1
|
Zhao T, Zhou Y, Zhang D, Han D, Ma J, Li S, Li T, Hu S, Li Z. Inhibition of TREM-1 alleviates neuroinflammation by modulating microglial polarization via SYK/p38MAPK signaling pathway after traumatic brain injury. Brain Res 2024; 1834:148907. [PMID: 38570153 DOI: 10.1016/j.brainres.2024.148907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI), as a major public health problem, is characterized by high incidence rate, disability rate, and mortality rate. Neuroinflammation plays a crucial role in the pathogenesis of TBI. Triggering receptor expressed on myeloid cells-1 (TREM-1) is recognized as an amplifier of the inflammation in diseases of the central nervous system (CNS). However, the function of TREM-1 remains unclear post-TBI. This study aimed to investigate the function of TREM-1 in neuroinflammation induced by TBI. METHODS Brain water content (BWC), modified neurological severity score (mNSS), and Morris Water Maze (MWM) were measured to evaluate the effect of TREM-1 inhibition on nervous system function and outcome after TBI. TREM-1 expression in vivo was evaluated by Western blotting. The cellular localization of TREM-1 in the damaged region was observed via immunofluorescence staining. We also conducted Western blotting to examine expression of SYK, p-SYK and other downstream proteins. RESULTS We found that inhibition of TREM-1 reduced brain edema, decreased mNSS and improved neurobehavioral outcomes after TBI. It was further determined that TREM-1 was expressed on microglia and modulated subtype transition of microglia. Inhibition of TREM-1 alleviated neuroinflammation, which was associated with SYK/p38MAPK signaling pathway. CONCLUSIONS These findings suggest that TREM-1 can be a potential clinical therapeutic target for alleviating neuroinflammation after TBI.
Collapse
Affiliation(s)
- Tianqi Zhao
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Yuxin Zhou
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Dabing Zhang
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Dong Han
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, Jiangsu, China; Xuzhou Key Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyuan Ma
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Shanshan Li
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China
| | - Ting Li
- Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China; School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shuqun Hu
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, Jiangsu, China; Xuzhou Key Laboratory of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Zhouru Li
- Department of Forensic Science, Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou, Jiangsu, China.
| |
Collapse
|
2
|
Tang J, Wan X, Zhang J, Diao N, Zhang C, Gao X, Ren D. A frameshift variant in the SIRPB1 gene confers susceptibility to Crohn's disease in a Chinese population. Front Genet 2023; 14:1130529. [PMID: 37323681 PMCID: PMC10267704 DOI: 10.3389/fgene.2023.1130529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/17/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Crohn's disease (CD), a chronic gastrointestinal inflammatory disease, is increasing in China. With a focus on Han Chinese families with CD, the aim of this study was to find genetic variations that increase CD susceptibility by genome sequencing, genetic association, expression, and functional research. Materials and methods: We performed family-based genome sequencing (WGS) analysis on 24 patients with CD from 12 families and then filtered shared potential causal variants by incorporating association results from meta-analyses of CD GWAS and immunology genes and in silico variant effect prediction algorithms. Replication analyses were performed in an independent cohort including 381 patients with CD and 381 control subjects. Results: There were 92 genetic variants significantly associated with CD in Chinese individuals. Among them, 61 candidate loci were validated in replication analyses. As a result, patients carrying a rare frameshift variant (c.1143_1144insG; p. Leu381_Leu382fs) in gene SIRPB1 had significantly higher risk to develop CD (p = 0.03, OR 4.59, 95% CI 0.98-21.36, 81.82% vs. 49.53%). The frameshift variation induced tyrosine phosphorylation of Syk, Akt, and Jak2, elevated the expression of SIRPB1 at the mRNA and protein levels, activated DAP12, and controlled the activation of NF-κB in macrophages. Additionally, it promoted the synthesis of the pro-inflammatory cytokines IL-1, TNF-, and IL-6. Conclusion: Our results suggest that the rare gain-of-function frameshift variant in SIRPB1 is associated in Han Chinese patients with CD. The functional mechanism of SIRPB1 and its downstream inflammatory pathways was preliminarily explored in CD.
Collapse
Affiliation(s)
- Jian Tang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyang Wan
- Department of Colorectal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - JunXiao Zhang
- Institute of Biomedical Sciences, SequMed Biotech Inc., Guangzhou, China
| | - Na Diao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Caibin Zhang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Gao
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Donglin Ren
- Department of Colorectal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Wang ZH, Li W, Dong H, Han F. Current state of NK cell-mediated immunotherapy in chronic lymphocytic leukemia. Front Oncol 2023; 12:1077436. [PMID: 37078002 PMCID: PMC10107371 DOI: 10.3389/fonc.2022.1077436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) has become one of the most common hematological diseases in western countries, with an annual incidence of 42/100,000. Conventional chemotherapy and targeted therapeutic drugs showed limitations in prognosis or in efficiency in high-risk patients. Immunotherapy represented is one of the most effective therapeutic approaches with the potential of better effect and prognosis. Natural killer (NK) cells are good options for immunotherapy as they can effectively mediate anti-tumor activity of immune system by expressing activating and inhibiting receptors and recognizing specific ligands on various tumor cells. NK cells are critical in the immunotherapy of CLL by enhancing self-mediated antibody-dependent cytotoxicity (ADCC), allogeneic NK cell therapy and chimeric antigen receptor-natural killer (CAR-NK) cell therapy. In this article, we reviewed the features, working mechanisms, and receptors of NK cells, and the available evidence of the advantages and disadvantages of NK cell-based immunotherapies, and put forward future study directions in this field.
Collapse
Affiliation(s)
- Zong-Han Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Dong
- Department of Gastrointestinal Nutrition and Surgical Surgery, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| |
Collapse
|
4
|
Basha SKC, Ramaiah MJ, Kosagisharaf JR. Untangling the Role of TREM2 in Conjugation with Microglia in Neuronal Dysfunction: A Hypothesis on a Novel Pathway in the Pathophysiology of Alzheimer's Disease. J Alzheimers Dis 2023; 94:S319-S333. [PMID: 36683512 PMCID: PMC10473115 DOI: 10.3233/jad-221070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder involving heterogenous pathophysiological characteristics, which has become a challenge to therapeutics. The major pathophysiology of AD comprises amyloid-β (Aβ), tau, oxidative stress, and apoptosis. Recent studies indicate the significance of Triggering receptor expressed on myeloid cells 2 (TREM2) and its mutant variants in AD. TREM2 are the transmembrane receptors of microglial cells that performs a broad range of physiological cell processes. Phagocytosis of Aβ is one of the physiological roles of TREM2, which plays a pivotal role in AD progression. R47H, a mutant variant of TREM2, increases the risk of AD by impairing TREM2-Aβ binding. Inconclusive evidence regarding the TREM2 signaling cascade mechanism of Aβ phagocytosis motivates the current review to propose a new hypothesis. The review systematically assesses the cross talk between TREM2 and other AD pathological domains and the influence of TREM2 on amyloid and tau seeding. Disease associated microglia (DAM), a novel state of microglia with unique transcriptional and functional signatures reported in neurodegenerative conditions, also depend on the TREM2 pathway for its differentiation. DAM is suggested to have a neuroprotective role. We hypothesize that TREM2, along with its signaling adaptors and endogenous proteins, play a key role in ameliorating Aβ clearance. We indicate that TREM2 has the potential to ameliorate the Aβ burden, though with differential clearance ability and may act as a potential therapeutic target.
Collapse
Affiliation(s)
- SK Chand Basha
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Mekala Janaki Ramaiah
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Jagannatha Rao Kosagisharaf
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
- National Science System (SENACYT), INDICASAT – AIP, Panama
| |
Collapse
|
5
|
Zhang C, Kan X, Zhang B, Ni H, Shao J. The role of triggering receptor expressed on myeloid cells-1 (TREM-1) in central nervous system diseases. Mol Brain 2022; 15:84. [PMID: 36273145 PMCID: PMC9588203 DOI: 10.1186/s13041-022-00969-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/07/2022] [Indexed: 12/29/2022] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a member of the immunoglobulin superfamily and is mainly expressed on the surface of myeloid cells such as monocytes, macrophages, and neutrophils. It plays an important role in the triggering and amplification of inflammatory responses, and it is involved in the development of various infectious and non-infectious diseases, autoimmune diseases, and cancers. In recent years, TREM-1 has also been found to participate in the pathological processes of several central nervous system (CNS) diseases. Targeting TREM-1 may be a promising strategy for treating these diseases. This paper aims to characterize TREM-1 in terms of its structure, signaling pathway, expression, regulation, ligands and pathophysiological role in CNS diseases.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Xugang Kan
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Baole Zhang
- grid.417303.20000 0000 9927 0537Department of Neurobiology and Anatomy, XuzhouKeyLaboratoryofNeurobiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Haibo Ni
- Department of Neurosurgery, The First People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| | - Jianfeng Shao
- Department of Neurology, The Third People’s Hospital of Zhangjiagang City, Suzhou, 215600 Jiangsu China
| |
Collapse
|
6
|
The role of Triggering Receptor Expressed on Myeloid Cells 2 in Parkinson's disease and other neurodegenerative disorders. Behav Brain Res 2022; 433:113977. [PMID: 35752274 DOI: 10.1016/j.bbr.2022.113977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder marked by cardinal clinical symptoms such as rigor, tremor, and akinesia. Albeit a loss of dopaminergic neurons from the substantia nigra pars compacta is causative for the movement impairments found in patients, molecular reasoning for this loss is still incomplete. In recent years, triggering factor expressed on myeloid cells (TREM2) gained attention in the field of neurodegeneration as it could be associated with different neurodegenerative disorders. Primarily identified as a risk factor in Alzheimer's disease, variants in TREM2 were linked to PD and multiple sclerosis, too. Expressed on phagocytic cells, such as macrophages and microglia, TREM2 puts the focus on inflammation associated conditions in PD and provides a molecular target that could at least partly explain the role of immune cells in PD. Here, we summarize expression patterns and molecular functions of TREM2, recapitulate on its role in inflammation, phagocytosis and cell survival, before turning to neurodegenerative disorders with an emphasis on PD.
