1
|
Tetzlaff S, Hillebrand A, Drakoulis N, Gluhic Z, Maschmann S, Lyko P, Wicke S, Schmitz-Linneweber C. Small RNAs from mitochondrial genome recombination sites are incorporated into T. gondii mitoribosomes. eLife 2024; 13:e95407. [PMID: 38363119 PMCID: PMC10948144 DOI: 10.7554/elife.95407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The mitochondrial genomes of apicomplexans comprise merely three protein-coding genes, alongside a set of thirty to forty genes encoding small RNAs (sRNAs), many of which exhibit homologies to rRNA from E. coli. The expression status and integration of these short RNAs into ribosomes remains unclear and direct evidence for active ribosomes within apicomplexan mitochondria is still lacking. In this study, we conducted small RNA sequencing on the apicomplexan Toxoplasma gondii to investigate the occurrence and function of mitochondrial sRNAs. To enhance the analysis of sRNA sequencing outcomes, we also re-sequenced the T. gondii mitochondrial genome using an improved organelle enrichment protocol and Nanopore sequencing. It has been established previously that the T. gondii genome comprises 21 sequence blocks that undergo recombination among themselves but that their order is not entirely random. The enhanced coverage of the mitochondrial genome allowed us to characterize block combinations at increased resolution. Employing this refined genome for sRNA mapping, we find that many small RNAs originated from the junction sites between protein-coding blocks and rRNA sequence blocks. Surprisingly, such block border sRNAs were incorporated into polysomes together with canonical rRNA fragments and mRNAs. In conclusion, apicomplexan ribosomes are active within polysomes and are indeed assembled through the integration of sRNAs, including previously undetected sRNAs with merged mRNA-rRNA sequences. Our findings lead to the hypothesis that T. gondii's block-based genome organization enables the dual utilization of mitochondrial sequences as both messenger RNAs and ribosomal RNAs, potentially establishing a link between the regulation of rRNA and mRNA expression.
Collapse
Affiliation(s)
| | | | | | - Zala Gluhic
- Molecular Genetics, Humboldt University BerlinBerlinGermany
| | | | - Peter Lyko
- Biodiversity and Evolution, Humboldt University BerlinBerlinGermany
| | - Susann Wicke
- Biodiversity and Evolution, Humboldt University BerlinBerlinGermany
| | | |
Collapse
|
2
|
Shi Y, Jiang Y, Qiu H, Hu D, Song X. Mitochondrial dysfunction induced by bedaquiline as an anti-Toxoplasma alternative. Vet Res 2023; 54:123. [PMID: 38115043 PMCID: PMC10731829 DOI: 10.1186/s13567-023-01252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/29/2023] [Indexed: 12/21/2023] Open
Abstract
Toxoplasma gondii is a zoonotic parasite that infects one-third of the world's population and nearly all warm-blooded animals. Due to the complexity of T. gondii's life cycle, available treatment options have limited efficacy. Thus, there is an urgent need to develop new compounds or repurpose existing drugs with potent anti-Toxoplasma activity. This study demonstrates that bedaquiline (BDQ), an FDA-approved diarylquinoline antimycobacterial drug for the treatment of tuberculosis, potently inhibits the tachyzoites of T. gondii. At a safe concentration, BDQ displayed a dose-dependent inhibition on T. gondii growth with a half-maximal effective concentration (EC50) of 4.95 μM. Treatment with BDQ significantly suppressed the proliferation of T. gondii tachyzoites in the host cell, while the invasion ability of the parasite was not affected. BDQ incubation shrunk the mitochondrial structure and decreased the mitochondrial membrane potential and ATP level of T. gondii parasites. In addition, BDQ induced elevated ROS and led to autophagy in the parasite. By transcriptomic analysis, we found that oxidative phosphorylation pathway genes were significantly disturbed by BDQ-treated parasites. More importantly, BDQ significantly reduces brain cysts for the chronically infected mice. These results suggest that BDQ has potent anti-T. gondii activity and may impair its mitochondrial function by affecting proton transport. This study provides bedaquiline as a potential alternative drug for the treatment of toxoplasmosis, and our findings may facilitate the development of new effective drugs for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Yuehong Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yucong Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Haolong Qiu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
| |
Collapse
|
3
|
Rodriguez JB, Szajnman SH. An updated review of chemical compounds with anti-Toxoplasma gondii activity. Eur J Med Chem 2023; 262:115885. [PMID: 37871407 DOI: 10.1016/j.ejmech.2023.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.
Collapse
Affiliation(s)
- Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina.
| | - Sergio H Szajnman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Down the membrane hole: Ion channels in protozoan parasites. PLoS Pathog 2022; 18:e1011004. [PMID: 36580479 PMCID: PMC9799330 DOI: 10.1371/journal.ppat.1011004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
5
|
Huang M, Cao X, Jiang Y, Shi Y, Ma Y, Hu D, Song X. Evaluation of the Combined Effect of Artemisinin and Ferroptosis Inducer RSL3 against Toxoplasma gondii. Int J Mol Sci 2022; 24:ijms24010229. [PMID: 36613672 PMCID: PMC9820390 DOI: 10.3390/ijms24010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Toxoplasma gondii is a widespread intracellular pathogen that infects humans and a variety of animals. Dihydroartemisinin (DHA), an effective anti-malarial drug, has potential anti-T. gondii activity that induces ferroptosis in tumor cells, but the mechanism by which it kills T. gondii is not fully understood. In this study, the mechanism of DHA inhibiting T. gondii growth and its possible drug combinations are described. DHA potently inhibited T. gondii with a half-maximal effective concentration (EC50) of 0.22 μM. DHA significantly increased the ROS level of parasites and decreased the mitochondrial membrane potential, which could be reversed by ferroptosis inhibitors (DFO). Moreover, the ferroptosis inducer RSL3 inhibited T. gondii with an EC50 of 0.75 μM. In addition, RSL3 enhanced the DHA-induced ROS level, and the combination of DHA and RSL3 significantly increased the anti-Toxoplasma effect as compared to DHA alone. In summary, we found that DHA-induced ROS accumulation in tachyzoites may be an important cause of T. gondii growth inhibition. Furthermore, we found that the combination of DHA and RSL3 may be an alternative to toxoplasmosis. These results will provide a new strategy for anti-Toxoplasma drug screening and clinical medication guidance.
Collapse
Affiliation(s)
- Mao Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinru Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yucong Jiang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuehong Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yazhen Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Correspondence:
| |
Collapse
|
6
|
Maclean AE, Hayward JA, Huet D, van Dooren GG, Sheiner L. The mystery of massive mitochondrial complexes: the apicomplexan respiratory chain. Trends Parasitol 2022; 38:1041-1052. [PMID: 36302692 PMCID: PMC10434753 DOI: 10.1016/j.pt.2022.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.
Collapse
Affiliation(s)
- Andrew E Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - Diego Huet
- Center for Tropical & Emerging Diseases, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
7
|
Sleda MA, Li ZH, Behera R, Baierna B, Li C, Jumpathong J, Malwal SR, Kawamukai M, Oldfield E, Moreno SNJ. The Heptaprenyl Diphosphate Synthase (Coq1) Is the Target of a Lipophilic Bisphosphonate That Protects Mice against Toxoplasma gondii Infection. mBio 2022; 13:e0196622. [PMID: 36129297 PMCID: PMC9600589 DOI: 10.1128/mbio.01966-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Prenyldiphosphate synthases catalyze the reaction of allylic diphosphates with one or more isopentenyl diphosphate molecules to form compounds such as farnesyl diphosphate, used in, e.g., sterol biosynthesis and protein prenylation, as well as longer "polyprenyl" diphosphates, used in ubiquinone and menaquinone biosynthesis. Quinones play an essential role in electron transport and are associated with the inner mitochondrial membrane due to the presence of the polyprenyl group. In this work, we investigated the synthesis of the polyprenyl diphosphate that alkylates the ubiquinone ring precursor in Toxoplasma gondii, an opportunistic pathogen that causes serious disease in immunocompromised patients and the unborn fetus. The enzyme that catalyzes this early step of the ubiquinone synthesis is Coq1 (TgCoq1), and we show that it produces the C35 species heptaprenyl diphosphate. TgCoq1 localizes to the mitochondrion and is essential for in vitro T. gondii growth. We demonstrate that the growth defect of a T. gondii TgCoq1 mutant is rescued by complementation with a homologous TgCoq1 gene or with a (C45) solanesyl diphosphate synthase from Trypanosoma cruzi (TcSPPS). We find that a lipophilic bisphosphonate (BPH-1218) inhibits T. gondii growth at low-nanomolar concentrations, while overexpression of the TgCoq1 enzyme dramatically reduced growth inhibition by the bisphosphonate. Both the severe growth defect of the mutant and the inhibition by BPH-1218 were rescued by supplementation with a long-chain (C30) ubiquinone (UQ6). Importantly, BPH-1218 also protected mice against a lethal T. gondii infection. TgCoq1 thus represents a potential drug target that could be exploited for improved chemotherapy of toxoplasmosis. IMPORTANCE Millions of people are infected with Toxoplasma gondii, and the available treatment for toxoplasmosis is not ideal. Most of the drugs currently used are only effective for the acute infection, and treatment can trigger serious side effects requiring changes in the therapeutic approach. There is, therefore, a compelling need for safe and effective treatments for toxoplasmosis. In this work, we characterize an enzyme of the mitochondrion of T. gondii that can be inhibited by an isoprenoid pathway inhibitor. We present evidence that demonstrates that inhibition of the enzyme is linked to parasite death. In addition, the inhibitor can protect mice against a lethal dose of T. gondii. Our results thus reveal a promising chemotherapeutic target for the development of new medicines for toxoplasmosis.
