1
|
Jara O, Maripillán J, Momboisse F, Cárdenas AM, García IE, Martínez AD. Differential Regulation of Hemichannels and Gap Junction Channels by RhoA GTPase and Actin Cytoskeleton: A Comparative Analysis of Cx43 and Cx26. Int J Mol Sci 2024; 25:7246. [PMID: 39000353 PMCID: PMC11242593 DOI: 10.3390/ijms25137246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.
Collapse
Affiliation(s)
- Oscar Jara
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, USA
| | - Jaime Maripillán
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Fanny Momboisse
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, 75013 Paris, France
| | - Ana María Cárdenas
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| | - Isaac E García
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
- Centro de Investigación en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D Martínez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia, Universidad de Valparaíso, Valparaíso 2362807, Chile
| |
Collapse
|
2
|
Quan M, Lv H, Liu Z, Li K, Zhang C, Shi L, Yang X, Lei P, Zhu Y, Ai D. MST1 Suppresses Disturbed Flow Induced Atherosclerosis. Circ Res 2022; 131:748-764. [PMID: 36164986 DOI: 10.1161/circresaha.122.321322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Atherosclerosis occurs mainly at arterial branching points exposed to disturbed blood flow. How MST1 (mammalian sterile 20-like kinase 1), the primary kinase in the mechanosensitive Hippo pathway modulates disturbed flow induced endothelial cells (ECs) activation and atherosclerosis remains unclear. METHODS To assess the role of MST1 in vivo, mice with EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-) were used in an atherosclerosis model generated by carotid artery ligation. Mass spectrometry, immunoprecipitation, proximity ligation assay, and dye uptake assay were used to identify the functional substrate of MST1. Human umbilical vein endothelial cells and human aortic endothelial cells were subjected to oscillatory shear stress that mimic disturbed flow in experiments conducted in vitro. RESULTS We found that the phosphorylation of endothelial MST1 was significantly inhibited in oscillatory shear stress-exposed regions of human and mouse arteries and ECs. Ectopic lenti-mediated overexpression of wild-type MST1, but not a kinase-deficient mutant of MST1, reversed disturbed flow-caused EC activation and atherosclerosis in EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-). Inhibition of MST1 by oscillatory shear stress led to reduced phosphorylation of Cx43 (connexin 43) at Ser255, the Cx43 hemichannel open, EC activation, and atherosclerosis, which were blocked by TAT-GAP19, a Cx43 hemichannel inhibitory peptide. Mass spectrometry studies identified that Filamin B fueled the translocation of Cx43 to lipid rafts for further hemichannel open. Finally, lenti-mediated overexpression of the Cx43S255 mutant into glutamate to mimic phosphorylation blunted disturbed flow-induced EC activation, thereby inhibiting the atherogenesis in both ApoE-/- and Mst1 iECKOApoE-/- mice. CONCLUSIONS Our study reveals that inhibition of the MST1-Cx43 axis is an essential driver of oscillatory shear stress-induced endothelial dysfunction and atherosclerosis, which provides a new therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Meixi Quan
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Huizhen Lv
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Zening Liu
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Kan Li
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Chenghu Zhang
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (L.S.), Tianjin Medical University, China
| | - XinYu Yang
- Department of Neurosurgery (X.Y.), Tianjin Medical University General Hospital, China
| | - Ping Lei
- Department of Geriatrics (P.L.), Tianjin Medical University General Hospital, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Ding Ai
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| |
Collapse
|
3
|
Noh SH, Kim YJ, Lee MG. Autophagy-Related Pathways in Vesicular Unconventional Protein Secretion. Front Cell Dev Biol 2022; 10:892450. [PMID: 35774225 PMCID: PMC9237382 DOI: 10.3389/fcell.2022.892450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular proteins directed to the plasma membrane or released into the extracellular space can undergo a number of different pathways. Whereas the molecular mechanisms that underlie conventional ER-to-Golgi trafficking are well established, those associated with the unconventional protein secretion (UPS) pathways remain largely elusive. A pathway with an emerging role in UPS is autophagy. Although originally known as a degradative process for maintaining intracellular homeostasis, recent studies suggest that autophagy has diverse biological roles besides its disposal function and that it is mechanistically involved in the UPS of various secretory cargos including both leaderless soluble and Golgi-bypassing transmembrane proteins. Here, we summarize current knowledge of the autophagy-related UPS pathways, describing and comparing diverse features in the autophagy-related UPS cargos and autophagy machineries utilized in UPS. Additionally, we also suggest potential directions that further research in this field can take.
Collapse
Affiliation(s)
- Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ye Jin Kim
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Goo Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Garcia-Vega L, O’Shaughnessy EM, Albuloushi A, Martin PE. Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26. BIOLOGY 2021; 10:biology10010059. [PMID: 33466954 PMCID: PMC7829877 DOI: 10.3390/biology10010059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Tissues that face the external environment are known as ‘epithelial tissue’ and form barriers between different body compartments. This includes the outer layer of the skin, linings of the intestine and airways that project into the lumen connecting with the external environment, and the cornea of the eye. These tissues do not have a direct blood supply and are dependent on exchange of regulatory molecules between cells to ensure co-ordination of tissue events. Proteins known as connexins form channels linking cells directly and permit exchange of small regulatory signals. A range of environmental stimuli can dysregulate the level of connexin proteins and or protein function within the epithelia, leading to pathologies including non-healing wounds. Mutations in these proteins are linked with hearing loss, skin and eye disorders of differing severity. As such, connexins emerge as prime therapeutic targets with several agents currently in clinical trials. This review outlines the role of connexins in epithelial tissue and how their dysregulation contributes to pathological pathways. Abstract Epithelial tissue responds rapidly to environmental triggers and is constantly renewed. This tissue is also highly accessible for therapeutic targeting. This review highlights the role of connexin mediated communication in avascular epithelial tissue. These proteins form communication conduits with the extracellular space (hemichannels) and between neighboring cells (gap junctions). Regulated exchange of small metabolites less than 1kDa aide the co-ordination of cellular activities and in spatial communication compartments segregating tissue networks. Dysregulation of connexin expression and function has profound impact on physiological processes in epithelial tissue including wound healing. Connexin 26, one of the smallest connexins, is expressed in diverse epithelial tissue and mutations in this protein are associated with hearing loss, skin and eye conditions of differing severity. The functional consequences of dysregulated connexin activity is discussed and the development of connexin targeted therapeutic strategies highlighted.