Collapse
|
7
|
Abstract
Natural killer (NK) cells are innate immune cells that are critical to the body's antitumor and antimetastatic defense. As such, novel therapies are being developed to utilize NK cells as part of a next generation of immunotherapies to treat patients with metastatic disease. Therefore, it is essential for us to examine how metastatic cancer cells and NK cells interact with each other throughout the metastatic cascade. In this Review, we highlight the recent body of work that has begun to answer these questions. We explore how the unique biology of cancer cells at each stage of metastasis alters fundamental NK cell biology, including how cancer cells can evade immunosurveillance and co-opt NK cells into cells that promote metastasis. We also discuss the translational potential of this knowledge.
Collapse
Affiliation(s)
- Isaac S. Chan
- Department of Internal Medicine, Division of Hematology and Oncology, and
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andrew J. Ewald
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Hong Y, Robbins Y, Yang X, Mydlarz WK, Sowers A, Mitchell JB, Gulley JL, Schlom J, Gameiro SR, Sievers C, Allen CT. Cure of syngeneic carcinomas with targeted IL-12 through obligate reprogramming of lymphoid and myeloid immunity. JCI Insight 2022; 7:157448. [PMID: 35260537 PMCID: PMC8983130 DOI: 10.1172/jci.insight.157448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
Therapeutic IL-12 has demonstrated the ability to reduce local immune suppression in preclinical models, but clinical development has been limited by severe inflammation-related adverse events with systemic administration. Here, we show that potent immunologic tumor control of established syngeneic carcinomas can be achieved by i.t. administration of a tumor-targeted IL-12 antibody fusion protein (NHS–rmIL-12) using sufficiently low doses to avoid systemic toxicity. Single-cell transcriptomic analysis and ex vivo functional assays of NHS–rmIL-12–treated tumors revealed reinvigoration and enhanced proliferation of exhausted CD8+ T lymphocytes, induction of Th1 immunity, and a decrease in Treg number and suppressive capacity. Similarly, myeloid cells transitioned toward inflammatory phenotypes and displayed reduced suppressive capacity. Cell type–specific IL-12 receptor–KO BM chimera studies revealed that therapeutic modulation of both lymphoid and myeloid cells is required for maximum treatment effect and tumor cure. Study of single-cell data sets from human head and neck carcinomas revealed IL-12 receptor expression patterns similar to those observed in murine tumors. These results describing the diverse mechanisms underlying tumor-directed IL-12–induced antitumor immunity provide the preclinical rationale for the clinical study of i.t. NHS–IL-12.
Collapse
Affiliation(s)
- Youji Hong
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Yvette Robbins
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Xinping Yang
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Wojciech K Mydlarz
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - James L Gulley
- Geniturinary Malignancy Branch, Center for Cancer Research, and
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Sofia R Gameiro
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Cem Sievers
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| | - Clint T Allen
- Section on Translational Tumor Immunology, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Chang C, Gao Q, Deng G, Luo K, Zhu H. Diagnostic and prognostic predictive values of triggering receptor expressed on myeloid cell-1 expression in neonatal sepsis: A meta-analysis and systematic review. Front Pediatr 2022; 10:929665. [PMID: 35935355 PMCID: PMC9354627 DOI: 10.3389/fped.2022.929665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The purpose of this systematic review was to explore the value of the expression level of the triggering receptor expressed on myeloid cell-1 (TREM-1) in the diagnosis and prognosis of neonatal sepsis. METHODS A comprehensive search was performed to identify the diagnostic and prognostic predictive values of the TREM-1 expression level in neonatal sepsis. Based on the retrieval strategy, Cochrane Library, Embase, Ovid, ProQuest, PubMed, Scopus, and Web of Science databases were searched from inception to February 2022. Studies were included if they assessed the accuracy of TREM-1 expression in the diagnosis of neonatal sepsis and distinguished survival and death in neonatal sepsis. Two authors independently evaluated the study and extracted the data, including the first author of the literature, country, total study population, basic population characteristics of the study group and the control group, study design (observational studies), type of sample, sepsis onset, type of biomarker, assay method, cut-off, sensitivity, specificity, true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN). A third party will be consulted if disputed. The accuracy of TREM-1 expression in the diagnosis and prognostic prediction of neonatal sepsis was evaluated by a bivariate mixed-effects model. The source of heterogeneity was explored through meta-regression analysis. RESULTS Thirteen articles that met the research criteria were included in qualitative analysis, and 11 of them were included in quantitative analysis. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and the area under the summary receiver operator characteristic (SROC) curve of soluble TREM-1 (sTREM-1) were 0.94 (95% CI: 0.82, 0.98), 0.87 (95% CI: 0.70, 0.95), 7.36 (95% CI: 2.75, 19.74), 0.07 (95% CI: 0.02, 0.24), 111.71 (95% CI: 13.24, 942.92), and 0.96 (95% CI: 0.94, 0.98), respectively. Meta-regression and subgroup analysis were used to investigate the heterogeneity, owing to non-threshold effects caused by types of test sample and research design. sTREM-1 as a biomarker for distinguishing survival and death in neonates with sepsis had pooled sensitivity, specificity, area under the SROC curve, PLR, NLR, and DOR of 0.95 (95% CI: 0.83, 0.99), 0.98 (95% CI: 0.68, 1.00), 0.99 (95% CI: 0.97, 0.99), 39.28 (95% CI: 2.13, 723.99), 0.05 (95% CI: 0.01, 0.19), and 789.61 (95% CI: 17.53, 35,560.72), respectively. CONCLUSION The study showed that TREM-1 was a potential biomarker for the diagnosis and prognosis of neonatal sepsis. The biggest advantage of this study is that it is the first to comprehensively explore the role of TREM-1 expression in the diagnosis and prognosis of neonatal sepsis. However, there are some limitations in this study, such as the reduced number of clinical studies on TREM-1 expression as a biomarker of neonatal sepsis, regional bias, and differences in detection methods. Hence, more large-scale and high-quality studies are needed to improve diagnostic accuracy. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022338041.
Collapse
Affiliation(s)
- Chenyang Chang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Qiannan Gao
- Pediatric Internal Medicine, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guoping Deng
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Kaiyuan Luo
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China.,Pediatric Internal Medicine, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Institute of Children's Medical, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Huifang Zhu
- Neonatal/Pediatric Intensive Care Unit, Children's Medical Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Institute of Children's Medical, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Ganzhou Key Laboratory of Immunotherapeutic Drugs Developing for Childhood Leukemia, Ganzhou, China.,Basic Medical College of Gannan Medical University, Ganzhou, China.,Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| |
Collapse
|
10
|
Khalil M, Wang D, Hashemi E, Terhune SS, Malarkannan S. Implications of a 'Third Signal' in NK Cells. Cells 2021; 10:cells10081955. [PMID: 34440725 PMCID: PMC8393955 DOI: 10.3390/cells10081955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Innate and adaptive immune systems are evolutionarily divergent. Primary signaling in T and B cells depends on somatically rearranged clonotypic receptors. In contrast, NK cells use germline-encoded non-clonotypic receptors such as NCRs, NKG2D, and Ly49H. Proliferation and effector functions of T and B cells are dictated by unique peptide epitopes presented on MHC or soluble humoral antigens. However, in NK cells, the primary signals are mediated by self or viral proteins. Secondary signaling mediated by various cytokines is involved in metabolic reprogramming, proliferation, terminal maturation, or memory formation in both innate and adaptive lymphocytes. The family of common gamma (γc) cytokine receptors, including IL-2Rα/β/γ, IL-7Rα/γ, IL-15Rα/β/γ, and IL-21Rα/γ are the prime examples of these secondary signals. A distinct set of cytokine receptors mediate a ‘third’ set of signaling. These include IL-12Rβ1/β2, IL-18Rα/β, IL-23R, IL-27R (WSX-1/gp130), IL-35R (IL-12Rβ2/gp130), and IL-39R (IL-23Rα/gp130) that can prime, activate, and mediate effector functions in lymphocytes. The existence of the ‘third’ signal is known in both innate and adaptive lymphocytes. However, the necessity, context, and functional relevance of this ‘third signal’ in NK cells are elusive. Here, we define the current paradigm of the ‘third’ signal in NK cells and enumerate its clinical implications.
Collapse
Affiliation(s)
- Mohamed Khalil
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Dandan Wang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA; (M.K.); (D.W.); (E.H.)
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: (S.S.T.); (S.M.)
| |
Collapse
|
11
|
Reporter cell assay for human CD33 validated by specific antibodies and human iPSC-derived microglia. Sci Rep 2021; 11:13462. [PMID: 34188106 PMCID: PMC8242067 DOI: 10.1038/s41598-021-92434-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/07/2021] [Indexed: 12/15/2022] Open
Abstract
CD33/Sialic acid-binding Ig-like lectin 3 (SIGLEC3) is an innate immune receptor expressed on myeloid cells and mediates inhibitory signaling via tyrosine phosphatases. Variants of CD33 are associated with Alzheimer’s disease (AD) suggesting that modulation of CD33 signaling might be beneficial in AD. Hence, there is an urgent need for reliable cellular CD33 reporter systems. Therefore, we generated a CD33 reporter cell line expressing a fusion protein consisting of the extracellular domain of either human full-length CD33 (CD33M) or the AD-protective variant CD33ΔE2 (D2-CD33/CD33m) linked to TYRO protein tyrosine kinase binding protein (TYROBP/DAP12) to investigate possible ligands and antibodies for modulation of CD33 signaling. Application of the CD33-specific antibodies P67.6 and 1c7/1 to the CD33M-DAP12 reporter cells resulted in increased phosphorylation of the kinase SYK, which is downstream of DAP12. CD33M-DAP12 but not CD33ΔE2-DAP12 expressing reporter cells showed increased intracellular calcium levels upon treatment with CD33 antibody P67.6 and partially for 1c7/1. Furthermore, stimulation of human induced pluripotent stem cell-derived microglia with the CD33 antibodies P67.6 or 1c7/1 directly counteracted the triggering receptor expressed on myeloid cells 2 (TREM2)-induced phosphorylation of SYK and decreased the phagocytic uptake of bacterial particles. Thus, the developed reporter system confirmed CD33 pathway activation by CD33 antibody clones P67.6 and 1c7/1. In addition, data showed that phosphorylation of SYK by TREM2 activation and phagocytosis of bacterial particles can be directly antagonized by CD33 signaling.
