohort of 116 chronically hepatitis C virus-infected patients who had achieved sustained virological response by DAAs therapy and whose serum Mac-2 binding protein glycosylation isomer (M2BPGi) levels at baseline (before DAAs therapy) were ≥2.0 cut-off index. We defined patients with M2BPGi levels <1.76 and ≥1.76 cut-off index at 2 years after the end of treatment (EOT) as the regression (n = 71) and non-regression (n = 45) groups, respectively. RESULTS Multivariate analyses revealed that the albumin-bilirubin score at baseline, and albumin-bilirubin score, Fibrosis-4 index at 24 weeks after the EOT, and serum IP-10 change from baseline to 24 weeks after the EOT (IP-10 change) were significantly associated with regression of M2BPGi-based liver fibrosis. In addition, IP-10 change was significantly associated with regression of M2BPGi-based liver fibrosis by a multivariate analysis, even when the serum M2BPGi levels were aligned by propensity score matching and in patients with advanced M2BPGi-based liver fibrosis: M2BPGi levels ≥3.3 cut-off index at baseline. CONCLUSIONS Serum IP-10 change from baseline to 24 weeks after the EOT is a feasible predictor of regression of M2BPGi-based liver fibrosis after achieving sustained virological response with DAA therapy.
Collapse
Affiliation(s)
- Yoshihito Nagura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Takanori Suzuki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shintaro Ogawa
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hayato Kawamura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kayoko Kuno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shunsuke Nojiri
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Etsuko Iio
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Nguyen HT, Hurh S, Nguyen LP, Nguyen TU, Park HK, Seong JY, Lee CS, Ham BJ, Hwang JI. Functional Analysis of CXCR3 Splicing Variants and Their Ligands Using NanoBiT-Based Molecular Interaction Assays. Mol Cells 2023; 46:281-297. [PMID: 36799104 PMCID: PMC10183793 DOI: 10.14348/molcells.2023.2096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 02/18/2023] Open
Abstract
CXCR3 regulates leukocyte trafficking, maturation, and various pathophysiological conditions. Alternative splicing generates three CXCR3 isoforms in humans. Previous studies investigated the roles of CXCR3 isoforms, and some biochemical data are not correlated with biological relevance analyses. RT-PCR analyses indicate that most cells express all three splicing variants, suggesting that they may mutually affect the chemokine binding and cellular responses of other splicing variants. Here, we performed an integrative analysis of the functional relations among CXCR3 splicing variants and their chemokine-dependent signaling using NanoBiT live cell protein interaction assays. The results indicated that the CXCR3 N-terminal region affected cell surface expression levels and ligand-dependent activation. CXCR3A was efficiently expressed in the plasma membrane and responded to I-TAC, IP-10, and MIG chemokines. By contrast, CXCR3B had low plasma membrane expression and mediated I-TAC-stimulated cellular responses. CXCR3Alt was rarely expressed on the cell surface and did not mediate any cell responses to the tested chemokines; however, CXCR3Alt negatively affected the plasma membrane expression of CXCR3A and CXCR3B and their chemokine-stimulated cellular responses. Jurkat cells express endogenous CXCR3, and exogenous CXCR3A expression enhanced chemotactic activity in response to I-TAC, IP-10, and MIG. By contrast, exogenous expression of CXCR3B and CXCR3Alt eliminated or reduced the CXCR3A-induced chemotactic activity. The PF-4 chemokine did not activate any CXCR3-mediated cellular responses. NanoBiT technology are useful to integrative studies of CXCR3-mediated cell signaling, and expand our knowledge of the cellular responses mediated by molecular interactions among the splicing variants, including cell surface expression, ligand-dependent receptor activation, and chemotaxis.
Collapse
Affiliation(s)
- Huong Thi Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Sunghoon Hurh
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Lan Phuong Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Thai Uy Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Hee-Kyung Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Cheol Soon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| | - Byung-Joo Ham
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
- Department of Psychiatry, College of Medicine, Korea University, Seoul 02841, Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
7
|
Wells A. Role of CXCR3 in fibrotic tissue responses. Int J Biochem Cell Biol 2022; 152:106311. [PMID: 36195287 DOI: 10.1016/j.biocel.2022.106311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022]
Abstract
Development of fibrosis leads to end stage diseases that defy treatments across all organs. This ensues as chronic inflammation is not dampened by physiologic processes that issue in the resolution phase of wound healing. Thus, these conditions can be considered diseases of "failure to heal". In the absence of broadly viable treatments, it is proposed to examine key switches in wound healing resolution to seek insights into novel approaches. Signaling through the GPCR CXCR3 has been shown to be one such critical player in this physiologic transition that limits and even reverses early fibrosis. As such, a number of investigators and early stage technology companies have posited that triggering this signaling network would limit fibrosis. While there are some conflicting results, a consensus is emerging that pharmacologic interventions that promote signaling through this pathway represent innovative ways to limit fibrotic diseases.
Collapse
Affiliation(s)
- Alan Wells
- Departments of Pathology, Bioengineering, and Computational & Systems Biology, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; R&D Service, Pittsburgh VA Health System, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Bangs DJ, Tsitsiklis A, Steier Z, Chan SW, Kaminski J, Streets A, Yosef N, Robey EA. CXCR3 regulates stem and proliferative CD8+ T cells during chronic infection by promoting interactions with DCs in splenic bridging channels. Cell Rep 2022; 38:110266. [PMID: 35045305 PMCID: PMC8896093 DOI: 10.1016/j.celrep.2021.110266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
Production of effector CD8+ T cells during persistent infection requires a stable pool of stem-like cells that can give rise to effector cells via a proliferative intermediate population. In infection models marked by T cell exhaustion, this process can be transiently induced by checkpoint blockade but occurs spontaneously in mice chronically infected with the protozoan intracellular parasite Toxoplasma gondii. We observe distinct locations for parasite-specific T cell subsets, implying a link between differentiation and anatomical niches in the spleen. Loss of the chemokine receptor CXCR3 on T cells does not prevent white pulp-to-red pulp migration but reduces interactions with CXCR3 ligand-producing dendritic cells (DCs) and impairs memory-to-intermediate transition, leading to a buildup of memory T cells in the red pulp. Thus, CXCR3 increases T cell exposure to differentiation-inducing signals during red pulp migration, providing a dynamic mechanism for modulating effector differentiation in response to environmental signals. Bangs et al. report that distinct subsets of CD8+ T cells found during chronic infection occupy distinct regions of the spleen. CXCR3 regulates differentiation of T cells but not their migration. Instead, CXCR3 promotes the interaction of T cells with ligand-producing DCs in bridging channels, resulting in effector differentiation.
Collapse
Affiliation(s)
- Derek J Bangs
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Alexandra Tsitsiklis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zoë Steier
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - James Kaminski
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron Streets
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
9
|
CD4 T Cell-Mediated Immune Control of Cytomegalovirus Infection in Murine Salivary Glands. Pathogens 2021; 10:pathogens10121531. [PMID: 34959486 PMCID: PMC8704252 DOI: 10.3390/pathogens10121531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 12/24/2022] Open
Abstract
CD4 T cells are well known for their supportive role in CD8 T cell and B cell responses during viral infection. However, during murine cytomegalovirus (MCMV) infection in the salivary glands (SGs), CD4 T cells exhibit direct antiviral effector functions to control the infection. In this mucosal organ, opposed to other infected tissues, MCMV establishes a sustained lytic replication that lasts for several weeks. While the protective function of CD4 T cells is exerted through the production of the pro-inflammatory cytokines interferon gamma (IFNγ) and tumor necrosis factor alpha (TNF), the reasons for their markedly delayed control of lytic MCMV infection remain elusive. Here, we review the current knowledge on the dynamics and mechanisms of the CD4 T cell-mediated control of MCMV-infected SGs, including their localization in the SG in relation to MCMV infected cells and other immune cells, their mode of action, and their regulation.
Collapse
|
10
|
Hart M, Nickl L, Walch-Rueckheim B, Krammes L, Rheinheimer S, Diener C, Taenzer T, Kehl T, Sester M, Lenhof HP, Keller A, Meese E. Wrinkle in the plan: miR-34a-5p impacts chemokine signaling by modulating CXCL10/CXCL11/CXCR3-axis in CD4 +, CD8 + T cells, and M1 macrophages. J Immunother Cancer 2021; 8:jitc-2020-001617. [PMID: 33229509 PMCID: PMC7684812 DOI: 10.1136/jitc-2020-001617] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In 2016 the first-in-human phase I study of a miRNA-based cancer therapy with a liposomal mimic of microRNA-34a-5p (miR-34a-5p) was closed due to five immune related serious adverse events (SAEs) resulting in four patient deaths. For future applications of miRNA mimics in cancer therapy it is mandatory to unravel the miRNA effects both on the tumor tissue and on immune cells. Here, we set out to analyze the impact of miR-34a-5p over-expression on the CXCL10/CXCL11/CXCR3 axis, which is central for the development of an effective cancer control. METHODS We performed a whole genome expression analysis of miR-34a-5p transfected M1 macrophages followed by an over-representation and a protein-protein network analysis. In-silico miRNA target prediction and dual luciferase assays were used for target identification and verification. Target genes involved in chemokine signaling were functionally analyzed in M1 macrophages, CD4+ and CD8+ T cells. RESULTS A whole genome expression analysis of M1 macrophages with induced miR-34a-5p over-expression revealed an interaction network of downregulated target mRNAs including CXCL10 and CXCL11. In-silico target prediction in combination with dual luciferase assays identified direct binding of miR-34a-5p to the 3'UTRs of CXCL10 and CXCL11. Decreased CXCL10 and CXCL11 secretion was shown on the endogenous protein level and in the supernatant of miR-34a-5p transfected and activated M1 macrophages. To complete the analysis of the CXCL10/CXCL11/CXCR3 axis, we activated miR-34a-5p transfected CD4+ and CD8+ T cells by PMA/Ionomycin and found reduced levels of endogenous CXCR3 and CXCR3 on the cell surface. CONCLUSIONS MiR-34a-5p mimic administered by intravenous administration will likely not only be up-taken by the tumor cells but also by the immune cells. Our results indicate that miR-34a-5p over-expression leads in M1 macrophages to a reduced secretion of CXCL10 and CXCL11 chemokines and in CD4+ and CD8+ T cells to a reduced expression of CXCR3. As a result, less immune cells will be attracted to the tumor site. Furthermore, high levels of miR-34a-5p in naive CD4+ T cells can in turn hinder Th1 cell polarization through the downregulation of CXCR3 leading to a less pronounced activation of cytotoxic T lymphocytes, natural killer, and natural killer T cells and possibly contributing to lymphocytopenia.
Collapse
Affiliation(s)
- Martin Hart
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Laura Nickl
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Barbara Walch-Rueckheim
- Institute of Virology and Center of Human & Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Lena Krammes
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | | | - Caroline Diener
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Tanja Taenzer
- Institute of Virology and Center of Human & Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, 66421 Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
11
|
Chang C, Wang MJ, Bi XF, Fan ZY, Feng D, Cai HQ, Zhang Y, Xu X, Cai Y, Qi J, Wei WQ, Hao JJ, Wang MR. Elevated serum eotaxin and IP-10 levels as potential biomarkers for the detection of esophageal squamous cell carcinoma. J Clin Lab Anal 2021; 35:e23904. [PMID: 34288108 PMCID: PMC8418505 DOI: 10.1002/jcla.23904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Aims Esophageal squamous cell cancer (ESCC) is one of the leading malignant cancers with a high incidence and mortality. Exploring novel serum biomarkers will help improve the management and monitoring of ESCC. Methods In the present study, we first used a ProcartaPlex Array to screen for serum proteins that were increased in 40 ESCC patients compared with matched normal controls; we found that eight proteins (IL‐2, IL‐5, IP‐10, IL‐8, eotaxin, TNF‐α, HGF, and MIP‐1b) had higher serum levels in ESCC patients than in normal controls. We further verified the clinical relevance of the candidate biomarkers with a larger sample of sera. Results In the 174 tested ESCC patients and 189 normal controls, the serum levels of eotaxin and IP‐10 were significantly higher in patients than in normal controls (p = 0.0038, 0.0031). In particular, these two proteins were also elevated in the sera of patients with early‐stage (0‐IIA) ESCC (p = 0.0041, 0.0412). When combining CEA and CYFRA21‐1 (in use clinically) with eotaxin or IP‐10, the effectiveness of detecting ESCC was superior to that of CEA and/or CYFRA21‐1 alone. Moreover, the serum level of eotaxin dropped significantly after surgical resection of primary tumors compared with that in preoperative ESCC samples (p < 0.001). Conclusions The data suggest that serum eotaxin and IP‐10 might be potential biomarkers for the detection of ESCC.