Collapse
Affiliation(s)
- Melissa A. Sleda
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Ranjan Behera
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Baihetiya Baierna
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Catherine Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Jomkwan Jumpathong
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Satish R. Malwal
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Makoto Kawamukai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
Alday PH, Nilsen A, Doggett JS. Structure-activity relationships of Toxoplasma gondii cytochrome bc1 inhibitors. Expert Opin Drug Discov 2022; 17:997-1011. [PMID: 35772172 PMCID: PMC9561756 DOI: 10.1080/17460441.2022.2096588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Toxoplasma gondii is a prolific apicomplexan parasite that infects human and nonhuman animals worldwide and can cause severe brain and eye disease. Safer, more effective therapies for toxoplasmosis are needed. Cytochrome bc1 inhibitors are remarkably effective against toxoplasmosis and other apicomplexan-caused diseases. AREAS COVERED This work reviews T. gondii cytochrome bc1 inhibitors. Emphasis is placed on the structure-activity relationships of these inhibitors with regard to efficacy, pharmacokinetics, selectivity of T. gondii cytochrome bc1 over host, safety, and potential therapeutic strategies. EXPERT OPINION Cytochrome bc1 inhibitors are highly promising compounds for toxoplasmosis that have been effective in clinical and preclinical studies. Clinical experience with atovaquone previously validated cytochrome bc1 as a tractable drug target and, over the past decade, optimization of cytochrome bc1 inhibitors has resulted in improved bioavailability, metabolic stability, potency, blood-brain barrier penetration, and selectivity for the T. gondii cytochrome bc1 over the mammalian bc1. Recent studies have demonstrated preclinical safety, identified novel therapeutic strategies for toxoplasmosis using synergistic combinations or long-acting administration and provided insight into their role in chronic infection. This research has identified drug candidates that are more effective than clinically used drugs in preclinical measures of efficacy.
Collapse
Affiliation(s)
- Phil Holland Alday
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron Nilsen
- Portland VA Medical Center, Portland, Oregon, USA
- Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
9
|
Huffman AM, Ayariga JA, Napier A, Robertson BK, Abugri DA. Inhibition of Toxoplasma gondii Growth by Dihydroquinine and Its Mechanisms of Action. Front Cell Infect Microbiol 2022; 12:852889. [PMID: 35646733 PMCID: PMC9131874 DOI: 10.3389/fcimb.2022.852889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
Toxoplasma gondii is a zoonotic parasite that infects the brain of humans and causes cerebral toxoplasmosis. The recommended drugs for the treatment or prophylaxis of toxoplasmosis are pyrimethamine (PY) and sulfadiazine (SZ), which have serious side effects. Other drugs available for toxoplasmosis are poorly tolerated. Dihydroquinine (DHQ) is a compound closely related to quinine-based drugs that have been shown to inhibit Plasmodium falciparum and Plasmodium berghei in addition to its anti-arrhythmia properties. However, little is known about the effect of DHQ in T. gondii growth and its mechanism of action in vitro. In this study, we report the anti-Toxoplasma and anti-invasion properties of DHQ. DHQ significantly inhibited T. gondii tachyzoite growth with IC50s values of 0.63, 0.67, and 0.00137 µM at 24, 48, and 72 h, respectively. Under similar conditions, SZ and PY, considered as the gold standard drugs for the treatment of toxoplasmosis, had IC50s values of 1.29, 1.55, and 0.95 and 3.19, 3.52, and 2.42 µM, respectively. The rapid dose-dependent inhibition of T. gondii tachyzoites by DHQ compared to the standard drugs (SZ and PY) indicates that DHQ has high selective parasiticidal effects against tachyzoite proliferation. Remarkably, DHQ had an excellent selectivity index (SI) of 149- and 357-fold compared to 24- and 143-fold for PY and SZ, respectively, using fibroblast cells. In addition, DHQ disrupted T. gondii tachyzoite mitochondrial membrane potential and adenosine triphosphate (ATP) production and elicited high reactive oxygen species (ROS) generation. Taking all these findings together, DHQ promises to be an effective and safe lead for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Aarin M. Huffman
- Department of Biology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| | - Joseph A. Ayariga
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- Biomedical Engineering Program, Alabama State University, Montgomery, AL, United States
| | - Audrey Napier
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Boakai K. Robertson
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- Microbiology PhD Program, College of Science, Technology, Engineering and Mathematics, Montgomery, AL, United States
| | - Daniel A. Abugri
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
- Microbiology PhD Program, College of Science, Technology, Engineering and Mathematics, Montgomery, AL, United States
- Laboratory of Ethnomedicine, Parasitology, and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Montgomery, AL, United States
| |
Collapse
|
10
|
Usey MM, Huet D. Parasite powerhouse: A review of the Toxoplasma gondii mitochondrion. J Eukaryot Microbiol 2022; 69:e12906. [PMID: 35315174 PMCID: PMC9490983 DOI: 10.1111/jeu.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Toxoplasma gondii is a member of the apicomplexan phylum, a group of single-celled eukaryotic parasites that cause significant human morbidity and mortality around the world. T. gondii harbors two organelles of endosymbiotic origin: a non-photosynthetic plastid, known as the apicoplast, and a single mitochondrion derived from the ancient engulfment of an α-proteobacterium. Due to excitement surrounding the novelty of the apicoplast, the T. gondii mitochondrion was, to a certain extent, overlooked for about two decades. However, recent work has illustrated that the mitochondrion is an essential hub of apicomplexan-specific biology. Development of novel techniques, such as cryo-electron microscopy, complexome profiling, and next-generation sequencing have led to a renaissance in mitochondrial studies. This review will cover what is currently known about key features of the T. gondii mitochondrion, ranging from its genome to protein import machinery and biochemical pathways. Particular focus will be given to mitochondrial features that diverge significantly from the mammalian host, along with discussion of this important organelle as a drug target.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgiaUSA,Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGeorgiaUSA
| | - Diego Huet
- Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensGeorgiaUSA,Department of Pharmaceutical and Biomedical SciencesUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
11
|
Alday PH, McConnell EV, Boitz Zarella JM, Dodean RA, Kancharla P, Kelly JX, Doggett JS. Acridones Are Highly Potent Inhibitors of Toxoplasma gondii Tachyzoites. ACS Infect Dis 2021; 7:1877-1884. [PMID: 33723998 DOI: 10.1021/acsinfecdis.1c00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acridone derivatives, which have been shown to have in vitro and in vivo activity against Plasmodium spp, inhibit Toxoplasma gondii proliferation at picomolar concentrations. Using enzymatic assays, we show that acridones inhibit both T. gondii cytochrome bc1 and dihydroorotate dehydrogenase and identify acridones that bind preferentially to the Qi site of cytochrome bc1. We identify acridones that have efficacy in a murine model of systemic toxoplasmosis. Acridones have potent activity against T. gondii and represent a promising new class of preclinical compounds.
Collapse
Affiliation(s)
- P. Holland Alday
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Erin V. McConnell
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Jan M. Boitz Zarella
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Rozalia A. Dodean
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| | - Papireddy Kancharla
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - Jane X. Kelly
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
- Department of Chemistry, Portland State University, Portland, Oregon 97201, United States
| | - J. Stone Doggett
- Portland VA Medical Center, 3710 SW US Veterans Hospital Road, Portland, Oregon 97239, United States
| |
Collapse
|
12
|
Maclean AE, Bridges HR, Silva MF, Ding S, Ovciarikova J, Hirst J, Sheiner L. Complexome profile of Toxoplasma gondii mitochondria identifies divergent subunits of respiratory chain complexes including new subunits of cytochrome bc1 complex. PLoS Pathog 2021; 17:e1009301. [PMID: 33651838 PMCID: PMC7987180 DOI: 10.1371/journal.ppat.1009301] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/23/2021] [Accepted: 01/11/2021] [Indexed: 12/30/2022] Open
Abstract
The mitochondrial electron transport chain (mETC) and F1Fo-ATP synthase are of central importance for energy and metabolism in eukaryotic cells. The Apicomplexa, important pathogens of humans causing diseases such as toxoplasmosis and malaria, depend on their mETC in every known stage of their complicated life cycles. Here, using a complexome profiling proteomic approach, we have characterised the Toxoplasma mETC complexes and F1Fo-ATP synthase. We identified and assigned 60 proteins to complexes II, IV and F1Fo-ATP synthase of Toxoplasma, of which 16 have not been identified previously. Notably, our complexome profile elucidates the composition of the Toxoplasma complex III, the target of clinically used drugs such as atovaquone. We identified two new homologous subunits and two new parasite-specific subunits, one of which is broadly conserved in myzozoans. We demonstrate all four proteins are essential for complex III stability and parasite growth, and show their depletion leads to decreased mitochondrial potential, supporting their assignment as complex III subunits. Our study highlights the divergent subunit composition of the apicomplexan mETC and F1Fo-ATP synthase complexes and sets the stage for future structural and drug discovery studies.
