1
|
Liu JB, Yuan HL, Zhang G, Ke JB. Comprehensive Characterization of a Subfamily of Ca 2+-Binding Proteins in Mouse and Human Retinal Neurons at Single-Cell Resolution. eNeuro 2024; 11:ENEURO.0145-24.2024. [PMID: 39260891 PMCID: PMC11419601 DOI: 10.1523/eneuro.0145-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Ca2+-binding proteins (CaBPs; CaBP1-5) are a subfamily of neuronal Ca2+ sensors with high homology to calmodulin. Notably, CaBP4, which is exclusively expressed in rod and cone photoreceptors, is crucial for maintaining normal retinal functions. However, the functional roles of CaBP1, CaBP2, and CaBP5 in the retina remain elusive, primarily due to limited understanding of their expression patterns within inner retinal neurons. In this study, we conducted a comprehensive transcript analysis using single-cell RNA sequencing datasets to investigate the gene expression profiles of CaBPs in mouse and human retinal neurons. Our findings revealed notable similarities in the overall expression patterns of CaBPs across both species. Specifically, nearly all amacrine cell, ganglion cell, and horizontal cell types exclusively expressed CaBP1. In contrast, the majority of bipolar cell types, including rod bipolar (RB) cells, expressed distinct combinations of CaBP1, CaBP2, and CaBP5, rather than a single CaBP as previously hypothesized. Remarkably, mouse rods and human cones exclusively expressed CaBP4, whereas mouse cones and human rods coexpressed both CaBP4 and CaBP5. Our single-cell reverse transcription polymerase chain reaction analysis confirmed the coexpression CaBP1 and CaBP5 in individual RBs from mice of either sex. Additionally, all three splice variants of CaBP1, primarily L-CaBP1, were detected in mouse RBs. Taken together, our study offers a comprehensive overview of the distribution of CaBPs in mouse and human retinal neurons, providing valuable insights into their roles in visual functions.
Collapse
Affiliation(s)
- Jun-Bin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He-Lan Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Gong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiang-Bin Ke
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
2
|
Lopez JA, Romero LO, Kaung WL, Maddox JW, Vásquez V, Lee A. Caldendrin Is a Repressor of PIEZO2 Channels and Touch Sensation in Mice. J Neurosci 2024; 44:e1402232023. [PMID: 38262725 PMCID: PMC10919251 DOI: 10.1523/jneurosci.1402-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
The sense of touch is crucial for cognitive, emotional, and social development and relies on mechanically activated (MA) ion channels that transduce force into an electrical signal. Despite advances in the molecular characterization of these channels, the physiological factors that control their activity are poorly understood. Here, we used behavioral assays, electrophysiological recordings, and various mouse strains (males and females analyzed separately) to investigate the role of the calmodulin-like Ca2+ sensor, caldendrin, as a key regulator of MA channels and their roles in touch sensation. In mice lacking caldendrin (Cabp1 KO), heightened responses to tactile stimuli correlate with enlarged MA currents with lower mechanical thresholds in dorsal root ganglion neurons (DRGNs). The expression pattern of caldendrin in the DRG parallels that of the major MA channel required for touch sensation, PIEZO2. In transfected cells, caldendrin interacts with and inhibits the activity of PIEZO2 in a manner that requires an alternatively spliced sequence in the N-terminal domain of caldendrin. Moreover, targeted genetic deletion of caldendrin in Piezo2-expressing DRGNs phenocopies the tactile hypersensitivity of complete Cabp1 KO mice. We conclude that caldendrin is an endogenous repressor of PIEZO2 channels and their contributions to touch sensation in DRGNs.
Collapse
Affiliation(s)
- Josue A Lopez
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - Luis O Romero
- Department of Physiology, The University of Tennessee Health Science Center, Memphis 38163, Tennessee
- Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis 38163, Tennessee
| | - Wai-Lin Kaung
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - J Wesley Maddox
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| | - Valeria Vásquez
- Department of Physiology, The University of Tennessee Health Science Center, Memphis 38163, Tennessee
| | - Amy Lee
- Department of Neuroscience and Center for Learning and Memory, University of Texas-Austin, Austin 78712, Texas
| |
Collapse
|
3
|
Lisek M, Tomczak J, Boczek T, Zylinska L. Calcium-Associated Proteins in Neuroregeneration. Biomolecules 2024; 14:183. [PMID: 38397420 PMCID: PMC10887043 DOI: 10.3390/biom14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of intracellular calcium levels is a critical factor in neurodegeneration, leading to the aberrant activation of calcium-dependent processes and, ultimately, cell death. Ca2+ signals vary in magnitude, duration, and the type of neuron affected. A moderate Ca2+ concentration can initiate certain cellular repair pathways and promote neuroregeneration. While the peripheral nervous system exhibits an intrinsic regenerative capability, the central nervous system has limited self-repair potential. There is evidence that significant variations exist in evoked calcium responses and axonal regeneration among neurons, and individual differences in regenerative capacity are apparent even within the same type of neurons. Furthermore, some studies have shown that neuronal activity could serve as a potent regulator of this process. The spatio-temporal patterns of calcium dynamics are intricately controlled by a variety of proteins, including channels, ion pumps, enzymes, and various calcium-binding proteins, each of which can exert either positive or negative effects on neural repair, depending on the cellular context. In this concise review, we focus on several calcium-associated proteins such as CaM kinase II, GAP-43, oncomodulin, caldendrin, calneuron, and NCS-1 in order to elaborate on their roles in the intrinsic mechanisms governing neuronal regeneration following traumatic damage processes.
Collapse
Affiliation(s)
| | | | | | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, 92-215 Lodz, Poland; (M.L.); (J.T.); (T.B.)
| |
Collapse
|
4
|
Dastidar SG, Nair D. A Ribosomal Perspective on Neuronal Local Protein Synthesis. Front Mol Neurosci 2022; 15:823135. [PMID: 35283723 PMCID: PMC8904363 DOI: 10.3389/fnmol.2022.823135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022] Open
Abstract
Continued mRNA translation and protein production are critical for various neuronal functions. In addition to the precise sorting of proteins from cell soma to distant locations, protein synthesis allows a dynamic remodeling of the local proteome in a spatially variable manner. This spatial heterogeneity of protein synthesis is shaped by several factors such as injury, guidance cues, developmental cues, neuromodulators, and synaptic activity. In matured neurons, thousands of synapses are non-uniformly distributed throughout the dendritic arbor. At any given moment, the activity of individual synapses varies over a wide range, giving rise to the variability in protein synthesis. While past studies have primarily focused on the translation factors or the identity of translated mRNAs to explain the source of this variation, the role of ribosomes in this regard continues to remain unclear. Here, we discuss how several stochastic mechanisms modulate ribosomal functions, contributing to the variability in neuronal protein expression. Also, we point out several underexplored factors such as local ion concentration, availability of tRNA or ATP during translation, and molecular composition and organization of a compartment that can influence protein synthesis and its variability in neurons.
Collapse
|
5
|
Konietzny A, Grendel J, Kadek A, Bucher M, Han Y, Hertrich N, Dekkers DHW, Demmers JAA, Grünewald K, Uetrecht C, Mikhaylova M. Caldendrin and myosin V regulate synaptic spine apparatus localization via ER stabilization in dendritic spines. EMBO J 2022; 41:e106523. [PMID: 34935159 PMCID: PMC8844991 DOI: 10.15252/embj.2020106523] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Abstract
Excitatory synapses of principal hippocampal neurons are frequently located on dendritic spines. The dynamic strengthening or weakening of individual inputs results in structural and molecular diversity of dendritic spines. Active spines with large calcium ion (Ca2+ ) transients are frequently invaded by a single protrusion from the endoplasmic reticulum (ER), which is dynamically transported into spines via the actin-based motor myosin V. An increase in synaptic strength correlates with stable anchoring of the ER, followed by the formation of an organelle referred to as the spine apparatus. Here, we show that myosin V binds the Ca2+ sensor caldendrin, a brain-specific homolog of the well-known myosin V interactor calmodulin. While calmodulin is an essential activator of myosin V motor function, we found that caldendrin acts as an inhibitor of processive myosin V movement. In mouse and rat hippocampal neurons, caldendrin regulates spine apparatus localization to a subset of dendritic spines through a myosin V-dependent pathway. We propose that caldendrin transforms myosin into a stationary F-actin tether that enables the localization of ER tubules and formation of the spine apparatus in dendritic spines.