Collapse
Affiliation(s)
- Chen Chang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min-Jie Wang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Feng Bi
- Department of Cancer Prevention, Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Yuan Fan
- Department of Cancer Epidemiology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Feng
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Qing Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Qi
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Qiang Wei
- Department of Cancer Epidemiology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
12
|
Sibler E, He Y, Ducoli L, Keller N, Fujimoto N, Dieterich LC, Detmar M. Single-Cell Transcriptional Heterogeneity of Lymphatic Endothelial Cells in Normal and Inflamed Murine Lymph Nodes. Cells 2021; 10:cells10061371. [PMID: 34199492 PMCID: PMC8229892 DOI: 10.3390/cells10061371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
The lymphatic system plays a crucial role in immunity and lymph nodes (LNs) undergo drastic remodeling during inflammation. Here, we used single-cell RNA sequencing to investigate transcriptional changes in lymphatic endothelial cells (LECs) in LNs draining naïve and inflamed skin. We found that subsets of LECs lining the different LN sinuses responded individually to skin inflammation, suggesting that they exert distinct functions under pathological conditions. Among the genes dysregulated during inflammation, we confirmed an up-regulation of CD200 in the LECs lining the subcapsular sinus floor with a possible function in immune regulation. Furthermore, by in silico analysis, we predicted numerous possible interactions of LECs with diverse immune cells in the LNs and found similarities in the transcriptional changes of LN LECs in different skin inflammation settings. In summary, we provide an in-depth analysis of the transcriptional landscape of LN LECs in the naïve state and in skin inflammation.
Collapse
Affiliation(s)
- Eliane Sibler
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
| | - Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
| | - Nadja Keller
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu 520-2192, Japan;
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
- Correspondence:
| |
Collapse
|
13
|
Gao Q, Zhang Y. CXCL11 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:41-50. [PMID: 34286440 DOI: 10.1007/978-3-030-62658-7_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CXCL11 which can bind to two different chemokine receptors, CXCR3 and CXCR7, has found a prominent place in current tumor research. In this chapter, we mainly discuss the current evidence on the role of the immune response of CXCL11 in tumor microenvironment (TME). The diverse functions of CXCL11 include inhibiting angiogenesis, affecting the proliferation of different cell types, playing a role in fibroblast directed carcinoma invasion, increasing adhesion properties, suppressing M2 macrophage polarization, and facilitating the migration of certain immune cells. In addition, we discussed the application of CXCL11 as an adjuvant to various mainstream anti-cancer therapies and the future challenges in the application of CXCL11 targeted therapies.
Collapse
Affiliation(s)
- Qun Gao
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
14
|
Nakayama T, Yoshimura M, Higashioka K, Miyawaki K, Ota Y, Ayano M, Kimoto Y, Mitoma H, Ono N, Arinobu Y, Kikukawa M, Yamada H, Akashi K, Horiuchi T, Niiro H. Type 1 helper T cells generate CXCL9/10-producing T-bet + effector B cells potentially involved in the pathogenesis of rheumatoid arthritis. Cell Immunol 2020; 360:104263. [PMID: 33387686 DOI: 10.1016/j.cellimm.2020.104263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023]
Abstract
Efficacy of B-cell depletion therapy highlights the antibody-independent effector functions of B cells in rheumatoid arthritis (RA). Given type 1 helper T (Th1) cells abundant in synovial fluid (SF) of RA, we have determined whether Th1 cells could generate novel effector B cells. Microarray and qPCR analysis identified CXCL9/10 transcripts as highly expressed genes upon BCR/CD40/IFN-γ stimulation. Activated Th1 cells promoted the generation of CXCL9/10-producing T-bet+ B cells. Expression of CXCL9/10 was most pronounced in CXCR3+ switched memory B cells. Compared with peripheral blood, SFRA enriched highly activated Th1 cells that coexisted with abundant CXCL9/10-producing T-bet+ B cells. Intriguingly, anti-IFN-γ antibody and JAK inhibitors significantly abrogated the generation of CXCL9/10-producing T-bet+ B cells. B cell derived CXCL9/10 significantly facilitated the migration of CD4+ T cells. These findings suggest that Th1 cells generate the novel CXCL9/10-producing T-bet+ effector B cells that could be an ideal pathogenic B cell target for RA therapy.
Collapse
Affiliation(s)
- Tsuyoshi Nakayama
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Motoki Yoshimura
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuhiko Higashioka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yuri Ota
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine and Clinical Immunology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroki Mitoma
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuyuki Ono
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Makoto Kikukawa
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hisakata Yamada
- Department of Arthritis and Immunology, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine and Clinical Immunology, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| |
Collapse
|
15
|
Kong YF, Sha WL, Wu XB, Zhao LX, Ma LJ, Gao YJ. CXCL10/CXCR3 Signaling in the DRG Exacerbates Neuropathic Pain in Mice. Neurosci Bull 2020; 37:339-352. [PMID: 33196963 DOI: 10.1007/s12264-020-00608-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chemokines and receptors have been implicated in the pathogenesis of chronic pain. Here, we report that spinal nerve ligation (SNL) increased CXCR3 expression in dorsal root ganglion (DRG) neurons, and intra-DRG injection of Cxcr3 shRNA attenuated the SNL-induced mechanical allodynia and heat hyperalgesia. SNL also increased the mRNA levels of CXCL9, CXCL10, and CXCL11, whereas only CXCL10 increased the number of action potentials (APs) in DRG neurons. Furthermore, in Cxcr3-/- mice, CXCL10 did not increase the number of APs, and the SNL-induced increase of the numbers of APs in DRG neurons was reduced. Finally, CXCL10 induced the activation of p38 and ERK in ND7-23 neuronal cells and DRG neurons. Pretreatment of DRG neurons with the P38 inhibitor SB203580 decreased the number of APs induced by CXCL10. Our data indicate that CXCR3, activated by CXCL10, mediates p38 and ERK activation in DRG neurons and enhances neuronal excitability, which contributes to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Yan-Fang Kong
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Wei-Lin Sha
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Lin-Xia Zhao
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Ling-Jie Ma
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine, Institute of Nautical Medicine, Nantong University, Nantong, 226019, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
16
|
Yang J, Yan C, Vilgelm AE, Chen SC, Ayers GD, Johnson CA, Richmond A. Targeted Deletion of CXCR2 in Myeloid Cells Alters the Tumor Immune Environment to Improve Antitumor Immunity. Cancer Immunol Res 2020; 9:200-213. [PMID: 33177110 DOI: 10.1158/2326-6066.cir-20-0312] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/21/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
Recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment (TME) contributes to cancer immune evasion. MDSCs express the chemokine receptor CXCR2, and inhibiting CXCR2 suppresses the recruitment of MDSCs into the tumor and the premetastatic niche. Here, we compared the growth and metastasis of melanoma and breast cancer xenografts in mice exhibiting or not exhibiting targeted deletion of Cxcr2 in myeloid cells (CXCR2myeΔ/Δ vs. CXCR2myeWT). Detailed analysis of leukocyte populations in peripheral blood and in tumors from CXCR2myeΔ/Δ mice revealed that loss of CXCR2 signaling in myeloid cells resulted in reduced intratumoral MDSCs and increased intratumoral CXCL11. The increase in intratumoral CXCL11 was derived in part from tumor-infiltrating B1b cells. The reduction in intratumoral MDSCs coupled with an increase in intratumoral B1b cells expressing CXCL11 resulted in enhanced infiltration and activation of effector CD8+ T cells in the TME of CXCR2myeΔ/Δ mice, accompanied by inhibition of tumor growth in CXCR2myeΔ/Δ mice compared with CXCR2myeWT littermates. Treatment of tumor-bearing mice with a CXCR2 antagonist (SX-682) also inhibited tumor growth, reduced intratumoral MDSCs, and increased intratumoral B1b cells expressing CXCL11, leading to an increase in activated CD8+ T cells in the tumor. Depletion of B220+ cells or depletion of CD8+ T cells reversed the tumor-inhibitory properties in CXCR2myeΔ/Δ mice. These data revealed a mechanism by which loss of CXCR2 signaling in myeloid cells modulates antitumor immunity through decreasing MDSCs and enriching CXCL11-producing B1b cells in the TME, which in turn increases CD8+ T-cell recruitment and activation in tumors.
Collapse
Affiliation(s)
- Jinming Yang
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chi Yan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna E Vilgelm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sheau-Chiann Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gregory D Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee.,Division of Cancer Biostatistics, Department of Biostatistics, Vanderbilt University, Nashville, Tennessee
| | - Christopher A Johnson
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee. .,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
17
|
CCL-11 or Eotaxin-1: An Immune Marker for Ageing and Accelerated Ageing in Neuro-Psychiatric Disorders. Pharmaceuticals (Basel) 2020; 13:ph13090230. [PMID: 32887304 PMCID: PMC7558796 DOI: 10.3390/ph13090230] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background: CCL-11 (eotaxin) is a chemokine with an important role in allergic conditions. Recent evidence indicates that CCL-11 plays a role in brain disorders as well. This paper reviews the associations between CCL-11 and aging, neurodegenerative, neuroinflammatory and neuropsychiatric disorders. Methods: Electronic databases were searched for original articles examining CCL-11 in neuropsychiatric disorders. Results: CCL-11 is rapidly transported from the blood to the brain through the blood-brain barrier. Age-related increases in CCL-11 are associated with cognitive impairments in executive functions and episodic and semantic memory, and therefore, this chemokine has been described as an “Endogenous Cognition Deteriorating Chemokine” (ECDC) or “Accelerated Brain-Aging Chemokine” (ABAC). In schizophrenia, increased CCL-11 is not only associated with impairments in cognitive functions, but also with key symptoms including formal thought disorders. Some patients with mood disorders and premenstrual syndrome show increased plasma CCL-11 levels. In diseases of old age, CCL-11 is associated with lowered neurogenesis and neurodegenerative processes, and as a consequence, increased CCL-11 increases risk towards Alzheimer’s disease. Polymorphisms in the CCL-11 gene are associated with stroke. Increased CCL-11 also plays a role in neuroinflammatory disease including multiple sclerosis. In animal models, neutralization of CCL-11 may protect against nigrostriatal neurodegeneration. Increased production of CCL-11 may be attenuated by glucocorticoids, minocycline, resveratrol and anti-CCL11 antibodies. Conclusions: Increased CCL-11 production during inflammatory conditions may play a role in human disease including age-related cognitive decline, schizophrenia, mood disorders and neurodegenerative disorders. Increased CCL-11 production is a new drug target in the treatment and prevention of those disorders.