Collapse
|
5
|
Kim D, Lewis CS, Sarthy VP, Roy S. High-Glucose-Induced Rab20 Upregulation Disrupts Gap Junction Intercellular Communication and Promotes Apoptosis in Retinal Endothelial and Müller Cells: Implications for Diabetic Retinopathy. J Clin Med 2020; 9:jcm9113710. [PMID: 33227912 PMCID: PMC7699280 DOI: 10.3390/jcm9113710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 01/30/2023] Open
Abstract
To investigate whether high glucose (HG) alters Rab20 expression and compromises gap junction intercellular communication (GJIC) and cell survival, retinal cells were studied for altered intracellular trafficking of connexin 43 (Cx43). Retinal endothelial cells (RRECs) and retinal Müller cells (rMCs) were grown in normal (N; 5 mM glucose) or HG (30 mM glucose) medium for seven days. In parallel, cells grown in HG medium were transfected with either Rab20 siRNA or scrambled siRNA as a control. Rab20 and Cx43 expression and their localization and distribution were assessed using Western Blot and immunostaining, respectively. Changes in GJIC activity were assessed using scrape load dye transfer, and apoptosis was identified using differential dye staining assay. In RRECs or rMCs grown in HG medium, Rab20 expression was significantly increased concomitant with a decreased number of Cx43 plaques. Importantly, a significant increase in the number of Cx43 plaques and GJIC activity was observed in cells transfected with Rab20 siRNA. Additionally, Rab20 downregulation inhibited HG-induced apoptosis in RRECs and rMCs. Results indicate HG-mediated Rab20 upregulation decreases Cx43 localization at the cell surface, resulting in compromised GJIC activity. Reducing Rab20 expression could be a useful strategy in preventing HG-induced vascular and Müller cell death associated with diabetic retinopathy.
Collapse
Affiliation(s)
- Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (D.K.); (C.S.L.)
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Casey Stottrup Lewis
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (D.K.); (C.S.L.)
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Vijay P. Sarthy
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (D.K.); (C.S.L.)
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-6801
| |
Collapse
|
6
|
Hasegawa DK, Zhang P, Turnbull MW. Intracellular dynamics of polydnavirus innexin homologues. INSECT MOLECULAR BIOLOGY 2020; 29:477-489. [PMID: 32683761 DOI: 10.1111/imb.12657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Polydnaviruses associated with ichneumonid parasitoid wasps (Ichnoviruses) encode large numbers of genes, often in multigene families. The Ichnovirus Vinnexin gene family, which is expressed in parasitized lepidopteran larvae, encodes homologues of Innexins, the structural components of insect gap junctions. Here, we have examined intracellular behaviours of the Campoletis sonorensis Ichnovirus (CsIV) Vinnexins, alone and in combination with a host Innexin orthologue, Innexin2 (Inx2). QRT-PCR verified that transcription of CsIV vinnexins occurs contemporaneously with inx2, implying co-occurrence of Vinnexin and Inx2 proteins. Confocal microscopy demonstrated that epitope-tagged VinnexinG (VnxG) and VinnexinQ2 (VnxQ2) exhibit similar subcellular localization as Spodoptera frugiperda Inx2 (Sf-Inx2). Surface biotinylation assays verified that all three proteins localize to the cell surface, and cytochalasin B and nocodazole that they rely on actin and microtubule cytoskeletal networks for localization. Immunomicroscopy following co-transfection of constructs indicates extensive co-localization of Vinnexins with each other and Sf-Inx2, and live-cell imaging of mCherry-labelled Inx2 supports that Vinnexins may affect Sf-Inx2 distribution in a Vinnexin-specific fashion. Our findings support that the Vinnexins may disrupt host cell physiology in a protein-specific manner through altering gap junctional intercellular channel communication, as well as indirectly by affecting multicellular junction characteristics.
Collapse
Affiliation(s)
- D K Hasegawa
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, CA, USA
| | - P Zhang
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - M W Turnbull
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
7
|
Defourny J, Thelen N, Thiry M. Actin-independent trafficking of cochlear connexin 26 to non-lipid raft gap junction plaques. Hear Res 2019; 374:69-75. [DOI: 10.1016/j.heares.2019.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 12/13/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
|
8
|
Cochlear connexin 30 homomeric and heteromeric channels exhibit distinct assembly mechanisms. Mech Dev 2019; 155:8-14. [DOI: 10.1016/j.mod.2018.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023]
|
9
|
Gee HY, Kim J, Lee MG. Unconventional secretion of transmembrane proteins. Semin Cell Dev Biol 2018; 83:59-66. [PMID: 29580969 DOI: 10.1016/j.semcdb.2018.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
Over the past 20 years it has become evident that eukaryotic cells utilize both conventional and unconventional pathways to deliver proteins to their target sites. Most proteins with a signal peptide and/or a transmembrane domain are conventionally transported through the endoplasmic reticulum to the Golgi apparatus and then to the plasma membrane. However, an increasing number of both soluble cargos (Type I, II, and III) and integral membrane proteins (Type IV) have been found to reach the plasma membrane via unconventional protein secretion (UPS) pathways that bypass the Golgi apparatus under certain conditions, such as cellular stress or development. Well-known examples of transmembrane proteins that undergo Type IV UPS pathways are position-specific antigen subunit alpha 1 integrin, cystic fibrosis transmembrane conductance regulator, myeloproliferative leukemia virus oncogene, and pendrin. Although we collectively refer to all Golgi-bypassing routes as UPS, individual trafficking pathways are diverse compared to the conventional pathways, and the molecular mechanisms of UPS pathways are not yet completely defined. This review summarizes the intracellular trafficking pathways of UPS cargo proteins, particularly those with transmembrane domains, and discusses the molecular machinery involved in the UPS of transmembrane proteins.