Collapse
Affiliation(s)
- Anja Konietzny
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Jasper Grendel
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Alan Kadek
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- European XFEL GmbHSchenefeldGermany
| | - Michael Bucher
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Yuhao Han
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
| | - Nathalie Hertrich
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | | | | | - Kay Grünewald
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Department of ChemistryUniversity of HamburgHamburgGermany
| | - Charlotte Uetrecht
- Leibniz Institute for Experimental Virology (HPI)HamburgGermany
- European XFEL GmbHSchenefeldGermany
- Centre for Structural Systems BiologyHamburgGermany
| | - Marina Mikhaylova
- RG OptobiologyInstitute of BiologyHumboldt Universität zu BerlinBerlinGermany
- Guest Group Neuronal Protein TransportCenter for Molecular NeurobiologyZMNHUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
6
|
Grochowska KM, Bär J, Gomes GM, Kreutz MR, Karpova A. Jacob, a Synapto-Nuclear Protein Messenger Linking N-methyl-D-aspartate Receptor Activation to Nuclear Gene Expression. Front Synaptic Neurosci 2021; 13:787494. [PMID: 34899262 PMCID: PMC8662305 DOI: 10.3389/fnsyn.2021.787494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Pyramidal neurons exhibit a complex dendritic tree that is decorated by a huge number of spine synapses receiving excitatory input. Synaptic signals not only act locally but are also conveyed to the nucleus of the postsynaptic neuron to regulate gene expression. This raises the question of how the spatio-temporal integration of synaptic inputs is accomplished at the genomic level and which molecular mechanisms are involved. Protein transport from synapse to nucleus has been shown in several studies and has the potential to encode synaptic signals at the site of origin and decode them in the nucleus. In this review, we summarize the knowledge about the properties of the synapto-nuclear messenger protein Jacob with special emphasis on a putative role in hippocampal neuronal plasticity. We will elaborate on the interactome of Jacob, the signals that control synapto-nuclear trafficking, the mechanisms of transport, and the potential nuclear function. In addition, we will address the organization of the Jacob/NSMF gene, its origin and we will summarize the evidence for the existence of splice isoforms and their expression pattern.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Julia Bär
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Research Group (RG) Neuronal Protein Transport, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.,Research Group (RG) Optobiology, Institute of Biology, HU Berlin, Berlin, Germany
| | - Guilherme M Gomes
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Michael R Kreutz
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology Hamburg, Hamburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,German Research Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Anna Karpova
- Research Group (RG) Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
7
|
Burgoyne RD, Helassa N, McCue HV, Haynes LP. Calcium Sensors in Neuronal Function and Dysfunction. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035154. [PMID: 30833454 DOI: 10.1101/cshperspect.a035154] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium signaling in neurons as in other cell types can lead to varied changes in cellular function. Neuronal Ca2+ signaling processes have also become adapted to modulate the function of specific pathways over a wide variety of time domains and these can have effects on, for example, axon outgrowth, neuronal survival, and changes in synaptic strength. Ca2+ also plays a key role in synapses as the trigger for fast neurotransmitter release. Given its physiological importance, abnormalities in neuronal Ca2+ signaling potentially underlie many different neurological and neurodegenerative diseases. The mechanisms by which changes in intracellular Ca2+ concentration in neurons can bring about diverse responses is underpinned by the roles of ubiquitous or specialized neuronal Ca2+ sensors. It has been established that synaptotagmins have key functions in neurotransmitter release, and, in addition to calmodulin, other families of EF-hand-containing neuronal Ca2+ sensors, including the neuronal calcium sensor (NCS) and the calcium-binding protein (CaBP) families, play important physiological roles in neuronal Ca2+ signaling. It has become increasingly apparent that these various Ca2+ sensors may also be crucial for aspects of neuronal dysfunction and disease either indirectly or directly as a direct consequence of genetic variation or mutations. An understanding of the molecular basis for the regulation of the targets of the Ca2+ sensors and the physiological roles of each protein in identified neurons may contribute to future approaches to the development of treatments for a variety of human neuronal disorders.
Collapse
Affiliation(s)
- Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Hannah V McCue
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Lee P Haynes
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Mundhenk J, Fusi C, Kreutz MR. Caldendrin and Calneurons-EF-Hand CaM-Like Calcium Sensors With Unique Features and Specialized Neuronal Functions. Front Mol Neurosci 2019; 12:16. [PMID: 30787867 PMCID: PMC6372560 DOI: 10.3389/fnmol.2019.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023] Open
Abstract
The calmodulin (CaM)-like Ca2+-sensor proteins caldendrin, calneuron-1 and -2 are members of the neuronal calcium-binding protein (nCaBP)-family, a family that evolved relatively late during vertebrate evolution. All three proteins are abundant in brain but show a strikingly different subcellular localization. Whereas caldendrin is enriched in the postsynaptic density (PSD), calneuron-1 and -2 accumulate at the trans-Golgi-network (TGN). Caldendrin exhibit a unique bipartite structure with a basic and proline-rich N-terminus while calneurons are the only EF-Hand CaM-like transmembrane proteins. These uncommon structural features come along with highly specialized functions of calneurons in Golgi-to-plasma-membrane trafficking and for caldendrin in actin-remodeling in dendritic spine synapses. In this review article, we will provide a synthesis of available data on the structure and biophysical properties of all three proteins. We will then discuss their cellular function with special emphasis on synaptic neurotransmission. Finally, we will summarize the evidence for a role of these proteins in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jennifer Mundhenk
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Camilla Fusi
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology, ZMNH, Hamburg, Germany
| |
Collapse
|
9
|
Abstract
Ca2+ regulation in living systems occurs via specific structural alterations, subtle or drastic, in the Ca2+-binding domains of sensor proteins. Sensor proteins perform designated nonredundant roles within the dense network of Ca2+-binding proteins. A detailed understanding of the structural changes in calcium sensor proteins due to Ca2+ spikes that vary spatially, temporally, and in magnitude would provide better insights into the mechanism of Ca2+ sensing. This chapter describes a method to study various stages during apo to the holo transition of Ca2+-binding proteins by Trp-mediated scanning of individual EF-hand motifs. We describe the applicability of this procedure to caldendrin, which is a neuronal Ca2+-binding protein and to integrin-binding protein. Tryptophan mutants of full-length caldendrin were designed to reveal local structural changes in each EF-hand of the protein. This method, referred to as "EF-hand scanning tryptophan mutagenesis," not only allows the identification of canonical and noncanonical EF-hands using very low concentrations of protein but also enables visualization of the hierarchical filling of Ca2+ into the canonical EF-hands.
Collapse
Affiliation(s)
- Uday Kiran
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, Hamburg, Germany
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| | - Asima Chakraborty
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India.
| |
Collapse
|
10
|
Franco R, Aguinaga D, Reyes I, Canela EI, Lillo J, Tarutani A, Hasegawa M, Del Ser-Badia A, Del Rio JA, Kreutz MR, Saura CA, Navarro G. N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APP Sw,Ind Mice. Front Mol Neurosci 2018; 11:273. [PMID: 30233307 PMCID: PMC6127644 DOI: 10.3389/fnmol.2018.00273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/18/2018] [Indexed: 11/14/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) respond to glutamate to allow the influx of calcium ions and the signaling to the mitogen-activated protein kinase (MAPK) cascade. Both MAPK- and Ca2+-mediated events are important for both neurotransmission and neural cell function and fate. Using a heterologous expression system, we demonstrate that NMDAR may interact with the EF-hand calcium-binding proteins calmodulin, calneuron-1, and NCS1 but not with caldendrin. NMDARs were present in primary cultures of both neurons and microglia from cortex and hippocampus. Calmodulin in microglia, and calmodulin and NCS1 in neurons, are necessary for NMDA-induced MAP kinase pathway activation. Remarkably, signaling to the MAP kinase pathway was blunted in primary cultures of cortical and hippocampal neurons and microglia from wild-type animals by proteins involved in neurodegenerative diseases: α-synuclein, Tau, and p-Tau. A similar blockade by pathogenic proteins was found using samples from the APPSw,Ind transgenic Alzheimer’s disease model. Interestingly, a very marked increase in NMDAR–NCS1 complexes was identified in neurons and a marked increase of both NMDAR–NCS1 and NMDAR–CaM complexes was identified in microglia from the transgenic mice. The results show that α-synuclein, Tau, and p-Tau disrupt the signaling of NMDAR to the MAPK pathway and that calcium sensors are important for NMDAR function both in neurons and microglia. Finally, it should be noted that the expression of receptor–calcium sensor complexes, specially those involving NCS1, is altered in neural cells from APPSw,Ind mouse embryos/pups.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - David Aguinaga
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Reyes
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Enric I Canela
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Airi Tarutani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Anna Del Ser-Badia
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José A Del Rio
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group Dendritic Organelles and Synaptic Function, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlos A Saura
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Angelats E, Requesens M, Aguinaga D, Kreutz MR, Franco R, Navarro G. Neuronal Calcium and cAMP Cross-Talk Mediated by Cannabinoid CB 1 Receptor and EF-Hand Calcium Sensor Interactions. Front Cell Dev Biol 2018; 6:67. [PMID: 30073165 PMCID: PMC6060245 DOI: 10.3389/fcell.2018.00067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/12/2018] [Indexed: 11/19/2022] Open
Abstract
Endocannabinoids are important players in neural development and function. They act via receptors, whose activation inhibits cAMP production. The aim of the paper was to look for calcium- and cAMP-signaling cross-talk mediated by cannabinoid CB1 receptors (CB1R) and to assess the relevance of EF-hand CaM-like calcium sensors in this regard. Using a heterologous expression system, we demonstrated that CB1R interacts with calneuron-1 and NCS1 but not with caldendrin. Furthermore, interaction motives were identified in both calcium binding proteins and the receptor, and we showed that the first two sensors competed for binding to the receptor in a Ca2+-dependent manner. Assays in neuronal primary cultures showed that, CB1R-NCS1 complexes predominate at basal Ca2+ levels, whereas in the presence of ionomycin, a calcium ionophore, CB1R-calneuron-1 complexes were more abundant. Signaling assays following forskolin-induced intracellular cAMP levels showed in mouse striatal neurons that binding of CB1R to NCS1 is required for CB1R-mediated signaling, while the binding of CB1R to calneuron-1 completely blocked Gi-mediated signaling in response to a selective receptor agonist, arachidonyl-2-chloroethylamide. Calcium levels and interaction with calcium sensors may even lead to apparent Gs coupling after CB1R agonist challenge.