Collapse
|
18
|
Hwang HJ, Lee YR, Kang D, Lee HC, Seo HR, Ryu JK, Kim YN, Ko YG, Park HJ, Lee JS. Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett 2020; 490:100-110. [PMID: 32659248 DOI: 10.1016/j.canlet.2020.06.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
The effects of senescence associated secretory phenotype (SASP) from therapy-induced senescent endothelial cells on tumor microenvironment (TME) remains to be clarified. Here, we investigated effects of ionizing radiation (IR)- and doxorubicin-induced senescent HUVEC on TME. MDA-MB-231 cancer cells treated with conditioned medium (CM) from senescent HUVEC or co-cultured with senescent HUVEC significantly increased cancer cell proliferation, migration, and invasion. We found that CXCL11 plays a principal role in the senescent CM-induced aggressive activities of MDA-MB-231 cells. When we treated HUVEC with a neutralizing anti-CXCL11 antibody or CXCL11 SiRNA, or treated MDA-MB-231 cells with CXCR3 SiRNA, we observed synergistic diminution of the ability of the HUVEC SASP to alter the migration and spheroid invasion of cancer cells. ERK activation was involved in the HUVEC SASP-induced aggressive activity of MDA-MB-231 cells. Finally, we observed the in vivo effect of CXCL11 from the senescent HUVEC in tumor-bearing mice. Together, our results demonstrate that SASP from endothelial cells experiencing therapy-induced senescence promotes the aggressive behavior of cancer cells, and that CXCL11 can potentially be targeted to prevent the adverse effects of therapy-induced senescent endothelial cells on the tumor microenvironment.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Ye-Rim Lee
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Donghee Kang
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Hyung Chul Lee
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Haeng Ran Seo
- Cancer Biology Research Laboratory, Institute Pasteur Korea, Gyeonggi-do, South Korea
| | - Ji-Kan Ryu
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Urology, Inha University College of Medicine, Incheon, South Korea
| | - Yong-Nyun Kim
- Division of Translational Research, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Microbiology, Inha University College of Medicine, Incheon, South Korea
| | - Jae-Seon Lee
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea.
| |
Collapse
|
19
|
Cain MP, Hernandez BJ, Chen J. Quantitative single-cell interactomes in normal and virus-infected mouse lungs. Dis Model Mech 2020; 13:dmm044404. [PMID: 32461220 PMCID: PMC7328136 DOI: 10.1242/dmm.044404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Mammalian organs consist of diverse, intermixed cell types that signal to each other via ligand-receptor interactions - an interactome - to ensure development, homeostasis and injury-repair. Dissecting such intercellular interactions is facilitated by rapidly growing single-cell RNA sequencing (scRNA-seq) data; however, existing computational methods are often not readily adaptable by bench scientists without advanced programming skills. Here, we describe a quantitative intuitive algorithm, coupled with an optimized experimental protocol, to construct and compare interactomes in control and Sendai virus-infected mouse lungs. A minimum of 90 cells per cell type compensates for the known gene dropout issue in scRNA-seq and achieves comparable sensitivity to bulk RNA sequencing. Cell lineage normalization after cell sorting allows cost-efficient representation of cell types of interest. A numeric representation of ligand-receptor interactions identifies, as outliers, known and potentially new interactions as well as changes upon viral infection. Our experimental and computational approaches can be generalized to other organs and human samples.
Collapse
Affiliation(s)
- Margo P Cain
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Belinda J Hernandez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
20
|
Komatsu M, Yamamoto H, Yasuo M, Ushiki A, Nakajima T, Uehara T, Kawakami S, Hanaoka M. The utility of serum C-C chemokine ligand 1 in sarcoidosis: A comparison to IgG4-related disease. Cytokine 2020; 133:155123. [PMID: 32447247 DOI: 10.1016/j.cyto.2020.155123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
We previously reported higher levels of C-C chemokine ligand (CCL) 1 in the bronchoalveolar lavage (BAL) fluid (BALF) of patients with sarcoidosis than in BALF of patients with immunoglobulin G4 (IgG4)-related disease (IgG4-RD), indicating that CCL1 might act as a marker of disease activity in sarcoidosis. Notably, less invasive sampling sources are desirable, as BAL cannot always be performed due to its inherent risk. In this study, we sought to decipher the correlation between serum levels of CCL1 and clinical characteristics of sarcoidosis. Serum samples were obtained from 44 patients with clinically confirmed sarcoidosis, 14 patients with IgG4-RD, and 14 healthy controls. The clinical and radiological findings were retrospectively evaluated. Serum levels of CCL1 were measured using a sandwich enzyme-linked immunosorbent assay. Serum levels of other 17 cytokines and chemokines were measured using a MILLIPLEX® MAP KIT and Luminex® magnetic beads. Serum levels of CCL1 were significantly higher in patients with sarcoidosis than in patients with IgG4-RD and healthy controls. Serum CCL1 was positively correlated with the degree of hilar lymph node swelling on chest computed tomography and serum levels of soluble interleukin 2 receptor. Positive correlations were also observed between serum CCL1 and total cell counts, lymphocyte counts in BALF, and serum T helper 1 mediators such as IP-10 and TNF-α in patients with sarcoidosis. Serum CCL1 levels were significantly elevated in sarcoidosis and correlated with clinical parameters of the disease. In addition, serum and BALF levels of CCL1 were positively correlated in a statistically significant manner. Although further research in this field is necessary, CCL1 might have the potential to be a reliable serological marker of disease activity in sarcoidosis.
Collapse
Affiliation(s)
- Masamichi Komatsu
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Hiroshi Yamamoto
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Masanori Yasuo
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Atsuhito Ushiki
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Satoshi Kawakami
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| |
Collapse
|
21
|
Nazari A, Ahmadi Z, Hassanshahi G, Abbasifard M, Taghipour Z, Falahati-Pour SK, Khorramdelazad H. Effective Treatments for Bladder Cancer Affecting CXCL9/CXCL10/CXCL11/CXCR3 Axis: A Review. Oman Med J 2020; 35:e103. [PMID: 32181005 PMCID: PMC7064791 DOI: 10.5001/omj.2020.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) originates mainly from the epithelial compartment of the bladder, which is defined as transitional cell carcinoma or urothelial cell carcinoma. About 70% of patients with BC will survive five years from diagnosis. Previous studies revealed that the immune system and its mediators, particularly chemokines, play a crucial role in modulating responses against BC. Chemokines, which serve as chemoattractants for leukocytes, are small proteins that can initiate inflammatory and anti-inflammatory immune responses and also are associated with many aspects of both regulation and progression of mentioned responses. Additionally, these immune mediators can interfere with the other tumor-related processes, including tumor proliferation, neovascularization, and metastases. Among these chemokines, CXC chemokines, including CXCL9, CXCL10, and CXCL11, are recognized as the main ligands of C-X-C motif chemokine receptor 3 (CXCR3) and contribute to related immune responses after therapeutic strategies for BC. Evidence suggests that the production of these chemokines can have two important implications. First, these mediators can trigger the accumulation of CD8+ T cells that can contribute to the elimination of the tumor. Secondly, the production of these chemokines by tumor tissue may trigger the migration and activation of immune cells including myeloid-derived suppressor cells and regulatory T cells, which act in favor of the tumor and its progress. Therefore, in this review, we describe the latest therapeutic approaches based on targeting this axis's components and subsequent immune phenomenon.
Collapse
Affiliation(s)
- Alireza Nazari
- Non Communicable Diseases Research Center, Rafsanjan University of Medical Science, Rafsanjan, Iran.,Department of Surgery, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Ahmadi
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mitra Abbasifard
- Department of Internal Medicine, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Taghipour
- Department of Anatomy, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Gerlza T, Nagele M, Gschwandtner M, Winkler S, Kungl A. Designing an improved T-cell mobilising CXCL10 mutant through enhanced GAG binding affinity. Protein Eng Des Sel 2020; 32:367-373. [DOI: 10.1093/protein/gzz043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/29/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
The chemokine CXCL10 is released by a plethora of cells, including immune and metastatic cancer cells, following stimulation with interferon-gamma. It acts via its GPC receptor on T-cells attracting them to various target tissues. Glycosaminoglycans (GAGs) are regarded as co-receptors of chemokines, which enable the establishment of a chemotactic gradient for target cell migration. We have engineered human CXCL10 towards improved T-cell mobilisation by implementing a single site-directed mutation N20K into the protein, which leads to a higher GAG binding affinity compared to the wild type. Interestingly, this mutation not only increased T-cell migration in a transendothelial migration assay, the mutant intensified T-cell chemotaxis also in a Boyden chamber set-up thereby indicating a strong role of T-cell-localised GAGs on leukocyte migration. A CXCL10 mutant with increased GAG-binding affinity could therefore potentially serve as a T-cell mobiliser in pathological conditions where the immune surveillance of the target tissue is impaired, as is the case for most solid tumors.
Collapse
Affiliation(s)
- Tanja Gerlza
- Institute of Pharmaceutical Sciences, Department of pharmaceutical chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, Graz A-8010, Austria
| | - Michael Nagele
- Institute of Pharmaceutical Sciences, Department of pharmaceutical chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, Graz A-8010, Austria
| | - Martha Gschwandtner
- Institute of Pharmaceutical Sciences, Department of pharmaceutical chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, Graz A-8010, Austria
| | - Sophie Winkler
- Institute of Pharmaceutical Sciences, Department of pharmaceutical chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, Graz A-8010, Austria
| | - Andreas Kungl
- Institute of Pharmaceutical Sciences, Department of pharmaceutical chemistry, Karl-Franzens-University Graz, Universitätsplatz 1, Graz A-8010, Austria
- Antagonis Biotherapeutics GmbH, Strasserhofweg 77a, Graz A-8045, Austria
| |
Collapse
|
23
|
Mizutani Y, Kanbe A, Ito H, Seishima M. Activation of STING signaling accelerates skin wound healing. J Dermatol Sci 2019; 97:21-29. [PMID: 31813660 DOI: 10.1016/j.jdermsci.2019.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The process of repair after skin injury is precisely regulated by a variety of mediators such as cytokines and chemokines. Recent reports demonstrated that cytoplasmic DNA-sensor cyclic GMP-AMP synthase (cGAS) activates the stimulator of interferon genes (STING) via production of cyclic GMP-AMP (cGAMP) and subsequently induces inflammatory cytokines, including type I interferon (IFN). OBJECTIVE We examined whether activation of the STING pathway by cGAMP affects the process of skin wound repair. METHODS The skin wound repair model was established using wild-type (WT) mice. Two full-thickness skin biopsies were taken from the right and left subscapular regions. One site was treated with ointment containing cGAMP, and the other was treated with a control ointment. Changes in wound size over time were calculated using photography. RESULTS Treatment with cGAMP significantly accelerated skin wound healing up to day 6. Biochemical analyses showed that topical treatment with cGAMP on wound sites promoted STING signaling pathway and enhanced the expression of IFN-β, CXCL10 and CCL2 in the wound sites treated with cGAMP markedly compared with the control. The scratch assay also revealed that cGAMP treatment accelerated wound closure in mouse embryonic fibroblasts. The acceleration of skin wound repair by cGAMP in WT mouse was impaired by administration of anti-IFNR antibody and anti-CXCR3 antibody respectively. CONCLUSION These results revealed that topical treatment with cGAMP accelerates skin wound healing by inducing type I IFN and CXCL10/CXCR3. Topical administration of cGAMP might contribute to new effective treatments for accelerating skin wound healing.