Collapse
Affiliation(s)
- Heon Yung Gee
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jiyoon Kim
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea21 Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Joo HC, Choi JW, Moon H, Lee CY, Yoo KJ, Kim SW, Hwang KC. Protective effects of kenpaullone on cardiomyocytes following H 2O 2-induced oxidative stress are attributed to inhibition of connexin 43 degradation by SGSM3. Biochem Biophys Res Commun 2018; 499:368-373. [PMID: 29577900 DOI: 10.1016/j.bbrc.2018.03.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
A previous study showed that small G protein signaling modulator 3 (SGSM3) was highly correlated with Cx43 in heart functions and that high levels of SGSM3 may induce Cx43 turnover through lysosomal degradation in infarcted rat hearts. Here, we investigated the protective effects of kenpaullone on cardiomyocytes following H2O2-induced oxidative stress mediated by the interaction of SGSM3 with Cx43. We found that the gap junction protein Cx43 was significantly down-regulated in an H2O2 concentration-dependent manner, whereas expression of SGSM3 was up-regulated upon H2O2 exposure in H9c2 cells. The effect of kenpaullone pretreatment on H2O2-induced cytotoxicity was evaluated in H9c2 cells. H2O2 markedly increased the release of lactate dehydrogenase (LDH), while kenpaullone pretreatment suppressed LDH release in H9c2 cells. Moreover, kenpaullone pretreatment significantly reduced ROS fluorescence intensity and significantly down-regulated the level of apoptosis-activating genes (cleaved caspase-3, cleaved caspase-9 and cytochrome C), autophagy markers (LC3A/B), and the Cx43-interacting partner SGSM3. These results suggest that kenpaullone plays a role in protecting cardiomyocytes from oxidative stress and that the turnover of Cx43 through SGSM3-induced lysosomal degradation underlies the anti-apoptotic effect of kenpaullone.
Collapse
Affiliation(s)
- Hyun-Chel Joo
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Jung-Won Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea
| | - Hanbyeol Moon
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung-Jong Yoo
- Division of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea; Catholic Kwandong University, International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Republic of Korea; Catholic Kwandong University, International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Republic of Korea.
| |
Collapse
|
11
|
Ray A, Katoch P, Jain N, Mehta PP. Dileucine-like motifs in the C-terminal tail of connexin32 control its endocytosis and assembly into gap junctions. J Cell Sci 2018; 131:jcs207340. [PMID: 29361528 PMCID: PMC5897717 DOI: 10.1242/jcs.207340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022] Open
Abstract
Defects in assembly of gap junction-forming proteins, called connexins (Cxs), are observed in a variety of cancers. Connexin32 (Cx32; also known as GJB1) is expressed by the polarized cells in epithelia. We discovered two dileucine-based motifs, which govern the intracellular sorting and endocytosis of transmembrane proteins, in the C-terminal tail of Cx32 and explored their role in regulating its endocytosis and gap junction-forming abilities in pancreatic and prostate cancer cells. One motif, designated as LI, was located near the juxtamembrane domain, whereas the other, designated as LL, was located distally. We also discovered a non-canonical motif, designated as LR, in the C-terminal tail. Our results showed that rendering these motifs non-functional had no effect on the intracellular sorting of Cx32. However, rendering the LL or LR motif nonfunctional enhanced the formation of gap junctions by inhibiting Cx32 endocytosis by the clathrin-mediated pathway. Rendering the LI motif nonfunctional inhibited gap junction formation by augmenting the endocytosis of Cx32 via the LL and LR motifs. Our studies have defined distinct roles of these motifs in regulating the endocytosis of Cx32 and its gap junction-forming ability.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anuttoma Ray
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parul Katoch
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nimansha Jain
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Parmender P Mehta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans 2016; 43:450-9. [PMID: 26009190 DOI: 10.1042/bst20150056] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Collaborative communication lies at the centre of multicellular life. Gap junctions (GJs) are surface membrane structures that allow direct communication between cells. They were discovered in the 1960s following the convergence of the detection of low-resistance electrical interactions between cells and anatomical studies of intercellular contact points. GJs purified from liver plasma membranes contained a 27 kDa protein constituent; it was later named Cx32 (connexin 32) after its full sequence was determined by recombinant technology. Identification of Cx43 in heart and later by a further GJ protein, Cx26 followed. Cxs have a tetraspan organization in the membrane and oligomerize during intracellular transit to the plasma membrane; these were shown to be hexameric hemichannels (connexons) that could interact end-to-end to generate GJs at areas of cell-to-cell contact. The structure of the GJ was confirmed and refined by a combination of biochemical and structural approaches. Progress continues towards obtaining higher atomic 3D resolution of the GJ channel. Today, there are 20 and 21 highly conserved members of the Cx family in the human and mouse genomes respectively. Model organisms such as Xenopus oocytes and zebra fish are increasingly used to relate structure to function. Proteins that form similar large pore membrane channels in cells called pannexins have also been identified in chordates. Innexins form GJs in prechordates; these two other proteins, although functionally similar, are very different in amino acid sequence to the Cxs. A time line tracing the historical progression of wide ranging research in GJ biology over 60 years is mapped out. The molecular basis of channel dysfunctions in disease is becoming evident and progress towards addressing Cx channel-dependent pathologies, especially in ischaemia and tissue repair, continues.
Collapse
|
13
|
Meens MJ, Kwak BR, Duffy HS. Role of connexins and pannexins in cardiovascular physiology. Cell Mol Life Sci 2015; 72:2779-92. [PMID: 26091747 PMCID: PMC11113959 DOI: 10.1007/s00018-015-1959-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022]
Abstract
Connexins and pannexins form connexons, pannexons and membrane channels, which are critically involved in many aspects of cardiovascular physiology. For that reason, a vast number of studies have addressed the role of connexins and pannexins in the arterial and venous systems as well as in the heart. Moreover, a role for connexins in lymphatics has recently also been suggested. This review provides an overview of the current knowledge regarding the involvement of connexins and pannexins in cardiovascular physiology.
Collapse
Affiliation(s)
- Merlijn J. Meens
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Department of Medical Specializations-Cardiology, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Department of Medical Specializations-Cardiology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
14
|
Kelly JJ, Shao Q, Jagger DJ, Laird DW. Cx30 exhibits unique characteristics including a long half-life when assembled into gap junctions. J Cell Sci 2015; 128:3947-60. [DOI: 10.1242/jcs.174698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023] Open
Abstract
In the present study we investigated the life-cycle, trafficking, assembly and cell surface dynamics of a poorly characterized connexin family member, connexin 30 (Cx30), which plays a critical role in skin health and hearing. Unexpectedly, Cx30 localization at the cell surface and gap junctional intercellular communication was not affected by prolonged treatments with the ER-Golgi transport inhibitor brefeldin-A or the protein synthesis inhibitor cycloheximide, whereas Cx43 was rapidly cleared. Fluorescent recovery after photobleaching revealed that Cx30 plaques were rebuilt from the outer edges in keeping with older channels residing in the inner core of the plaque. Expression of a dominant-negative form of Sar1 GTPase led to the accumulation of Cx30 within the ER in contrast to a report that Cx30 traffics via a Golgi-independent pathway. Co-expression of Cx30 with Cx43 revealed that these connexins segregate into distinct domains within common gap junction plaques suggesting their assembly is governed by different mechanisms. In summary, Cx30 was found to be an unusually stable, long-lived connexin (half-life >12 hrs), which may underlie its specific role in the epidermis and cochlea.