Collapse
|
12
|
Omraninava M, Mehranfar S, Khosrojerdi A, Jamalzehi S, Karami J, Motallebnezhad M, Javan MR, Aslani S, Mohammadi H, Kousha A. Systematic review and meta-analytic findings on the association between killer-cell immunoglobulin-like receptor genes and susceptibility to pulmonary tuberculosis. Pathog Glob Health 2020; 115:61-69. [PMID: 33258733 DOI: 10.1080/20477724.2020.1848271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Several studies have evaluated the association between killer-cell immunoglobulin-like receptors (KIR) genes and susceptibility risk to tuberculosis (TB) infection. Nonetheless, their outcomes have not been conclusive and consistent. Here we implemented a systematic review and meta-analysis of KIR genes association to susceptibility risk of pulmonary TB (PTB) infection to attain a clear understanding of the involvement of these genes in susceptibility to PTB infection. A systematic search was conducted in the MEDLINE/PubMed and Scopus databases to find case-control studies published before November 2020. Pooled odds ratio (OR) and 95% confidence interval (95% CI) were calculated to determine the association between KIR genes and risk of PTB infection. After comprehensive searching and implementing the inclusion and exclusion criteria, 10 case-control studies were included in the meta-analysis. Four KIR genes were found to have significant positive association with PTB susceptibility risk of infection, including 2DL3 (OR = 1.454, 95% CI = 1.157-1.827; P = 0.001), 2DS1 (OR = 1.481, 95% CI = 1.334-1.837; P < 0.001), 2DS4 (OR = 1.782, 95% CI = 1.273-2.495; P = 0.001) and 3DL1 (OR = 1.726, 95% CI = 1.277-2.333; P < 0.001). However, the results showed that the remaining KIR genes (2DS2-4, 2DL1, 2, 4, 3DL1-2) and two pseudogenes (2DP1 and 3DP1) did not have significant associations with risk of PTB infection. This meta-analysis provides reliable evidence that the KIR genes 2DL3, 2DS1, 2DS4, and 3DL1 may be associated with an increased risk of PTB infection.
Collapse
Affiliation(s)
- Melodi Omraninava
- Department of Infectious Disease, Faculty of Medical Sciences, Sari Branch, Islamic Azad University , Sari, Iran
| | - Sahar Mehranfar
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences , Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences , Urmia, Iran
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Sirous Jamalzehi
- Department of Medical Laboratory Sciences, Iranshahr University of Medical Sciences , Iranshahr, Iran
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences , Tehran, Iran
| | - Mohammad Reza Javan
- Department of Immunology, Faculty of Medicine, Zabol University of Medical Sciences , Zabol, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences , Alborz, Iran
| | - Ahmad Kousha
- Department of Health Education and Health Promotion, Faculty of Health, Tabriz University of Medical Sciences , Tabriz, Iran
| |
Collapse
|
13
|
Research Progress on NK Cell Receptors and Their Signaling Pathways. Mediators Inflamm 2020; 2020:6437057. [PMID: 32774149 PMCID: PMC7396059 DOI: 10.1155/2020/6437057] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/25/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer cells (NK cells) play an important role in innate immunity. NK cells recognize self and nonself depending on the balance of activating receptors and inhibitory receptors. After binding to their ligands, NK cell receptors trigger subsequent signaling conduction and then determine whether NK is activated or inhibited. Furthermore, NK cell response includes cytotoxicity and cytokine release, which is tightly related to the activation of NK cell-activating receptors and the inhibition of inhibitory receptors on the surfaces of NK cells. The expression and function of NK cell surface receptors also alter in virus infection, tumor, and autoimmune diseases and influence the occurrence and development of diseases. So, it is important to understand the mechanism of recognition between NK receptors and their ligands in pathological conditions and the signaling pathways of NK cell receptors. This review mainly summarizes the research progress on NK cell surface receptors and their signal pathways.
Collapse
|
14
|
Dantas PHDS, Matos ADO, da Silva Filho E, Silva-Sales M, Sales-Campos H. Triggering receptor expressed on myeloid cells-1 (TREM-1) as a therapeutic target in infectious and noninfectious disease: a critical review. Int Rev Immunol 2020; 39:188-202. [PMID: 32379561 DOI: 10.1080/08830185.2020.1762597] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is an innate immune receptor found in the surface of several immune and non-immune cells. Since its first description in 2000, this molecule and its soluble form (sTREM-1) have been implicated in many diseases with infectious and noninfectious origins. As an amplifier of inflammation, the membrane-associated TREM-1 (mTREM-1) isoform induces the production of pro-inflammatory mediators, thus contributing to the pathogenesis of diseases such as sepsis, arthritis, colitis and infections. In this context, many studies have used molecules capable of inhibiting TREM-1 activity as anti-inflammatory drugs. In this regard, a few peptides have been showing promising results in the amelioration of detrimental immune responses. Some commercially available drugs, including corticosteroids and antibiotics, with known anti-inflammatory effects, have also shown activity in TREM-1 signaling. Therefore, considering the potential of this receptor as a therapeutic target, the present review encompasses the main compounds explored so far in TREM-1 modulation, highlighting and critically discussing its effects and major drawbacks of such approaches.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Ernandes da Silva Filho
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| | - Helioswilton Sales-Campos
- Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia, Goiás, Brazil
| |
Collapse
|
15
|
de Oliveira Matos A, Dos Santos Dantas PH, Figueira Marques Silva-Sales M, Sales-Campos H. The role of the triggering receptor expressed on myeloid cells-1 (TREM-1) in non-bacterial infections. Crit Rev Microbiol 2020; 46:237-252. [PMID: 32326783 DOI: 10.1080/1040841x.2020.1751060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The triggering receptor expressed on myeloid cells 1 (TREM-1) is a receptor of the innate immune system, expressed mostly by myeloid cells and primarily associated with pro- inflammatory responses. Although the exact nature of its ligands has not yet been fully elucidated, many microorganisms or danger signals have been proposed as inducers of its activation or the secretion of sTREM-1, the soluble form with putative anti-inflammatory effects. In the course of the 20 years since its first description, several studies have investigated the involvement of TREM-1 in bacterial infections. However, the number of studies describing the role of TREM-1 in fungal, viral and parasite-associated infections has only increased in the last few years, showing a diverse contribution of the receptor in these scenarios, with beneficial or detrimental activities depending on the context. Therefore, this review aims to discuss how TREM-1 may influence viral, fungal and parasitic infection outcomes, highlighting its potential as a therapeutic target and biomarker for diagnosis and prognosis of non-bacterial infectious diseases.
Collapse
|
16
|
Chirino LM, Kumar S, Okumura M, Sterner DE, Mattern M, Butt TR, Kambayashi T. TAM receptors attenuate murine NK-cell responses via E3 ubiquitin ligase Cbl-b. Eur J Immunol 2020; 50:48-55. [PMID: 31531847 PMCID: PMC7769591 DOI: 10.1002/eji.201948204] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/24/2019] [Accepted: 09/16/2019] [Indexed: 01/22/2023]
Abstract
TAM receptors (Tyro3, Axl, and Mer) are receptor tyrosine kinases (RTKs) that are expressed by multiple immune cells including NK cells. Although RTKs typically enhance cellular functions, TAM receptor ligation blocks NK-cell activation. The mechanisms by which RTKs block NK-cell signaling downstream of activating receptors are unknown. In this report, we demonstrate that TAM receptors attenuate NK cell responses via the activity of E3 ubiquitin ligase Casitas B lineage lymphoma b (Cbl-b). Specifically, we show that Tyro3, Axl, and Mer phosphorylate Cbl-b, and Tyro3 ligation activates Cbl-b by phosphorylating tyrosine residues 133 and 363. Ligation of TAM receptors by their ligand Gas6 suppresses activating receptor-stimulated NK-cell functions such as IFN-γ production and degranulation, in a TAM receptor kinase- and Cbl-b-dependent manner. Moreover, Gas6 ligation induces the degradation of LAT1, a transmembrane adaptor protein required for NK cell activating receptor signaling, in WT but not in Cbl-b knock-out NK cells. Together, these results suggest that TAM receptors may attenuate NK-cell function by phosphorylating Cbl-b, which in turn dampens NK-cell activation signaling by promoting the degradation of LAT1. Our data therefore support a mechanism by which RTKs attenuate, rather than stimulate, signaling pathways via the activation of ubiquitin ligases.
Collapse
Affiliation(s)
- Leilani M. Chirino
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | | | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
17
|
Key PN, Germino J, Yang L, Piersma SJ, Tripathy SK. Chronic Ly49H Receptor Engagement in vivo Decreases NK Cell Response to Stimulation Through ITAM-Dependent and Independent Pathways Both in vitro and in vivo. Front Immunol 2019; 10:1692. [PMID: 31396217 PMCID: PMC6664057 DOI: 10.3389/fimmu.2019.01692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells play an important role in the innate immune response. The summation of activation and inhibitory signals delivered through cell surface membrane receptors determines NK cell function. However, the continuous engagement of an activating receptor on NK cells appears to render the cells hyporesponsive to stimulation through other unrelated activating receptors. The mechanism by which this takes place remains unclear. Herein we demonstrate that continuous in vivo engagement of the Ly49H receptor with its ligand, m157, results in Ly49H+ NK cells that are hyporesponsive to further stimulation by other ITAM-dependent and independent receptors, while Ly49H− NK cells remain unaffected. The hyporesponsiveness of the NK cell correlates with the degree of Ly49H receptor downmodulation on its cell surface. We observe defects in calcium flux in the hyporesponsive NK cells following stimulation through the NK1.1 receptor. In addition, we observe differences in signaling molecules that play a role in calcium flux, including spleen tyrosine kinase (Syk) at baseline and phosphorylated phospholipase C gamma 2 (p-PLCγ2) at both baseline and following stimulation through NK1.1. We also demonstrate that various ITAM associated activation receptors, including Ly49H, remain associated with their respective adaptor molecules. With regard to in vivo NK cell function, we did not find differences in the formation of metastatic lung lesions following IV injection of B16 melanoma cells. However, we did observe defects in rejection of missing-self targets in vivo. The data suggest that continuous engagement of the Ly49H activating receptor on NK cells results in hyporesponsiveness of the NK cells to all of the ITAM-dependent and independent receptors we analyzed due to altered signaling pathways downstream of the receptor and adaptor molecule.