Collapse
Affiliation(s)
- Yuki Mizutani
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumu Kanbe
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
24
|
Mamazhakypov A, Viswanathan G, Lawrie A, Schermuly RT, Rajagopal S. The role of chemokines and chemokine receptors in pulmonary arterial hypertension. Br J Pharmacol 2019; 178:72-89. [PMID: 31399998 DOI: 10.1111/bph.14826] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by progressive pulmonary artery remodelling leading to increased right ventricular pressure overload, which results in right heart failure and premature death. Inflammation plays a central role in the development of PAH, and the recruitment and function of immune cells are tightly regulated by chemotactic cytokines called chemokines. A number of studies have shown that the development and progression of PAH are associated with the dysregulated expression of several chemokines and chemokine receptors in the pulmonary vasculature. Moreover, some chemokines are differentially regulated in the pressure-overloaded right ventricle. Recent studies have tested the efficacy of pharmacological agents targeting several chemokines and chemokine receptors for their effects on the development of PAH, suggesting that these receptors could serve as useful therapeutic targets. In this review, we provide recent insights into the role of chemokines and chemokine receptors in PAH and RV remodelling and the opportunities and roadblocks in targeting them. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Gayathri Viswanathan
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Allan Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Giessen, Germany
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
25
|
House IG, Savas P, Lai J, Chen AXY, Oliver AJ, Teo ZL, Todd KL, Henderson MA, Giuffrida L, Petley EV, Sek K, Mardiana S, Gide TN, Quek C, Scolyer RA, Long GV, Wilmott JS, Loi S, Darcy PK, Beavis PA. Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade. Clin Cancer Res 2019; 26:487-504. [PMID: 31636098 DOI: 10.1158/1078-0432.ccr-19-1868] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Response rates to immune checkpoint blockade (ICB; anti-PD-1/anti-CTLA-4) correlate with the extent of tumor immune infiltrate, but the mechanisms underlying the recruitment of T cells following therapy are poorly characterized. A greater understanding of these processes may see the development of therapeutic interventions that enhance T-cell recruitment and, consequently, improved patient outcomes. We therefore investigated the chemokines essential for immune cell recruitment and subsequent therapeutic efficacy of these immunotherapies. EXPERIMENTAL DESIGN The chemokines upregulated by dual PD-1/CTLA-4 blockade were assessed using NanoString-based analysis with results confirmed at the protein level by flow cytometry and cytometric bead array. Blocking/neutralizing antibodies confirmed the requirement for key chemokines/cytokines and immune effector cells. Results were confirmed in patients treated with immune checkpoint inhibitors using single-cell RNA-sequencing (RNA-seq) and paired survival analyses. RESULTS The CXCR3 ligands, CXCL9 and CXCL10, were significantly upregulated following dual PD-1/CTLA-4 blockade and both CD8+ T-cell infiltration and therapeutic efficacy were CXCR3 dependent. In both murine models and patients undergoing immunotherapy, macrophages were the predominant source of CXCL9 and their depletion abrogated CD8+ T-cell infiltration and the therapeutic efficacy of dual ICB. Single-cell RNA-seq analysis of patient tumor-infiltrating lymphocytes (TIL) revealed that CXCL9/10/11 was predominantly expressed by macrophages following ICB and we identified a distinct macrophage signature that was associated with positive responses to ICB. CONCLUSIONS These data underline the fundamental importance of macrophage-derived CXCR3 ligands for the therapeutic efficacy of ICB and highlight the potential of manipulating this axis to enhance patient responses.
Collapse
Affiliation(s)
- Imran G House
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Peter Savas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Junyun Lai
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Amanda X Y Chen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Amanda J Oliver
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Zhi L Teo
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Kirsten L Todd
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Melissa A Henderson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Emma V Petley
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Kevin Sek
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Sherly Mardiana
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Tuba N Gide
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Camelia Quek
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia.,Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia.,Royal North Shore Hospital, Sydney, New South Wales, Australia.,Mater Hospital, North Sydney, New South Wales, Australia
| | - James S Wilmott
- The University of Sydney, Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Sherene Loi
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Department of Pathology, University of Melbourne, Parkville, Victoria, Australia.,Department of Immunology, Monash University, Clayton, Victoria, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
26
|
董 海, 刘 志, 梁 小, 简 奕, 李 德, 劳 穗, 梁 锋, 潘 燕, 邝 小. [Plasma levels of interferon-inducible protein 10 in patients with active pulmonary tuberculosis with different affected areas]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:609-613. [PMID: 31140428 PMCID: PMC6743946 DOI: 10.12122/j.issn.1673-4254.2019.05.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To explore the value of interferon-inducible protein 10 (IP-10) in the auxiliary diagnosis of tuberculosis and the judgment of the severity of disease. METHODS From February, 2013 to February, 2017, a total of 193 patients with TB admitted in our hospital and 84 healthy control subjects were recruited consecutively. The peripheral blood plasma levels of interferon-γ (IFN-γ) and IP-10 were detected using liquid phase chip (Luminex) technique. According to the number of lung fields affected by TB, the patients were divided into group A (with lesions in 1-2 lung fields), group B (3-4 lung fields) and group C (5-6 lung fields), The expressions of IFN-γ and IP-10 in 3 groups were compared. RESULTS The plasma levels of IP-10 were significantly higher in TB patients than in the control subjects (P < 0.05), but IFN-γ levels were comparable between the two groups (P > 0.05). Among the TB patients, plasma IP-10 levels was the highest in group C (P < 0.05), and IFN-γ levels did not differ significantly among the 3 groups (P > 0.05). CONCLUSIONS Plasma IP-10 has a certain reference value in the auxiliary diagnosis of active tuberculosis and the judgment of the severity of the disease.
Collapse
Affiliation(s)
- 海平 董
- />广州市胸科医院,广东 广州 510095Guangzhou Chest Hospital, Guangzhou 510095, China
| | - 志辉 刘
- />广州市胸科医院,广东 广州 510095Guangzhou Chest Hospital, Guangzhou 510095, China
| | - 小成 梁
- />广州市胸科医院,广东 广州 510095Guangzhou Chest Hospital, Guangzhou 510095, China
| | - 奕娈 简
- />广州市胸科医院,广东 广州 510095Guangzhou Chest Hospital, Guangzhou 510095, China
| | - 德宪 李
- />广州市胸科医院,广东 广州 510095Guangzhou Chest Hospital, Guangzhou 510095, China
| | - 穗华 劳
- />广州市胸科医院,广东 广州 510095Guangzhou Chest Hospital, Guangzhou 510095, China
| | - 锋 梁
- />广州市胸科医院,广东 广州 510095Guangzhou Chest Hospital, Guangzhou 510095, China
| | - 燕珊 潘
- />广州市胸科医院,广东 广州 510095Guangzhou Chest Hospital, Guangzhou 510095, China
| | - 小佳 邝
- />广州市胸科医院,广东 广州 510095Guangzhou Chest Hospital, Guangzhou 510095, China
| |
Collapse
|
27
|
Velazquez-Caldelas TE, Alcalá-Corona SA, Espinal-Enríquez J, Hernandez-Lemus E. Unveiling the Link Between Inflammation and Adaptive Immunity in Breast Cancer. Front Immunol 2019; 10:56. [PMID: 30761130 PMCID: PMC6362261 DOI: 10.3389/fimmu.2019.00056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation has been recognized as an important driver in the development and growth of malignancies. Inflammatory signaling in cancer emerges from the combinatorial interaction of several deregulated pathways. Pathway deregulation is often driven by changes in the underlying gene regulatory networks. Confronted with such complex scenario, it can be argued that a closer analysis of the structure of such regulatory networks will shed some light on how gene deregulation led to sustained inflammation in cancer. Here, we inferred an inflammation-associated gene regulatory network from 641 breast cancer and 78 healthy samples. A modular structure analysis of the regulatory network was carried out, revealing a hierarchical modular structure. Modules show significant overrepresentation score p-values for biological processes unveiling a definite association between inflammatory processes and adaptive immunity. Other modules are enriched for T-cell activation, differentiation of CD8+ lymphocytes and immune cell migration, thus reinforcing the aforementioned association. These analyses suggest that in breast cancer tumors, the balance between antitumor response and immune tolerance involving CD8+ T cells is tipped in favor of the tumor. One possible mechanism is the induction of tolerance and anergization of these cells by persistent antigen exposure.
Collapse
Affiliation(s)
| | - Sergio Antonio Alcalá-Corona
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Ecology and Evolution, Erman Biology Center, The University of Chicago, Chicago, IL, United States
| | - Jesús Espinal-Enríquez
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enrique Hernandez-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico.,Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
28
|
Kang SH, Keam B, Ahn YO, Park HR, Kim M, Kim TM, Kim DW, Heo DS. Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma. Oncoimmunology 2018; 8:e1515057. [PMID: 30546955 DOI: 10.1080/2162402x.2018.1515057] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex (MHC) class I downregulation is the primary immune evasion mechanism associated with failure in anti-PD-1/PD-L1 blockade therapies for cancer. Here, we examined the role of MEK signaling pathway inhibition in head and neck squamous cell carcinoma (HNSCC) both in vitro and in vivo. We found that trametinib, a small molecule inhibitor of MEK, significantly enhanced MHC class I and PD-L1 expression in human HNSCC cell lines, and this occurred via STAT3 activation. Trametinib also further upregulated the increase in CXCL9 and CXCL10 expression caused by IFN-γ in HNSCC cells, which is associated with T cell infiltration in tumor tissues. Finally, we evaluated the therapeutic efficacy of trametinib combined with an anti-PD-L1 monoclonal antibody in vivo, using SCCVII mouse syngeneic tumor model for HNSCC. While neither PD-L1 blockade nor trametinib treatment alone affected tumor growth, the combined therapy significantly delayed tumor growth. Our results indicate that in the combined therapy trametinib increases CD8+ T cell infiltration in the tumor site and upregulates antigen presentation, and this may be associated with enhanced PD-L1 blockade efficacy. Furthermore, our results suggest that this combination would therapeutically benefit patients with HNSCC.
Collapse
Affiliation(s)
- Seong-Ho Kang
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yong-Oon Ahn
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Ha-Ram Park
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Miso Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
29
|
Gronowicz G, Secor ER, Flynn JR, Kuhn LT. Human biofield therapy does not affect tumor size but modulates immune responses in a mouse model for breast cancer. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 14:389-99. [PMID: 27641610 DOI: 10.1016/s2095-4964(16)60275-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To assess the effect of human biofield therapy, an integrative medicine modality, on the development of tumors and metastasis, and immune function in a mouse breast cancer model. METHODS Mice were injected with 66cl4 mammary carcinoma cells. In study one, mice received biofield therapy after cell injection. In study two, mice were treated by the biofield practitioner only prior to cell injection. Both studies had two control groups of mock biofield treatments and phosphate-buffered saline injection. Mice were weighed and tumor volume was determined. Blood samples were collected and 32 serum cytokine/chemokine markers were measured. Spleens/popliteal lymph nodes were isolated and dissociated for fluorescent-activated cell sorting (FACS) analysis of immune cells or metastasis assays in cell culture. RESULTS No significant differences were found in weight, tumor size or metastasis. Significant effects were found in the immune responses in study one but no additional effects were found in study two. In study one, human biofield treatment significantly reduced percentage of CD4(+)CD44loCD25(+) and percentage of CD8(+) cells, elevated by cancer in the lymph nodes, to control levels determined by FACS analysis. In the spleen, only CD11b(+) macrophages were increased with cancer, and human biofield therapy significantly reduced them. Of 11 cytokines elevated by cancer, only interferon-γ, interleukin-1, monokine induced by interfer-γ, interleukin-2 and macrophage inflammatory protein-2 were significantly reduced to control levels with human biofield therapy. CONCLUSION Human biofield therapy had no significant effect on tumor size or metastasis but produced significant effects on immune responses apparent in the down-regulation of specific lymphocytes and serum cytokines in a mouse breast cancer model.