Collapse
Affiliation(s)
- Andrew E. Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Hannah R. Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Mariana F. Silva
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Hayward JA, Rajendran E, Zwahlen SM, Faou P, van Dooren GG. Divergent features of the coenzyme Q:cytochrome c oxidoreductase complex in Toxoplasma gondii parasites. PLoS Pathog 2021; 17:e1009211. [PMID: 33524071 PMCID: PMC7877769 DOI: 10.1371/journal.ppat.1009211] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/11/2021] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
The mitochondrion is critical for the survival of apicomplexan parasites. Several major anti-parasitic drugs, such as atovaquone and endochin-like quinolones, act through inhibition of the mitochondrial electron transport chain at the coenzyme Q:cytochrome c oxidoreductase complex (Complex III). Despite being an important drug target, the protein composition of Complex III of apicomplexan parasites has not been elucidated. Here, we undertake a mass spectrometry-based proteomic analysis of Complex III in the apicomplexan Toxoplasma gondii. Along with canonical subunits that are conserved across eukaryotic evolution, we identify several novel or highly divergent Complex III components that are conserved within the apicomplexan lineage. We demonstrate that one such subunit, which we term TgQCR11, is critical for parasite proliferation, mitochondrial oxygen consumption and Complex III activity, and establish that loss of this protein leads to defects in Complex III integrity. We conclude that the protein composition of Complex III in apicomplexans differs from that of the mammalian hosts that these parasites infect.
Collapse
Affiliation(s)
- Jenni A. Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - Esther Rajendran
- Research School of Biology, Australian National University, Canberra, Australia
| | - Soraya M. Zwahlen
- Research School of Biology, Australian National University, Canberra, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Giel G. van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
14
|
Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, Amunts A. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun 2021; 12:120. [PMID: 33402698 PMCID: PMC7785744 DOI: 10.1038/s41467-020-20381-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial ATP synthase plays a key role in inducing membrane curvature to establish cristae. In Apicomplexa causing diseases such as malaria and toxoplasmosis, an unusual cristae morphology has been observed, but its structural basis is unknown. Here, we report that the apicomplexan ATP synthase assembles into cyclic hexamers, essential to shape their distinct cristae. Cryo-EM was used to determine the structure of the hexamer, which is held together by interactions between parasite-specific subunits in the lumenal region. Overall, we identified 17 apicomplexan-specific subunits, and a minimal and nuclear-encoded subunit-a. The hexamer consists of three dimers with an extensive dimer interface that includes bound cardiolipins and the inhibitor IF1. Cryo-ET and subtomogram averaging revealed that hexamers arrange into ~20-megadalton pentagonal pyramids in the curved apical membrane regions. Knockout of the linker protein ATPTG11 resulted in the loss of pentagonal pyramids with concomitant aberrantly shaped cristae. Together, this demonstrates that the unique macromolecular arrangement is critical for the maintenance of cristae morphology in Apicomplexa.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Rasmus Kock Flygaard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Alice Lacombe
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Paula Fernandes
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden.
| |
Collapse
|
15
|
Kloehn J, Harding CR, Soldati-Favre D. Supply and demand-heme synthesis, salvage and utilization by Apicomplexa. FEBS J 2020; 288:382-404. [PMID: 32530125 DOI: 10.1111/febs.15445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023]
Abstract
The Apicomplexa phylum groups important human and animal pathogens that cause severe diseases, encompassing malaria, toxoplasmosis, and cryptosporidiosis. In common with most organisms, apicomplexans rely on heme as cofactor for several enzymes, including cytochromes of the electron transport chain. This heme derives from de novo synthesis and/or the development of uptake mechanisms to scavenge heme from their host. Recent studies have revealed that heme synthesis is essential for Toxoplasma gondii tachyzoites, as well as for the mosquito and liver stages of Plasmodium spp. In contrast, the erythrocytic stages of the malaria parasites rely on scavenging heme from the host red blood cell. The unusual heme synthesis pathway in Apicomplexa spans three cellular compartments and comprises enzymes of distinct ancestral origin, providing promising drug targets. Remarkably given the requirement for heme, T. gondii can tolerate the loss of several heme synthesis enzymes at a high fitness cost, while the ferrochelatase is essential for survival. These findings indicate that T. gondii is capable of salvaging heme precursors from its host. Furthermore, heme is implicated in the activation of the key antimalarial drug artemisinin. Recent findings established that a reduction in heme availability corresponds to decreased sensitivity to artemisinin in T. gondii and Plasmodium falciparum, providing insights into the possible development of combination therapies to tackle apicomplexan parasites. This review describes the microeconomics of heme in Apicomplexa, from supply, either from de novo synthesis or scavenging, to demand by metabolic pathways, including the electron transport chain.
Collapse
Affiliation(s)
- Joachim Kloehn
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Switzerland
| | - Clare R Harding
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, UK
| | | |
Collapse
|
16
|
McPhillie MJ, Zhou Y, Hickman MR, Gordon JA, Weber CR, Li Q, Lee PJ, Amporndanai K, Johnson RM, Darby H, Woods S, Li ZH, Priestley RS, Ristroph KD, Biering SB, El Bissati K, Hwang S, Hakim FE, Dovgin SM, Lykins JD, Roberts L, Hargrave K, Cong H, Sinai AP, Muench SP, Dubey JP, Prud'homme RK, Lorenzi HA, Biagini GA, Moreno SN, Roberts CW, Antonyuk SV, Fishwick CWG, McLeod R. Potent Tetrahydroquinolone Eliminates Apicomplexan Parasites. Front Cell Infect Microbiol 2020; 10:203. [PMID: 32626661 PMCID: PMC7311950 DOI: 10.3389/fcimb.2020.00203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/16/2020] [Indexed: 12/29/2022] Open
Abstract
Apicomplexan infections cause substantial morbidity and mortality, worldwide. New, improved therapies are needed. Herein, we create a next generation anti-apicomplexan lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and established chronic murine infections. Moreover, JAG21 treatment leads to 100% survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival. Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis and malaria.
Collapse
Affiliation(s)
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Mark R. Hickman
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James A. Gordon
- School of Chemistry, The University of Leeds, Leeds, United Kingdom
| | | | - Qigui Li
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Patty J. Lee
- Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Kangsa Amporndanai
- Department of Biochemistry and Systems Biology, Faculty of Health and Life Sciences, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | - Rachel M. Johnson
- School of Biomedical Sciences, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, United Kingdom
| | - Heather Darby
- School of Chemistry, The University of Leeds, Leeds, United Kingdom
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Zhu-hong Li
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Richard S. Priestley
- Department of Tropical Disease Biology, Research Center for Drugs and Diagnostics, The Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kurt D. Ristroph
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Scott B. Biering
- Department of Pathology, The University of Chicago, Chicago, IL, United States
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Seungmin Hwang
- Department of Pathology, The University of Chicago, Chicago, IL, United States
| | - Farida Esaa Hakim
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Sarah M. Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Joseph D. Lykins
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
| | - Lucy Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Kerrie Hargrave
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Hua Cong
- School of Chemistry, The University of Leeds, Leeds, United Kingdom
| | - Anthony P. Sinai
- Microbiology, Immunology and Molecular Genetics, The University of Kentucky College of Medicine, Lexington, KY, United States
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, United Kingdom
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory (APDL), USDA-ARS, Beltsville, MD, United States
| | - Robert K. Prud'homme
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, J Craig Venter Institute, Rockville, MD, United States
| | - Giancarlo A. Biagini
- Department of Tropical Disease Biology, Research Center for Drugs and Diagnostics, The Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Silvia N. Moreno
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, The University of Strathclyde, Glasgow, United Kingdom
| | - Svetlana V. Antonyuk
- Department of Biochemistry and Systems Biology, Faculty of Health and Life Sciences, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, United Kingdom
| | | | - Rima McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL, United States
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Jian C, Fu J, Cheng X, Shen LJ, Ji YX, Wang X, Pan S, Tian H, Tian S, Liao R, Song K, Wang HP, Zhang X, Wang Y, Huang Z, She ZG, Zhang XJ, Zhu L, Li H. Low-Dose Sorafenib Acts as a Mitochondrial Uncoupler and Ameliorates Nonalcoholic Steatohepatitis. Cell Metab 2020; 31:892-908.e11. [PMID: 32375062 PMCID: PMC9375823 DOI: 10.1016/j.cmet.2020.04.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming one of the leading causes of hepatocellular carcinoma (HCC). Sorafenib is the only first-line therapy for advanced HCC despite its serious adverse effects. Here, we report that at an equivalent of approximately one-tenth the clinical dose for HCC, sorafenib treatment effectively prevents the progression of NASH in both mice and monkeys without any observed significant adverse events. Mechanistically, sorafenib's benefit in NASH is independent of its canonical kinase targets in HCC, but involves the induction of mild mitochondrial uncoupling and subsequent activation of AMP-activated protein kinase (AMPK). Collectively, our findings demonstrate a previously unappreciated therapeutic effect and signaling mechanism of low-dose sorafenib treatment in NASH. We envision that this new therapeutic strategy for NASH has the potential to translate into a beneficial anti-NASH therapy with fewer adverse events than is observed in the drug's current use in HCC.
Collapse
Affiliation(s)
- Chongshu Jian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Jiajun Fu
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xu Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Li-Jun Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaoming Wang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shan Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Han Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Song Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Rufang Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hai-Ping Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xin Zhang
- Institute of Model Animal of Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zan Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China
| | - Xiao-Jing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Lihua Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Model Animal of Wuhan University, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
18
|
Krishnan A, Kloehn J, Lunghi M, Chiappino-Pepe A, Waldman BS, Nicolas D, Varesio E, Hehl A, Lourido S, Hatzimanikatis V, Soldati-Favre D. Functional and Computational Genomics Reveal Unprecedented Flexibility in Stage-Specific Toxoplasma Metabolism. Cell Host Microbe 2020; 27:290-306.e11. [PMID: 31991093 DOI: 10.1016/j.chom.2020.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/02/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022]
Abstract
To survive and proliferate in diverse host environments with varying nutrient availability, the obligate intracellular parasite Toxoplasma gondii reprograms its metabolism. We have generated and curated a genome-scale metabolic model (iTgo) for the fast-replicating tachyzoite stage, harmonized with experimentally observed phenotypes. To validate the importance of four metabolic pathways predicted by the model, we have performed in-depth in vitro and in vivo phenotyping of mutant parasites including targeted metabolomics and CRISPR-Cas9 fitness screening of all known metabolic genes. This led to unexpected insights into the remarkable flexibility of the parasite, addressing the dependency on biosynthesis or salvage of fatty acids (FAs), purine nucleotides (AMP and GMP), a vitamin (pyridoxal-5P), and a cofactor (heme) in both the acute and latent stages of infection. Taken together, our experimentally validated metabolic network leads to a deeper understanding of the parasite's biology, opening avenues for the development of therapeutic intervention against apicomplexans.