Collapse
Affiliation(s)
- John J. Kelly
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Qing Shao
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
15
|
Mroue R, Inman J, Mott J, Budunova I, Bissell MJ. Asymmetric expression of connexins between luminal epithelial- and myoepithelial- cells is essential for contractile function of the mammary gland. Dev Biol 2014; 399:15-26. [PMID: 25500615 DOI: 10.1016/j.ydbio.2014.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/20/2022]
Abstract
Intercellular communication is essential for glandular functions and tissue homeostasis. Gap junctions couple cells homotypically and heterotypically and co-ordinate reciprocal responses between the different cell types. Connexins (Cxs) are the main mammalian gap junction proteins, and the distribution of some Cx subtypes in the heterotypic gap junctions is not symmetrical; in the murine mammary gland, Cx26, Cx30 and Cx32 are expressed only in the luminal epithelial cells and Cx43 is expressed only in myoepithelial cells. Expression of all four Cxs peaks during late pregnancy and throughout lactation suggesting essential roles for these proteins in the functional secretory activity of the gland. Transgenic (Tg) mice over-expressing Cx26 driven by keratin 5 promoter had an unexpected mammary phenotype: the mothers were unable to feed their pups to weaning age leading to litter starvation and demise in early to mid-lactation. The mammary gland of K5-Cx26 female mice developed normally and produced normal levels of milk protein, suggesting a defect in delivery rather than milk production. Because the mammary gland of K5-Cx26 mothers contained excessive milk, we hypothesized that the defect may be in an inability to eject the milk. Using ex vivo three-dimensional mammary organoid cultures, we showed that tissues isolated from wild-type FVB females contracted upon treatment with oxytocin, whereas, organoids from Tg mice failed to do so. Unexpectedly, we found that ectopic expression of Cx26 in myoepithelial cells altered the expression of endogenous Cx43 resulting in impaired gap junction communication, demonstrated by defective dye coupling in mammary epithelial cells of Tg mice. Inhibition of gap junction communication or knock-down of Cx43 in organoids from wild-type mice impaired contraction in response to oxytocin, recapitulating the observations from the mammary glands of Tg mice. We conclude that Cx26 acts as a trans-dominant negative for Cx43 function in myoepithelial cells, highlighting the importance of cell type-specific expression of Cxs for optimal contractile function of the mammary myoepithelium.
Collapse
Affiliation(s)
- Rana Mroue
- Helen Diller Family Cancer Research Center, UCSF, 1450 3rd street, San Francisco, CA 94158, USA
| | - Jamie Inman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joni Mott
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Irina Budunova
- Department of Dermatology, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Suite 1600, Chicago, IL 60611, USA
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
16
|
Reyes EP, Cerpa V, Corvalán L, Retamal MA. Cxs and Panx- hemichannels in peripheral and central chemosensing in mammals. Front Cell Neurosci 2014; 8:123. [PMID: 24847209 PMCID: PMC4023181 DOI: 10.3389/fncel.2014.00123] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/18/2014] [Indexed: 01/08/2023] Open
Abstract
Connexins (Cxs) and Pannexins (Panx) form hemichannels at the plasma membrane of animals. Despite their low open probability under physiological conditions, these hemichannels release signaling molecules (i.e., ATP, Glutamate, PGE2) to the extracellular space, thus subserving several important physiological processes. Oxygen and CO2 sensing are fundamental to the normal functioning of vertebrate organisms. Fluctuations in blood PO2, PCO2 and pH are sensed at the carotid bifurcations of adult mammals by glomus cells of the carotid bodies. Likewise, changes in pH and/or PCO2 of cerebrospinal fluid are sensed by central chemoreceptors, a group of specialized neurones distributed in the ventrolateral medulla (VLM), raphe nuclei, and some other brainstem areas. After many years of research, the molecular mechanisms involved in chemosensing process are not completely understood. This manuscript will review data regarding relationships between chemosensitive cells and the expression of channels formed by Cxs and Panx, with special emphasis on hemichannels.
Collapse
Affiliation(s)
- Edison Pablo Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile ; Dirección de Investigación, Universidad Autónoma de Chile Santiago, Chile
| | - Verónica Cerpa
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Liliana Corvalán
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| | - Mauricio Antonio Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
17
|
Nielsen MS, Axelsen LN, Sorgen PL, Verma V, Delmar M, Holstein-Rathlou NH. Gap junctions. Compr Physiol 2013; 2:1981-2035. [PMID: 23723031 DOI: 10.1002/cphy.c110051] [Citation(s) in RCA: 301] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease.
Collapse
Affiliation(s)
- Morten Schak Nielsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
18
|
Zhang SS, Shaw RM. Multilayered regulation of cardiac ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:876-85. [PMID: 23103513 PMCID: PMC3568256 DOI: 10.1016/j.bbamcr.2012.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 12/27/2022]
Abstract
Essential to beat-to-beat heart function is the ability for cardiomyocytes to propagate electrical excitation and generate contractile force. Both excitation and contractility depend on specific ventricular ion channels, which include the L-type calcium channel (LTCC) and the connexin 43 (Cx43) gap junction. Each of these two channels is localized to a distinct subdomain of the cardiomyocyte plasma membrane. In this review, we focus on regulatory mechanisms that govern the lifecycles of LTCC and Cx43, from their biogenesis in the nucleus to directed delivery to T-tubules and intercalated discs, respectively. We discuss recent findings on how alternative promoter usage, tissue-specific transcription, and alternative splicing determine precise ion channel expression levels within a cardiomyocyte. Moreover, recent work on microtubule and actin-dependent trafficking for Cx43 and LTCC are introduced. Lastly, we discuss how human cardiac disease phenotypes can be attributed to defects in distinct mechanisms of channel regulation at the level of gene expression and channel trafficking. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
19
|
Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion. J Cell Sci 2012; 125:5251-5. [DOI: 10.1242/jcs.103630] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Catherine Rabouille
- Hubrecht Institute for, Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Vivek Malhotra
- Centre for Genomic Regulation, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Abstract
Cx (connexin) proteins are components of gap junctions which are aqueous pores that allow intercellular exchange of ions and small molecules. Mutations in Cx genes are linked to a range of human disorders. In the present review we discuss mutations in β-Cx genes encoding Cx26, Cx30, Cx30.3 and Cx31 which lead to skin disease and deafness. Functional studies with Cx proteins have given insights into disease-associated mechanisms and non-gap junctional roles for Cx proteins.