Collapse
Affiliation(s)
- Edgar Angelats
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Requesens
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - David Aguinaga
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function", Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Mikhaylova M, Bär J, van Bommel B, Schätzle P, YuanXiang P, Raman R, Hradsky J, Konietzny A, Loktionov EY, Reddy PP, Lopez-Rojas J, Spilker C, Kobler O, Raza SA, Stork O, Hoogenraad CC, Kreutz MR. Caldendrin Directly Couples Postsynaptic Calcium Signals to Actin Remodeling in Dendritic Spines. Neuron 2018; 97:1110-1125.e14. [PMID: 29478916 DOI: 10.1016/j.neuron.2018.01.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/18/2017] [Accepted: 01/26/2018] [Indexed: 11/19/2022]
Abstract
Compartmentalization of calcium-dependent plasticity allows for rapid actin remodeling in dendritic spines. However, molecular mechanisms for the spatio-temporal regulation of filamentous actin (F-actin) dynamics by spinous Ca2+-transients are still poorly defined. We show that the postsynaptic Ca2+ sensor caldendrin orchestrates nano-domain actin dynamics that are essential for actin remodeling in the early phase of long-term potentiation (LTP). Steep elevation in spinous [Ca2+]i disrupts an intramolecular interaction of caldendrin and allows cortactin binding. The fast on and slow off rate of this interaction keeps cortactin in an active conformation, and protects F-actin at the spine base against cofilin-induced severing. Caldendrin gene knockout results in higher synaptic actin turnover, altered nanoscale organization of spinous F-actin, defects in structural spine plasticity, LTP, and hippocampus-dependent learning. Collectively, the data indicate that caldendrin-cortactin directly couple [Ca2+]i to preserve a minimal F-actin pool that is required for actin remodeling in the early phase of LTP.
Collapse
Affiliation(s)
- Marina Mikhaylova
- Emmy Noether Group "Neuronal Protein Transport," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany; RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany; Cell Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands.
| | - Julia Bär
- Emmy Noether Group "Neuronal Protein Transport," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany; RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Bas van Bommel
- Emmy Noether Group "Neuronal Protein Transport," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Philipp Schätzle
- Cell Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - PingAn YuanXiang
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Rajeev Raman
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Johannes Hradsky
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Anja Konietzny
- Emmy Noether Group "Neuronal Protein Transport," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Egor Y Loktionov
- State Lab for Photon Energetics, Bauman Moscow State University, Moscow 105005, Russia
| | | | - Jeffrey Lopez-Rojas
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Christina Spilker
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
| | - Oliver Kobler
- Combinatorial Neuroimaging Core Facility (CNI), Leibniz Institute for Neurobiology, Magdeburg 39118, Germany
| | - Syed Ahsan Raza
- Institute of Biology, Otto von Guericke University, Magdeburg 39120, Germany
| | - Oliver Stork
- Institute of Biology, Otto von Guericke University, Magdeburg 39120, Germany
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany; Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany.
| |
Collapse
|
13
|
Kiran U, Regur P, Kreutz MR, Sharma Y, Chakraborty A. Intermotif Communication Induces Hierarchical Ca2+ Filling of Caldendrin. Biochemistry 2017; 56:2467-2476. [DOI: 10.1021/acs.biochem.7b00132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Uday Kiran
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, India
| | - Phanindranath Regur
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, India
| | - Michael R. Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany
- Leibniz
Group ‘Dendritic Organelles and Synaptic Function’,
Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Asima Chakraborty
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, India
| |
Collapse
|
14
|
Lack of CaBP1/Caldendrin or CaBP2 Leads to Altered Ganglion Cell Responses. eNeuro 2016; 3:eN-NWR-0099-16. [PMID: 27822497 PMCID: PMC5083949 DOI: 10.1523/eneuro.0099-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/24/2016] [Accepted: 10/08/2016] [Indexed: 12/01/2022] Open
Abstract
Calcium-binding proteins (CaBPs) form a subfamily of calmodulin-like proteins that were cloned from the retina. CaBP4 and CaBP5 have been shown to be important for normal visual function. Although CaBP1/caldendrin and CaBP2 have been shown to modulate various targets in vitro, it is not known whether they contribute to the transmission of light responses through the retina. Therefore, we generated mice that lack CaBP2 or CaBP1/caldendrin (Cabp2–/– and Cabp1–/–) to test whether these CaBPs are essential for normal retinal function. By immunohistochemistry, the overall morphology of Cabp1–/– and Cabp2–/– retinas and the number of synaptic ribbons appear normal; transmission electron microscopy shows normal tethered ribbon synapses and synaptic vesicles as in wild-type retinas. However, whole-cell patch clamp recordings showed that light responses of retinal ganglion cells of Cabp2–/– and Cabp1–/– mice differ in amplitude and kinetics from those of wild-type mice. We conclude that CaBP1/caldendrin and CaBP2 are not required for normal gross retinal and synapse morphology but are necessary for the proper transmission of light responses through the retina; like other CaBPs, CaBP1/caldendrin and CaBP2 likely act by modulating presynaptic Ca2+-dependent signaling mechanisms.
Collapse
|
15
|
Yeruva VC, Kulkarni A, Khandelwal R, Sharma Y, Raghunand TR. The PE_PGRS Proteins of Mycobacterium tuberculosis Are Ca2+ Binding Mediators of Host–Pathogen Interaction. Biochemistry 2016; 55:4675-87. [DOI: 10.1021/acs.biochem.6b00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Veena C. Yeruva
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Apoorva Kulkarni
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
16
|
Yang T, Scholl ES, Pan N, Fritzsch B, Haeseleer F, Lee A. Expression and Localization of CaBP Ca2+ Binding Proteins in the Mouse Cochlea. PLoS One 2016; 11:e0147495. [PMID: 26809054 PMCID: PMC4725724 DOI: 10.1371/journal.pone.0147495] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
CaBPs are a family of EF-hand Ca2+ binding proteins that are structurally similar to calmodulin. CaBPs can interact with, and yet differentially modulate, effectors that are regulated by calmodulin, such as Cav1 voltage-gated Ca2+ channels. Immunolabeling studies suggest that multiple CaBP family members (CaBP1, 2, 4, and 5) are expressed in the cochlea. To gain insights into the respective auditory functions of these CaBPs, we characterized the expression and cellular localization of CaBPs in the mouse cochlea. By quantitative reverse transcription PCR, we show that CaBP1 and CaBP2 are the major CaBPs expressed in mouse cochlea both before and after hearing onset. Of the three alternatively spliced variants of CaBP1 (caldendrin, CaBP1-L, and CaBP1-S) and CaBP2 (CaBP2-alt, CaBP2-L, CaBP2-S), caldendrin and CaBP2-alt are the most abundant. By in situ hybridization, probes recognizing caldendrin strongly label the spiral ganglion, while probes designed to recognize all three isoforms of CaBP1 weakly label both the inner and outer hair cells as well as the spiral ganglion. Within the spiral ganglion, caldendrin/CaBP1 labeling is associated with cells resembling satellite glial cells. CaBP2-alt is strongly expressed in inner hair cells both before and after hearing onset. Probes designed to recognize all three variants of CaBP2 strongly label inner hair cells before hearing onset and outer hair cells after the onset of hearing. Thus, CaBP1 and CaBP2 may have overlapping roles in regulating Ca2+ signaling in the hair cells, and CaBP1 may have an additional function in the spiral ganglion. Our findings provide a framework for understanding the role of CaBP family members in the auditory periphery.
Collapse
Affiliation(s)
- Tian Yang
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Elizabeth S. Scholl
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ning Pan
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bernd Fritzsch
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Françoise Haeseleer
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Otolaryngology Head-Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Voltage- and ligand-gated ion channels form the molecular basis of cellular excitability. With >400 members and accounting for ∼1.5% of the human genome, ion channels are some of the most well studied of all proteins in heterologous expression systems. Yet, ion channels often exhibit unexpected properties in vivo because of their interaction with a variety of signaling/scaffolding proteins. Such interactions can influence the function and localization of ion channels, as well as their coupling to intracellular second messengers and pathways, thus increasing the signaling potential of these ion channels in neurons. Moreover, functions have been ascribed to ion channels that are largely independent of their ion-conducting roles. Molecular and functional dissection of the ion channel proteome/interactome has yielded new insights into the composition of ion channel complexes and how their dysregulation leads to human disease.
Collapse
|
18
|
Reddy PP, Raghuram V, Hradsky J, Spilker C, Chakraborty A, Sharma Y, Mikhaylova M, Kreutz MR. Molecular dynamics of the neuronal EF-hand Ca2+-sensor Caldendrin. PLoS One 2014; 9:e103186. [PMID: 25058677 PMCID: PMC4110014 DOI: 10.1371/journal.pone.0103186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/29/2014] [Indexed: 11/18/2022] Open
Abstract
Caldendrin, L- and S-CaBP1 are CaM-like Ca2+-sensors with different N-termini that arise from alternative splicing of the Caldendrin/CaBP1 gene and that appear to play an important role in neuronal Ca2+-signaling. In this paper we show that Caldendrin is abundantly present in brain while the shorter splice isoforms L- and S-CaBP1 are not detectable at the protein level. Caldendrin binds both Ca2+ and Mg2+ with a global Kd in the low µM range. Interestingly, the Mg2+-binding affinity is clearly higher than in S-CaBP1, suggesting that the extended N-terminus might influence Mg2+-binding of the first EF-hand. Further evidence for intra- and intermolecular interactions of Caldendrin came from gel-filtration, surface plasmon resonance, dynamic light scattering and FRET assays. Surprisingly, Caldendrin exhibits very little change in surface hydrophobicity and secondary as well as tertiary structure upon Ca2+-binding to Mg2+-saturated protein. Complex inter- and intramolecular interactions that are regulated by Ca2+-binding, high Mg2+- and low Ca2+-binding affinity, a rigid first EF-hand domain and little conformational change upon titration with Ca2+ of Mg2+-liganted protein suggest different modes of binding to target interactions as compared to classical neuronal Ca2+-sensors.