Collapse
Affiliation(s)
- Phillip N Key
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Joe Germino
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Liping Yang
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sytse J Piersma
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sandeep K Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Burga RA, Yvon E, Chorvinsky E, Fernandes R, Cruz CRY, Bollard CM. Engineering the TGFβ Receptor to Enhance the Therapeutic Potential of Natural Killer Cells as an Immunotherapy for Neuroblastoma. Clin Cancer Res 2019; 25:4400-4412. [PMID: 31010834 DOI: 10.1158/1078-0432.ccr-18-3183] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/18/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE The ability of natural killer (NK) cells to lyse allogeneic targets, without the need for explicit matching or priming, makes them an attractive platform for cell-based immunotherapy. Umbilical cord blood is a practical source for generating banks of such third-party NK cells for "off-the-shelf" cell therapy applications. NK cells are highly cytolytic, and their potent antitumor effects can be rapidly triggered by a lack of HLA expression on interacting target cells, as is the case for a majority of solid tumors, including neuroblastoma. Neuroblastoma is a leading cause of pediatric cancer-related deaths and an ideal candidate for NK-cell therapy. However, the antitumor efficacy of NK cells is limited by immunosuppressive cytokines in the tumor microenvironment, such as TGFβ, which impair NK cell function and survival. EXPERIMENTAL DESIGN To overcome this, we genetically modified NK cells to express variant TGFβ receptors, which couple a mutant TGFβ dominant-negative receptor to NK-specific activating domains. We hypothesized that with these engineered receptors, inhibitory TGFβ signals are effectively converted to activating signals. RESULTS Modified NK cells exhibited higher cytotoxic activity against neuroblastoma in a TGFβ-rich environment in vitro and superior progression-free survival in vivo, as compared with their unmodified controls. CONCLUSIONS Our results support the development of "off-the-shelf" gene-modified NK cells, that overcome TGFβ-mediated immune evasion, in patients with neuroblastoma and other TGFβ-secreting malignancies.
Collapse
Affiliation(s)
- Rachel A Burga
- Institute for Biomedical Sciences, George Washington University, Washington D.C.,Program for Cell Enhancement and Technologies for Innovation, Children's National Health System, Washington D.C.,GW Cancer Center, George Washington University, Washington D.C
| | - Eric Yvon
- GW Cancer Center, George Washington University, Washington D.C
| | | | - Rohan Fernandes
- Institute for Biomedical Sciences, George Washington University, Washington D.C.,GW Cancer Center, George Washington University, Washington D.C.,Department of Medicine, George Washington University, Washington D.C
| | - C Russell Y Cruz
- Institute for Biomedical Sciences, George Washington University, Washington D.C.,Program for Cell Enhancement and Technologies for Innovation, Children's National Health System, Washington D.C.,GW Cancer Center, George Washington University, Washington D.C
| | - Catherine M Bollard
- Institute for Biomedical Sciences, George Washington University, Washington D.C. .,Program for Cell Enhancement and Technologies for Innovation, Children's National Health System, Washington D.C.,GW Cancer Center, George Washington University, Washington D.C
| |
Collapse
|
19
|
Hammond TR, Marsh SE, Stevens B. Immune Signaling in Neurodegeneration. Immunity 2019; 50:955-974. [PMID: 30995509 PMCID: PMC6822103 DOI: 10.1016/j.immuni.2019.03.016] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases of the central nervous system progressively rob patients of their memory, motor function, and ability to perform daily tasks. Advances in genetics and animal models are beginning to unearth an unexpected role of the immune system in disease onset and pathogenesis; however, the role of cytokines, growth factors, and other immune signaling pathways in disease pathogenesis is still being examined. Here we review recent genetic risk and genome-wide association studies and emerging mechanisms for three key immune pathways implicated in disease, the growth factor TGF-β, the complement cascade, and the extracellular receptor TREM2. These immune signaling pathways are important under both healthy and neurodegenerative conditions, and recent work has highlighted new functional aspects of their signaling. Finally, we assess future directions for immune-related research in neurodegeneration and potential avenues for immune-related therapies.
Collapse
Affiliation(s)
- Timothy R Hammond
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel E Marsh
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Beth Stevens
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Zenere G, Olwenyi OA, Byrareddy SN, Braun SE. Optimizing intracellular signaling domains for CAR NK cells in HIV immunotherapy: a comprehensive review. Drug Discov Today 2019; 24:983-991. [PMID: 30771481 PMCID: PMC7065919 DOI: 10.1016/j.drudis.2019.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/16/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022]
Abstract
Natural killer (NK) cells are innate immune lymphocytes with a key role in host defense against HIV infection. Recent advances in chimeric antigen receptors (CARs) have made NK cells a prime target for expressing recombinant receptors capable of redirecting NK cytotoxic functions towards HIV-infected cells. In this review, we discuss the role of NK cells in HIV and the mechanisms of actions of HIV-targeting CAR strategies. Furthermore, we also review NK cells signal transduction and its application to CAR NK cell strategies to develop new combinations of CAR intracellular domains and to improve CAR NK signaling and cytotoxic functions.
Collapse
Affiliation(s)
- Giorgio Zenere
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Omalla Allan Olwenyi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Siddappa N Byrareddy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Cell Biology and Genetics, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Stephen E Braun
- Division of Immunology, Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA; Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
21
|
Aghaei H, Mostafaei S, Aslani S, Jamshidi A, Mahmoudi M. Association study between KIR polymorphisms and rheumatoid arthritis disease: an updated meta-analysis. BMC MEDICAL GENETICS 2019; 20:24. [PMID: 30696403 PMCID: PMC6352331 DOI: 10.1186/s12881-019-0754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Background Currently published studies investigating association between the killer cell immunoglobulin-like receptor (KIR) gene polymorphisms and rheumatoid arthritis (RA) reported inconsistent and contradictory results. Hence, we aim to carry out this comprehensive meta-analysis of all eligible studies meeting the inclusion criteria to achieve precise and comprehensive relationships between genetic variations in KIR gene cluster and risk of RA. Methods Databases of Medline/PubMed and Scopus were searched to investigate case-control studies prior to May 2018. The associations between KIR gene polymorphisms and RA susceptibility were analyzed by computing the odds ratio (OR) and 95% confidence interval (95% CI) for each study. Results A total of 11 comparative case-control studies involving 1847 RA patients and 2409 healthy individuals were included in this meta-analysis. Four significant associations of 2DL3 (OR = 0.591, 95% CI = 0.351–0.994; P = 0.047), 2DL5 (OR = 0.716, 95% CI = 0.601–0.853; P < 0.001), 2DS5 (OR = 0.623, 95% CI = 0.393–0.988; P = 0.045), and 3DL3 (OR = 0.324, 95% CI = 0.129–0.814; P = 0.016) genes with decreased RA risk were discovered in this meta-analysis. Although, other KIR receptors including 2DL1, 2DL2, 2DL4, 3DL1, 3DL2, 3DS1, 2DS1-2DS4, and two pseudo gens of 2DP1 and 3DP1 displayed no significant association with predisposition to RA. Conclusions These findings provide reliable evidence that 2DL3, 2DL5, 3DL3, and 2DS5 might have a potential protective role for RA.
Collapse
Affiliation(s)
- Hamideh Aghaei
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran.
| |
Collapse
|
22
|
Gao S, Yi Y, Xia G, Yu C, Ye C, Tu F, Shen L, Wang W, Hua C. The characteristics and pivotal roles of triggering receptor expressed on myeloid cells-1 in autoimmune diseases. Autoimmun Rev 2018; 18:25-35. [PMID: 30408584 DOI: 10.1016/j.autrev.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 01/13/2023]
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) engagement can directly trigger inflammation or amplify an inflammatory response by synergizing with TLRs or NLRs. Autoimmune diseases are a family of chronic systemic inflammatory disorders. The pivotal role of TREM-1 in inflammation makes it important to explore its immunological effects in autoimmune diseases. In this review, we summarize the structural and functional characteristics of TREM-1. Particularly, we discuss recent findings on TREM-1 pathway regulation in various autoimmune diseases, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), type 1 diabetes (T1D), and psoriasis. This receptor may potentially be manipulated to alter the inflammatory response to chronic inflammation and possible therapies are explored in this review.
Collapse
Affiliation(s)
- Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China
| | - Yongdong Yi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Guojun Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chengyang Yu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Chenmin Ye
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Fuyang Tu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Leibin Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China
| | - Wenqian Wang
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang Province, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, China.
| |
Collapse
|
23
|
Feng JY, Su WJ, Pan SW, Yeh YC, Lin YY, Chen NJ. Role of TREM-1 in pulmonary tuberculosis patients- analysis of serum soluble TREM-1 levels. Sci Rep 2018; 8:8223. [PMID: 29844416 PMCID: PMC5974358 DOI: 10.1038/s41598-018-26478-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/25/2018] [Indexed: 01/26/2023] Open
Abstract
Triggering receptor expressed on myeloid cells 1 (TREM-1) amplifies inflammatory responses and is upregulated during sepsis and pulmonary infection. The association between serum soluble TREM-1 (sTREM-1) level and pulmonary tuberculosis (PTB) disease deserves investigation. In the present study, patients with PTB, latent TB infection (LTBI), and non-TB, non-LTBI subjects were prospectively enrolled and serum levels of sTREM-1, sTREM-2, and C-reactive protein (CRP) were measured. We correlated serum biomarkers and clinical presentations and treatment outcomes of PTB cases. We also utilized immunohistochemistry (IHC) to visualize TREM-1-expressing cells in lung tissues from PTB patients. A total of 86 PTB, 41 LTBI, and 20 non-TB, non-LTBI subjects were enrolled. Serum levels of sTREM-1 and CRP significantly increased in PTB patients; these higher serum levels were correlated with more advanced involvement in chest films and higher bacteria burden in sputum. In multivariate analysis, serum levels of sTREM-1 >260 pg/mL and CRP >2.6 mg/L were independent predictors for on-treatment mortality. Abundant TREM-1-expressing macrophages were identified in lung tissues from PTB samples. In conclusion, serum levels of sTREM-1 correlated with disease severity and treatment outcomes in PTB patients.