Collapse
Affiliation(s)
- Gloria Gronowicz
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Eric R Secor
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA.,Hartford Healthcare, Hartford Hospital, Hartford, CT 06102-5037, USA
| | - John R Flynn
- Department of Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Liisa T Kuhn
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
30
|
Crisan D, Grigorescu MD, Radu C, Suciu A, Grigorescu M. Interferon-γ-inducible protein-10 in chronic hepatitis C: Correlations with insulin resistance, histological features & sustained virological response. Indian J Med Res 2018; 145:543-550. [PMID: 28862188 PMCID: PMC5663170 DOI: 10.4103/ijmr.ijmr_1410_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND & OBJECTIVES One of the multiple factors contributing to virological response in chronic hepatitis C (CHC) is interferon-gamma-inducible protein-10 (IP-10). Its level reflects the status of interferon-stimulated genes, which in turn is associated with virological response to antiviral therapy. The aim of this study was to evaluate the role of serum IP-10 levels on sustained virological response (SVR) and the association of this parameter with insulin resistance (IR) and liver histology. METHODS Two hundred and three consecutive biopsy proven CHC patients were included in the study. Serum levels of IP-10 were determined using ELISA method. IR was evaluated by homeostasis model assessment-IR (HOMA-IR). Histological features were assessed invasively by liver biopsy and noninvasively using FibroTest, ActiTest and SteatoTest. Predictive factors for SVR and their interrelations were assessed. RESULTS A cut-off value for IP-10 of 392 pg/ml was obtained to discriminate between responders and non-responders. SVR was obtained in 107 patients (52.70%). Area under the receiver operating characteristic curve for SVR was 0.875 with a sensitivity of 91.6 per cent, specificity 74.7 per cent, positive predictive value 80.3 per cent and negative predictive value 88.7 per cent. Higher values of IP-10 were associated with increasing stages of fibrosis (P<0.01) and higher grades of inflammation (P=0.02, P=0.07) assessed morphologically and noninvasively through FibroTest and ActiTest. Significant steatosis and IR were also associated with increased levels of IP-10 (P=0.01 and P=0.02). In multivariate analysis, IP-10 levels and fibrosis stages were independently associated with SVR. INTERPRETATION & CONCLUSIONS Our findings showed that the assessment of serum IP-10 level could be a predictive factor for SVR and it was associated with fibrosis, necroinflammatory activity, significant steatosis and IR in patients with chronic HCV infection.
Collapse
Affiliation(s)
- Dana Crisan
- Department of Hepatology, Regional Institute of Gastroenterology & Hepatology "Prof. Dr. Octavian Fodor"; Department of Internal Medicine, 3rd Medical Clinic, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Mircea Dan Grigorescu
- Department of Hepatology, Regional Institute of Gastroenterology & Hepatology "Prof. Dr. Octavian Fodor", Cluj-Napoca, Romania
| | - Corina Radu
- Department of Hepatology, Regional Institute of Gastroenterology & Hepatology "Prof. Dr. Octavian Fodor"; Department of Internal Medicine, 3rd Medical Clinic, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Alina Suciu
- Department of Hepatology, Regional Institute of Gastroenterology & Hepatology "Prof. Dr. Octavian Fodor"; Department of Internal Medicine, 3rd Medical Clinic, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Mircea Grigorescu
- Department of Hepatology, Regional Institute of Gastroenterology & Hepatology "Prof. Dr. Octavian Fodor"; Department of Internal Medicine, 3rd Medical Clinic, Iuliu Hatieganu University of Medicine & Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Wu XB, He LN, Jiang BC, Shi H, Bai XQ, Zhang WW, Gao YJ. Spinal CXCL9 and CXCL11 are not involved in neuropathic pain despite an upregulation in the spinal cord following spinal nerve injury. Mol Pain 2018; 14:1744806918777401. [PMID: 29712506 PMCID: PMC5967156 DOI: 10.1177/1744806918777401] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chemokines-mediated neuroinflammation in the spinal cord plays a critical role in the pathogenesis of neuropathic pain. Chemokine CXCL9, CXCL10, and CXCL11 have been identified as a same subfamily chemokine which bind to CXC chemokine receptor 3 to exert functions. Our recent work found that CXCL10 is upregulated in spinal astrocytes after spinal nerve ligation (SNL) and acts on chemokine receptor CXCR3 on neurons to contribute to central sensitization and neuropathic pain, but less is known about CXCL9 and CXCL11 in the maintenance of neuropathic pain. Here, we report that CXCL9 and CXCL11, same as CXCL10, were increased in spinal astrocytes after SNL. Surprisingly, inhibition of CXCL9 or CXCL11 by spinal injection of shRNA lentivirus did not attenuate SNL-induced neuropathic pain. In addition, intrathecal injection of CXCL9 and CXCL11 did not produce hyperalgesia or allodynia behaviors, and neither of them induced ERK activation, a marker of central sensitization. Whole-cell patch clamp recording on spinal neurons showed that CXCL9 and CXCL11 enhanced both excitatory synaptic transmission and inhibitory synaptic transmission, whereas CXCL10 only produced an increase in excitatory synaptic transmission. These results suggest that, although the expression of CXCL9 and CXCL11 are increased after SNL, they may not contribute to the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Xiao-Bo Wu
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Li-Na He
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bao-Chun Jiang
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Hui Shi
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xue-Qiang Bai
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Wen-Wen Zhang
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yong-Jing Gao
- 1 Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,2 Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
32
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 803] [Impact Index Per Article: 114.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
33
|
Moskwa S, Piotrowski W, Marczak J, Pawełczyk M, Lewandowska-Polak A, Jarzębska M, Brauncajs M, Głobińska A, Górski P, Papadopoulos NG, Edwards MR, Johnston SL, Kowalski ML. Innate Immune Response to Viral Infections in Primary Bronchial Epithelial Cells is Modified by the Atopic Status of Asthmatic Patients. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:144-154. [PMID: 29411555 PMCID: PMC5809763 DOI: 10.4168/aair.2018.10.2.144] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/10/2017] [Accepted: 09/24/2017] [Indexed: 12/18/2022]
Abstract
Purpose In order to gain an insight into determinants of reported variability in immune responses to respiratory viruses in human bronchial epithelial cells (HBECs) from asthmatics, the responses of HBEC to viral infections were evaluated in HBECs from phenotypically heterogeneous groups of asthmatics and in healthy controls. Methods HBECs were obtained during bronchoscopy from 10 patients with asthma (6 atopic and 4 non-atopic) and from healthy controls (n=9) and grown as undifferentiated cultures. HBECs were infected with parainfluenza virus (PIV)-3 (MOI 0.1) and rhinovirus (RV)-1B (MOI 0.1), or treated with medium alone. The cell supernatants were harvested at 8, 24, and 48 hours. IFN-α, CXCL10 (IP-10), and RANTES (CCL5) were analyzed by using Cytometric Bead Array (CBA), and interferon (IFN)-β and IFN-λ1 by ELISA. Gene expression of IFNs, chemokines, and IFN-regulatory factors (IRF-3 and IRF-7) was determined by using quantitative PCR. Results PIV3 and RV1B infections increased IFN-λ1 mRNA expression in HBECs from asthmatics and healthy controls to a similar extent, and virus-induced IFN-λ1 expression correlated positively with IRF-7 expression. Following PIV3 infection, IP-10 protein release and mRNA expression were significantly higher in asthmatics compared to healthy controls (median 36.03-fold). No differences in the release or expression of RANTES, IFN-λ1 protein and mRNA, or IFN-α and IFN-β mRNA between asthmatics and healthy controls were observed. However, when asthmatics were divided according to their atopic status, HBECs from atopic asthmatics (n=6) generated significantly more IFN-λ1 protein and demonstrated higher IFN-α, IFN-β, and IRF-7 mRNA expressions in response to PIV3 compared to non-atopic asthmatics (n=4) and healthy controls (n=9). In response to RV1B infection, IFN-β mRNA expression was lower (12.39-fold at 24 hours and 19.37-fold at 48 hours) in non-atopic asthmatics compared to atopic asthmatics. Conclusions The immune response of HBECs to virus infections may not be deficient in asthmatics, but seems to be modified by atopic status.
Collapse
Affiliation(s)
- Sylwia Moskwa
- Department of Immunology, Rheumatology and Allergy; Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland.,Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Piotrowski
- Department of Pneumonology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Jerzy Marczak
- Department of Pneumonology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Małgorzata Pawełczyk
- Department of Immunology, Rheumatology and Allergy; Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| | - Anna Lewandowska-Polak
- Department of Immunology, Rheumatology and Allergy; Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland.,Department of Rheumatology, Medical University of Lodz, Lodz, Poland
| | - Marzanna Jarzębska
- Department of Immunology, Rheumatology and Allergy; Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| | - Małgorzata Brauncajs
- Department of Immunology, Rheumatology and Allergy; Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| | - Anna Głobińska
- Department of Immunology, Rheumatology and Allergy; Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland
| | - Paweł Górski
- Department of Pneumonology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Nikolaos G Papadopoulos
- Allergy Research Centre, 2nd Pediatric Clinic, National Kapodistrian, University of Athens, Athens, Greece
| | - Michael R Edwards
- National Heart and Lung Institute, Imperial College London, London, UK; Asthma UK Centre in Allergic Mechanisms of Asthma
| | - Sebastian L Johnston
- National Heart and Lung Institute, Imperial College London, London, UK; Asthma UK Centre in Allergic Mechanisms of Asthma
| | - Marek L Kowalski
- Department of Immunology, Rheumatology and Allergy; Healthy Ageing Research Centre, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
34
|
Alanio C, Barreira da Silva R, Michonneau D, Bousso P, Ingersoll MA, Albert ML. CXCR3/CXCL10 Axis Shapes Tissue Distribution of Memory Phenotype CD8 + T Cells in Nonimmunized Mice. THE JOURNAL OF IMMUNOLOGY 2017; 200:139-146. [PMID: 29187588 DOI: 10.4049/jimmunol.1700564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022]
Abstract
The preimmune repertoire consists of mature T lymphocytes that have not yet been stimulated in the periphery. Memory phenotype (MP) cells have been reported as part of the preimmune repertoire (i.e., T cells bearing memory markers despite lack of engagement with cognate Ag); however, little is known about their trafficking and function. In this study, we hypothesized that MP cells, naive to TCR stimulation, constitute a transient population that traffics to tissues during development. Using mutant and transgenic animals with a monospecific TCR, we discovered increased numbers of MP CD8+ T cells circulating in nonimmunized Cxcr3-/- and Cxcl10-/- mice compared with wild-type animals. Phenotypic differences included decreased numbers of preimmune MP Ag-specific T cells in the skin and thymus and a distinct pattern of activation upon TCR engagement. Our results show for the first time, to our knowledge, an important role for CXCR3 and CXCL10 in the tissue distribution of preimmune MP cells.
Collapse
Affiliation(s)
- Cécile Alanio
- Laboratory of Dendritic Cell Immunology, Institut Pasteur, 75015 Paris, France.,Inserm U1223, 75015 Paris, France.,Center for Translational Research, Institut Pasteur, 75015 Paris, France
| | | | - David Michonneau
- Inserm U1223, 75015 Paris, France.,Laboratory of Dynamics of Immune Responses, Institut Pasteur, 75015 Paris, France
| | - Philippe Bousso
- Inserm U1223, 75015 Paris, France.,Laboratory of Dynamics of Immune Responses, Institut Pasteur, 75015 Paris, France
| | - Molly A Ingersoll
- Laboratory of Dendritic Cell Immunology, Institut Pasteur, 75015 Paris, France.,Inserm U1223, 75015 Paris, France
| | - Matthew L Albert
- Laboratory of Dendritic Cell Immunology, Institut Pasteur, 75015 Paris, France; .,Inserm U1223, 75015 Paris, France.,Department of Cancer Immunology, Genentech, South San Francisco, CA 94080; and
| |
Collapse
|
35
|
Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, McSkane M, Baba H, Lenz HJ. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev 2017; 63:40-47. [PMID: 29207310 DOI: 10.1016/j.ctrv.2017.11.007] [Citation(s) in RCA: 890] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
Abstract
Chemokines are proteins which induce chemotaxis, promote differentiation of immune cells, and cause tissue extravasation. Given these properties, their role in anti-tumor immune response in the cancer environment is of great interest. Although immunotherapy has shown clinical benefit for some cancer patients, other patients do not respond. One of the mechanisms of resistance to checkpoint inhibitors may be chemokine signaling. The CXCL9, -10, -11/CXCR3 axis regulates immune cell migration, differentiation, and activation, leading to tumor suppression (paracrine axis). However, there are some reports that show involvements of this axis in tumor growth and metastasis (autocrine axis). Thus, a better understanding of CXCL9, -10, -11/CXCR3 axis is necessary to develop effective cancer control. In this article, we summarize recent evidence regarding CXCL9, CXCL10, CXCL11/CXCR3 axis in the immune system and discuss their potential role in cancer treatment.