Collapse
|
21
|
Giuliani F, Grieve A, Rabouille C. Unconventional secretion: a stress on GRASP. Curr Opin Cell Biol 2011; 23:498-504. [DOI: 10.1016/j.ceb.2011.04.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/14/2011] [Accepted: 04/18/2011] [Indexed: 01/02/2023]
|
22
|
Fort AG, Murray JW, Dandachi N, Davidson MW, Dermietzel R, Wolkoff AW, Spray DC. In vitro motility of liver connexin vesicles along microtubules utilizes kinesin motors. J Biol Chem 2011; 286:22875-85. [PMID: 21536677 PMCID: PMC3123055 DOI: 10.1074/jbc.m111.219709] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 04/17/2011] [Indexed: 11/06/2022] Open
Abstract
Trafficking of the proteins that form gap junctions (connexins) from the site of synthesis to the junctional domain appears to require cytoskeletal delivery mechanisms. Although many cell types exhibit specific delivery of connexins to polarized cell sites, such as connexin32 (Cx32) gap junctions specifically localized to basolateral membrane domains of hepatocytes, the precise roles of actin- and tubulin-based systems remain unclear. We have observed fluorescently tagged Cx32 trafficking linearly at speeds averaging 0.25 μm/s in a polarized hepatocyte cell line (WIF-B9), which is abolished by 50 μM of the microtubule-disrupting agent nocodazole. To explore the involvement of cytoskeletal components in the delivery of connexins, we have used a preparation of isolated Cx32-containing vesicles from rat hepatocytes and assayed their ATP-driven motility along stabilized rhodamine-labeled microtubules in vitro. These assays revealed the presence of Cx32 and kinesin motor proteins in the same vesicles. The addition of 50 μM ATP stimulated vesicle motility along linear microtubule tracks with velocities of 0.4-0.5 μm/s, which was inhibited with 1 mM of the kinesin inhibitor AMP-PNP (adenylyl-imidodiphosphate) and by anti-kinesin antibody but only minimally affected by 5 μM vanadate, a dynein inhibitor, or by anti-dynein antibody. These studies provide evidence that Cx32 can be transported intracellularly along microtubules and presumably to junctional domains in cells and highlight an important role of kinesin motor proteins in microtubule-dependent motility of Cx32.
Collapse
Affiliation(s)
| | - John W. Murray
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Michael W. Davidson
- the National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, Florida 32310, and
| | - Rolf Dermietzel
- the Neuroanatomy and Molecular Brain Research, Ruhr University, 44801 Bochum, Germany
| | - Allan W. Wolkoff
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David C. Spray
- From the Dominick P. Purpura Department of Neuroscience and
| |
Collapse
|
23
|
Abstract
Gap junctions (GJ) can no longer be thought of as simple channel forming structures that mediate intercellular communication. Hemi-channel and channel-independent functions of connexins (Cxs) have been described and numerous Cx interacting partners have been uncovered ranging from enzymes to structural and scaffolding molecules to transcription factors. With the growing number of Cx partners and functions, including well-documented roles for Cxs as conditional tumor suppressors, it has become essential to understand how Cxs are regulated in a context-dependent manner to mediate distinct functions. In this review we will shed light on the tissue and context-dependent regulation and function of Cxs and on the importance of Cx-interactions in modulating tissue-specific function. We will emphasize how the context-dependent functions of Cxs can help in understanding the impact of Cx mis-expression on cancer development and, ultimately, explore whether Cxs can be used as potential therapeutic targets in cancer treatment. In the end, we will address the need for developing relevant assays for studying Cx and GJ functions and will highlight how advances in bioengineering tools and the design of 3D biological platforms can help studying gap junction function in real time in a non-intrusive manner.
Collapse
Affiliation(s)
- R M Mroue
- Division of Life Sciences, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
24
|
Klopfleisch R, von Euler H, Sarli G, Pinho SS, Gärtner F, Gruber AD. Molecular carcinogenesis of canine mammary tumors: news from an old disease. Vet Pathol 2010; 48:98-116. [PMID: 21149845 DOI: 10.1177/0300985810390826] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies focusing on the molecular basis of canine mammary tumors (CMT) have long been hampered by limited numbers of molecular tools specific to the canine species. The lack of molecular information for CMT has impeded the identification of clinically relevant tumor markers beyond histopathology and the introduction of new therapeutic concepts. Additionally, the potential use for the dog as a model for human breast cancer is debatable until questions are answered regarding cellular origin, mechanisms, and cellular pathways. During the past years, increasing numbers of canine molecular tools have been developed on the genomic, RNA, and protein levels, and an increasing number of studies have shed light on specific aspects of canine carcinogenesis, particularly of the mammary gland. This review summarizes current knowledge on the molecular carcinogenesis of CMT, including the role of specific oncogenes, tumor suppressors, regulators of apoptosis and DNA repair, proliferation indices, adhesion molecules, circulating tumor cells, and mediators of angiogenesis in CMT progression and clinical behavior. Whereas the data available are far from complete, knowledge of molecular pathways has a significant potential to complement and refine the current diagnostic and therapeutic approach to this tumor type. Furthermore, current data show that significant similarities and differences exist between canine and human mammary tumors at the molecular level. Clearly, this is only the beginning of an understanding of the molecular mechanisms of CMT and their application in clinical patient management.