Collapse
Affiliation(s)
- Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Juin Su
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chen Yeh
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cerebrovascular Diseases, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Nien-Jung Chen
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
24
|
Carrasco K, Boufenzer A, Jolly L, Le Cordier H, Wang G, Heck AJ, Cerwenka A, Vinolo E, Nazabal A, Kriznik A, Launay P, Gibot S, Derive M. TREM-1 multimerization is essential for its activation on monocytes and neutrophils. Cell Mol Immunol 2018; 16:460-472. [PMID: 29568119 DOI: 10.1038/s41423-018-0003-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/01/2018] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a receptor expressed on innate immune cells. By promoting the amplification of inflammatory signals that are initially triggered by Toll-like receptors (TLRs), TREM-1 has been characterized as a major player in the pathophysiology of acute and chronic inflammatory diseases, such as septic shock, myocardial infarction, atherosclerosis, and inflammatory bowel diseases. However, the molecular events leading to the activation of TREM-1 in innate immune cells remain unknown. Here, we show that TREM-1 is activated by multimerization and that the levels of intracellular Ca2+ release, reactive oxygen species, and cytokine production correlate with the degree of TREM-1 aggregation. TREM-1 activation on primary human monocytes by LPS required a two-step process consisting of upregulation followed by clustering of TREM-1 at the cell surface, in contrast to primary human neutrophils, where LPS induced a rapid cell membrane reorganization of TREM-1, which confirmed that TREM-1 is regulated differently in primary human neutrophils and monocytes. In addition, we show that the ectodomain of TREM-1 is able to homooligomerize in a concentration-dependent manner, which suggests that the clustering of TREM-1 on the membrane promotes its oligomerization. We further show that the adapter protein DAP12 stabilizes TREM-1 surface expression and multimerization. TREM-1 multimerization at the cell surface is also mediated by its endogenous ligand, a conclusion supported by the ability of the TREM-1 inhibitor LR12 to limit TREM-1 multimerization. These results provide evidence for ligand-induced, receptor-mediated dimerization of TREM-1. Collectively, our findings uncover the mechanisms necessary for TREM-1 activation in monocytes and neutrophils.
Collapse
Affiliation(s)
- Kevin Carrasco
- INOTREM, Vandœuvre-les-Nancy, France.,UMR-S 1116, Defaillance cardiovasculaire aigue et chronique, Vandœuvre-les-Nancy, France
| | | | - Lucie Jolly
- INOTREM, Vandœuvre-les-Nancy, France.,UMR-S 1116, Defaillance cardiovasculaire aigue et chronique, Vandœuvre-les-Nancy, France
| | - Helene Le Cordier
- UMR7365, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), CNRS-Université de Lorraine, Vandœuvre-les-Nancy, France
| | - Guanbo Wang
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics Center, Utrecht University, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences and Netherlands Proteomics Center, Utrecht University, Utrecht, The Netherlands
| | - Adelheid Cerwenka
- Innate Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Alexandre Kriznik
- Service Commun de Biophysique Interactions Moléculaires (SCBIM), FR3209, Biopôle de l'Université de Lorraine, Vandœuvre-les-Nancy, France
| | | | - Sebastien Gibot
- UMR-S 1116, Defaillance cardiovasculaire aigue et chronique, Vandœuvre-les-Nancy, France
| | | |
Collapse
|
25
|
Wensveen FM, Jelenčić V, Polić B. NKG2D: A Master Regulator of Immune Cell Responsiveness. Front Immunol 2018; 9:441. [PMID: 29568297 PMCID: PMC5852076 DOI: 10.3389/fimmu.2018.00441] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/19/2018] [Indexed: 01/11/2023] Open
Abstract
NKG2D is an activating receptor that is mostly expressed on cells of the cytotoxic arm of the immune system. Ligands of NKG2D are normally of low abundance, but can be induced in virtually any cell in response to stressors, such as infection and oncogenic transformation. Engagement of NKG2D stimulates the production of cytokines and cytotoxic molecules and traditionally this receptor is, therefore, viewed as a molecule that mediates direct responses against cellular threats. However, accumulating evidence indicates that this classical view is too narrow. During NK cell development, engagement of NKG2D has a long-term impact on the expression of NK cell receptors and their responsiveness to extracellular cues, suggesting a role in NK cell education. Upon chronic NKG2D engagement, both NK and T cells show reduced responsiveness of a number of activating receptors, demonstrating a role of NKG2D in induction of peripheral tolerance. The image that emerges is that NKG2D can mediate both inhibitory and activating signals, which depends on the intensity and duration of ligand engagement. In this review, we provide an overview of the impact of NKG2D stimulation during hematopoietic development and during acute and chronic stimulation in the periphery on responsiveness of other receptors than NKG2D. We propose that NKG2D interprets the context of the immunological environment through detection of cellular cues and in response sets the appropriate activation threshold for a large number of immune receptors. This perspective is of particular importance for future therapies that aim to exploit NKG2D signaling to fight tumors or infection.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
26
|
Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front Immunol 2017; 8:1124. [PMID: 28955340 PMCID: PMC5601256 DOI: 10.3389/fimmu.2017.01124] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that show strong cytolytic function against physiologically stressed cells such as tumor cells and virus-infected cells. NK cells show a broad array of tissue distribution and phenotypic variability. NK cells express several activating and inhibitory receptors that recognize the altered expression of proteins on target cells and control the cytolytic function. NK cells have been used in several clinical trials to control tumor growth. However, the results are encouraging only in hematological malignancies but not very promising in solid tumors. Increasing evidence suggests that tumor microenvironment regulate the phenotype and function of NK cells. In this review, we discussed the NK cell phenotypes and its effector function and impact of the tumor microenvironment on effector and cytolytic function of NK cells. We also summarized various NK cell-based immunotherapeutic strategies used in the past and the possibilities to improve the function of NK cell for the better clinical outcome.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science, Pune, India
| | | |
Collapse
|
27
|
Fasbender F, Claus M, Wingert S, Sandusky M, Watzl C. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes. Front Immunol 2017; 8:789. [PMID: 28736554 PMCID: PMC5500614 DOI: 10.3389/fimmu.2017.00789] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/22/2017] [Indexed: 01/10/2023] Open
Abstract
In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.
Collapse
Affiliation(s)
- Frank Fasbender
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Maren Claus
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Sabine Wingert
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Mina Sandusky
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors, IfADo, TU-Dortmund, Dortmund, Germany
| |
Collapse
|
28
|
Kober DL, Brett TJ. TREM2-Ligand Interactions in Health and Disease. J Mol Biol 2017; 429:1607-1629. [PMID: 28432014 DOI: 10.1016/j.jmb.2017.04.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/04/2023]
Abstract
The protein triggering receptor expressed on myeloid cells-2 (TREM2) is an immunomodulatory receptor with a central role in myeloid cell activation and survival. In recent years, the importance of TREM2 has been highlighted by the identification of coding variants that increase risk for Alzheimer's disease and other neurodegenerative diseases. Animal studies have further shown the importance of TREM2 in neurodegenerative and other inflammatory disease models including chronic obstructive pulmonary disease, multiple sclerosis, and stroke. A mechanistic understanding of TREM2 function remains elusive, however, due in part to the absence of conclusive information regarding the identity of endogenous TREM2 ligands. While many TREM2 ligands have been proposed, their physiological role and mechanism of engagement remain to be determined. In this review, we highlight the suggested roles of TREM2 in these diseases and the recent advances in our understanding of TREM2 and discuss putative TREM2-ligand interactions and their potential roles in signaling during health and disease. We develop a model based on the TREM2 structure to explain how different TREM2 ligands might interact with the receptor and how disease risk variants may alter ligand interactions. Finally, we propose future experimental directions to establish the role and importance of these different interactions on TREM2 function.
Collapse
Affiliation(s)
- Daniel L Kober
- Molecular Microbiology and Microbial Pathogenesis Program, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tom J Brett
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Singh BK, Kambayashi T. The Immunomodulatory Functions of Diacylglycerol Kinase ζ. Front Cell Dev Biol 2016; 4:96. [PMID: 27656643 PMCID: PMC5013040 DOI: 10.3389/fcell.2016.00096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
The generation of diacylglycerol (DAG) is critical for promoting immune cell activation, regulation, and function. Diacylglycerol kinase ζ (DGKζ) serves as an important negative regulator of DAG by enzymatically converting DAG into phosphatidic acid (PA) to shut down DAG-mediated signaling. Consequently, the loss of DGKζ increases DAG levels and the duration of DAG-mediated signaling. However, while the enhancement of DAG signaling is thought to augment immune cell function, the loss of DGKζ can result in both immunoactivation and immunomodulation depending on the cell type and function. In this review, we discuss how different immune cell functions can be selectively modulated by DGKζ. Furthermore, we consider how targeting DGKζ can be potentially beneficial for the resolution of human diseases by either promoting immune responses important for protection against infection or cancer or dampening immune responses in immunopathologic conditions such as allergy and septic shock.
Collapse
Affiliation(s)
- Brenal K Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
30
|
Zhao D, Han X, Zheng X, Wang H, Yang Z, Liu D, Han K, Liu J, Wang X, Yang W, Dong Q, Yang S, Xia X, Tang L, He F. The Myeloid LSECtin Is a DAP12-Coupled Receptor That Is Crucial for Inflammatory Response Induced by Ebola Virus Glycoprotein. PLoS Pathog 2016; 12:e1005487. [PMID: 26943817 PMCID: PMC4778874 DOI: 10.1371/journal.ppat.1005487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/11/2016] [Indexed: 01/06/2023] Open
Abstract
Fatal Ebola virus infection is characterized by a systemic inflammatory response similar to septic shock. Ebola glycoprotein (GP) is involved in this process through activating dendritic cells (DCs) and macrophages. However, the mechanism is unclear. Here, we showed that LSECtin (also known as CLEC4G) plays an important role in GP-mediated inflammatory responses in human DCs. Anti-LSECtin mAb engagement induced TNF-α and IL-6 production in DCs, whereas silencing of LSECtin abrogated this effect. Intriguingly, as a pathogen-derived ligand, Ebola GP could trigger TNF-α and IL-6 release by DCs through LSECtin. Mechanistic investigations revealed that LSECtin initiated signaling via association with a 12-kDa DNAX-activating protein (DAP12) and induced Syk activation. Mutation of key tyrosines in the DAP12 immunoreceptor tyrosine-based activation motif abrogated LSECtin-mediated signaling. Furthermore, Syk inhibitors significantly reduced the GP-triggered cytokine production in DCs. Therefore, our results demonstrate that LSECtin is required for the GP-induced inflammatory response, providing new insights into the EBOV-mediated inflammatory response.