Collapse
Affiliation(s)
| | - Vijeta Raghuram
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
| | - Johannes Hradsky
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Christina Spilker
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Yogendra Sharma
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
| | - Marina Mikhaylova
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Michael R. Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Kim KY, Scholl ES, Liu X, Shepherd A, Haeseleer F, Lee A. Localization and expression of CaBP1/caldendrin in the mouse brain. Neuroscience 2014; 268:33-47. [PMID: 24631676 DOI: 10.1016/j.neuroscience.2014.02.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/31/2022]
Abstract
Ca(2+) binding protein 1 (CaBP1) and caldendrin are alternatively spliced variants of a subfamily of CaBPs with high homology to calmodulin. Although CaBP1 and caldendrin regulate effectors including plasma membrane and intracellular Ca(2+) channels in heterologous expression systems, little is known about their functions in vivo. Therefore, we generated mice deficient in CaBP1/caldendrin expression (C-KO) and analyzed the expression and cellular localization of CaBP1 and caldendrin in the mouse brain. Immunoperoxidase labeling with antibodies recognizing both CaBP1 and caldendrin was absent in the brain of C-KO mice, but was intense in multiple brain regions of wild-type mice. By Western blot, the antibodies detected two proteins that were absent in the C-KO mouse and consistent in size with caldendrin variants originating from alternative translation initiation sites. By quantitative PCR, caldendrin transcript levels were far greater than those for CaBP1, particularly in the cerebral cortex and hippocampus. In the frontal cortex but not in the hippocampus, caldendrin expression increased steadily from birth. By double-label immunofluorescence, CaBP1/caldendrin was localized in principal neurons and parvalbumin-positive interneurons. In the cerebellum, CaBP1/caldendrin antibodies labeled interneurons in the molecular layer and in basket cell terminals surrounding the soma and axon initial segment of Purkinje neurons, but immunolabeling was absent in Purkinje neurons. We conclude that CaBP1/caldendrin is localized both pre- and postsynaptically where it may regulate Ca(2+) signaling and excitability in select groups of excitatory and inhibitory neurons.
Collapse
Affiliation(s)
- K Y Kim
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - E S Scholl
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - X Liu
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - A Shepherd
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - F Haeseleer
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - A Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA; Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
20
|
A mouse protein that localizes to acrosome and sperm tail is regulated by Y-chromosome. BMC Cell Biol 2013; 14:50. [PMID: 24256100 PMCID: PMC4225516 DOI: 10.1186/1471-2121-14-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/14/2013] [Indexed: 12/01/2022] Open
Abstract
Background Acrosomal proteins play crucial roles in the physiology of fertilization. Identification of proteins localizing to the acrosome is fundamental to the understanding of its contribution to fertilization. Novel proteins are still being reported from acrosome. In order to capture yet unreported proteins localizing to acrosome in particular and sperm in general, 2D-PAGE and mass spectrometry analysis of mouse sperm proteins was done. Results One of the protein spots identified in the above study was reported in the NCBI database as a hypothetical protein from Riken cDNA 1700026L06 that localizes to chromosome number 2. Immunofluorescence studies using the antibody raised in rabbit against the recombinant protein showed that it localized to mouse acrosome and sperm tail. Based on the localization of this protein, it has been named mouse acrosome and sperm tail protein (MAST, [Q7TPM5 (http://www.ncbi.nlm.nih.gov/protein/Q7TPM5)]). This protein shows 96% identity to the rat spermatid specific protein RSB66. Western blotting showed that MAST is expressed testis-specifically. Co-immunoprecipitation studies using the MAST antibody identified two calcium-binding proteins, caldendrin and calreticulin as interacting partners of MAST. Caldendrin and calreticulin genes localize to mouse chromosomes 5 and 8 respectively. In a Yq-deletion mutant mouse, that is subfertile and has a deletion of 2/3rd of the long arm of the Y chromosome, MAST failed to localize to the acrosome. Western blot analysis however, revealed equal expression of MAST in the testes of wild type and mutant mice. The acrosomal calcium-binding proteins present in the MAST IP-complex were upregulated in sperms of Yq-del mice. Conclusions We have identified a mouse acrosomal protein, MAST, that is expressed testis specifically. MAST does not contain any known motifs for protein interactions; yet it complexes with calcium-binding proteins localizing to the acrosome. The misexpression of all the proteins identified in a complex in the Yq-del mice invokes the hypothesis of a putative pathway regulated by the Y chromosome. The role of Y chromosome in the regulation of this complex is however not clear from the current study.
Collapse
|
21
|
Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain. Brain Struct Funct 2013; 219:843-60. [PMID: 23539133 DOI: 10.1007/s00429-013-0539-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/08/2013] [Indexed: 12/24/2022]
Abstract
In previous work, we found that the protein messenger Jacob is involved in N-methyl-D-aspartate receptor (NMDAR) signaling to the nucleus and cAMP response element-binding protein (CREB) mediated gene expression in hippocampal primary neurons. Particularly, extrasynaptic NMDAR activation drives Jacob efficiently into the nucleus where it then induces gene expression that promotes neurodegeneration. However, the protein also translocates to the nucleus in CA1 neurons after Schaffer collateral long-term potentiation (LTP) but not long-term depression (LTD), suggesting that Jacob might be involved in hippocampal and LTP-dependent learning and memory processes. Not much is known about the cellular and subcellular distribution of the protein in brain. In this paper, we provide an overview of the expression of Jacob in rat brain with special emphasis on the hippocampus. We show that Jacob is abundant in hippocampal pyramidal neurons and interneurons but absent from astrocytes and microglia. Interestingly, we found that Jacob is also present in mossy fiber axons. Double immunofluorescence confocal laser scans with presynaptic markers demonstrate that Jacob is indeed found at excitatory but not inhibitory presynaptic sites. Accordingly, we found no substantial co-localization of Jacob with a postsynaptic marker of inhibitory synapses, gephyrin. In contrast, almost all postsynaptic density protein 95 (PSD-95) positive excitatory postsynaptic sites also exhibited strong Jacob-immunofluorescence. Taken together, these data support a synaptic and nuclear role of Jacob that implicates long-distance NMDAR signaling to the nucleus in excitatory neurons.
Collapse
|
22
|
Karpova A, Mikhaylova M, Bera S, Bär J, Reddy P, Behnisch T, Rankovic V, Spilker C, Bethge P, Sahin J, Kaushik R, Zuschratter W, Kähne T, Naumann M, Gundelfinger E, Kreutz M. Encoding and Transducing the Synaptic or Extrasynaptic Origin of NMDA Receptor Signals to the Nucleus. Cell 2013; 152:1119-33. [DOI: 10.1016/j.cell.2013.02.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/11/2012] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
|
23
|
Seeger C, Gorny X, Reddy PP, Seidenbecher C, Danielson UH. Kinetic and mechanistic differences in the interactions between caldendrin and calmodulin with AKAP79 suggest different roles in synaptic function. J Mol Recognit 2013; 25:495-503. [PMID: 22996592 DOI: 10.1002/jmr.2215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The kinetic and mechanistic details of the interaction between caldendrin, calmodulin and the B-domain of AKAP79 were determined using a biosensor-based approach. Caldendrin was found to compete with calmodulin for binding at AKAP79, indicating overlapping binding sites. Although the AKAP79 affinities were similar for caldendrin (K(D) = 20 nM) and calmodulin (K(D) = 30 nM), their interaction characteristics were different. The calmodulin interaction was well described by a reversible one-step model, but was only detected in the presence of Ca(2+). Caldendrin interacted with a higher level of complexity, deduced to be an induced fit mechanism with a slow relaxation back to the initial encounter complex. It interacted with AKAP79 also in the absence of Ca(2+), but with different kinetic rate constants. The data are consistent with a similar initial Ca(2+)-dependent binding step for the two proteins. For caldendrin, a second Ca(2+)-independent rearrangement step follows, resulting in a stable complex. The study shows the importance of establishing the mechanism and kinetics of protein-protein interactions and that minor differences in the interaction of two homologous proteins can have major implications in their functional characteristics. These results are important for the further elucidation of the roles of caldendrin and calmodulin in synaptic function.
Collapse
|
24
|
Hradsky J, Mikhaylova M, Karpova A, Kreutz MR, Zuschratter W. Super-resolution microscopy of the neuronal calcium-binding proteins Calneuron-1 and Caldendrin. Methods Mol Biol 2013; 963:147-169. [PMID: 23296610 DOI: 10.1007/978-1-62703-230-8_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Calcium (Ca(2+)) signaling in neurons is mediated by plethora of calcium binding proteins with many of them belonging to the Calmodulin family of calcium sensors. Many studies have shown that the subcellular localization of neuronal EF-hand Ca(2+)-sensors is crucial for their cellular function. To overcome the resolution limit of classical fluorescence and confocal microscopy various imaging techniques have been developed recently that improve the resolution by an order of magnitude in all dimensions. This new microscope techniques make co-localization studies of Ca(2+)-binding proteins more reliable and help to get insights into the macromolecular organization of intracellular structures and signaling pathways beyond the diffraction limit of visible light.