Collapse
Affiliation(s)
- Aarti Krishnan
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Joachim Kloehn
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Matteo Lunghi
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Anush Chiappino-Pepe
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | | - Damien Nicolas
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Emmanuel Varesio
- School of Pharmaceutical Sciences Geneva-Lausanne (EPGL), Geneva 1211, Switzerland; Mass Spectrometry Core Facility (MZ 2.0), University of Geneva, Geneva 1211, Switzerland
| | - Adrian Hehl
- Institute of Parasitology, University of Zürich, Zürich 8057, Switzerland
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology & Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland.
| |
Collapse
|
19
|
Enkai S, Inaoka DK, Kouguchi H, Irie T, Yagi K, Kita K. Mitochondrial complex III in larval stage of Echinococcus multilocularis as a potential chemotherapeutic target and in vivo efficacy of atovaquone against primary hydatid cysts. Parasitol Int 2019; 75:102004. [PMID: 31678356 DOI: 10.1016/j.parint.2019.102004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Echinococcus multilocularis employs aerobic and anaerobic respiration pathways for its survival in the specialized environment of the host. Under anaerobic conditions, fumarate respiration has been identified as a promising target for drug development against E. multilocularis larvae, although the relevance of oxidative phosphorylation in its survival remains unclear. Here, we focused on the inhibition of mitochondrial cytochrome bc1 complex (complex III) and evaluated aerobic respiratory activity using mitochondrial fractions from E. multilocularis protoscoleces. An enzymatic assay revealed that the mitochondrial fractions possessed NADH-cytochrome c reductase (mitochondrial complexes I and III) and succinate-cytochrome c reductase (mitochondrial complexes II and III) activities in the aerobic pathway. Enzymatic analysis showed that atovaquone, a commercially available anti-malarial drug, inhibited mitochondrial complex III at 1.5 nM (IC50). In addition, culture experiments revealed the ability of atovaquone to kill protoscoleces under aerobic conditions, but not under anaerobic conditions, indicating that protoscoleces altered their respiration system to oxidative phosphorylation or fumarate respiration depending on the oxygen supply. Furthermore, combined administration of atovaquone with atpenin A5, a quinone binding site inhibitor of complex II, completely killed protoscoleces in the culture. Thus, inhibition of both complex II and complex III was essential for strong antiparasitic effect on E. multilocularis. Additionally, we demonstrated that oral administration of atovaquone significantly reduced primary alveolar hydatid cyst development in the mouse liver, compared with the untreated control, indicating that complex III is a promising target for development of anti-echinococcal drug.
Collapse
Affiliation(s)
- Shigehiro Enkai
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hirokazu Kouguchi
- Department of Infectious Diseases, Hokkaido Institute of Public Health, N19 W12, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan
| | - Takao Irie
- Department of Infectious Diseases, Hokkaido Institute of Public Health, N19 W12, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan
| | - Kinpei Yagi
- Department of Infectious Diseases, Hokkaido Institute of Public Health, N19 W12, Kita-Ku, Sapporo, Hokkaido 060-0819, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
20
|
Same same, but different: Uncovering unique features of the mitochondrial respiratory chain of apicomplexans. Mol Biochem Parasitol 2019; 232:111204. [DOI: 10.1016/j.molbiopara.2019.111204] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023]
|
21
|
Lacombe A, Maclean AE, Ovciarikova J, Tottey J, Mühleip A, Fernandes P, Sheiner L. Identification of the
Toxoplasma gondii
mitochondrial ribosome, and characterisation of a protein essential for mitochondrial translation. Mol Microbiol 2019; 112:1235-1252. [PMID: 31339607 PMCID: PMC6851545 DOI: 10.1111/mmi.14357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2019] [Indexed: 01/20/2023]
Abstract
Apicomplexan parasites cause diseases such as malaria and toxoplasmosis. The apicomplexan mitochondrion shows striking differences from common model organisms, including fundamental processes such as mitochondrial translation. Despite evidence that mitochondrial translation is essential for parasite survival, it is largely understudied. Progress has been restricted by the absence of functional assays to detect apicomplexan mitochondrial translation, a lack of knowledge of proteins involved in the process and the inability to identify and detect mitoribosomes. We report the localization of 12 new mitochondrial proteins, including 6 putative mitoribosomal proteins. We demonstrate the integration of three mitoribosomal proteins in macromolecular complexes, and provide evidence suggesting these are apicomplexan mitoribosomal subunits, detected here for the first time. Finally, a new analytical pipeline detected defects in mitochondrial translation upon depletion of the small subunit protein 35 (TgmS35), while other mitochondrial functions remain unaffected. Our work lays a foundation for the study of apicomplexan mitochondrial translation.
Collapse
Affiliation(s)
- Alice Lacombe
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Andrew E. Maclean
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Julie Tottey
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
- UMR 1282 ISP INRA‐Université François Rabelais de Tours Nouzilly France
| | - Alexander Mühleip
- Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden
| | - Paula Fernandes
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| |
Collapse
|
22
|
Mastud P, Patankar S. An ambiguous N-terminus drives the dual targeting of an antioxidant protein Thioredoxin peroxidase (TgTPx1/2) to endosymbiotic organelles in Toxoplasma gondii. PeerJ 2019; 7:e7215. [PMID: 31346496 PMCID: PMC6642795 DOI: 10.7717/peerj.7215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022] Open
Abstract
Toxoplasma gondii harbors two endosymbiotic organelles: a relict plastid, the apicoplast, and a mitochondrion. The parasite expresses an antioxidant protein, thioredoxin peroxidase 1/2 (TgTPx1/2), that is dually targeted to these organelles. Nuclear-encoded proteins such as TgTPx1/2 are trafficked to the apicoplast via a secretory route through the endoplasmic reticulum (ER) and to the mitochondrion via a non-secretory pathway comprising of translocon uptake. Given the two distinct trafficking pathways for localization to the two organelles, the signals in TgTPx1/2 for this dual targeting are open areas of investigation. Here we show that the signals for apicoplast and mitochondrial trafficking lie in the N-terminal 50 amino acids of the protein and are overlapping. Interestingly, mutational analysis of the overlapping stretch shows that despite this overlap, the signals for individual organellar uptake can be easily separated. Further, deletions in the N-terminus also reveal a 10 amino acid stretch that is responsible for targeting the protein from punctate structures surrounding the apicoplast into the organelle itself. Collectively, results presented in this report suggest that an ambiguous signal sequence for organellar uptake combined with a hierarchy of recognition by the protein trafficking machinery drives the dual targeting of TgTPx1/2.
Collapse
Affiliation(s)
- Pragati Mastud
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
23
|
Sánchez-Sánchez R, Vázquez P, Ferre I, Ortega-Mora LM. Treatment of Toxoplasmosis and Neosporosis in Farm Ruminants: State of Knowledge and Future Trends. Curr Top Med Chem 2019; 18:1304-1323. [PMID: 30277158 PMCID: PMC6340160 DOI: 10.2174/1568026618666181002113617] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Toxoplasmosis and neosporosis are closely related protozoan diseases that lead to important economic impacts in farm ruminants. Toxoplasma gondii infection mainly causes reproductive failure in small ruminants and is a widespread zoonosis, whereas Neospora caninum infection is one of the most important causes of abortion in cattle worldwide. Vaccination has been considered the most economic measure for controlling these diseases. However, despite vaccine development efforts, only a live-attenuated T. gondii vaccine has been licensed for veterinary use, and no promising vaccines against ne-osporosis have been developed; therefore, vaccine development remains a key goal. Additionally, drug therapy could be a valuable strategy for disease control in farm ruminants, as several drugs that limit T. gondii and N. caninum proliferation and dissemination have been evaluated. This approach may also be relevant to performing an initial drug screening for potential human therapy for zoonotic parasites. Treat-ments can be applied against infections in adult ruminants to minimize the outcomes of a primo-infection or the reactivation of a chronic infection during gestation or in newborn ruminants to avoid infection chronification. In this review, the current status of drug development against toxoplasmosis and neosporo-sis in farm ruminants is presented, and in an effort to promote additional treatment options, prospective drugs that have shown efficacy in vitro and in laboratory animal models of toxoplasmosis and neosporosis are examined
Collapse
Affiliation(s)
- Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Patricia Vázquez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
24
|
Shukla A, Olszewski KL, Llinás M, Rommereim LM, Fox BA, Bzik DJ, Xia D, Wastling J, Beiting D, Roos DS, Shanmugam D. Glycolysis is important for optimal asexual growth and formation of mature tissue cysts by Toxoplasma gondii. Int J Parasitol 2018; 48:955-968. [PMID: 30176233 DOI: 10.1016/j.ijpara.2018.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022]
Abstract
Toxoplasma gondii can grow and replicate using either glucose or glutamine as the major carbon source. Here, we have studied the essentiality of glycolysis in the tachyzoite and bradyzoite stages of T. gondii, using transgenic parasites that lack a functional hexokinase gene (Δhk) in RH (Type-1) and Prugniaud (Type-II) strain parasites. Tachyzoite stage Δhk parasites exhibit a fitness defect similar to that reported previously for the major glucose transporter mutant, and remain virulent in mice. However, although Prugniaud strain Δhk tachyzoites were capable of transforming into bradyzoites in vitro, they were severely compromised in their ability to make mature bradyzoite cysts in the brain tissue of mice. Isotopic labelling studies reveal that glucose-deprived tacyzoites utilise glutamine to replenish glycolytic and pentose phosphate pathway intermediates via gluconeogenesis. Interestingly, while glutamine-deprived intracellular Δhk tachyzoites continued to replicate, extracellular parasites were unable to efficiently invade host cells. Further, studies on mutant tachyzoites lacking a functional phosphoenolpyruvate carboxykinase (Δpepck1) revealed that glutaminolysis is the sole source of gluconeogenic flux in glucose-deprived parasites. In addition, glutaminolysis is essential for sustaining oxidative phosphorylation in Δhk parasites, while wild type (wt) and Δpepck1 parasites can obtain ATP from either glycolysis or oxidative phosphorylation. This study provides insights into the role of nutrient metabolism during asexual propagation and development of T. gondii, and validates the versatile nature of central carbon and energy metabolism in this parasite.