Collapse
Affiliation(s)
- R Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, reie Universität Berlin, Robert von Ostertag Str 15, D-14163 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Posnack NG, Lee NH, Brown R, Sarvazyan N. Gene expression profiling of DEHP-treated cardiomyocytes reveals potential causes of phthalate arrhythmogenicity. Toxicology 2010; 279:54-64. [PMID: 20920545 DOI: 10.1016/j.tox.2010.09.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND Di-(2-ethylhexyl)-phthalate (DEHP) is a widely used plasticizer that imparts flexibility to polyvinyl chloride. We have recently reported that clinically relevant concentrations of DEHP can affect electrical coupling between cardiac myocytes causing significant rhythm disturbances. The underlying causes for this effect are currently unknown. OBJECTIVES To use data on global mRNA expression as a tool to reveal possible pathways leading to arrhythmogenic effects of DEHP. METHODS Rat neonatal cardiomyocytes were treated with 50 μg/mL DEHP for 72 h. Extracted RNA samples were hybridized onto Affymetrix Rat Gene 1.0 ST arrays. The mRNA expression of a subset of genes was validated by qRT-PCR. In a second set of experiments, cells were treated in a concentration dependent manner to identify genes affected by low DEHP concentrations. RESULTS DEHP exposure is associated with global changes in mRNA expression, with differentially expressed genes overrepresented in 47 Gene Ontology categories. Modified expression was detected for genes associated with cell electrical activity, calcium handling, adhesion and microtubular transport. For a number of key proteins, including kinesin, TGFβ2, α-tubulin, and α1 & β1 integrins, changes in mRNA levels were confirmed on the level of the protein expression. A number of genes associated with cell adhesion and electrical activity were identified as early DEHP targets as they were affected by concentrations as low as 1 μg/mL. CONCLUSIONS Exposure of neonatal rat cardiomyocytes to clinically relevant DEHP concentrations leads to global changes in mRNA expression. These changes help to explain the arrhythmogenic effects of phthalates on these cells.
Collapse
Affiliation(s)
- Nikki Gillum Posnack
- The Pharmacology & Physiology Department, The George Washington University, 2300 Eye Street, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
26
|
Cell membrane permeabilization via connexin hemichannels in living and dying cells. Exp Cell Res 2010; 316:2377-89. [DOI: 10.1016/j.yexcr.2010.05.026] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/31/2022]
|
27
|
Song D, Liu X, Liu R, Yang L, Zuo J, Liu W. Connexin 43 hemichannel regulates H9c2 cell proliferation by modulating intracellular ATP and [Ca2+]. Acta Biochim Biophys Sin (Shanghai) 2010; 42:472-82. [PMID: 20705586 DOI: 10.1093/abbs/gmq047] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Connexin 43 (Cx43), known to be the main protein building blocks of gap junctions and hemichannels in mammalian heart, plays an important role in cardiocytes proliferation. Gap junctional intercellular communication has been suggested to be necessary for cellular proliferation and differentiation. However, the effect of Cx43 hemichannel on cardiocytes proliferation and the mechanism remain unclear. In this study, rat heart cell line H9c2 was used. The Cx43 location, the proliferation rate and hemichannel activity of H9c2 cells and Wnt-3a(+)-H9c2 cells were investigated and the changes of intracellular ATP and [Ca(2+)] were determined. Results showed that the inhibited hemichannel induced by 18beta-glycyrrhetinic acid (GA) evoked intracellular ATP and [Ca(2+)] increase and enhanced H9c2 cell proliferation. Wnt-3a(+)-H9c2 cells displayed enhanced hemichannel activity and proliferation rate. Inhibited hemichannel of Wnt-3a(+)-H9c2 cells induced by 18beta-GA decreased intracellular ATP, increased [Ca(2+)], and enhanced the proliferation of H9c2 cells. This study validated the role of hemichannel in H9c2 cell proliferation regulation, and showed a mechanism involved in the regulation of H9c2 cell proliferation. The proliferation could be enhanced by Cx43 hemichannel-mediated ATP release accompanying intracellular [Ca(2+)] change. However, different changes of ATP were observed in Wnt-3a(+)-H9c2 cells. These findings provided new insights into the molecular mechanisms of proliferation regulation in H9c2 cells and the effect of Wnt-3a on intracellular ATP.
Collapse
Affiliation(s)
- Dongli Song
- Department of Cellular and Genetic Medicine, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
28
|
Qu C, Gardner P, Schrijver I. The role of the cytoskeleton in the formation of gap junctions by Connexin 30. Exp Cell Res 2009; 315:1683-92. [PMID: 19285977 DOI: 10.1016/j.yexcr.2009.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 11/17/2022]
Abstract
Mutations in the genes that encode Connexin 26 (GJB2) and Connexin 30 (GJB6) are the most common known cause of hereditary nonsyndromic sensorineural deafness. Cx26 and Cx30 share a similar protein structure, as well as the same expression distribution pattern in the cochlea. Cx26 has different intracellular trafficking properties compared to those of Cx43 and Cx32, whose trafficking manner is consistent with the classical membrane protein secretory pathway. Until now, however, the trafficking patterns of Cx30 have not been studied. By means of an immunofluorescence staining approach, we found that the targeting of Cx30 to gap junctions in transfected HeLa cells is not affected by brefeldin A, suggesting a Golgi-independent feature, similar to Cx26. Nocodazole had a minimal effect on assembly and distribution of Cx30 gap junctions. Cytochalasin B-induced actin filament depolymerization, however, affected both the pattern and the distribution of Cx30 gap junctions. Co-localization with and/or interaction between Cx30 and microtubules and cortical actin filaments, but not with the tight/adherens junction protein ZO-1, was confirmed by immunofluorescence and/or immunoprecipitation methods. The results suggest that the cytoskeleton, and especially actin filaments, are important components in the processes of assembly, trafficking and stabilization of Cx30 gap junctions.
Collapse
Affiliation(s)
- Chunyan Qu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
29
|
Dbouk HA, Mroue RM, El-Sabban ME, Talhouk RS. Connexins: a myriad of functions extending beyond assembly of gap junction channels. Cell Commun Signal 2009; 7:4. [PMID: 19284610 PMCID: PMC2660342 DOI: 10.1186/1478-811x-7-4] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 03/12/2009] [Indexed: 01/03/2023] Open
Abstract
Connexins constitute a large family of trans-membrane proteins that allow intercellular communication and the transfer of ions and small signaling molecules between cells. Recent studies have revealed complex translational and post-translational mechanisms that regulate connexin synthesis, maturation, membrane transport and degradation that in turn modulate gap junction intercellular communication. With the growing myriad of connexin interacting proteins, including cytoskeletal elements, junctional proteins, and enzymes, gap junctions are now perceived, not only as channels between neighboring cells, but as signaling complexes that regulate cell function and transformation. Connexins have also been shown to form functional hemichannels and have roles altogether independent of channel functions, where they exert their effects on proliferation and other aspects of life and death of the cell through mostly-undefined mechanisms. This review provides an updated overview of current knowledge of connexins and their interacting proteins, and it describes connexin modulation in disease and tumorigenesis.