Collapse
Affiliation(s)
- Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Martin D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Michelle McSkane
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 8608556, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, United States.
| |
Collapse
|
36
|
Yamazaki N, Kiyohara Y, Uhara H, Iizuka H, Uehara J, Otsuka F, Fujisawa Y, Takenouchi T, Isei T, Iwatsuki K, Uchi H, Ihn H, Minami H, Tahara H. Cytokine biomarkers to predict antitumor responses to nivolumab suggested in a phase 2 study for advanced melanoma. Cancer Sci 2017; 108:1022-1031. [PMID: 28266140 PMCID: PMC5448619 DOI: 10.1111/cas.13226] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
Promising antitumor activities of nivolumab, a fully humanized IgG4 inhibitor antibody against the programmed death‐1 protein, were suggested in previous phase 1 studies. The present phase 2, single‐arm study (JAPIC‐CTI #111681) evaluated the antitumor activities of nivolumab and explored its predictive correlates in advanced melanoma patients at 11 sites in Japan. Intravenous nivolumab 2 mg/kg was given repeatedly at 3‐week intervals to 35 of 37 patients enrolled from December 2011 to May 2012 until they experienced unacceptable toxicity, disease progression, or complete response. Primary endpoint was objective response rate. Serum levels of immune modulators were assessed at multiple time points. As of 21 October 2014, median response duration, median progression‐free survival, and median overall survival were 463 days, 169 days, and 18.0 months, respectively. The overall response rate and 1‐ and 2‐year survival rates were 28.6%, 54.3%, and 42.9%, respectively. Thirteen patients remained alive at the end of the observation period and no deaths were drug related. Grade 3–4 drug‐related adverse events were observed in 31.4% of patients. Pretreatment serum interferon‐γ, and interleukin‐6 and ‐10 levels were significantly higher in the patients with objective tumor responses than in those with tumor progression. In conclusion, giving repeated i.v. nivolumab had potent and durable antitumor effects and a manageable safety profile in advanced melanoma patients, strongly suggesting the usefulness of nivolumab for advanced melanoma and the usefulness of pretreatment serum cytokine profiles as correlates for predicting treatment efficacy.
Collapse
Affiliation(s)
- Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshio Kiyohara
- Dermatology Division, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hisashi Uhara
- Department of Dermatology, Shinshu University School of Medicine, Nagano, Japan
| | - Hajime Iizuka
- Department of Dermatology, Asahikawa Medical University, Hokkaido, Japan
| | - Jiro Uehara
- Department of Dermatology, Asahikawa Medical University, Hokkaido, Japan
| | - Fujio Otsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tatsuya Takenouchi
- Department of Dermatology, Niigata Cancer Center Hospital, Niigata, Japan
| | - Taiki Isei
- Department of Dermatology, Kansai Medical University, Osaka, Japan
| | - Keiji Iwatsuki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hironobu Minami
- Department Medical Oncology/Hematology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Hideaki Tahara
- Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Wang HJ, Zhou Y, Liu RM, Qin YS, Cen YH, Hu LY, Wang SM, Hu ZJ. IP-10/CXCR3 Axis Promotes the Proliferation of Vascular Smooth Muscle Cells through ERK1/2/CREB Signaling Pathway. Cell Biochem Biophys 2017; 75:139-147. [PMID: 28111710 DOI: 10.1007/s12013-017-0782-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
Abstract
Excessive proliferation of vascular smooth muscle cells is one of the main pathological processes leading to atherosclerosis and intimal hyperplasia after vascular interventional therapy. Our previous study has shown that interferon-γ inducible protein-10 contributes to the proliferation of vascular smooth muscle cell. However, the underlying mechanisms remain unclear. Extracellular signal-regulated kinase 1/2, serine/threonine kinase Akt, and cAMP response element binding protein are signaling pathways, which are considered to play important roles in the processes of vascular smooth muscle cell proliferation. Moreover, chemokine receptor 3 and Toll-like receptor 4 are potential receptors of inducible protein-10 in this process. In the present study, IP-10 was found to directly induce vascular smooth muscle cell proliferation, and exposure to inducible protein-10 activated extracellular signal-regulated kinase 1/2, serine/threonine kinase, and cAMP response element binding protein signaling. Inhibitor of extracellular signal-regulated kinase 1/2, rather than inhibitor of serine/threonine kinase, inhibited the phosphorylation of cAMP response element binding protein and reduced inducible protein-10-stimulated vascular smooth muscle cell proliferation. Knockdown of cAMP response element binding protein by siRNA inhibited inducible protein-10-induced vascular smooth muscle cell proliferation. Moreover, anti-CXCR3 IgG, instead of anti-Toll-like receptor 4 IgG, reduced inducible protein-10-induced vascular smooth muscle cell proliferation and inducible protein-10-stimulated extracellular signal-regulated kinase 1/2 and cAMP response element binding protein activation. Together, these results indicate that inducible protein-10 promotes vascular smooth muscle cell proliferation via chemokine receptor 3 and activation of extracellular signal-regulated kinase 1/2 inducible protein-10-induced vascular smooth muscle cell proliferation. These data provide important targets for future studies to modulate atherosclerosis and restenosis after vascular interventional therapy.
Collapse
Affiliation(s)
- Hui-Jin Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.,Department of General Surgery, Huadu District People's Hospital, Southern Medical University, Guanghzou, 510800, China
| | - Yu Zhou
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui-Ming Liu
- Laboratory of Department of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan-Sen Qin
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ying-Huan Cen
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ling-Yu Hu
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, 510080, China
| | - Shen-Ming Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Zuo-Jun Hu
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
38
|
CXC chemokine superfamily induced by Interferon-γ in asthma: a cross-sectional observational study. Asthma Res Pract 2016; 2:6. [PMID: 27965774 PMCID: PMC5142415 DOI: 10.1186/s40733-016-0021-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/12/2016] [Indexed: 12/20/2022] Open
Abstract
Background Asthma is a disease encompassing a variety of contributing factors. Phenotyping of asthma based on the profile of accumulated granulocytes in the airways has been performed to explore the mediators involved in allergic bronchial inflammation. The aim of this study was to clarify the characteristics of the CXC chemokine superfamily induced by IFN-γ, namely CXCR3 ligands, in the airways of patients with asthma stratified by the differential proportion of granulocytes in sputum. Methods Sputum was induced in 39 adult patients with asthma and 12 healthy subjects. Sputum samples were analyzed for total cell counts and differentials, and concentrations of IFN-γ–inducible protein 10 kDa (IP-10, CXCL10), monokine induced by IFN-γ (Mig, CXCL9), IFN-inducible T cell a chemoattractant (I-TAC, CXCL11), and IL-8 in the supernatants were assayed by ELISA. Results Sputum concentrations of IP-10, Mig, and IL-8 were significantly higher in asthma than in healthy subjects. IP-10, Mig, and IL-8 were significantly higher in the mixed granulocyte subtype (eosinophils ≥ 2 % and neutrophils ≥ 40 % in sputum) than in healthy subjects. Additionally, IP-1 0 was significantly higher in the mixed granulocyte subtype than in eosinophil-predominant or neutrophil-predominant subtype (eosinophil percentage ≥ 2 % or neutrophil percentage ≥ 40 %). Mig and IL-8 were significantly higher in the mixed granulocyte subtype than in the paucigranulocyte subtype (eosinophils < 2 % and neutrophils < 40 % in sputum). I-TAC was not different between healthy subjects and asthmatics or granulocyte subtypes. All CXCR3 ligands were significantly associated with the composite of the eosinophil and neutrophil ratio in patients with asthma. Only Mig was significantly correlated with the total eosinophil and neutrophil ratio in patients with asthma on adjusted partial correlation analysis. Mig and IL-8 were significantly negatively correlated with forced expiratory volume in 1 s % predicted (% FEV1) in patients with asthma. Conclusions CXCR3 ligands may serve as potent promoters in eosinophilic and neutrophilic airway inflammation in asthma. Electronic supplementary material The online version of this article (doi:10.1186/s40733-016-0021-y) contains supplementary material, which is available to authorized users.
Collapse
|
39
|
Xia JB, Liu GH, Chen ZY, Mao CZ, Zhou DC, Wu HY, Park KS, Zhao H, Kim SK, Cai DQ, Qi XF. Hypoxia/ischemia promotes CXCL10 expression in cardiac microvascular endothelial cells by NFkB activation. Cytokine 2016; 81:63-70. [PMID: 26891076 DOI: 10.1016/j.cyto.2016.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
Abstract
CXCL10, the chemokine with potent chemotactic activity on immune cells and other non-immune cells expressing its receptor CXCR3, has been demonstrated to involve in myocardial infarction, which was resulted from hypoxia/ischemia. The cardiac microvascular endothelial cells (CMECs) are the first cell type which is implicated by hypoxia/ischemia. However, the potential molecular mechanism by which hypoxia/ischemia regulates the expression of CXCL10 in CMECs remains unclear. In the present study, the expression of CXCL10 was firstly examined by real-time PCR and ELISA analysis. Several potential binding sites (BS) for transcription factors including NF-kappaB (NFkB), HIF1 alpha (HIF1α) and FoxO3a were identified in the promoter region of CXCL10 gene from -2000 bp to -1 bp using bioinformatics software. Luciferase reporter gene vectors for CXCL10 promoter and for activation of above transcription factors were constructed. The activation of NFkB, hypoxia-inducible transcription factor-1 alpha (HIF-1α) and FoxO3a was also analyzed by Western blotting. It was shown that the production of CXCL10 in CMECs was significantly increased by hypoxia/ischemia treatment, in parallel with the activation of CXCL10 promoter examined by reporter gene vector system. Furthermore, transcription factors including NFkB, HIF1α and FoxO3a were activated by hypoxia/ischemia in CMECs. However, over-expression of NFkB, but not that of HIF1α or FoxO3a, significantly promoted the activation of CXCL10 promoter reporter gene. These findings indicated that CXCL10 production in CMECs was significantly increased by hypoxia/ischemia, at least in part, through activation of NFkB pathway and subsequently binding to CXCL10 promoter, finally promoted the transcription of CXCL10 gene.
Collapse
Affiliation(s)
- Jing-Bo Xia
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Guang-Hui Liu
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Zhuo-Ying Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Cheng-Zhou Mao
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Deng-Cheng Zhou
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Hai-Yan Wu
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, Republic of Korea
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Soo-Ki Kim
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, Republic of Korea
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China.