Collapse
Affiliation(s)
- Anurag Shukla
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | | | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Department of Chemistry, Huck Center for Malaria Research, The Pennsylvania State University, W126 Millennium Science Complex, University Park, PA, USA
| | - Leah M Rommereim
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Barbara A Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - David J Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Dong Xia
- The Royal Veterinary College, London NW1 0TU, UK
| | - Jonathan Wastling
- Faculty of Natural Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Daniel Beiting
- School of Veterinary Medicine, Dept. of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Roos
- Department of Biology and Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
25
|
Huet D, Rajendran E, van Dooren GG, Lourido S. Identification of cryptic subunits from an apicomplexan ATP synthase. eLife 2018; 7:e38097. [PMID: 30204085 PMCID: PMC6133553 DOI: 10.7554/elife.38097] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/17/2018] [Indexed: 01/22/2023] Open
Abstract
The mitochondrial ATP synthase is a macromolecular motor that uses the proton gradient to generate ATP. Proper ATP synthase function requires a stator linking the catalytic and rotary portions of the complex. However, sequence-based searches fail to identify genes encoding stator subunits in apicomplexan parasites like Toxoplasma gondii or the related organisms that cause malaria. Here, we identify 11 previously unknown subunits from the Toxoplasma ATP synthase, which lack homologs outside the phylum. Modeling suggests that two of them, ICAP2 and ICAP18, are distantly related to mammalian stator subunits. Our analysis shows that both proteins form part of the ATP synthase complex. Depletion of ICAP2 leads to aberrant mitochondrial morphology, decreased oxygen consumption, and disassembly of the complex, consistent with its role as an essential component of the Toxoplasma ATP synthase. Our findings highlight divergent features of the central metabolic machinery in apicomplexans, which may reveal new therapeutic opportunities.
Collapse
Affiliation(s)
- Diego Huet
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Esther Rajendran
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Giel G van Dooren
- Research School of BiologyAustralian National UniversityCanberraAustralia
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusetts, United States
| |
Collapse
|
26
|
Hortua Triana MA, Márquez-Nogueras KM, Vella SA, Moreno SNJ. Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1846-1856. [PMID: 30992126 DOI: 10.1016/j.bbamcr.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii has a complex life cycle involving different hosts and is dependent on fast responses, as the parasite reacts to changing environmental conditions. T. gondii causes disease by lysing the host cells that it infects and it does this by reiterating its lytic cycle, which consists of host cell invasion, replication inside the host cell, and egress causing host cell lysis. Calcium ion (Ca2+) signaling triggers activation of molecules involved in the stimulation and enhancement of each step of the parasite lytic cycle. Ca2+ signaling is essential for the cellular and developmental changes that support T. gondii parasitism. The characterization of the molecular players and pathways directly activated by Ca2+ signaling in Toxoplasma is sketchy and incomplete. The evolutionary distance between Toxoplasma and other eukaryotic model systems makes the comparison sometimes not informative. The advent of new genomic information and new genetic tools applicable for studying Toxoplasma biology is rapidly changing this scenario. The Toxoplasma genome reveals the presence of many genes potentially involved in Ca2+ signaling, even though the role of most of them is not known. The use of Genetically Encoded Calcium Indicators (GECIs) has allowed studies on the role of novel calcium-related proteins on egress, an essential step for the virulence and dissemination of Toxoplasma. In addition, the discovery of new Ca2+ players is generating novel targets for drugs, vaccines, and diagnostic tools and a better understanding of the biology of these parasites.
Collapse
Affiliation(s)
| | | | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
27
|
Salunke R, Mourier T, Banerjee M, Pain A, Shanmugam D. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii. PLoS Biol 2018; 16:e2006128. [PMID: 30005062 PMCID: PMC6059495 DOI: 10.1371/journal.pbio.2006128] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/25/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial F-type ATP synthase, a multisubunit nanomotor, is critical for maintaining cellular ATP levels. In T. gondii and other apicomplexan parasites, many subunit components necessary for proper assembly and functioning of this enzyme appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomeric (approximately 600 kDa) and dimeric (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits a, b, and d can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid, and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex could facilitate the development of novel antiparasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.
Collapse
Affiliation(s)
- Rahul Salunke
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Tobias Mourier
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| |
Collapse
|
28
|
Awadi A. Host species and pathogenicity effects in the evolution of the mitochondrial genomes of Eimeria species (Apicomplexa; Coccidia; Eimeriidae). ACTA ACUST UNITED AC 2017; 24:13. [PMID: 29299440 PMCID: PMC5740889 DOI: 10.1186/s40709-017-0070-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/14/2017] [Indexed: 11/10/2022]
Abstract
Background Mitochondria are fundamental organelles responsible for cellular metabolism and energy production in eukaryotes via the oxidative phosphorylation pathway. Mitochondrial DNA is often used in population and species studies with the assumption of neutral evolution. However, evidence of positive selection in mitochondrial coding genes of various animal species has accumulated suggesting that amino acid changes in mtDNA might be adaptive. The functional and physiological implications of the inferred positively selected sites are usually unknown and are only evaluated based on available structural and functional models. Such studies are absent in unicellular organisms that show several crucial differences to the electron transport chain of animal mitochondria. In the present study, we explored Eimeria mitogenomes for positive selection. We also tested for association between mtDNA polymorphism and environmental variation (i.e. host species), parasite life cycle (i.e. sporulation period), and efficient host cell invasion (i.e. pathogenicity, prepatent period). Findings We used site- and branch-site tests to estimate the extent of purifying and positive selection at each site and each lineage of several Eimeria parasite mitogenomes retrieved from GenBank. We founded sixteen codons in the three mtDNA-encoded proteins to be under positive selection compared to a strong purifying selection. Variation in the ratios of non-synonymous to synonymous changes of the studied parasites was associated with their different host species (F = 13.748; p < 0.001), whereas pathogenicity levels were associated with both synonymous and non-synonymous changes. This association was also confirmed by the multiple regression analysis. Conclusions Our results suggest that host species and pathogenicity are important factors that might shape mitochondrial variation in Eimeria parasites. This supports the important role of mtDNA variations in the evolution and adaptation of these parasites.
Collapse
Affiliation(s)
- Asma Awadi
- UR Génomique des Insectes Ravageurs des Cultures d'intérêt agronomique, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| |
Collapse
|
29
|
Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity. PLoS One 2017; 12:e0188040. [PMID: 29141004 PMCID: PMC5687708 DOI: 10.1371/journal.pone.0188040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/31/2017] [Indexed: 11/19/2022] Open
Abstract
The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma, reveals a novel mechanism for atovaquone resistance, and exposes the physiological plasticity of this important human pathogen.
Collapse
|
30
|
Liu X, Ma Q, Sun X, Lu M, Ehsan M, Hasan MW, Xu L, Yan R, Song X, Li X. Effects of Recombinant Toxoplasma gondii Citrate Synthase I on the Cellular Functions of Murine Macrophages In vitro. Front Microbiol 2017; 8:1376. [PMID: 28785250 PMCID: PMC5520420 DOI: 10.3389/fmicb.2017.01376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/06/2017] [Indexed: 01/12/2023] Open
Abstract
Toxoplasmosis, which is one of the most widespread zoonoses worldwide, has a high incidence and infection can result in severe disease in humans and livestock. Citrate synthase (CS) is a component of nearly all living cells that plays a vital role in the citric acid cycle, which is the central metabolic pathway of aerobic organisms. In the present study, the citrate synthase I gene of Toxoplasma gondii (T. gondii) (TgCSI) was cloned and characterized. The TgCSI gene had an open reading frame of 1665 bp nucleotides encoding a 555 amino acid protein with a molecular weight of 60 kDa. Using western blotting assay, the recombinant protein was successfully recognized by the sera of rats experimentally infected with T. gondii, while the native protein in the T. gondii tachyzoites was detected in sera from rats immunized with the recombinant protein of TgCSI. Binding of the protein to murine macrophages was confirmed by immuno fluorescence assay. Following incubation of macrophages with rTgCSI, the rTgCSI protein was found to have a dual function, with low concentrations (5-10 μg/mL) enhancing phagocytosis and high levels (80 μg/mL) inhibiting phagocytosis. Investigation of murine macrophage apoptosis illustrated that 5 μg/mL rTgCSI protein can significantly induce early apoptosis and late stage apoptosis (*p < 0.05), while 10 μg/mL rTgCSI protein significantly induced early apoptosis, but had no effect on late stage of apoptosis (**p < 0.01), and 80 μg/mL rTgCSI protein inhibited late stage apoptosis of macrophages (*p < 0.05). Cytokine detection revealed that the secretion of interleukin-10, interleukin-1β, transforming growth factor-β1 and tumor necrosis factor-α of macrophages increased after the cells were incubated with all concentration of rTgCSI, with the exception that 5 μg/mL rTgCSI had no effect on the secretion of interleukin-10 and interleukin-1β. However, secretion of NO and cell proliferation of the macrophages were substantially reduced. Taken together, these results suggested that TgCSI can affect the immune functions of murine macrophages by binding to the cells in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - XiangRui Li
- Preventive Veterinary Medicine Department, College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
31
|
Alday PH, Doggett JS. Drugs in development for toxoplasmosis: advances, challenges, and current status. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:273-293. [PMID: 28182168 PMCID: PMC5279849 DOI: 10.2147/dddt.s60973] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis.