Collapse
Affiliation(s)
- Hashem A Dbouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | | | | | | |
Collapse
|
30
|
Gillum N, Karabekian Z, Swift LM, Brown RP, Kay MW, Sarvazyan N. Clinically relevant concentrations of di (2-ethylhexyl) phthalate (DEHP) uncouple cardiac syncytium. Toxicol Appl Pharmacol 2009; 236:25-38. [PMID: 19344669 DOI: 10.1016/j.taap.2008.12.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/24/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer found in a variety of polyvinyl chloride (PVC) medical products. The results of studies in experimental animals suggest that DEHP leached from flexible PVC tubing may cause health problems in some patient populations. While the cancerogenic and reproductive effects of DEHP are well recognized, little is known about the potential adverse impact of phthalates on the heart. This study examined the effects of clinically relevant concentrations of DEHP on neonatal rat cardiomyocytes. It was found that application of DEHP to a confluent, synchronously beating cardiac cell network, leads to a marked, concentration-dependent decrease in conduction velocity and asynchronous cell beating. The mechanism behind these changes was a loss of gap junctional connexin-43, documented using Western blot analysis, dye-transfer assay and immunofluorescence. In addition to its effect on electrical coupling, DEHP treatment also affected the mechanical movement of myocyte layers. The latter was linked to the decreased stiffness of the underlying fibroblasts, as the amount of triton-insoluble vimentin was significantly decreased in DEHP-treated samples. The data indicate that DEHP, in clinically relevant concentrations, can impair the electrical and mechanical behavior of a cardiac cell network. Applicability of these findings to human patients remains to be established.
Collapse
Affiliation(s)
- Nikki Gillum
- Pharmacology and Physiology Department, The George Washington University, 2300 Eye Street, Washington, DC 20037, USA
| | | | | | | | | | | |
Collapse
|
31
|
Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:69-118. [PMID: 19815177 PMCID: PMC2878191 DOI: 10.1016/s1937-6448(09)78002-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell-type-independent and cell-type-specific transcription factors, posttranslational modifications, and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this chapter in the physiological and pathophysiological context of vessel function.
Collapse
Affiliation(s)
- Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Brant Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| |
Collapse
|
32
|
Walter WJ, Zeilinger C, Bintig W, Kolb HA, Ngezahayo A. Phosphorylation in the C-terminus of the rat connexin46 (rCx46) and regulation of the conducting activity of the formed connexons. J Bioenerg Biomembr 2008; 40:397-405. [PMID: 18668357 DOI: 10.1007/s10863-008-9151-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 05/16/2008] [Indexed: 11/28/2022]
Abstract
To analyse the role of PKC-dependent phosphorylation in the C-terminus of rCx46 in regulation of rCx46 connexons, truncated mutants rCx46(45.3) and rCx46(44.2) which end before and after PKC-dependent phosphorylation sites respectively were generated. Both rCx46(45.3) and rCx46(44.2) formed connexons in Xenopus oocytes similar to Cx46(wt)-connexons. They were activated by depolarisation above -40 mV and at voltages above 50 mV, inactivation was spontaneously observed or induced by PKC activator TPA, suggesting that inactivation does not require PKC-dependent phosphorylation in the C-terminus. Three casein-kinase-II-(CKII)-dependent phosphorylation sites were also identified. rCx46(37.7) and rCx46(28.2) respectively without two or all of these sites were generated. rCx46(37.7)-connexons were similar to rCx46(wt)-connexons. rCx46(28.2)-connexons comparable to rCx46(wt)-connexons were observed after injection of 50 times more rCx46(28.2)-mRNA (25 ng per oocyte). CKII-blocker inhibited depolarisation-evoked currents in oocytes injected with 0.5 ng per oocyte rCx46(37.7)-mRNA or rCx46(wt)-mRNA. Injection of 25 ng per oocyte rCx46(37.7)-mRNA or rCx46(wt)-mRNA overcame the effect of CKII-inhibitor. We propose that CKII-dependent phosphorylation in the C-terminus accelerates formation of rCx46-connexons.
Collapse
Affiliation(s)
- Wilhelm J Walter
- Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
33
|
Ramachandran S, Xie LH, John SA, Subramaniam S, Lal R. A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS One 2007; 2:e712. [PMID: 17684558 PMCID: PMC1933596 DOI: 10.1371/journal.pone.0000712] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 07/09/2007] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress is linked to many pathological conditions, including ischemia, atherosclerosis and neurodegenerative disorders. The molecular mechanisms of oxidative stress induced pathophysiology and cell death are currently poorly understood. Our present work demonstrates that oxidative stress induced by reactive oxygen species and cigarette smoke extract depolarize the cell membrane and open connexin hemichannels. Under oxidative stress, connexin expression and connexin silencing resulted in increased and reduced cell deaths, respectively. Morphological and live/dead assays indicate that cell death is likely through apoptosis. Our studies provide new insights into the mechanistic role of hemichannels in oxidative stress induced cell injury.