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China.
| |
Collapse
|
40
|
Xia JB, Mao CZ, Chen ZY, Liu GH, Wu HY, Zhou DC, Park KS, Zhao H, Kim SK, Cai DQ, Qi XF. The CXCL10/CXCR3 axis promotes cardiac microvascular endothelial cell migration via the p38/FAK pathway in a proliferation-independent manner. Exp Mol Pathol 2016; 100:257-65. [PMID: 26835911 DOI: 10.1016/j.yexmp.2016.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/11/2016] [Accepted: 01/29/2016] [Indexed: 01/15/2023]
Abstract
CXCL10 is a chemokine with potent chemotactic activity for immune and non-immune cells expressing its receptor CXCR3. Previous studies have demonstrated that CXCL10 is involved in myocardial infarction. However, the role of CXCL10 in cardiac microvascular endothelial cell (CMEC) regulation and related mechanisms remains unclear. In this study, we investigated the effects of CXCL10 on the CMEC migration and explored its potential molecular mechanism by wound healing, cell proliferation and viability analysis. Furthermore, migration-related signaling pathways, including FAK, Erk, p38 and Smad, were examined by Western blotting. We found that CXCL10 significantly promotes CMEC migration under normal conditions and during hypoxia/ischemia. However, no significant differences in CMEC proliferation and viability were observed with or without CXCL10 treatment. CXCL10-mediated CMEC migration was greatly blocked by treatment with an anti-CXCR3 antibody. Although CXCL10 treatment promoted phosphorylation and activation of the FAK, Erk, and p38 pathways during hypoxia/ischemia, CXCL10-mediated CMEC migration was significantly blocked by p38 and FAK inhibitors, but not by an Erk inhibitor. Furthermore, CXCL10-mediated FAK activation was suppressed by the p38 inhibitor. These findings indicated that the CXCL10/CXCR3 pathway promotes the migration of CMECs under normal conditions and during hypoxia/ischemia in a proliferation-independent manner, at least in part, through regulation of the p38/FAK pathways.
Collapse
Affiliation(s)
- Jing-Bo Xia
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Cheng-Zhou Mao
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Zhuo-Ying Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Guang-Hui Liu
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Hai-Yan Wu
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Deng-Cheng Zhou
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, South Korea
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Soo-Ki Kim
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon 220-701, South Korea.
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China.
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine (JNU-CUHK), Ministry of Education and Department of Developmental & Regenerative Biology, Ji Nan University, Guangzhou 510632, China.
| |
Collapse
|
41
|
Wu Z, Huang X, Han X, Li Z, Zhu Q, Yan J, Yu S, Jin Z, Wang Z, Zheng Q, Wang Y. The chemokine CXCL9 expression is associated with better prognosis for colorectal carcinoma patients. Biomed Pharmacother 2016; 78:8-13. [PMID: 26898419 DOI: 10.1016/j.biopha.2015.12.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 01/25/2023] Open
Abstract
The chemokine CXCL9 has been demonstrated to play an important role in the development of human malignancies. However, its prognostic significance in cancer patients remains unclear and less is known about its role in colonrectal carcinoma (CRC) patients. In this study, we found that the relative mRNA expression level of CXCL9 in primary colorectal tumor tissues was significantly higher than that in corresponding normal colon tissues. CXCL9 protein expression was also detected in 102 of 130 primary CRC patients by immunochemistry. Thus, CXCL9 might play a vital role in the progression of colorectal cancer. By analyzing the correlation between clinicopathological factors of patients and expression of CXCL9 protein, we showed that the expression of CXCL9 was significantly associated with tumor differentiation, tumor invasion, lymph node metastasis, distant metastasis, and vascular invasion, but not with other factors of CRC patients including age, gender, tumor location and tumor size. Furthermore, by performing Kaplan-Meier method as well as Cox's univariate and multivariate hazard regression model, we found that the higher the CXCL9 expression, the higher overall survival rate was observed, and CXCL9 expression was a significant independent prognostic factor for CRC patients. Therefore, CXCL9 is a useful predictor of better clinical outcome in CRC patients.
Collapse
Affiliation(s)
- Zhenqian Wu
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Xiuyan Huang
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Xiaodong Han
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Zhongnan Li
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Qinchao Zhu
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Jun Yan
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Song Yu
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Zhiming Jin
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Zhigang Wang
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Qi Zheng
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China
| | - Yu Wang
- Department of Surgery, The Sixth People's Hospital Affiliated to Shanghai Jiaotong University, 600 Yishan Road, 200233 Shanghai, China.
| |
Collapse
|
42
|
Sriram U, Haldar B, Cenna JM, Gofman L, Potula R. Methamphetamine mediates immune dysregulation in a murine model of chronic viral infection. Front Microbiol 2015; 6:793. [PMID: 26322025 PMCID: PMC4531300 DOI: 10.3389/fmicb.2015.00793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/21/2015] [Indexed: 02/03/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that not only affects the brain and cognitive functions but also greatly impacts the host immune system, rendering the body susceptible to infections and exacerbating the severity of disease. Although there is gathering evidence about METH abuse and increased incidence of HIV and other viral infections, not much is known about the effects on the immune system in a chronic viral infection setting. We have used the lymphocytic choriomeningitis virus (LCMV) chronic mouse model of viral infection in a chronic METH environment and demonstrate that METH significantly increases CD3 marker on splenocytes and programmed death-1 (PD-1) expression on T cells, a cell surface signaling molecule known to inhibit T cell function and cause exhaustion in a lymphoid organ. Many of these METH effects were more pronounced during early stage of infection, which are gradually attenuated during later stages of infection. An essential cytokine for T-lymphocyte homeostasis, Interleukin-2 (IL-2) in serum was prominently reduced in METH-exposed infected mice. In addition, the serum pro-inflammatory (TNF, IL12 p70, IL1β, IL-6, and KC-GRO) and Th2 (IL-2, IL-10, and IL-4) cytokine profiles were also altered in the presence of METH. Interestingly CXCR3, an inflammatory chemokine receptor, showed significant increase in the METH treated LCMV infected mice. Similarly, compared to only infected mice, epidermal growth factor receptor (EGFR) in METH exposed LCMV infected mice were up regulated. Collectively, our data suggest that METH alters systemic, peripheral immune responses and modulates key markers on T cells involved in pathogenesis of chronic viral infection.
Collapse
Affiliation(s)
- Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Bijayesh Haldar
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Jonathan M Cenna
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA ; Center for Substance Abuse Research, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
43
|
Clement M, Charles N, Escoubet B, Guedj K, Chauveheid MP, Caligiuri G, Nicoletti A, Papo T, Sacre K. CD4+CXCR3+ T cells and plasmacytoid dendritic cells drive accelerated atherosclerosis associated with systemic lupus erythematosus. J Autoimmun 2015; 63:59-67. [PMID: 26183767 DOI: 10.1016/j.jaut.2015.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease due to accelerated atherosclerosis is the leading cause of death in patients with systemic lupus erythematosus (SLE). Noteworthy, accelerated atherosclerosis in SLE patients appears to be independant of classical Framingham risk factors. This suggests that aggravated atherosclerosis in SLE patients may be a result of increased inflammation and altered immune responses. However, the mechanisms that mediate the acceleration of atherosclerosis in SLE remain elusive. Based on experimental data which includes both humans (SLE patients and control subjects) and rodents (ApoE-/- mice), we herein propose a multi-step model in which the immune dysfunction associated with SLE (i.e. high level of IFN-α production by TLR 9-stimulated pDCs) is associated with, first, an increased frequency of circulating pro inflammatory CD4+CXCR3+ T cells; second, an increased production of CXCR3 ligands by endothelial cells; third, an increased recruitment of pro-inflammatory CD4+CXCR3+ T cells into the arterial wall, and fourth, the development of atherosclerosis. In showing how SLE may promote accelerated atherosclerosis, our model also points to hypotheses for potential interventions, such as pDCs-targeted therapy, that might be studied in the future.
Collapse
Affiliation(s)
- Marc Clement
- INSERM U1148, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
| | - Nicolas Charles
- INSERM U1149, Université Paris Diderot, Laboratoire d'excellence INFLAMEX, PRES Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodelling in Renal and Respiratory Diseases), Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
| | - Brigitte Escoubet
- Département de Physiologie, Hôpital Bichat, Université Paris Diderot, PRES Sorbonne Paris Cité, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Kevin Guedj
- INSERM U1148, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
| | - Marie-Paule Chauveheid
- Département de Médecine Interne, Hôpital Bichat, Université Paris Diderot, PRES Sorbonne Paris Cité, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Giuseppina Caligiuri
- INSERM U1148, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodelling in Renal and Respiratory Diseases), Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
| | - Antonino Nicoletti
- INSERM U1148, Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodelling in Renal and Respiratory Diseases), Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France
| | - Thomas Papo
- INSERM U1149, Université Paris Diderot, Laboratoire d'excellence INFLAMEX, PRES Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodelling in Renal and Respiratory Diseases), Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France; Département de Médecine Interne, Hôpital Bichat, Université Paris Diderot, PRES Sorbonne Paris Cité, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Karim Sacre
- INSERM U1149, Université Paris Diderot, Laboratoire d'excellence INFLAMEX, PRES Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation and Remodelling in Renal and Respiratory Diseases), Université Paris Diderot, PRES Sorbonne Paris Cité, Paris, France; Département de Médecine Interne, Hôpital Bichat, Université Paris Diderot, PRES Sorbonne Paris Cité, Assistance Publique Hôpitaux de Paris, Paris, France.
| |
Collapse
|
44
|
Krauthausen M, Kummer MP, Zimmermann J, Reyes-Irisarri E, Terwel D, Bulic B, Heneka MT, Müller M. CXCR3 promotes plaque formation and behavioral deficits in an Alzheimer's disease model. J Clin Invest 2014; 125:365-78. [PMID: 25500888 DOI: 10.1172/jci66771] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/10/2014] [Indexed: 01/28/2023] Open
Abstract
Chemokines are important modulators of neuroinflammation and neurodegeneration. In the brains of Alzheimer's disease (AD) patients and in AD animal models, the chemokine CXCL10 is found in high concentrations, suggesting a pathogenic role for this chemokine and its receptor, CXCR3. Recent studies aimed at addressing the role of CXCR3 in neurological diseases indicate potent, but diverse, functions for CXCR3. Here, we examined the impact of CXCR3 in the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. We found that, compared with control APP/PSI animals, plaque burden and Aβ levels were strongly reduced in CXCR3-deficient APP/PS1 mice. Analysis of microglial phagocytosis in vitro and in vivo demonstrated that CXCR3 deficiency increased the microglial uptake of Aβ. Application of a CXCR3 antagonist increased microglial Aβ phagocytosis, which was associated with reduced TNF-α secretion. Moreover, in CXCR3-deficient APP/PS1 mice, microglia exhibited morphological activation and reduced plaque association, and brain tissue from APP/PS1 animals lacking CXCR3 had reduced concentrations of proinflammatory cytokines compared with controls. Further, loss of CXCR3 attenuated the behavioral deficits observed in APP/PS1 mice. Together, our data indicate that CXCR3 signaling mediates development of AD-like pathology in APP/PS1 mice and suggest that CXCR3 has potential as a therapeutic target for AD.
Collapse
|
45
|
Matsuura K, Watanabe T, Iijima S, Murakami S, Fujiwara K, Orito E, Iio E, Endo M, Kusakabe A, Shinkai N, Miyaki T, Nojiri S, Joh T, Tanaka Y. Serum interferon-gamma-inducible protein-10 concentrations and IL28B genotype associated with responses to pegylated interferon plus ribavirin with and without telaprevir for chronic hepatitis C. Hepatol Res 2014; 44:1208-1216. [PMID: 24372894 DOI: 10.1111/hepr.12294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 02/06/2023]
Abstract
AIM Several studies have shown that high pretreatment concentrations of serum interferon-γ-inducible protein-10 (IP-10) are correlated with non-response to pegylated interferon (PEG-IFN) plus ribavirin (RBV) for chronic hepatitis C (CHC). However, there are few reports on their effect on the Asian population. METHODS We enrolled 104 Japanese genotype 1 CHC individuals treated with PEG-IFN/RBV and 45 with PEG-IFN/RBV/telaprevir, and evaluated the impact of pretreatment serum IP-10 concentrations on their virological responses. RESULTS The pretreatment serum IP-10 concentrations were not correlated with IL28B genotype. The receiver-operator curve analysis determined the cut-off value of IP-10 for predicting a sustained virological response (SVR) as 300 pg/mL. In multivariate analysis, the IL28B favorable genotype and IP-10 concentration of less than 300 pg/mL were independent factors for predicting SVR. In a subgroup of patients with the IL28B favorable genotype, the SVR rate was higher in the patients with IP-10 of less than 300 than in those with 300 pg/mL or more, whereas no patient with the IL28B unfavorable genotype and IP-10 of 300 pg/mL or more achieved SVR. Among the patients treated with PEG-IFN/RBV/telaprevir, low pretreatment concentrations of serum IP-10 were associated with a very rapid virological response, defined as undetectable HCV RNA at week 2 after the start of therapy. CONCLUSION Pretreatment serum IP-10 concentrations are associated with treatment efficacy in PEG-IFN/RBV and with early viral kinetics of hepatitis C virus in PEG-IFN/RBV/telaprevir therapy.