Collapse
Affiliation(s)
- P Holland Alday
- Division of Infectious Diseases, Oregon Health & Science University
| | - Joseph Stone Doggett
- Division of Infectious Diseases, Oregon Health & Science University; Portland Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
32
|
McPhillie M, Zhou Y, El Bissati K, Dubey J, Lorenzi H, Capper M, Lukens AK, Hickman M, Muench S, Verma SK, Weber CR, Wheeler K, Gordon J, Sanders J, Moulton H, Wang K, Kim TK, He Y, Santos T, Woods S, Lee P, Donkin D, Kim E, Fraczek L, Lykins J, Esaa F, Alibana-Clouser F, Dovgin S, Weiss L, Brasseur G, Wirth D, Kent M, Hood L, Meunieur B, Roberts CW, Hasnain SS, Antonyuk SV, Fishwick C, McLeod R. New paradigms for understanding and step changes in treating active and chronic, persistent apicomplexan infections. Sci Rep 2016; 6:29179. [PMID: 27412848 PMCID: PMC4944145 DOI: 10.1038/srep29179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/31/2016] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii, the most common parasitic infection of human brain and eye, persists across lifetimes, can progressively damage sight, and is currently incurable. New, curative medicines are needed urgently. Herein, we develop novel models to facilitate drug development: EGS strain T. gondii forms cysts in vitro that induce oocysts in cats, the gold standard criterion for cysts. These cysts highly express cytochrome b. Using these models, we envisioned, and then created, novel 4-(1H)-quinolone scaffolds that target the cytochrome bc1 complex Qi site, of which, a substituted 5,6,7,8-tetrahydroquinolin-4-one inhibits active infection (IC50, 30 nM) and cysts (IC50, 4 μM) in vitro, and in vivo (25 mg/kg), and drug resistant Plasmodium falciparum (IC50, <30 nM), with clinically relevant synergy. Mutant yeast and co-crystallographic studies demonstrate binding to the bc1 complex Qi site. Our results have direct impact on improving outcomes for those with toxoplasmosis, malaria, and ~2 billion persons chronically infected with encysted bradyzoites.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda K Lukens
- Harvard School of Public Health, Boston, Massachusetts, USA
- The Broad Institute, Boston, Massachusetts, USA
| | - Mark Hickman
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | | | | | | | | | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, USA
| | - Yuqing He
- Institute for Systems Biology, Seattle, Washington, USA
| | - Tatiana Santos
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Patty Lee
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - David Donkin
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Eric Kim
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | | | | | - Louis Weiss
- Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Dyann Wirth
- Harvard School of Public Health, Boston, Massachusetts, USA
- The Broad Institute, Boston, Massachusetts, USA
| | | | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, USA
| | - Brigitte Meunieur
- Institute for Integrative Biology of the Cell (12BC), Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
33
|
Nitzsche R, Zagoriy V, Lucius R, Gupta N. Metabolic Cooperation of Glucose and Glutamine Is Essential for the Lytic Cycle of Obligate Intracellular Parasite Toxoplasma gondii. J Biol Chem 2015; 291:126-41. [PMID: 26518878 DOI: 10.1074/jbc.m114.624619] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite's carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells.
Collapse
Affiliation(s)
- Richard Nitzsche
- From the Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | | | - Richard Lucius
- From the Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany
| | - Nishith Gupta
- From the Department of Molecular Parasitology, Humboldt University, Berlin 10115, Germany, Parasitology Unit, Max-Planck Institute for Infection Biology, Berlin 10117, Germany
| |
Collapse
|
34
|
Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence Hyperbole. Trends Parasitol 2015; 32:56-70. [PMID: 26472327 DOI: 10.1016/j.pt.2015.09.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/28/2015] [Accepted: 09/03/2015] [Indexed: 12/17/2022]
Abstract
The nature of energy metabolism in apicomplexan parasites has been closely investigated in the recent years. Studies in Plasmodium spp. and Toxoplasma gondii in particular have revealed that these parasites are able to employ enzymes in non-traditional ways, while utilizing multiple anaplerotic routes into a canonical tricarboxylic acid (TCA) cycle to satisfy their energy requirements. Importantly, some life stages of these parasites previously considered to be metabolically quiescent are, in fact, active and able to adapt their carbon source utilization to survive. We compare energy metabolism across the life cycle of malaria parasites and consider how this varies in other apicomplexans and related organisms, while discussing how this can be exploited for therapeutic intervention in these diseases.
Collapse
Affiliation(s)
- Damien Jacot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - James I MacRae
- The Francis Crick Institute, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
35
|
Effect of 3-bromopyruvate and atovaquone on infection during in vitro interaction of Toxoplasma gondii and LLC-MK2 cells. Antimicrob Agents Chemother 2015; 59:5239-49. [PMID: 26077255 DOI: 10.1128/aac.00337-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/08/2015] [Indexed: 01/14/2023] Open
Abstract
Toxoplasma gondii infection can be severe during pregnancy and in immunocompromised patients. Current therapies for toxoplasmosis are restricted to tachyzoites and have little or no effect on bradyzoites, which are maintained in tissue cysts. Consequently, new therapeutic alternatives have been proposed as the use of atovaquone has demonstrated partial efficacy against tachyzoites and bradyzoites. This work studies the effect of 3-bromopyruvate (3-BrPA), a compound that is being tested against cancer cells, on the infection of LLC-MK2 cells with T. gondii tachyzoites, RH strain. No effect of 3-BrPA on host cell proliferation or viability was observed, but it inhibited the proliferation of T. gondii. The incubation of cultures with lectin Dolichos biflorus agglutinin (DBA) showed the development of cystogenesis, and an ultrastructural analysis of parasite intracellular development confirmed morphological characteristics commonly found in tissue cysts. Moreover, the presence of degraded parasites and the influence of 3-BrPA on endodyogeny were observed. Infected cultures were alternatively treated with a combination of this compound plus atovaquone. This resulted in a 73% reduction in intracellular parasites after 24 h of treatment and a 71% reduction after 48 h; cyst wall formation did not occur in these cultures. Therefore, we conclude that the use of 3-BrPA may serve as an important tool for the study of (i) in vitro cystogenesis; (ii) parasite metabolism, requiring a deeper understanding of the target of action of this compound on T. gondii; (iii) the alternative parasite metabolic pathways; and (iv) the molecular/cellular mechanisms that trigger parasite death.
Collapse
|
36
|
Heredero-Bermejo I, Criado-Fornelio A, Soliveri J, Díaz-Martín JA, Matilla-Fuentes J, Sánchez-Arias JA, Copa-Patiño JL, Pérez-Serrano J. Development of a new oxygen consumption rate assay in cultures of Acanthamoeba (Protozoa: Lobosea) and its application to evaluate viability and amoebicidal activity in vitro. Exp Parasitol 2015; 155:35-9. [PMID: 25956947 DOI: 10.1016/j.exppara.2015.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/16/2015] [Accepted: 04/29/2015] [Indexed: 11/29/2022]
Abstract
A new fluorometric method has been developed for measuring the oxygen consumption rate (OCR) of Acanthamoeba cultures in microplates and for screening molecules with amoebicidal activity against this microorganism. The use of a biofunctional matrix (containing an oxygen-sensitive fluorogenic probe) attached to the microplate wells allowed continuous measurement of OCR in the medium, hence assessment of amoebic growth. The new OCR method applied to cell viability yielded a linear relationship and monitoring was much quicker than with indirect viability assays previously used. In addition, two drugs were tested in a cytotoxicity assay monitored by the new OCR viability test. With this procedure, the standard amoebicidal drug chlorhexidine digluconate showed an IC50 of 3.53 + 1.3 mg/l against Acanthamoeba polyphaga and 3.19 + 1.2 mg/l against Acanthamoeba castellanii, whereas a cationic dendrimer [G1Si(NMe3+)4] showed an IC50 of 6.42 + 1.3 mg/l against A. polyphaga. These data agree with previous studies conducted in our laboratory. Therefore, the new OCR method has proven powerful and quick for amoebicidal drug screening and is likely to be applied in biochemical studies concerning protozoa respiration and metabolism.
Collapse
Affiliation(s)
- I Heredero-Bermejo
- Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | - A Criado-Fornelio
- Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - J Soliveri
- Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - J A Díaz-Martín
- Oxoprobics Biosciences S.L., Francisco Giralte 2, Desp.12, 28002 Madrid, Spain
| | - J Matilla-Fuentes
- Oxoprobics Biosciences S.L., Francisco Giralte 2, Desp.12, 28002 Madrid, Spain
| | - J A Sánchez-Arias
- Oxoprobics Biosciences S.L., Francisco Giralte 2, Desp.12, 28002 Madrid, Spain
| | - J L Copa-Patiño
- Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - J Pérez-Serrano
- Departamento de Biomedicina y Biotecnología, Facultad de Farmacia, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
37
|
Nek5 interacts with mitochondrial proteins and interferes negatively in mitochondrial mediated cell death and respiration. Cell Signal 2015; 27:1168-77. [PMID: 25725288 DOI: 10.1016/j.cellsig.2015.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/05/2015] [Accepted: 02/21/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2 μM). Nek5 silenced cells as well as cells expressing a "kinase dead" version of Nek5, displayed an increase in ROS formation after 4 h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells.