Collapse
Affiliation(s)
- Dianyuan Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xintao Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui Province, China
| | - Xuexing Zheng
- Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, China
| | - Hualei Wang
- Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, China
| | - Zaopeng Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Di Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ke Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaowen Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenting Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qingyang Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Songtao Yang
- Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, China
| | - Xianzhu Xia
- Military Veterinary Institute, Academy of Military Medical Science of PLA, Changchun, China
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, Anhui Province, China
- * E-mail: (LT); (FH)
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- College of Life Sciences, Peking University, Beijing, China
- Department of Biology Sciences and Biotechnology, Tsinghua University, Beijing, China
- * E-mail: (LT); (FH)
| |
Collapse
|
31
|
Ribeiro ST, Ribot JC, Silva-Santos B. Five Layers of Receptor Signaling in γδ T-Cell Differentiation and Activation. Front Immunol 2015; 6:15. [PMID: 25674089 PMCID: PMC4306313 DOI: 10.3389/fimmu.2015.00015] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/08/2015] [Indexed: 12/15/2022] Open
Abstract
The contributions of γδ T-cells to immunity to infection or tumors critically depend on their activation and differentiation into effectors capable of secreting cytokines and killing infected or transformed cells. These processes are molecularly controlled by surface receptors that capture key extracellular cues and convey downstream intracellular signals that regulate γδ T-cell physiology. The understanding of how environmental signals are integrated by γδ T-cells is critical for their manipulation in clinical settings. Here, we discuss how different classes of surface receptors impact on human and murine γδ T-cell differentiation, activation, and expansion. In particular, we review the role of five receptor types: the T-cell receptor (TCR), costimulatory receptors, cytokine receptors, NK receptors, and inhibitory receptors. Some of the key players are the costimulatory receptors CD27 and CD28, which differentially impact on pro-inflammatory subsets of γδ T-cells; the cytokine receptors IL-2R, IL-7R, and IL-15R, which drive functional differentiation and expansion of γδ T-cells; the NK receptor NKG2D and its contribution to γδ T-cell cytotoxicity; and the inhibitory receptors PD-1 and BTLA that control γδ T-cell homeostasis. We discuss these and other receptors in the context of a five-step model of receptor signaling in γδ T-cell differentiation and activation, and discuss its implications for the manipulation of γδ T-cells in immunotherapy.
Collapse
Affiliation(s)
- Sérgio T Ribeiro
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Julie C Ribot
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| | - Bruno Silva-Santos
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
32
|
Lou Q, Zhang W, Liu G, Ma Y. The C-type lectin OCILRP2 costimulates EL4 T cell activation via the DAP12-Raf-MAP kinase pathway. PLoS One 2014; 9:e113218. [PMID: 25411776 PMCID: PMC4239057 DOI: 10.1371/journal.pone.0113218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/21/2014] [Indexed: 11/30/2022] Open
Abstract
OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation.
Collapse
Affiliation(s)
- Qiang Lou
- Henan Engineering Lab of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Medical College of Henan University, Kaifeng 475004, China
| | - Wei Zhang
- Henan Engineering Lab of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Medical College of Henan University, Kaifeng 475004, China
| | - Guangchao Liu
- Henan Engineering Lab of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Medical College of Henan University, Kaifeng 475004, China
| | - Yuanfang Ma
- Henan Engineering Lab of Antibody Medicine, Key Laboratory of Cellular and Molecular Immunology, Medical College of Henan University, Kaifeng 475004, China
- * E-mail:
| |
Collapse
|
33
|
Lo TH, Tseng KY, Tsao WS, Yang CY, Hsieh SL, Chiu AWH, Takai T, Mak TW, Tarng DC, Chen NJ. TREM-1 regulates macrophage polarization in ureteral obstruction. Kidney Int 2014; 86:1174-86. [PMID: 24918157 DOI: 10.1038/ki.2014.205] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 04/21/2014] [Accepted: 04/24/2014] [Indexed: 12/14/2022]
Abstract
Chronic kidney disease (CKD) is an emerging worldwide public health problem. Inflammatory cell infiltration and activation during the early stages in injured kidneys is a common pathologic feature of CKD. Here, we determined whether an important inflammatory regulator, triggering receptor expressed on myeloid cells (TREM)-1, is upregulated in renal tissues collected from mouse ureteral obstruction-induced nephritis. TREM-1 is crucial for modulating macrophage polarization, and has a pivotal role in mediating tubular injury and interstitial collagen deposition in obstructive nephritis. Lysates from nephritic kidneys triggered a TREM-1-dependent M1 polarization ex vivo, consistent with the observation that granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived M1 macrophages express higher levels of TREM-1 in comparison with M-CSF-derived cells. Moreover, agonistic TREM-1 cross-link significantly strengthens the inductions of iNOS and GM-CSF in M1 cells. These observations are validated by a strong clinical correlation between infiltrating TREM-1-expressing/iNOS-positive macrophages and renal injury in human obstructive nephropathy. Thus, TREM-1 may be a potential diagnostic and therapeutic target in human kidney disease.
Collapse
Affiliation(s)
- Tzu-Han Lo
- Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC)
| | - Kai-Yu Tseng
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan (ROC)
| | - Wen-Shan Tsao
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan (ROC)
| | - Chih-Ya Yang
- 1] Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan (ROC) [2] Genomic Research Center, Academia Sinica, Taipei, Taiwan (ROC)
| | - Shie-Liang Hsieh
- 1] Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan (ROC) [2] Genomic Research Center, Academia Sinica, Taipei, Taiwan (ROC) [3] Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC) [4] Inflammation and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan (ROC) [5] Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan (ROC) [6] Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Allen Wen-Hsiang Chiu
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC)
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Der-Cherng Tarng
- 1] Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC) [2] Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (ROC) [3] Inflammation and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan (ROC) [4] Immunology Center, Taipei Veterans General Hospital, Taipei, Taiwan (ROC) [5] Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan (ROC)
| | - Nien-Jung Chen
- 1] Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan (ROC) [2] Inflammation and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan (ROC)
| |
Collapse
|
34
|
The activating Ly49W and inhibitory Ly49G NK cell receptors display similar affinities for identical MHC class I ligands. Immunogenetics 2014; 66:467-77. [DOI: 10.1007/s00251-014-0777-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/23/2014] [Indexed: 01/26/2023]
|
35
|
Montalvo V, Quigley L, Vistica BP, Boelte KC, Nugent LF, Takai T, McVicar DW, Gery I. Environmental factors determine DAP12 deficiency to either enhance or suppress immunopathogenic processes. Immunology 2014; 140:475-82. [PMID: 23906311 DOI: 10.1111/imm.12158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/28/2013] [Accepted: 07/29/2013] [Indexed: 12/30/2022] Open
Abstract
DNAX-activation protein 12 (DAP12), a transmembrane adapter, plays a major role in transducing activation signals in natural killer cells and various myeloid cells. Quantitative RT-PCR detected in normal mouse eyes considerable levels of DAP12 and multiple DAP12-coupled receptors, in particular TREM-1, Clec5a and SIRPb1. The role of DAP12 and its receptors in experimental autoimmune diseases has been controversial. Here, we analysed the effect of DAP12 deficiency on the capacity of mice to mount immunopathogenic cellular responses to the uveitogenic ocular antigen and interphotoreceptor retinoid-binding protein (IRBP), and to develop experimental autoimmune uveitis (EAU). Surprisingly, sequential analysis of EAU in mice deficient in DAP12 in two different animal facilities at first revealed enhanced disease as compared with wild-type mice, but when these mice were re-derived into a second, cleaner, animal facility, the response of control mice was essentially unchanged, whereas the DAP12 null mice were markedly hyporesponsive relative to controls in the new facility. Accordingly, when stimulated in vitro with IRBP, lymphocytes from the DAP12-deficient mice housed in the two facilities proliferated and produced opposite profiles of pro-inflammatory and anti-inflammatory cytokines, compared with their controls. These findings therefore demonstrate that the effects of DAP12 deficiency on development of autoimmune disease are dramatically affected by environmental factors.
Collapse
Affiliation(s)
- Vanessa Montalvo
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rahim MMA, Tu MM, Mahmoud AB, Wight A, Abou-Samra E, Lima PDA, Makrigiannis AP. Ly49 receptors: innate and adaptive immune paradigms. Front Immunol 2014; 5:145. [PMID: 24765094 PMCID: PMC3980100 DOI: 10.3389/fimmu.2014.00145] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/20/2014] [Indexed: 11/13/2022] Open
Abstract
The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity.
Collapse
Affiliation(s)
- Mir Munir A Rahim
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Megan M Tu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada ; College of Applied Medical Sciences, Taibah University , Madinah Munawwarah , Kingdom of Saudi Arabia
| | - Andrew Wight
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Elias Abou-Samra
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Patricia D A Lima
- Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
37
|
Abstract
were originally named for their capacity to elicit potent cytotoxicity against tumor cells independent of prior sensitization or gene rearrangement. This process is facilitated through the expression of activating and inhibitory receptors that provide for NK cell "education" and a subsequent ability to survey, recognize, and lyse infected or transformed cells, especially those lacking or possessing mutated MHC class I expression. Since these original observations were made, how NK cells recognize candidate target cells continues to be the topic of ongoing investigation. It is now appreciated that NK cells express a diverse repertoire of activating and inhibitory receptors of which killer immunoglobulin-like receptors (KIR) appear to play a critical role in mediating self-tolerance as well as facilitating cytotoxicity against infected or transformed cells. In addition, in the presence of an activating signal, the absence or mismatch of MHC class I molecules on such targets (which serve as inhibitory KIR ligands) promotes NK cell–mediated lysis. An increasing understanding of the complexities of KIR biology has provided recent opportunities to leverage the NK cell versus tumor effect as a novel avenue of immunotherapy for cancer. The present review summarizes the current understanding of KIR expression and function and highlights ongoing efforts to translate these discoveries into novel NK cell–mediated immunotherapies for cancer.