Collapse
Affiliation(s)
- Kentaro Matsuura
- Department of Virology, Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chadzinska M, Golbach L, Pijanowski L, Scheer M, Verburg-van Kemenade BML. Characterization and expression analysis of an interferon-γ2 induced chemokine receptor CXCR3 in common carp (Cyprinus carpio L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:68-76. [PMID: 25036761 DOI: 10.1016/j.dci.2014.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Chemokine and chemokine receptor signalling pairs play a crucial role in regulation of cell migration, morphogenesis, and cell activation. Expressed in mammals on activated T and NK cells, chemokine receptor CXCR3 binds interferon-γ inducible chemokines CXCL9-11 and CCL21. Here we sequenced the carp CXCR3 chemokine receptor and showed its relationship to CXCR3a receptors found in other teleosts. We found high expression of the CXCR3 gene in most of the organs and tissues of the immune system and in immune-related tissues such as gills and gut, corroborating a predominantly immune-related function. The very high expression in gill and gut moreover indicates a role for CXCR3 in cell recruitment during infection. High in vivo expression of CXCR3 at later stages of inflammation, as well as its in vitro sensitivity to IFN-γ2 stimulation indicate that in carp, CXCR3 is involved in macrophage-mediated responses. Moreover, as expression of the CXCR3 and CXCb genes coincides in the focus of inflammation and as both the CXCb chemokines and the CXCR3 receptor are significantly up-regulated upon IFN-γ stimulation it is hypothesized that CXCb chemokines may be putative ligands for CXCR3.
Collapse
Affiliation(s)
- M Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| | - L Golbach
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - L Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - M Scheer
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - B M L Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
47
|
Liu G, Zhang W, Xiao Y, Lu P. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization. Curr Eye Res 2014; 40:891-901. [PMID: 25309995 DOI: 10.3109/02713683.2014.968934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM AND SCOPE To address the role of interferon-induced protein of 10 kDa (IP-10) in the course of corneal neovascularization (CrNV) in a mouse model of experimental corneal neovascularization. MATERIAL AND METHOD BALB/c mice that were 7- to 8-week-old male were included in the study. Corneal injury was induced by NaOH. Mice were randomly divided into 2 groups of IP-10 and vehicle. The alkali-treated eyes received 5 μl of 5 μg/ml IP-10 dissolved in 0.2% sodium hyaluronate for IP-10-treated group, or 5 μl of 0.2% sodium hyaluronate for vehicle-treated group twice a day for 7 days immediately after the alkali injury. 2 weeks after alkali injury, corneas were removed and used for whole mount CD31 staining. The percentages of neovascularization on corneal photographs were examined with digital image analysis. In other experiments, at indicated time intervals, the corneas were removed. Angiogenic factor expression in the early phase after injury was quantified by real-time PCR and western blot. The VEGF expression in macrophages infiltrating into burned corneas was examined by Flow cytometry (FCM) and immunofluorescence. Tube formation and cell proliferation of human retinal endothelial cells (HRECs) were detected after being stimulated with IP-10 in vitro. RESULTS The mRNA and protein expression of IP-10 and C-X-C motif chemokine receptor 3 (CXCR3) was augmented after the alkali injury (p < 0.05). Compared with vehicle-treated mice, IP-10-treated mice exhibited reduced CrNV 2 weeks after injury, as evidenced by diminished CD31-positive areas (p < 0.05). Concomitantly, the intracorneal mRNA and protein expression enhancement of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was lower in IP-10-treated mice than in vehicle-treated mice after injury (p < 0.05). Moreover, IP-10 inhibited HREC tube formation and proliferation in vitro. CONCLUSION IP-10-treated mice exhibited reduced alkali-induced CrNV through decreasing intracorneal VEGF and bFGF expression, and inhibiting endothelial cell proliferation and tube formation.
Collapse
Affiliation(s)
- Gaoqin Liu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University , Suzhou , China and
| | | | | | | |
Collapse
|
48
|
De Corso E, Baroni S, Battista M, Romanello M, Penitente R, Di Nardo W, Passali GC, Sergi B, Fetoni AR, Bussu F, Zuppi C, Paludetti G. Nasal fluid release of eotaxin-3 and eotaxin-2 in persistent sinonasal eosinophilic inflammation. Int Forum Allergy Rhinol 2014; 4:617-24. [PMID: 24989688 DOI: 10.1002/alr.21348] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/10/2014] [Accepted: 04/29/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND The aim of the present study was to measure eotaxin-3 (CCL26) and eotaxin-2 (CCL24) in nasal lavage fluid of patients with different forms of chronic sinonasal eosinophilic inflammation to evaluate their role in the pathophysiology of nasal hypereosinophilia. METHODS The study was an analytic cross-section study, level of evidence 3b. Patients (n = 80) with nasal hypereosinophilia were randomly recruited and grouped in the following categories: persistent allergic rhinitis (AR) (n = 25), nonallergic rhinitis with eosinophilia syndrome (NARES) (n = 30), and chronic rhinosinusitis with polyps (CRSwNP) (n = 25). Non-rhinitic volunteers (n = 20) were recruited as controls. CCL24 and CCL26 concentrations were measured by enzyme-linked immunosorbent assay (ELISA) Quantikine Human Immunoassays (R&D Systems, Minneapolis, MN) in nasal lavage fluids. Differential cell counts were performed by microscopic cytological examination of nasal tissue scraped from the inferior turbinate. RESULTS Mean CCL26 levels were significantly higher (p < 0.05) in AR and in NARES (132.0 pg/mL and 187.63 pg/mL, respectively) than in the control group (13.5 pg/mL); in patients with CRSwNP, CCL26 values were increased compared to controls even though the difference was not statistically significant (58.9 pg/mL vs 16.5 pg/mL). Mean CCL24 levels measured in AR, NARES, and CRSwNP were significantly increased (p < 0.05) compared to controls (96.7 pg/mL, 135.4 pg/mL, and 107.0 pg/mL, respectively, vs 32.2 pg/mL). Moreover, we observed a significant correlation between CCL24 and CCL26 levels, evaluating them intraindividually by Spearman's rank correlation test. Finally, a significant correlation was found between CCL24 and CCL26 levels and the percentage of eosinophilic infiltration of nasal mucosa. CONCLUSION Our data suggest that CCL26 and CCL24 are likely involved in the pathogenesis of chronic nasal hypereosinophilia, with a complex cooperation and different involvement of the various members of eotaxin family. Further studies are necessary to better understand the actual physiopathologic mechanism, possible clinical relevance, and therapeutic implications.
Collapse
Affiliation(s)
- Eugenio De Corso
- Department Head and Neck Surgery-Institute of Otorhinolaryngology, Catholic University School of Medicine and Surgery, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Krauthausen M, Saxe S, Zimmermann J, Emrich M, Heneka MT, Müller M. CXCR3 modulates glial accumulation and activation in cuprizone-induced demyelination of the central nervous system. J Neuroinflammation 2014; 11:109. [PMID: 24930935 PMCID: PMC4096537 DOI: 10.1186/1742-2094-11-109] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 12/18/2022] Open
Abstract
Background The functional state of glial cells, like astrocytes and microglia, critically modulates the course of neuroinflammatory and neurodegenerative diseases and can have both detrimental and beneficial effects. Glial cell function is tightly controlled by cellular interactions in which cytokines are important messengers. Recent studies provide evidence that in particular chemokines are important modulators of glial cell function. During the course of CNS diseases like multiple sclerosis or Alzheimer’s disease, and in the corresponding animal models, the chemokines CXCL9 and CXCL10 are abundantly expressed at sites of glial activation, arguing for an important role of these chemokines and their corresponding receptor CXCR3 in glial activation. To clarify the role of this chemokine system in glial cell activation, we characterized the impact of CXCR3 on glial activation in a model of toxic demyelination in which glial activation without a prominent influx of hematogenous cells is prototypical. Methods We investigated the impact of CXCR3 on cuprizone-induced demyelination, comparing CXCR3-deficient mice with wild type controls. The clinical course during cuprizone feeding was documented for five weeks and for the subsequent four days withdrawal of the cuprizone diet (5.5 weeks). Glial activation was characterized using histological, histomorphometric and phenotypic analysis. Molecular analysis for (de)myelination and neuroinflammation was applied to characterize the effect of cuprizone on CXCR3-deficient mice and control animals. Results CXCR3-deficient mice displayed a milder clinical course during cuprizone feeding and a more rapid body weight recovery after offset of diet. In the CNS, CXCR3 deficiency significantly attenuated the accumulation and activation of microglia and astrocytes. Moreover, a deficiency of CXCR3 reduced the expression of the microglial activation markers CD45 and CD11b. Compared to controls, we observed a vast reduction of RNA levels for proinflammatory cytokines and chemokines like Ccl2, Cxcl10, Tnf and Il6 within the CNS of cuprizone-treated mice. Lastly, CXCR3 deficiency had no major effects on the course of demyelination during cuprizone feeding. Conclusions The CXCR3 chemokine system is critically involved in the intrinsic glial activation during cuprizone-induced demyelination, which significantly modulates the distribution of glial cells and the local cytokine milieu.
Collapse
Affiliation(s)
- Marius Krauthausen
- Department of Neurology, Universitätsklinikum Bonn, Sigmund-Freud-Str, 25, D-53105 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Lee TH, Tillmann HL, Patel K. Individualized therapy for hepatitis C infection: focus on the interleukin-28B polymorphism in directing therapy. Mol Diagn Ther 2014; 18:25-38. [PMID: 24022240 DOI: 10.1007/s40291-013-0053-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus—a major global cause of chronic hepatitis, cirrhosis, and hepatocellular carcinoma—affects millions of people worldwide. Pegylated interferon (Peg-IFN) and ribavirin (RBV) had been the standard treatment for a decade until availability of the protease inhibitors in 2011. However, current antiviral therapy is still IFN-based and is associated with significant side effects and variable treatment response. Thus, various host and viral factors have been evaluated before and during treatment for the prediction of sustained virologic response to antiviral therapy. In 2009, genome-wide association studies found the single-nucleotide polymorphisms, located near the host interleukin-28B (IL28B) gene that encodes IFN-λ3, to be the best pretreatment predictor of virologic response to Peg-IFN and RBV therapy in chronic hepatitis C genotype 1 patients. Additionally, inosine triphosphatase (ITPA) gene variants were found to be associated with RBV-induced hemolytic anemia, which could affect treatment dose for selected patients. IL28B, ITPA, and other treatment predictors allowed for a potential individualized approach to treat hepatitis C. In the era of increased overall virologic response rates and good tolerability of the rapidly developing non-IFN oral direct-acting antiviral therapy regimens, the need for individualized treatment is likely to diminish. Various predictors of response, including IL28B will likely be of reduced importance in the near future.
Collapse
|