Collapse
|
38
|
Peatey CL, Chavchich M, Chen N, Gresty KJ, Gray KA, Gatton ML, Waters NC, Cheng Q. Mitochondrial Membrane Potential in a Small Subset of Artemisinin-Induced Dormant Plasmodium falciparum Parasites In Vitro. J Infect Dis 2015; 212:426-34. [PMID: 25635122 DOI: 10.1093/infdis/jiv048] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/20/2015] [Indexed: 11/12/2022] Open
Abstract
Artemisinin-induced dormancy is a proposed mechanism for failures of monotherapy and is linked with artemisinin resistance in Plasmodium falciparum. The biological characterization and dynamics of dormant parasites are not well understood. Here we report that after dihydroartemisinin treatment in vitro, a small subset of morphologically dormant parasites was stained with rhodamine 123 (RH), a mitochondrial membrane potential marker, and persisted to recovery. RH-positive parasites sorted with fluorescence-activated cell sorting resumed growth at 10,000/well whereas RH-negative parasites failed to recover at 5 million/well. Furthermore, transcriptional activity for mitochondrial enzymes was detected only in RH-positive dormant parasites. Importantly, after treatment of dormant parasites with different concentrations of atovaquone, a mitochondrial inhibitor, the recovery of dormant parasites was delayed or stopped. This demonstrates that mitochondrial activity is critical for survival and regrowth of dormant parasites and that RH staining provides a means of identifying these parasites. These findings provide novel paths for studying and eradicating this dormant stage.
Collapse
Affiliation(s)
- Christopher L Peatey
- Drug Resistance and Diagnostics, Australian Army Malaria Institute Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute
| | - Marina Chavchich
- Drug Resistance and Diagnostics, Australian Army Malaria Institute
| | - Nanhua Chen
- Drug Resistance and Diagnostics, Australian Army Malaria Institute
| | - Karryn J Gresty
- Drug Resistance and Diagnostics, Australian Army Malaria Institute Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute
| | - Karen-Ann Gray
- Drug Resistance and Diagnostics, Australian Army Malaria Institute Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute
| | - Michelle L Gatton
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Norman C Waters
- Walter Reed Army Institute of Research, Malaria Vaccine Branch, Military Malaria Research Program, Silver Spring, Maryland
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Army Malaria Institute Clinical Tropical Medicine, QIMR Berghofer Medical Research Institute
| |
Collapse
|
39
|
Oxidative stress control by apicomplexan parasites. BIOMED RESEARCH INTERNATIONAL 2015; 2015:351289. [PMID: 25722976 PMCID: PMC4324108 DOI: 10.1155/2015/351289] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/27/2014] [Indexed: 01/01/2023]
Abstract
Apicomplexan parasites cause infectious diseases that are either a severe public health problem or an economic burden. In this paper we will shed light on how oxidative stress can influence the host-pathogen relationship by focusing on three major diseases: babesiosis, coccidiosis, and toxoplasmosis.
Collapse
|
40
|
Lourido S, Moreno SNJ. The calcium signaling toolkit of the Apicomplexan parasites Toxoplasma gondii and Plasmodium spp. Cell Calcium 2014; 57:186-93. [PMID: 25605521 DOI: 10.1016/j.ceca.2014.12.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/21/2022]
Abstract
Apicomplexan parasites have complex life cycles, frequently split between different hosts and reliant on rapid responses as the parasites react to changing environmental conditions. Calcium ion (Ca(2+)) signaling is consequently essential for the cellular and developmental changes that support Apicomplexan parasitism. Apicomplexan genomes reveal a rich repertoire of genes involved in calcium signaling, although many of the genes responsible for observed physiological changes remain unknown. There is evidence, for example, for the presence of a nifedipine-sensitive calcium entry mechanism in Toxoplasma, but the molecular components involved in Ca(2+) entry in both Toxoplasma and Plasmodium, have not been identified. The major calcium stores are the endoplasmic reticulum (ER), the acidocalcisomes, and the plant-like vacuole in Toxoplasma, or the food vacuole in Plasmodium spp. Pharmacological evidence suggests that Ca(2+) release from intracellular stores may be mediated by inositol 1,4,5-trisphosphate (IP3) or cyclic ADP ribose (cADPR) although there is no molecular evidence for the presence of receptors for these second messengers in the parasites. Several Ca(2+)-ATPases are present in Apicomplexans and a putative mitochondrial Ca(2+)/H(+) exchanger has been identified. Apicomplexan genomes contain numerous genes encoding Ca(2+)-binding proteins, with the notable expansion of calcium-dependent protein kinases (CDPKs), whose study has revealed roles in gliding motility, microneme secretion, host cell invasion and egress, and parasite differentiation. Microneme secretion has also been shown to depend on the C2 domain containing protein DOC2 in both Plasmodium spp. and Toxoplasma, providing further evidence for the complex transduction of Ca(2+) signals in these organisms. The characterization of these pathways could lead to the discovery of novel drug targets and to a better understanding of the role of Ca(2+) in these parasites.
Collapse
Affiliation(s)
- Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
41
|
Rossato FA, Zecchin KG, La Guardia PG, Ortega RM, Alberici LC, Costa RAP, Catharino RR, Graner E, Castilho RF, Vercesi AE. Fatty acid synthase inhibitors induce apoptosis in non-tumorigenic melan-a cells associated with inhibition of mitochondrial respiration. PLoS One 2014; 9:e101060. [PMID: 24964211 PMCID: PMC4071076 DOI: 10.1371/journal.pone.0101060] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition.
Collapse
Affiliation(s)
- Franco A. Rossato
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Karina G. Zecchin
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Paolo G. La Guardia
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rose M. Ortega
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Luciane C. Alberici
- Departamento de Química e Física, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rute A. P. Costa
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rodrigo R. Catharino
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edgard Graner
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil
| | - Roger F. Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aníbal E. Vercesi
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
42
|
Robles-Martínez L, Guerra-Sánchez MG, Hernández-Lauzardo AN, Pardo JP, Velázquez-del Valle MG. Effects of chitosan and oligochitosan on development and mitochondrial function of Rhizopus stolonifer. J Basic Microbiol 2014; 54 Suppl 1:S42-9. [PMID: 24771597 DOI: 10.1002/jobm.201300790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/25/2013] [Indexed: 11/08/2022]
Abstract
The antifungal activities of chitosan and oligochitosan have been used to control postharvest decay of the fruits. The effect of chitosan and oligochitosan on mycelium growth, spore germination, and mitochondrial function of Rhizopus stolonifer was evaluated in order to establish a connection between fungus development and the main organelle in charge to provide energy to the cell. The mycelium growth of R. stolonifer was significantly reduced on minimum media amended with chitosan or oligochitosan. The highest antifungal indexes were obtained on media containing chitosan or oligochitosan at 2.0 mg ml(-1). Microscopic observation showed that chitosan and oligochitosan affected the spore germination and hyphae morphology. Both polymers increased oxygen consumption of R. stolonifer. Respiratory activity was restored with NADH in permeabilized treated and untreated cells, and was inhibited with rotenone and flavones. Complex III and IV were inhibited by antimycin A and cyanide, respectively, in treated and untreated cells. Chitosan and oligochitosan increased NADH dehydrogenase activity in isolated mitochondria. However, there were not changes in the cytochrome c oxidase and ATPase activities by effect of these polymers. These results suggest that both chitosan and oligochitosan affect the development of R. stolonifer and might be implicated in the mitochondrial dysfunction.
Collapse
|
43
|
Li ZH, Ramakrishnan S, Striepen B, Moreno SNJ. Toxoplasma gondii relies on both host and parasite isoprenoids and can be rendered sensitive to atorvastatin. PLoS Pathog 2013; 9:e1003665. [PMID: 24146616 PMCID: PMC3798403 DOI: 10.1371/journal.ppat.1003665] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 08/14/2013] [Indexed: 01/03/2023] Open
Abstract
Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites. Toxoplasma gondii is an obligate intracellular parasite and is not able to replicate outside the host cell. The parasite lives in a specialized parasitophorous vacuole in contact with the host cytoplasm through the parasitophorous vacuole membrane. It is highly likely that a very active exchange of metabolites occurs between parasite and host cell. We present evidence for this exchange for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Our work shows that intracellular T. gondii tachyzoites are able to salvage farnesyl diphosphate (FPP) and/or geranylgeranyl diphosphate (GGPP) from the host, and the parasite is able to grow even when its endogenous production is shut down. However, when extracellular, the parasite depends entirely on its own production of isoprenoids. We propose to use a combination of inhibitors that would hit both the host and the parasite pathways as a novel therapeutic approach against Toxoplasma gondii that could also work against other Apicomplexan parasites.