Collapse
Affiliation(s)
- Johannes Hradsky
- Research Group, Neuroplasticity, Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | | | | | | | | |
Collapse
|
25
|
McCue HV, Patel P, Herbert AP, Lian LY, Burgoyne RD, Haynes LP. Solution NMR structure of the Ca2+-bound N-terminal domain of CaBP7: a regulator of golgi trafficking. J Biol Chem 2012; 287:38231-43. [PMID: 22989873 PMCID: PMC3488092 DOI: 10.1074/jbc.m112.402289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/12/2012] [Indexed: 12/12/2022] Open
Abstract
Calcium-binding protein 7 (CaBP7) is a member of the calmodulin (CaM) superfamily that harbors two high affinity EF-hand motifs and a C-terminal transmembrane domain. CaBP7 has been previously shown to interact with and modulate phosphatidylinositol 4-kinase III-β (PI4KIIIβ) activity in in vitro assays and affects vesicle transport in neurons when overexpressed. Here we show that the N-terminal domain (NTD) of CaBP7 is sufficient to mediate the interaction of CaBP7 with PI4KIIIβ. CaBP7 NTD encompasses the two high affinity Ca(2+) binding sites, and structural characterization through multiangle light scattering, circular dichroism, and NMR reveals unique properties for this domain. CaBP7 NTD binds specifically to Ca(2+) but not Mg(2+) and undergoes significant conformational changes in both secondary and tertiary structure upon Ca(2+) binding. The Ca(2+)-bound form of CaBP7 NTD is monomeric and exhibits an open conformation similar to that of CaM. Ca(2+)-bound CaBP7 NTD has a solvent-exposed hydrophobic surface that is more expansive than observed in CaM or CaBP1. Within this hydrophobic pocket, there is a significant reduction in the number of methionine residues that are conserved in CaM and CaBP1 and shown to be important for target recognition. In CaBP7 NTD, these residues are replaced with isoleucine and leucine residues with branched side chains that are intrinsically more rigid than the flexible methionine side chain. We propose that these differences in surface hydrophobicity, charge, and methionine content may be important in determining highly specific interactions of CaBP7 with target proteins, such as PI4KIIIβ.
Collapse
Affiliation(s)
- Hannah V. McCue
- From the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and
| | - Pryank Patel
- From the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and
| | - Andrew P. Herbert
- From the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and
| | - Lu-Yun Lian
- the NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Robert D. Burgoyne
- From the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and
| | - Lee P. Haynes
- From the Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, and
| |
Collapse
|
26
|
Gorny X, Mikhaylova M, Seeger C, Reddy PP, Reissner C, Schott BH, Helena Danielson U, Kreutz MR, Seidenbecher C. AKAP79/150 interacts with the neuronal calcium-binding protein caldendrin. J Neurochem 2012; 122:714-26. [PMID: 22693956 DOI: 10.1111/j.1471-4159.2012.07828.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The A kinase-anchoring protein AKAP79/150 is a postsynaptic scaffold molecule and a key regulator of signaling events. At the postsynapse it coordinates phosphorylation and dephosphorylation of receptors via anchoring kinases and phosphatases near their substrates. Interactions between AKAP79 and two Ca(2+) -binding proteins caldendrin and calmodulin have been investigated here. Calmodulin is a known interaction partner of AKAP79/150 that has been shown to regulate activity of the kinase PKC in a Ca(2+) -dependent manner. Pull-down experiments and surface plasmon resonance biosensor analyses have been used here to demonstrate that AKAP79 can also interact with caldendrin, a neuronal calcium-binding protein implicated in regulation of Ca(2+) -influx and release. We demonstrate that calmodulin and caldendrin compete for a partially overlapping binding site on AKAP79 and that their binding is differentially dependent on calcium. Therefore, this competition is regulated by calcium levels. Moreover, both proteins have different binding characteristics suggesting that the two proteins might play complementary roles. The postsynaptic enrichment, the complex binding mechanism, and the competition with calmodulin, makes caldendrin an interesting novel player in the signaling toolkit of the AKAP interactome.
Collapse
Affiliation(s)
- Xenia Gorny
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pielot R, Smalla KH, Müller A, Landgraf P, Lehmann AC, Eisenschmidt E, Haus UU, Weismantel R, Gundelfinger ED, Dieterich DC. SynProt: A Database for Proteins of Detergent-Resistant Synaptic Protein Preparations. Front Synaptic Neurosci 2012; 4:1. [PMID: 22737123 PMCID: PMC3382120 DOI: 10.3389/fnsyn.2012.00001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 05/29/2012] [Indexed: 11/13/2022] Open
Abstract
Chemical synapses are highly specialized cell–cell contacts for communication between neurons in the CNS characterized by complex and dynamic protein networks at both synaptic membranes. The cytomatrix at the active zone (CAZ) organizes the apparatus for the regulated release of transmitters from the presynapse. At the postsynaptic side, the postsynaptic density constitutes the machinery for detection, integration, and transduction of the transmitter signal. Both pre- and postsynaptic protein networks represent the molecular substrates for synaptic plasticity. Their function can be altered both by regulating their composition and by post-translational modification of their components. For a comprehensive understanding of synaptic networks the entire ensemble of synaptic proteins has to be considered. To support this, we established a comprehensive database for synaptic junction proteins (SynProt database) primarily based on proteomics data obtained from biochemical preparations of detergent-resistant synaptic junctions. The database currently contains 2,788 non-redundant entries of rat, mouse, and some human proteins, which mainly have been manually extracted from 12 proteomic studies and annotated for synaptic subcellular localization. Each dataset is completed with manually added information including protein classifiers as well as automatically retrieved and updated information from public databases (UniProt and PubMed). We intend that the database will be used to support modeling of synaptic protein networks and rational experimental design.
Collapse
Affiliation(s)
- Rainer Pielot
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Raghuram V, Sharma Y, Kreutz MR. Ca(2+) sensor proteins in dendritic spines: a race for Ca(2+). Front Mol Neurosci 2012; 5:61. [PMID: 22586368 PMCID: PMC3347464 DOI: 10.3389/fnmol.2012.00061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/18/2012] [Indexed: 12/21/2022] Open
Abstract
Dendritic spines are believed to be micro-compartments of Ca2+ regulation. In a recent study, it was suggested that the ubiquitous and evolutionarily conserved Ca2+ sensor, calmodulin (CaM), is the first to intercept Ca2+ entering the spine and might be responsible for the fast decay of Ca2+ transients in spines. Neuronal calcium sensor (NCS) and neuronal calcium-binding protein (nCaBP) families consist of Ca2+ sensors with largely unknown synaptic functions despite an increasing number of interaction partners. Particularly how these sensors operate in spines in the presence of CaM has not been discussed in detail before. The limited Ca2+ resources and the existence of common targets create a highly competitive environment where Ca2+ sensors compete with each other for Ca2+ and target binding. In this review, we take a simple numerical approach to put forth possible scenarios and their impact on signaling via Ca2+ sensors of the NCS and nCaBP families. We also discuss the ways in which spine geometry and properties of ion channels, their kinetics and distribution, alter the spatio-temporal aspects of Ca2+ transients in dendritic spines, whose interplay with Ca2+ sensors in turn influences the race for Ca2+.
Collapse
Affiliation(s)
- Vijeta Raghuram
- Centre for Cellular and Molecular Biology, CSIR Hyderabad, India
| | | | | |
Collapse
|
29
|
Navarro G, Hradsky J, Lluís C, Casadó V, McCormick PJ, Kreutz MR, Mikhaylova M. NCS-1 associates with adenosine A(2A) receptors and modulates receptor function. Front Mol Neurosci 2012; 5:53. [PMID: 22529776 PMCID: PMC3328853 DOI: 10.3389/fnmol.2012.00053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/02/2012] [Indexed: 11/13/2022] Open
Abstract
Modulation of G protein-coupled receptor (GPCR) signaling by local changes in intracellular calcium concentration is an established function of Calmodulin (CaM) which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with CaM targets with different functional outcome. In the present study we aimed to investigate if a target of CaM—the A2A adenosine receptor is able to associate with two other neuronal calcium binding proteins (nCaBPs), namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer (BRET) and co-immunoprecipitation experiments we show the existence of A2A—NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signaling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signaling.
Collapse
Affiliation(s)
- Gemma Navarro
- Faculty of Biology, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas and Department of Biochemistry and Molecular Biology, University of Barcelona Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Haynes LP, McCue HV, Burgoyne RD. Evolution and functional diversity of the Calcium Binding Proteins (CaBPs). Front Mol Neurosci 2012; 5:9. [PMID: 22375103 PMCID: PMC3284769 DOI: 10.3389/fnmol.2012.00009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/25/2012] [Indexed: 02/01/2023] Open
Abstract
The mammalian central nervous system (CNS) exhibits a remarkable ability to process, store, and transfer information. Key to these activities is the use of highly regulated and unique patterns of calcium signals encoded by calcium channels and decoded by families of specific calcium-sensing proteins. The largest family of eukaryotic calcium sensors is those related to the small EF-hand containing protein calmodulin (CaM). In order to maximize the usefulness of calcium as a signaling species and to permit the evolution and fine tuning of the mammalian CNS, families of related proteins have arisen that exhibit characteristic calcium binding properties and tissue-, cellular-, and sub-cellular distribution profiles. The Calcium Binding Proteins (CaBPs) represent one such family of vertebrate specific CaM like proteins that have emerged in recent years as important regulators of essential neuronal target proteins. Bioinformatic analyses indicate that the CaBPs consist of two subfamilies and that the ancestral members of these are CaBP1 and CaBP8. The CaBPs have distinct intracellular localizations based on different targeting mechanisms including a novel type-II transmembrane domain in CaBPs 7 and 8 (otherwise known as calneuron II and calneuron I, respectively). Recent work has led to the identification of new target interactions and possible functions for the CaBPs suggesting that they have multiple physiological roles with relevance for the normal functioning of the CNS.