Collapse
Affiliation(s)
- Don M Benson
- The Division of Hematology, Department of Internal Medicine; The Ohio State University Comprehensive Cancer Center; The James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Michael A Caligiuri
- The Division of Hematology, Department of Internal Medicine; The Ohio State University Comprehensive Cancer Center; The James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| |
Collapse
|
38
|
Abstract
The CD200:CD200R1 inhibitory signaling pathway has been implicated in playing a prominent role in limiting inflammation in a wide range of inflammatory diseases. CD200R1 signaling inhibits the expression of proinflammatory molecules including tumor necrosis factor, interferons, and inducible nitric oxide synthase in response to selected stimuli. Unsurprisingly, due to the regulatory role that CD200R1 plays in multiple inflammatory pathways, an increasing number of parasitic, bacterial, and viral pathogens exploit this pathway to suppress host defenses. A complete understanding of the pathways regulated by CD200R1 signaling and the diverse mechanisms that pathogens have evolved to manipulate the CD200:CD200R1 pathway can help identify clinical situations where targeting this interaction can be of therapeutic benefit. In this review, we compare CD200R1 to other pathogen-targeted inhibitory receptors and highlight how this signaling pathway is utilized by a diverse number of pathogens and, therefore, may represent a novel targeting strategy for the treatment of infectious diseases.
Collapse
MESH Headings
- Animals
- Antigens, CD/physiology
- Antigens, Surface/physiology
- Extracellular Fluid/immunology
- Extracellular Fluid/microbiology
- Extracellular Fluid/virology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Immunoglobulins/physiology
- Inflammation/genetics
- Inflammation/microbiology
- Inflammation/virology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/virology
- Lectins, C-Type/physiology
- Mice
- Orexin Receptors
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/immunology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/physiology
- Receptors, KIR/administration & dosage
- Receptors, KIR/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Christine A Vaine
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Roy J Soberman
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
39
|
Bidirectional microglia-neuron communication in the healthy brain. Neural Plast 2013; 2013:456857. [PMID: 24078884 PMCID: PMC3775394 DOI: 10.1155/2013/456857] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/01/2013] [Indexed: 01/01/2023] Open
Abstract
Unlike other resident neural cells that are of neuroectodermal origin, microglia are resident neural cells of mesodermal origin. Traditionally recognized for their immune functions during disease, new roles are being attributed to these cells in the development and maintenance of the central nervous system (CNS) including specific communication with neurons. In this review, we highlight some of the recent findings on the bidirectional interaction between neurons and microglia. We discuss these interactions along two lines. First, we review data that suggest that microglial activity is modulated by neuronal signals, focusing on evidence that (i) neurons are capable of regulating microglial activation state and influence basal microglial activities; (ii) classic neurotransmitters affect microglial behavior; (iii) chemotactic signals attract microglia during acute neuronal injury. Next, we discuss some of the recent data on how microglia signal to neurons. Signaling mechanisms include (i) direct physical contact of microglial processes with neuronal elements; (ii) microglial regulation of neuronal synapse and circuit by fractalkine, complement, and DAP12 signaling. In addition, we discuss the use of microglial depletion strategies in studying the role of microglia in neuronal development and synaptic physiology. Deciphering the mechanisms of bidirectional microglial-neuronal communication provides novel insights in understanding microglial function in both the healthy and diseased brain.
Collapse
|
40
|
Peng Q, Long CL, Malhotra S, Humphrey MB. A physical interaction between the adaptor proteins DOK3 and DAP12 is required to inhibit lipopolysaccharide signaling in macrophages. Sci Signal 2013; 6:ra72. [PMID: 23962980 DOI: 10.1126/scisignal.2003801] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNAX-activating protein of 12 kD (DAP12) is an immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptor protein found in myeloid cells and natural killer cells, and it couples to various receptors that mediate either cellular activation or inhibition. DAP12 inhibits Toll-like receptor (TLR) signaling, such as that of TLR4 in response to its ligand lipopolysaccharide (LPS), as well as cytokine responses by coupling to TREM2 (triggering receptor expressed on myeloid cells 2) at the plasma membrane. Understanding the mechanisms that inhibit inflammatory responses in macrophages is important for the development of therapies to treat inflammatory diseases. We show that inhibition of LPS responses by DAP12 is mediated by the adaptor protein DOK3 (downstream of kinase 3). DOK3 physically associated with the ITAM of DAP12 through its phosphotyrosine-binding domain. In response to LPS, DOK3 was phosphorylated in a DAP12- and Src-dependent manner, which led to translocation of phosphorylated DOK3 to the plasma membrane. DOK3-deficient cells exhibited increased production of proinflammatory cytokines and activation of extracellular signal-regulated kinase (ERK). Compared to wild-type mice, DOK3-deficient mice had increased susceptibility to challenge with a sublethal dose of LPS and produced increased serum concentrations of the inflammatory cytokine tumor necrosis factor-α (TNF-α). Together, these data suggest the mechanism by which DAP12 and TREM2 inhibit LPS signaling in macrophages to prevent inflammation.
Collapse
Affiliation(s)
- Qisheng Peng
- Key Laboratory for Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | | | | | | |
Collapse
|
41
|
Effect of Lactobacillus brevis KB290 on the cell-mediated cytotoxic activity of mouse splenocytes: a DNA microarray analysis. Br J Nutr 2013; 110:1617-29. [PMID: 23544404 DOI: 10.1017/s0007114513000767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lactic acid bacteria confer a variety of health benefits. Here, we investigate the mechanisms by which Lactobacillus brevis KB290 (KB290) enhances cell-mediated cytotoxic activity. Female BALB/c mice aged 9 weeks were fed a diet containing KB290 (3 × 10(9) colony-forming units/g) or starch for 1 d. The resulting cytotoxic activity of splenocytes against YAC-1 cells was measured using flow cytometry and analysed for gene expression using DNA microarray technology. KB290 enhanced the cell-mediated cytotoxic activity of splenocytes. DNA microarray analysis identified 327 up-regulated and 347 down-regulated genes that characterised the KB290 diet group. The up-regulated genes were significantly enriched in Gene Ontology terms related to immunity, and, especially, a positive regulation of T-cell-mediated cytotoxicity existed among these terms. Almost all the genes included in the term encoded major histocompatibility complex (MHC) class I molecules involved in the presentation of antigen to CD8(+) cytotoxic T cells. Marco and Signr1 specific to marginal zone macrophages (MZM), antigen-presenting cells, were also up-regulated. Flow cytometric analysis confirmed that the proportion of MZM was significantly increased by KB290 ingestion. Additionally, the over-represented Kyoto Encyclopedia of Genes and Genomes pathways among the up-regulated genes were those for natural killer (NK) cell-mediated cytotoxicity and antigen processing and presentation. The results for the selected genes associated with NK cells and CD8(+) cytotoxic T cells were confirmed by quantitative RT-PCR. These results suggest that enhanced cytotoxic activity could be caused by the activation of NK cells and/or of CD8(+) cytotoxic T cells stimulated via MHC class I presentation.
Collapse
|
42
|
Rao S, Liu X, Freedman BD, Behrens EM. Spleen tyrosine kinase (Syk)-dependent calcium signals mediate efficient CpG-induced exocytosis of tumor necrosis factor α (TNFα) in innate immune cells. J Biol Chem 2013; 288:12448-58. [PMID: 23515313 DOI: 10.1074/jbc.m113.454405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pattern recognition receptors expressed by cells of the innate immune system initiate the immune response upon recognition of microbial products. Activation of pattern recognition receptors result in the production and release of proinflammatory cytokines, including TNFα and IL-6. Because these cytokines promote disparate effector cell responses, understanding the signaling pathways involved in their regulation is critical for directing the immune response. Using macrophages and dendritic cells deficient in spleen tyrosine kinase (Syk), we identified a novel pathway by which TNFα trafficking and secretion are regulated by Syk following stimulation with CpG DNA. In the absence of PLCγ2, a Syk substrate, or the calcium-responsive kinase calcium calmodulin kinase II, CpG-induced TNFα secretion was impaired. Forced calcium mobilization rescued the TNFα secretion defect in Syk-deficient cells. In contrast to its effect on TNFα, Syk deficiency did not affect IL-6 secretion, suggesting that Syk-dependent signals participate in differential sorting of cytokines, thus tailoring the cytokine response. Our data report a novel pathway for TNFα regulation and provide insight into non-transcriptional mechanisms for shaping cytokine responses.
Collapse
Affiliation(s)
- Sheila Rao
- Division of Pediatric Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
43
|
Polycystic Lipomembranous Osteodysplasia with Sclerosing Leukoencephalopathy (PLOSL): A new report of an Italian woman and review of the literature. J Neurol Sci 2013; 326:115-9. [DOI: 10.1016/j.jns.2013.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 01/13/2013] [Accepted: 01/15/2013] [Indexed: 11/22/2022]
|
44
|
Abstract
AbstractPersistent high fever is one of the most typical clinical symptoms in dengue virus (DV)–infected patients. However, the source of endogenous pyrogen (eg, IL-1β) and the signaling cascade leading to the activation of inflammasome and caspase-1, which are essential for IL-1β and IL-18 secretion, during dengue infection have not been elucidated yet. Macrophages can be polarized into distinct phenotypes under the influence of GM-CSF or M-CSF, denoted as GM-Mφ and M-Mφ, respectively. We found that DV induced high levels of IL-1β and IL-18 from GM-Mφ (inflammatory macrophage) and caused cell death (pyroptosis), whereas M-Mφ (resting macrophage) did not produce IL-1β and IL-18 on DV infection even with lipopolysaccharide priming. This observation demonstrates the distinct responses of GM-Mφ and M-Mφ to DV infection. Moreover, up-regulation of pro-IL-1β, pro-IL-18, and NLRP3 associated with caspase-1 activation was observed in DV-infected GM-Mφ, whereas blockade of CLEC5A/MDL-1, a C-type lectin critical for dengue hemorrhagic fever and Japanese encephalitis virus infection, inhibits NLRP3 inflammasome activation and pyrotopsis in GM-Mφ. Thus, DV can activate NLRP3 inflammasome via CLEC5A, and GM-Mφ plays a more important role than M-Mφ in the pathogenesis of DV infection.