Collapse
Affiliation(s)
- Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Srinivasan Ramakrishnan
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Boris Striepen
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
44
|
MacRae JI, Sheiner L, Nahid A, Tonkin C, Striepen B, McConville MJ. Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. Cell Host Microbe 2013; 12:682-92. [PMID: 23159057 DOI: 10.1016/j.chom.2012.09.013] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/07/2012] [Accepted: 09/20/2012] [Indexed: 12/23/2022]
Abstract
Toxoplasma gondii proliferates within host cell vacuoles where the parasite relies on host carbon and nutrients for replication. To assess how T. gondii utilizes these resources, we mapped the carbon metabolism pathways in intracellular and egressed parasite stages. We determined that intracellular T. gondii stages actively catabolize host glucose via a canonical, oxidative tricarboxylic acid (TCA) cycle, a mitochondrial pathway in which organic molecules are broken down to generate energy. These stages also catabolize glutamine via the TCA cycle and an unanticipated γ-aminobutyric acid (GABA) shunt, which generates GABA and additional molecules that enter the TCA cycle. Chemically inhibiting the TCA cycle completely prevents intracellular parasite replication. Parasites lacking the GABA shunt exhibit attenuated growth and are unable to sustain motility under nutrient-limited conditions, suggesting that GABA functions as a short-term energy reserve. Thus, T. gondii tachyzoites have metabolic flexibility that likely allows the parasite to infect diverse cell types.
Collapse
Affiliation(s)
- James I MacRae
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Elsheikha HM, McKinlay CL, Elsaied NA, Smith PA. Effects of Neospora caninum infection on brain microvascular endothelial cells bioenergetics. Parasit Vectors 2013; 6:24. [PMID: 23351811 PMCID: PMC3586355 DOI: 10.1186/1756-3305-6-24] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/19/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The brain is the most commonly affected organ during Neospora caninum infection but the mechanisms utilized by this protozoan parasite for traversal of the blood-brain barrier (BBB) are not yet understood. Herein, we investigate the cellular pathogenicity of N. caninum infection on bioenergetics of human brain microvascular endothelial cells (HBMECs), a fundamental component of the BBB. METHODS We tracked the growth kinetics of N. caninum in HBMECs. Focusing on cell bioenergetics, oxygen consumption rate (OCR) was determined using Clark electrode system and mitochondrial membrane potential (ΔΨm) was evaluated using DePsipher staining by fluorescence microscopy in the presence and absence of infection. RESULTS HBMECs provided a receptive environment for parasite proliferation. N. caninum tachyzoites were able to invade and replicate within HBMECs without significantly altering cell proliferation rate, as measured with the MTT assay, up to 24 hr post infection (pi). The oxygen consumption rate (OCR) was significantly inhibited (p < 0.001) by 10 mM glucose [from -2.26±0.23 to -0.6±0.21 nmol 106 cell min-1 and from -0.29±0.09 to -0.16±0.1 nmol 106 cell min-1 for uninfected HBMECs and free N. Caninum tachyzoites, respectively]. After normalization for DNA content the basal OCR did not differ between two host cell types: HBMECs and K562. The OCR of HBMECs was significantly elevated 24 hr pi in the absence of substrate, in 10 mM glucose and in the presence of a tetramethyl-p-phenylenediamine (TMPD)/ascorbate redox shuttle. Although quantitatively similar results were observed for uninfected K562 cells, there was no effect on their OCR 24 hr pi with N. caninum under any of the above substrate conditions. 6mM azide abolished OCR in all situations. Mitochondrial staining with DePsipher indicated no change in their membrane potential (Δψm) up to 24 hr pi. CONCLUSIONS N. caninum is able to grow in HBMECs without markedly disrupting their normal proliferation or mitochondrial integrity. However, it is associated with an increase in infected cell respiration. Whether this increase reflects numeric addition of the parasites own respiration or results from an additional energy demand upon the host cell remains to be elucidated.
Collapse
Affiliation(s)
- Hany M Elsheikha
- School of Veterinary Medicine and Science, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK.
| | | | | | | |
Collapse
|
46
|
The mitochondrial respiratory chain of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Arch Microbiol 2012; 195:51-61. [DOI: 10.1007/s00203-012-0845-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/13/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
|
47
|
Abstract
INTRODUCTION Toxoplasma gondii, the agent that causes toxoplasmosis, is an opportunistic parasite that infects many mammalian species. It is an obligate intracellular parasite that causes severe congenital neurological and ocular disease mostly in immunocompromised humans. The current regimen of therapy includes only a few medications that often lead to hypersensitivity and toxicity. In addition, there are no vaccines available to prevent the transmission of this agent. Therefore, safer and more effective medicines to treat toxoplasmosis are urgently needed. AREAS COVERED The author presents in silico and in vitro strategies that are currently used to screen for novel targets and unique chemotypes against T. gondii. Furthermore, this review highlights the screening technologies and characterization of some novel targets and new chemical entities that could be developed into highly efficacious treatments for toxoplasmosis. EXPERT OPINION A number of diverse methods are being used to design inhibitors against T. gondii. These include ligand-based methods, in which drugs that have been shown to be efficacious against other Apicomplexa parasites can be repurposed to identify lead molecules against T. gondii. In addition, structure-based methods use currently available repertoire of structural information in various databases to rationally design small-molecule inhibitors of T. gondii. Whereas the screening methods have their advantages and limitations, a combination of methods is ideally suited to design small-molecule inhibitors of complex parasites such as T. gondii.
Collapse
Affiliation(s)
- Sandhya Kortagere
- Drexel University College of Medicine, Institute for Molecular Medicine, Department of Microbiology and Immunology, 2900, Queen Lane, PA 19129, USA.
| |
Collapse
|
48
|
Endochin-like quinolones are highly efficacious against acute and latent experimental toxoplasmosis. Proc Natl Acad Sci U S A 2012; 109:15936-41. [PMID: 23019377 DOI: 10.1073/pnas.1208069109] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Toxoplasma gondii is a widely distributed protozoan pathogen that causes devastating ocular and central nervous system disease. We show that the endochin-like quinolone (ELQ) class of compounds contains extremely potent inhibitors of T. gondii growth in vitro and is effective against acute and latent toxoplasmosis in mice. We screened 50 ELQs against T. gondii and selected two lead compounds, ELQ-271 and ELQ-316, for evaluation. ELQ-271 and ELQ-316, have in vitro IC(50) values of 0.1 nM and 0.007 nM, respectively. ELQ-271 and ELQ-316 have ED(50) values of 0.14 mg/kg and 0.08 mg/kg when administered orally to mice with acute toxoplasmosis. Moreover, ELQ-271 and ELQ-316 are highly active against the cyst form of T. gondii in mice at low doses, reducing cyst burden by 76-88% after 16 d of treatment. To investigate the ELQ mechanism of action against T. gondii, we demonstrate that endochin and ELQ-271 inhibit cytochrome c reduction by the T. gondii cytochrome bc(1) complex at 8 nM and 31 nM, respectively. We also show that ELQ-271 inhibits the Saccharomyces cerevisiae cytochrome bc(1) complex, and an M221Q amino acid substitution in the Q(i) site of the protein leads to >100-fold resistance. We conclude that ELQ-271 and ELQ-316 are orally bioavailable drugs that are effective against acute and latent toxoplasmosis, likely acting as inhibitors of the Q(i) site of the T. gondii cytochrome bc(1) complex.
Collapse
|
49
|
van Dooren GG, Kennedy AT, McFadden GI. The use and abuse of heme in apicomplexan parasites. Antioxid Redox Signal 2012; 17:634-56. [PMID: 22320355 DOI: 10.1089/ars.2012.4539] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. RECENT ADVANCES In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. CRITICAL ISSUES Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. FUTURE DIRECTIONS Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.
Collapse
Affiliation(s)
- Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | |
Collapse
|
50
|
Hortua Triana MA, Huynh MH, Garavito MF, Fox BA, Bzik DJ, Carruthers VB, Löffler M, Zimmermann BH. Biochemical and molecular characterization of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase from Toxoplasma gondii. Mol Biochem Parasitol 2012; 184:71-81. [PMID: 22580100 DOI: 10.1016/j.molbiopara.2012.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 01/27/2023]
Abstract
The pyrimidine biosynthesis pathway in the protozoan pathogen Toxoplasma gondii is essential for parasite growth during infection. To investigate the properties of dihydroorotate dehydrogenase (TgDHOD), the fourth enzyme in the T. gondii pyrimidine pathway, we expressed and purified recombinant TgDHOD. TgDHOD exhibited a specific activity of 84U/mg, a k(cat) of 89s(-1), a K(m)=60μM for l-dihydroorotate, and a K(m)=29μM for decylubiquinone (Q(D)). Quinones lacking or having short isoprenoid side chains yielded lower k(cat)s than Q(D). As expected, fumarate was a poor electron acceptor for this family 2 DHOD. The IC(50)s determined for A77-1726, the active derivative of the human DHOD inhibitor leflunomide, and related compounds MD249 and MD209 were, 91μM, 96μM, and 60μM, respectively. The enzyme was not significantly affected by brequinar or TTFA, known inhibitors of human DHOD, or by atovaquone. DSM190, a known inhibitor of Plasmodium falciparum DHOD, was a poor inhibitor of TgDHOD. TgDHOD exhibits a lengthy 157-residue N-terminal extension, consistent with a potential organellar targeting signal. We constructed C-terminally c-myc tagged TgDHODs to examine subcellular localization of TgDHOD in transgenic parasites expressing the tagged protein. Using both exogenous and endogenous expression strategies, anti-myc fluorescence signal colocalized with antibodies against the mitochondrial marker ATPase. These findings demonstrate that TgDHOD is associated with the parasite's mitochondrion, revealing this organelle as the site of orotate production in T. gondii. The TgDHOD gene appears to be essential because while gene tagging was successful at the TgDHOD gene locus, attempts to delete the TgDHOD gene were not successful in the KU80 background. Collectively, our study suggests that TgDHOD is an excellent target for the development of anti-Toxoplasma drugs.
Collapse
|