Collapse
Affiliation(s)
- Lee P Haynes
- The Physiological Laboratory, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool Liverpool, UK
| | | | | |
Collapse
|
31
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
32
|
Mikhaylova M, Hradsky J, Kreutz MR. Between promiscuity and specificity: novel roles of EF-hand calcium sensors in neuronal Ca2+ signalling. J Neurochem 2011; 118:695-713. [PMID: 21722133 DOI: 10.1111/j.1471-4159.2011.07372.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, substantial progress has been made towards an understanding of the physiological function of EF-hand calcium sensor proteins of the Calmodulin (CaM) superfamily in neurons. This deeper appreciation is based on the identification of novel target interactions, structural studies and the discovery of novel signalling mechanisms in protein trafficking and synaptic plasticity, in which CaM-like sensor proteins appear to play a role. However, not all interactions are of plausible physiological relevance and in many cases it is not yet clear how the CaM signaling network relates to the proposed function of other EF-hand sensors. In this review, we will summarize these findings and address some of the open questions on the functional role of EF-hand calcium binding proteins in neurons.
Collapse
Affiliation(s)
- Marina Mikhaylova
- PG Neuroplasticity, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | | | | |
Collapse
|
33
|
Park S, Li C, Ames JB. Nuclear magnetic resonance structure of calcium-binding protein 1 in a Ca(2+) -bound closed state: implications for target recognition. Protein Sci 2011; 20:1356-66. [PMID: 21608059 DOI: 10.1002/pro.662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 05/10/2011] [Indexed: 11/10/2022]
Abstract
Calcium-binding protein 1 (CaBP1), a neuron-specific member of the calmodulin (CaM) superfamily, regulates the Ca(2+) -dependent activity of inositol 1,4,5-triphosphate receptors (InsP3Rs) and various voltage-gated Ca(2+) channels. Here, we present the NMR structure of full-length CaBP1 with Ca(2+) bound at the first, third, and fourth EF-hands. A total of 1250 nuclear Overhauser effect distance measurements and 70 residual dipolar coupling restraints define the overall main chain structure with a root-mean-squared deviation of 0.54 Å (N-domain) and 0.48 Å (C-domain). The first 18 residues from the N-terminus in CaBP1 (located upstream of the first EF-hand) are structurally disordered and solvent exposed. The Ca(2+) -saturated CaBP1 structure contains two independent domains separated by a flexible central linker similar to that in calmodulin and troponin C. The N-domain structure of CaBP1 contains two EF-hands (EF1 and EF2), both in a closed conformation [interhelical angles = 129° (EF1) and 142° (EF2)]. The C-domain contains EF3 and EF4 in the familiar Ca(2+) -bound open conformation [interhelical angles = 105° (EF3) and 91° (EF4)]. Surprisingly, the N-domain adopts the same closed conformation in the presence or absence of Ca(2+) bound at EF1. The Ca(2+) -bound closed conformation of EF1 is reminiscent of Ca(2+) -bound EF-hands in a closed conformation found in cardiac troponin C and calpain. We propose that the Ca(2+) -bound closed conformation of EF1 in CaBP1 might undergo an induced-fit opening only in the presence of a specific target protein, and thus may help explain the highly specialized target binding by CaBP1.
Collapse
Affiliation(s)
- Saebomi Park
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
34
|
Grabrucker AM, Garner CC, Boeckers TM, Bondioli L, Ruozi B, Forni F, Vandelli MA, Tosi G. Development of novel Zn2+ loaded nanoparticles designed for cell-type targeted drug release in CNS neurons: in vitro evidences. PLoS One 2011; 6:e17851. [PMID: 21448455 PMCID: PMC3063171 DOI: 10.1371/journal.pone.0017851] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/10/2011] [Indexed: 01/20/2023] Open
Abstract
Intact synaptic function and plasticity are fundamental prerequisites to a healthy brain. Therefore, synaptic proteins are one of the major targets for drugs used as neuro-chemical therapeutics. Unfortunately, the majority of drugs is not able to cross the blood-brain barrier (BBB) and is therefore distributed within the CNS parenchyma. Here, we report the development of novel biodegradable Nanoparticles (NPs), made of poly-lactide-co-glycolide (PLGA) conjugated with glycopeptides that are able to cross the BBB and deliver for example Zn(2+) ions. We also provide a thorough characterization of loaded and unloaded NPs for their stability, cellular uptake, release properties, toxicity, and impact on cell trafficking. Our data reveal that these NPs are biocompatible, and can be used to elevate intracellular levels of Zn(2+). Importantly, by engineering the surface of NPs with antibodies against NCAM1 and CD44, we were able to selectively target neurons or glial cells, respectively. Our results indicate that these biodegradable NPs provide a potential new venue for the delivery Zn(2+) to the CNS and thus a means to explore the influence of altered zinc levels linked to neuropsychological disorders such as depression.
Collapse
Affiliation(s)
- Andreas M. Grabrucker
- Department of Psychiatry and Behavioral
Sciences, Stanford School of Medicine, Stanford University, Stanford,
California, United States of America
- Institute for Anatomy and Cell Biology, Ulm
University, Ulm, Germany
- * E-mail: (AMG); (GT)
| | - Craig C. Garner
- Department of Psychiatry and Behavioral
Sciences, Stanford School of Medicine, Stanford University, Stanford,
California, United States of America
| | | | - Lucia Bondioli
- Te.Far.T.I. Group, Pharmaceutical Technology,
Department of Pharmaceutical Science, University of Modena and Reggio Emilia,
Modena and Reggio Emilia, Italy
| | - Barbara Ruozi
- Te.Far.T.I. Group, Pharmaceutical Technology,
Department of Pharmaceutical Science, University of Modena and Reggio Emilia,
Modena and Reggio Emilia, Italy
| | - Flavio Forni
- Te.Far.T.I. Group, Pharmaceutical Technology,
Department of Pharmaceutical Science, University of Modena and Reggio Emilia,
Modena and Reggio Emilia, Italy
| | - Maria Angela Vandelli
- Te.Far.T.I. Group, Pharmaceutical Technology,
Department of Pharmaceutical Science, University of Modena and Reggio Emilia,
Modena and Reggio Emilia, Italy
| | - Giovanni Tosi
- Te.Far.T.I. Group, Pharmaceutical Technology,
Department of Pharmaceutical Science, University of Modena and Reggio Emilia,
Modena and Reggio Emilia, Italy
- * E-mail: (AMG); (GT)
| |
Collapse
|
35
|
Grabrucker AM, Knight MJ, Proepper C, Bockmann J, Joubert M, Rowan M, Nienhaus GU, Garner CC, Bowie JU, Kreutz MR, Gundelfinger ED, Boeckers TM. Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J 2011; 30:569-81. [PMID: 21217644 PMCID: PMC3034012 DOI: 10.1038/emboj.2010.336] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/23/2010] [Indexed: 12/20/2022] Open
Abstract
ProSAP/Shank are scaffolding proteins that localize to the postsynaptic density (PSD). This study shows that Zn2+ ions directly regulate the localization and recruitment of Shank/ProSAP1/2 to PSDs to facilitate synapse formation and maturation. Neuronal morphology and number of synapses is not static, but can change in response to a variety of factors, a process called synaptic plasticity. These structural and molecular changes are believed to represent the basis for learning and memory, thereby underling both the developmental and activity-dependent remodelling of excitatory synapses. Here, we report that Zn2+ ions, which are highly enriched within the postsynaptic density (PSD), are able to influence the recruitment of ProSAP/Shank proteins to PSDs in a family member-specific manner during the course of synaptogenesis and synapse maturation. Through selectively overexpressing each family member at excitatory postsynapses and comparing this to shRNA-mediated knockdown, we could demonstrate that only the overexpression of zinc-sensitive ProSAP1/Shank2 or ProSAP2/Shank3 leads to increased synapse density, although all of them cause a decrease upon knockdown. Furthermore, depletion of synaptic Zn2+ along with the knockdown of zinc-insensitive Shank1 causes the rapid disintegration of PSDs and the loss of several postsynaptic molecules including Homer1, PSD-95 and NMDA receptors. These findings lead to the model that the concerted action of ProSAP/Shank and Zn2+ is essential for the structural integrity of PSDs and moreover that it is an important element of synapse formation, maturation and structural plasticity.