Collapse
|
45
|
Iwai H, Kohsaka H. [Blockade of Triggering receptor expressed on myeloid cells-1 as a new therapy of arthritis]. ACTA ACUST UNITED AC 2012; 35:81-6. [PMID: 22374448 DOI: 10.2177/jsci.35.81] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Triggering receptor expressed on myeloid cells (TREM)-1 belongs to an immunoglobulin super family and is expressed on neutrophils, mature monocytes and macrophages. The engagement of TREM-1 synergizes with several Toll Like Receptors (TLR) activation in amplifying the inflammatory response. TREM-1 blockade using a fusion protein containing murine TREM-1 extracellular domain and human immunoglobulin Fc portion was reported to prevent death in mouse models of microbial peritonitis and protect from organ damage during other inflammatory diseases. There are many reports suggesting the involvement of TREM-1 in the pathogenesis of rheumatoid arthritis. Blockade of TREM-1 could be a new therapeutic target in rheumatoid arthritis without impairing the host defense against microbes. In this report, we outline the role of TREM-1 and the trial of developing anti-rheumatic drugs by targeting its ligand.
Collapse
Affiliation(s)
- Hideyuki Iwai
- Department of Medicine and Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | | |
Collapse
|
46
|
Fournier B, Andargachew R, Robin AZ, Laur O, Voelker DR, Lee WY, Weber D, Parkos CA. Surfactant protein D (Sp-D) binds to membrane-proximal domain (D3) of signal regulatory protein α (SIRPα), a site distant from binding domain of CD47, while also binding to analogous region on signal regulatory protein β (SIRPβ). J Biol Chem 2012; 287:19386-98. [PMID: 22511785 DOI: 10.1074/jbc.m111.324533] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Signal regulatory protein α (SIRPα), a highly glycosylated type-1 transmembrane protein, is composed of three immunoglobulin-like extracellular loops as well as a cytoplasmic tail containing three classical tyrosine-based inhibitory motifs. Previous reports indicate that SIRPα binds to humoral pattern recognition molecules in the collectin family, namely surfactant proteins D and A (Sp-D and Sp-A, respectively), which are heavily expressed in the lung and constitute one of the first lines of innate immune defense against pathogens. However, little is known about molecular details of the structural interaction of Sp-D with SIRPs. In the present work, we examined the molecular basis of Sp-D binding to SIRPα using domain-deleted mutant proteins. We report that Sp-D binds to the membrane-proximal Ig domain (D3) of SIRPα in a calcium- and carbohydrate-dependent manner. Mutation of predicted N-glycosylation sites on SIRPα indicates that Sp-D binding is dependent on interactions with specific N-glycosylated residues on the membrane-proximal D3 domain of SIRPα. Given the remarkable sequence similarity of SIRPα to SIRPβ and the lack of known ligands for the latter, we examined Sp-D binding to SIRPβ. Here, we report specific binding of Sp-D to the membrane-proximal D3 domain of SIRPβ. Further studies confirmed that Sp-D binds to SIRPα expressed on human neutrophils and differentiated neutrophil-like cells. Because the other known ligand of SIRPα, CD47, binds to the membrane-distal domain D1, these findings indicate that multiple, distinct, functional ligand binding sites are present on SIRPα that may afford differential regulation of receptor function.
Collapse
Affiliation(s)
- Bénédicte Fournier
- Epithelial Pathobiology Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
SNPs array karyotyping reveals a novel recurrent 20p13 amplification in primary myelofibrosis. PLoS One 2011; 6:e27560. [PMID: 22110671 PMCID: PMC3215741 DOI: 10.1371/journal.pone.0027560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/19/2011] [Indexed: 01/22/2023] Open
Abstract
The molecular pathogenesis of primary mielofibrosis (PMF) is still largely unknown. Recently, single-nucleotide polymorphism arrays (SNP-A) allowed for genome-wide profiling of copy-number alterations and acquired uniparental disomy (aUPD) at high-resolution. In this study we analyzed 20 PMF patients using the Genome-Wide Human SNP Array 6.0 in order to identify novel recurrent genomic abnormalities. We observed a complex karyotype in all cases, detecting all the previously reported lesions (del(5q), del(20q), del(13q), +8, aUPD at 9p24 and abnormalities on chromosome 1). In addition, we identified several novel cryptic lesions. In particular, we found a recurrent alteration involving cytoband 20p13 in 55% of patients. We defined a minimal affected region (MAR), an amplification of 9,911 base-pair (bp) overlapping the SIRPB1 gene locus. Noteworthy, by extending the analysis to the adjacent areas, the cytoband was overall affected in 95% of cases. Remarkably, these results were confirmed by real-time PCR and validated in silico in a large independent series of myeloproliferative diseases. Finally, by immunohistochemistry we found that SIRPB1 was over-expressed in the bone marrow of PMF patients carrying 20p13 amplification. In conclusion, we identified a novel highly recurrent genomic lesion in PMF patients, which definitely warrant further functional and clinical characterization.
Collapse
|
48
|
Cheung R, Shen F, Phillips JH, McGeachy MJ, Cua DJ, Heyworth PG, Pierce RH. Activation of MDL-1 (CLEC5A) on immature myeloid cells triggers lethal shock in mice. J Clin Invest 2011; 121:4446-61. [PMID: 22005300 DOI: 10.1172/jci57682] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 08/26/2011] [Indexed: 12/11/2022] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is a potentially lethal condition, as it can progress to shock, multi-organ failure, and death. It can be triggered by infection, tissue damage, or hemorrhage. The role of tissue injury in the progression from SIRS to shock is incompletely understood. Here, we show that treatment of mice with concanavalin A (ConA) to induce liver injury triggered a G-CSF-dependent hepatic infiltration of CD11b+Gr-1+Ly6G+Ly6C+ immature myeloid cells that expressed the orphan receptor myeloid DAP12-associated lectin-1 (MDL-1; also known as CLEC5A). Activation of MDL-1 using dengue virus or an agonist MDL-1-specific antibody in the ConA-treated mice resulted in shock. The MDL-1+ cells were pathogenic, and in vivo depletion of MDL-1+ cells provided protection. Triggering MDL-1 on these cells induced production of NO and TNF-α, which were found to be elevated in the serum of treated mice and required for MDL-1-induced shock. Surprisingly, MDL-1-induced NO and TNF-α production required eNOS but not iNOS. Activation of DAP12, DAP10, Syk, PI3K, and Akt was critical for MDL-1-induced shock. In addition, Akt physically interacted with and activated eNOS. Therefore, triggering of MDL-1 on immature myeloid cells and production of NO and TNF-α may play a critical role in the pathogenesis of shock. Targeting the MDL-1/Syk/PI3K/Akt/eNOS pathway represents a potential new therapeutic strategy to prevent the progression of SIRS to shock.
Collapse
Affiliation(s)
- Ricky Cheung
- Discovery Research, Merck Research Laboratories, Palo Alto, California, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Rajasekaran K, Chu H, Kumar P, Xiao Y, Tinguely M, Samarakoon A, Kim TW, Li X, Thakar MS, Zhang J, Malarkannan S. Transforming growth factor-beta-activated kinase 1 regulates natural killer cell-mediated cytotoxicity and cytokine production. J Biol Chem 2011; 286:31213-24. [PMID: 21771792 DOI: 10.1074/jbc.m111.261917] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carma1, a caspase recruitment domain-containing membrane-associated guanylate kinase, initiates a unique signaling cascade via Bcl10 and Malt1 in NK cells. Carma1 deficiency results in reduced phosphorylation of JNK1/2 and activation of NF-κB that lead to impaired NK cell-mediated cytotoxicity and cytokine production. However, the precise identities of the downstream signaling molecules that link Carma1 to these effector functions were not defined. Here we show that transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is abundantly present in NK cells, and activation via NKG2D results in its phosphorylation. Lack of Carma1 considerably reduced TAK1 phosphorylation, demonstrating the dependence of TAK1 on Carma1 in NKG2D-mediated NK cell activations. Pharmacological inhibitor to TAK1 significantly reduced NK-mediated cytotoxicity and its potential to generate IFN-γ, GM-CSF, MIP-1α, MIP-1β, and RANTES. Conditional in vivo knockdown of TAK1 in NK cells from Mx1Cre(+)TAK1(fx/fx) mice resulted in impaired NKG2D-mediated cytotoxicity and cytokine/chemokine production. Inhibition or conditional knockdown of TAK1 severely impaired the NKG2D-mediated phosphorylation of ERK1/2 and JNK1/2 and activation of NF-κB and AP1. Our results show that TAK1 links Carma1 to NK cell-mediated effector functions.
Collapse
Affiliation(s)
- Kamalakannan Rajasekaran
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yu J, Mitsui T, Wei M, Mao H, Butchar JP, Shah MV, Zhang J, Mishra A, Alvarez-Breckenridge C, Liu X, Liu S, Yokohama A, Trotta R, Marcucci G, Benson DM, Loughran TP, Tridandapani S, Caligiuri MA. NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. J Clin Invest 2011; 121:1456-70. [PMID: 21364281 DOI: 10.1172/jci43242] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/05/2011] [Indexed: 12/30/2022] Open
Abstract
IL-15 may have a role in the development of T cell large granular lymphocyte (T-LGL) or NKT leukemias. However, the mechanisms of action and the identity of the cell subset that undergoes leukemic transformation remain elusive. Here we show that in both mice and humans, NKp46 expression marks a minute population of WT NKT cells with higher activity and potency to become leukemic. Virtually 100% of T-LGL leukemias in IL-15 transgenic mice expressed NKp46, as did a majority of human T-LGL leukemias. The minute NKp46+ NKT population, but not the NKp46⁻ NKT population, was selectively expanded by overexpression of endogenous IL-15. Importantly, IL-15 transgenic NKp46⁻ NKT cells did not become NKp46+ in vivo, suggesting that NKp46+ T-LGL leukemia cells were the malignant counterpart of the minute WT NKp46+ NKT population. Mechanistically, NKp46+ NKT cells possessed higher responsiveness to IL-15 in vitro and in vivo compared with that of their NKp46⁻ NKT counterparts. Furthermore, interruption of IL-15 signaling using a neutralizing antibody could prevent LGL leukemia in IL-15 transgenic mice. Collectively, our data demonstrate that NKp46 identifies a functionally distinct NKT subset in mice and humans that appears to be directly susceptible to leukemic transformation when IL-15 is overexpressed. Thus, IL-15 signaling and NKp46 may be useful targets in the treatment of patients with T-LGL or NKT leukemia.
Collapse
Affiliation(s)
- Jianhua Yu
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|