Collapse
|
36
|
McCue HV, Haynes LP, Burgoyne RD. The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2010; 2:a004085. [PMID: 20668007 DOI: 10.1101/cshperspect.a004085] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcium signaling in neurons as in other cell types mediates changes in gene expression, cell growth, development, survival, and cell death. However, neuronal Ca(2+) signaling processes have become adapted to modulate the function of other important pathways including axon outgrowth and changes in synaptic strength. Ca(2+) plays a key role as the trigger for fast neurotransmitter release. The ubiquitous Ca(2+) sensor calmodulin is involved in various aspects of neuronal regulation. The mechanisms by which changes in intracellular Ca(2+) concentration in neurons can bring about such diverse responses has, however, become a topic of widespread interest that has recently focused on the roles of specialized neuronal Ca(2+) sensors. In this article, we summarize synaptotagmins in neurotransmitter release, the neuronal roles of calmodulin, and the functional significance of the NCS and the CaBP/calneuron protein families of neuronal Ca(2+) sensors.
Collapse
Affiliation(s)
- Hannah V McCue
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | |
Collapse
|
37
|
McCue HV, Haynes LP, Burgoyne RD. Bioinformatic analysis of CaBP/calneuron proteins reveals a family of highly conserved vertebrate Ca2+-binding proteins. BMC Res Notes 2010; 3:118. [PMID: 20426809 PMCID: PMC2873350 DOI: 10.1186/1756-0500-3-118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 04/28/2010] [Indexed: 11/18/2022] Open
Abstract
Background Ca2+-binding proteins are important for the transduction of Ca2+ signals into physiological outcomes. As in calmodulin many of the Ca2+-binding proteins bind Ca2+ through EF-hand motifs. Amongst the large number of EF-hand containing Ca2+-binding proteins are a subfamily expressed in neurons and retinal photoreceptors known as the CaBPs and the related calneuron proteins. These were suggested to be vertebrate specific but exactly which family members are expressed outside of mammalian species had not been examined. Findings We have carried out a bioinformatic analysis to determine when members of this family arose and the conserved aspects of the protein family. Sequences of human members of the family obtained from GenBank were used in Blast searches to identify corresponding proteins encoded in other species using searches of non-redundant proteins, genome sequences and mRNA sequences. Sequences were aligned and compared using ClustalW. Some families of Ca2+-binding proteins are known to show a progressive expansion in gene number as organisms increase in complexity. In contrast, the results for CaBPs and calneurons showed that a full complement of CaBPs and calneurons are present in the teleost fish Danio rerio and possibly in cartilaginous fish. These findings suggest that the entire family of genes may have arisen at the same time during vertebrate evolution. Certain members of the family (for example the short form of CaBP1 and calneuron 1) are highly conserved suggesting essential functional roles. Conclusions The findings support the designation of the calneurons as a distinct sub-family. While the gene number for CaBPs/calneurons does not increase, a distinctive evolutionary change in these proteins in vertebrates has been an increase in the number of splice variants present in mammals.
Collapse
Affiliation(s)
- Hannah V McCue
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | | | |
Collapse
|
38
|
Fries R, Reddy PP, Mikhaylova M, Haverkamp S, Wei T, Müller M, Kreutz MR, Koch KW. Dynamic cellular translocation of caldendrin is facilitated by the Ca2+-myristoyl switch of recoverin. J Neurochem 2010; 113:1150-62. [PMID: 20236386 DOI: 10.1111/j.1471-4159.2010.06676.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Caldendrin and recoverin are Ca(2+)-sensor proteins operating in neuronal systems. In a search for novel binding partners of recoverin, we employed an affinity column and identified caldendrin as a possible interaction partner. Caldendrin and recoverin co-localized in the retina in a subset of bipolar cells and in the pineal gland as revealed by immunofluorescence studies. The binding process was controlled by Ca(2+) as revealed by pull-down assays, and surface plasmon resonance studies. Importantly, caldendrin existed as a Ca(2+)-independent homodimer whereas a complex of recoverin and caldendrin formed with low to moderate affinity in the presence of Ca(2+). Co-transfection of COS-7 cells with plasmids harboring the gene for fluorescently labeled recoverin and caldendrin was used to study the cellular distribution by time-lapse fluorescence microscopy. Apparently, the increase of intracellular Ca(2+) facilitates the translocation of caldendrin to intracellular membranes, which is under control of complex formation with recoverin.
Collapse
Affiliation(s)
- Ramona Fries
- Biochemistry group, Institute of Biology and Environmental Science, Faculty V, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Role of neuronal Ca2+-sensor proteins in Golgi-cell-surface membrane traffic. Biochem Soc Trans 2010; 38:177-80. [PMID: 20074055 DOI: 10.1042/bst0380177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The regulated local synthesis of PtdIns4P and PtdIns(4,5)P(2) is crucial for TGN (trans-Golgi network)-plasma membrane trafficking. The activity of PI4Kbeta (phosphoinositide 4-kinase IIIbeta) at the Golgi membrane is a first mandatory step in this process. In addition to PI4Kbeta activity, elevated Ca(2+) levels are also needed for the exit of vesicles from the TGN. The reason for this Ca(2+) requirement is at present unclear. In the present review, we discuss the role of neuronal Ca(2+)-sensor proteins in the regulation of PI4Kbeta and suggest that this regulation might impose a need for elevated Ca(2+) levels for a late step of vesicle assembly.
Collapse
|
40
|
Burgoyne RD, Haynes LP. Neuronal calcium sensor proteins: emerging roles in membrane traffic and synaptic plasticity. F1000 BIOLOGY REPORTS 2010; 2. [PMID: 20948784 PMCID: PMC2948346 DOI: 10.3410/b2-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+ plays a crucial role in the regulation of neuronal function. Recent work has revealed important functions for two families of neuronally expressed Ca2+ sensor proteins. These include roles in membrane traffic and in alterations in synaptic plasticity underlying changes in behaviour.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool Crown Street, Liverpool, L69 3BX UK
| | | |
Collapse
|
41
|
Schmeisser MJ, Grabrucker AM, Bockmann J, Boeckers TM. Synaptic cross-talk between N-methyl-D-aspartate receptors and LAPSER1-beta-catenin at excitatory synapses. J Biol Chem 2009; 284:29146-57. [PMID: 19703901 DOI: 10.1074/jbc.m109.020628] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Memory formation in the brain is thought to be depending upon long lasting plastic changes of synaptic contacts that require alterations on the transcriptional level. Here, we characterize LAPSER1, a putative cytokinetic tumor suppressor that binds directly to ProSAP2/Shank3 and the synaptic Rap-Gap protein SPAR1 as a novel postsynaptic density component. Postsynaptic LAPSER1 is in complex with all important members of the canonical Wnt pathway including beta-catenin. Upon N-methyl-D-aspartate receptor-dependent activation, LAPSER1 and beta-catenin comigrate from the postsynaptic density to the nucleus and induce the transcription and translation of known beta-catenin target genes, including Tcfe2a and c-Myc. The nuclear export and cytoplasmic redistribution of beta-catenin is tightly regulated by LAPSER1. We postulate a postsynaptic cross-talk between N-methyl-D-aspartate receptors and a LAPSER1-beta-catenin complex that results in a self-regulated, synaptic activity-dependent expression of beta-catenin target genes. This calls for a novel role of Tcfe2a and c-Myc in plastic changes of neural tissue.
Collapse
|
42
|
Kindler S, Dieterich DC, Schütt J, Sahin J, Karpova A, Mikhaylova M, Schob C, Gundelfinger ED, Kreienkamp HJ, Kreutz MR. Dendritic mRNA targeting of Jacob and N-methyl-d-aspartate-induced nuclear translocation after calpain-mediated proteolysis. J Biol Chem 2009; 284:25431-40. [PMID: 19608740 DOI: 10.1074/jbc.m109.022137] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Jacob is a recently identified plasticity-related protein that couples N-methyl-d-aspartate receptor activity to nuclear gene expression. An expression analysis by Northern blot and in situ hybridization shows that Jacob is almost exclusively present in brain, in particular in the cortex and the limbic system. Alternative splicing gives rise to multiple mRNA variants, all of which exhibit a prominent dendritic localization in the hippocampus. Functional analysis in primary hippocampal neurons revealed that a predominant cis-acting dendritic targeting element in the 3'-untranslated region of Jacob mRNAs is responsible for dendritic mRNA localization. In the mouse brain, Jacob transcripts are associated with both the fragile X mental retardation protein, a well described trans-acting factor regulating dendritic mRNA targeting and translation, and the kinesin family member 5C motor complex, which is known to mediate dendritic mRNA transport. Jacob is susceptible to rapid protein degradation in a Ca(2+)- and Calpain-dependent manner, and Calpain-mediated clipping of the myristoylated N terminus of Jacob is required for its nuclear translocation after N-methyl-d-aspartate receptor activation. Our data suggest that local synthesis in dendrites may be necessary to replenish dendritic Jacob pools after truncation of the N-terminal membrane anchor and concomitant translocation of Jacob to the nucleus.
Collapse
Affiliation(s)
- Stefan Kindler
- Institute of Human Genetics, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jordan BA, Kreutz MR. Nucleocytoplasmic protein shuttling: the direct route in synapse-to-nucleus signaling. Trends Neurosci 2009; 32:392-401. [PMID: 19524307 DOI: 10.1016/j.tins.2009.04.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 04/16/2009] [Accepted: 04/24/2009] [Indexed: 02/06/2023]
Abstract
In neurons multiple signaling pathways converge in the nucleus to regulate the expression of genes associated with long-term structural changes of synapto-dendritic input. Of pivotal importance for this type of transcriptional regulation is synapse-to-nucleus communication. Several studies suggest that the nuclear transport of proteins from synapses is involved in this signaling process, including evidence that synapses contain proteins with nuclear localization sequences and components of the nuclear import machinery. Here, we review the evidence for synapse-to-nucleus signaling by means of retrograde transport of proteins from distal processes. We discuss the mechanisms involved in their translocation and their role in the control of nuclear gene expression. Finally, we summarize the current thinking regarding the functional implications of nuclear signaling and address open questions in this evolving area of neuroscience.
Collapse
Affiliation(s)
- Bryen A Jordan
- Albert Einstein College of Medicine, Dominick P. Purpura Department of Neuroscience, Bronx, NY 10461, USA
| | | |
Collapse
|
44
|
Cgr11 encodes a secretory protein involved in cell adhesion. Eur J Cell Biol 2009; 88:521-9. [PMID: 19473726 DOI: 10.1016/j.ejcb.2009.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/06/2009] [Accepted: 04/20/2009] [Indexed: 11/22/2022] Open
Abstract
We performed comparative proteomic analyses of pituitary tumor-derived cell lines, and found a new protein, preliminarily called hydrophobestin, which was produced only in somatotrophic cells, MtT/S, but not in non-hormone-producing cells, MtT/E. Hydrophobestin is encoded by the cell growth regulatory gene, Cgr11, which is known to have growth-suppressive potential in several cell lines. We have now sought to investigate the underlying events responsible for cell growth inhibition by hydrophobestin. Immunocytochemisty revealed that hydrophobestin is localized in the Golgi apparatus of MtT/S cells and Cgr11-transfected MtT/E cells. The apparent molecular mass of the protein was determined by Westerm blot analysis of conditioned culture medium of MtT/S cells. Our data show that hydrophobestin is a secretory protein localized in the pituitary gland, adrenal gland, digestive tract, reproductive organs, and kidney. We also found that hydrophobestin promotes compact monolayer cell aggregates in PC12 cells transfected with Cgr11, however, non-transfected, vector- or EF-hand motif-deleted (DeltaEF) Cgr11-transfected PC12 cells cannot form compact cell colonies. An antibody recognizing EF-hand motifs showed strong staining in the intercellular space of both Cgr11-transfected PC12 cells and MtT/S cells (Cgr11-expressing cells). Our data suggest that hydrophobestin-mediated cell adhesion may regulate cell growth through compact cell attachment.
Collapse
|
45
|
Calneurons provide a calcium threshold for trans-Golgi network to plasma membrane trafficking. Proc Natl Acad Sci U S A 2009; 106:9093-8. [PMID: 19458041 DOI: 10.1073/pnas.0903001106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositol 4-OH kinase IIIbeta (PI-4Kbeta) is involved in the regulated local synthesis of phospholipids that are crucial for trans-Golgi network (TGN)-to-plasma membrane trafficking. In this study, we show that the calcium sensor proteins calneuron-1 and calneuron-2 physically associate with PI-4Kbeta, inhibit the enzyme profoundly at resting and low calcium levels, and negatively interfere with Golgi-to-plasma membrane trafficking. At high calcium levels this inhibition is released and PI-4Kbeta is activated via a preferential association with neuronal calcium sensor-1 (NCS-1). In accord to its supposed function as a filter for subthreshold Golgi calcium transients, neuronal overexpression of calneuron-1 enlarges the size of the TGN caused by a build-up of vesicle proteins and reduces the number of axonal Piccolo-Bassoon transport vesicles, large dense core vesicles that carry a set of essential proteins for the formation of the presynaptic active zone during development. A corresponding protein knockdown has the opposite effect. The opposing roles of calneurons and NCS-1 provide a molecular switch to decode local calcium transients at the Golgi and impose a calcium threshold for PI-4Kbeta activity and vesicle trafficking.
Collapse
|
46
|
Altered postsynaptic-density-levels of caldendrin in the para-chloroamphetamine-induced serotonin syndrome but not in the rat ketamine model of psychosis. Neurochem Res 2009; 34:1405-9. [PMID: 19224364 DOI: 10.1007/s11064-009-9925-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2009] [Indexed: 10/21/2022]
Abstract
Caldendrin is a synaptic calcium sensor protein that is tightly associated with the postsynaptic density (PSD). Previous work has shown that the association of the protein with the synapse is highly dynamic and is increased in an activity-dependent manner. In the present study the caldendrin-association with the postsynaptic cytomatrix was analyzed in animal models of psychosis and drug abuse induced neurotoxicity. Subchronic administration of the N-methyl-D-aspartate (NMDA)-receptor antagonist ketamine, serving as a model of NMDA-receptor hypofunction and schizophrenia showed no significant effect on the PSD-levels of caldendrin, indicating that NMDA-receptor activity is not required to keep caldendrin at the synapse. However, administration of high doses of the serotonergic neurotoxin p-chloroamphetamine (PCA) lead to significant changes in the association of caldendrin with the PSD. These results underscore the dynamic association of caldendrin with the PSD and suggest a role of this synaptic calcium sensor in the PCA-induced serotonin syndrome.
Collapse
|
47
|
McCue HV, Burgoyne RD, Haynes LP. Membrane targeting of the EF-hand containing calcium-sensing proteins CaBP7 and CaBP8. Biochem Biophys Res Commun 2009; 380:825-31. [PMID: 19338761 PMCID: PMC2706317 DOI: 10.1016/j.bbrc.2009.01.177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/25/2009] [Indexed: 11/17/2022]
Abstract
The CaBP family of EF-hand containing small Ca(2+)-binding proteins have recently emerged as important regulators of multiple targets essential to normal neuronal function in the mammalian central nervous system. Of particular interest are CaBP7 and CaBP8, abundantly expressed brain proteins that exhibit the greatest sequence divergence from other family members. In this study, we have analysed their sub-cellular localisations in a model neuronal (Neuro2A) cell line and show that both proteins exhibit a membrane distribution distinct from the other CaBPs and consistent with localisation to the trans-Golgi network (TGN). Furthermore, we show that their localisation to the TGN critically depends upon an unusual predicted C-terminal transmembrane domain that if deleted or disrupted has dramatic consequences for protein targeting. CaBP7 and 8, therefore, possess a targeting mechanism that is unique amongst the CaBPs that may contribute to differential functional Ca(2+)-sensing by these family members.
Collapse
|
48
|
Raven MA, Orton NC, Nassar H, Williams GA, Stell WK, Jacobs GH, Bech-Hansen NT, Reese BE. Early afferent signaling in the outer plexiform layer regulates development of horizontal cell morphology. J Comp Neurol 2008; 506:745-58. [DOI: 10.1002/cne.21526] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Dieterich DC, Karpova A, Mikhaylova M, Zdobnova I, König I, Landwehr M, Kreutz M, Smalla KH, Richter K, Landgraf P, Reissner C, Boeckers TM, Zuschratter W, Spilker C, Seidenbecher CI, Garner CC, Gundelfinger ED, Kreutz MR. Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biol 2008; 6:e34. [PMID: 18303947 PMCID: PMC2253627 DOI: 10.1371/journal.pbio.0060034] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 01/03/2008] [Indexed: 11/18/2022] Open
Abstract
NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-alpha to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor-induced cellular degeneration.
Collapse
Affiliation(s)
- Daniela C Dieterich
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Anna Karpova
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Marina Mikhaylova
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Irina Zdobnova
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Imbritt König
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Marco Landwehr
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Martin Kreutz
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Karl-Heinz Smalla
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Karin Richter
- Institute for Medical Neurobiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Landgraf
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Carsten Reissner
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Werner Zuschratter
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Christina Spilker
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Constanze I Seidenbecher
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Craig C Garner
- Department of Psychiatry and Behavioral Sciences, Nancy Pritzker Laboratory, Stanford University, Palo Alto, California, United States of America
| | - Eckart D Gundelfinger
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| | - Michael R Kreutz
- AG Molecular Mechanisms of Plasticity, Department of Neurochemistry and Molecular Biology, Leibniz-Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
50
|
Gulledge AT, Kawaguchi Y. Phasic cholinergic signaling in the hippocampus: functional homology with the neocortex? Hippocampus 2007; 17:327-32. [PMID: 17407133 DOI: 10.1002/hipo.20279] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acetylcholine (ACh) acts as a neurotransmitter in both the hippocampus and neocortex to facilitate learning, memory, and cognitive function. Here we show that transient muscarinic ACh receptor (mAChR) activation inhibits action potential generation in CA1, but not in CA3, pyramidal neurons via activation of an SK-type calcium-activated potassium conductance. Hyperpolarizing responses generated by focal ACh application near the somata of CA1 pyramidal neurons were blocked by atropine or the M1-like mAChR antagonist pirenzepine, but not by the M2-like mAChR antagonist methoctramine. Inhibitory cholinergic responses required intracellular calcium signaling, as evidenced by their sensitivity to depletion of internal calcium stores or internal calcium chelation. Cholinergic inhibition did not require GABAergic synaptic transmission, but was blocked by apamin, an SK channel antagonist. In contrast to inhibitory effects in CA1 neurons, ACh was primarily depolarizing, and enhanced action potential firing in CA3 pyramidal neurons. These results, when combined with recent data in neocortical neurons, suggest a functional homology in phasic cholinergic signaling in the hippocampus and neocortex whereby ACh preferentially inhibits those neurons in the lower cortical layers (CA1 and layer 5 neurons) that provide the majority of extracortical efferent projections.
Collapse
Affiliation(s)
- Allan T Gulledge
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.
| | | |
Collapse
|