Collapse
Affiliation(s)
| | - Lai-Hua Xie
- Cardiovascular Research Laboratory, University of California at Los Angeles, California, United States of America
| | - Scott A. John
- Cardiovascular Research Laboratory, University of California at Los Angeles, California, United States of America
| | - Shankar Subramaniam
- Department of Bioengineering, University of California at San Diego, La Jolla, California, United States of America
- * To whom correspondence should be addressed. E-mail: (SS); (RL)
| | - Ratnesh Lal
- Center for Nanomedicine, The University of Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail: (SS); (RL)
| |
Collapse
|
34
|
Abstract
We have used connexin constructs containing a C-terminal di-lysine-based endoplasmic reticulum (ER) retention/retrieval signal (HKKSL) transfected into HeLa cells to study early events in connexin oligomerization. Using this approach, we found that Cx43-HKKSL stably expressed at moderate levels by HeLa cells was retained in the ER and prevented from oligomerization. However, Cx43-HKKSL stably overexpressed by HeLa cells escaped from the ER and localized to a perinuclear region of the cell that included the Golgi apparatus. Overexpressed Cx43-HKKSL oligomerized into hexamers and also formed Triton X-100 insoluble, intracellular complexes that resembled gap junctions. Thus, the ability of HeLa cells to inhibit Cx43 oligomerization was saturable. HeLa cells stably overexpressing Cx43-HKKSL may provide a useful model system to evaluate pharmacologic agents and/or cDNAs encoding chaperones with the potential to regulate initial steps in Cx43 oligomerization.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Neurology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | |
Collapse
|
35
|
Abstract
Evaluation of the human genome suggests that all members of the connexin family of gap-junction proteins have now been successfully identified. This large and diverse family of proteins facilitates a number of vital cellular functions coupled with their roles, which range from the intercellular propagation of electrical signals to the selective intercellular passage of small regulatory molecules. Importantly, the extent of gap-junctional intercellular communication is under the direct control of regulatory events associated with channel assembly and turnover, as the vast majority of connexins have remarkably short half-lives of only a few hours. Since most cell types express multiple members of the connexin family, compensatory mechanisms exist to salvage tissue function in cases when one connexin is mutated or lost. However, numerous studies of the last decade have revealed that mutations in connexin genes can also lead to severe and debilitating diseases. In many cases, single point mutations lead to dramatic effects on connexin trafficking, assembly and channel function. This review will assess the current understanding of wild-type and selected disease-linked mutant connexin transport through the secretory pathway, gap-junction assembly at the cell surface, internalization and degradation.
Collapse
Affiliation(s)
- Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
36
|
Bazou D, Dowthwaite GP, Khan IM, Archer CW, Ralphs JR, Coakley WT. Gap junctional intercellular communication and cytoskeletal organization in chondrocytes in suspension in an ultrasound trap. Mol Membr Biol 2006; 23:195-205. [PMID: 16754362 DOI: 10.1080/09687860600555906] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Particles or cells suspended in an appropriately designed ultrasound standing wave field can be aggregated at a node to form a single monolayer in a plane that can be interrogated microscopically. The approach is applied here to investigate the temporal development of F-actin and Cx43 distribution and of gap junctional intercellular communication in 2-D chondrocyte aggregates (monolayers) rapidly and synchronously formed and held in suspension in an ultrasound trap. Development of the F-actin cytoskeleton in the confluent single layer of 'cuboidal' cells forming the aggregate was completed within 1 h. Chondrocytes levitated in the trap synchronously formed functional gap junctions (as assessed by CMFDA dye transfer assays) in less than 1 h of initiation of cell-cell contact in the trap. It was shown that Cx43 gene expression was retained in isolated chondrocytes in suspension. Preincubation of cells with the protein synthesis inhibitor cycloheximide caused a six-fold decrease in Cx43 accumulation (as assessed by immunofluorescence) at the interfaces of chondrocytes in the aggregate. It is shown that the ultrasound trap provides an approach to studying the early stages of cytoskeletal and gap junction development as cells progress from physical aggregation, through molecular adhesion, to display the intracellular consequences of receptor interactions.
Collapse
Affiliation(s)
- Despina Bazou
- Cardiff University, School of Biosciences, Cardiff, Wales, UK
| | | | | | | | | | | |
Collapse
|
37
|
Evans WH, De Vuyst E, Leybaert L. The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 2006; 397:1-14. [PMID: 16761954 PMCID: PMC1479757 DOI: 10.1042/bj20060175] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 02/07/2023]
Abstract
Cxs (connexins), the protein subunits forming gap junction intercellular communication channels, are transported to the plasma membrane after oligomerizing into hexameric assemblies called connexin hemichannels (CxHcs) or connexons, which dock head-to-head with partner hexameric channels positioned on neighbouring cells. The double membrane channel or gap junction generated directly couples the cytoplasms of interacting cells and underpins the integration and co-ordination of cellular metabolism, signalling and functions, such as secretion or contraction in cell assemblies. In contrast, CxHcs prior to forming gap junctions provide a pathway for the release from cells of ATP, glutamate, NAD+ and prostaglandin E2, which act as paracrine messengers. ATP activates purinergic receptors on neighbouring cells and forms the basis of intercellular Ca2+ signal propagation, complementing that occuring more directly via gap junctions. CxHcs open in response to various types of external changes, including mechanical, shear, ionic and ischaemic stress. In addition, CxHcs are influenced by intracellular signals, such as membrane potential, phosphorylation and redox status, which translate external stresses to CxHc responses. Also, recent studies demonstrate that cytoplasmic Ca2+ changes in the physiological range act to trigger CxHc opening, indicating their involvement under normal non-pathological conditions. CxHcs not only respond to cytoplasmic Ca2+, but also determine cytoplasmic Ca2+, as they are large conductance channels, suggesting a prominent role in cellular Ca2+ homoeostasis and signalling. The functions of gap-junction channels and CxHcs have been difficult to separate, but synthetic peptides that mimic short sequences in the Cx subunit are emerging as promising tools to determine the role of CxHcs in physiology and pathology.
Collapse
Affiliation(s)
- W Howard Evans
- Department of Medical Biochemistry and Immunology and the Wales Heart Research Institute, Cardiff University Medical School, Cardiff CF14 4XN, Wales, UK.
| | | | | |
Collapse
|
38
|
Thomas T, Jordan K, Simek J, Shao Q, Jedeszko C, Walton P, Laird DW. Mechanisms of Cx43 and Cx26 transport to the plasma membrane and gap junction regeneration. J Cell Sci 2005; 118:4451-62. [PMID: 16159960 DOI: 10.1242/jcs.02569] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous reports have suggested that Cx26 exhibits unique intracellular transport pathways en route to the cell surface compared with other members of the connexin family. To directly examine and compare nascent and steady-state delivery of Cx43 and Cx26 to the plasma membrane and gap junction biogenesis we expressed fluorescent-protein-tagged Cx43 and Cx26 in BICR-M1Rk and NRK cells. Static and time-lapse imaging revealed that both connexins were routed through the Golgi apparatus prior to being transported to the cell surface, a process inhibited in the presence of brefeldin A (BFA) or the expression of a dominant-negative form of Sar1 GTPase. During recovery from BFA, time-lapse imaging of nascent connexin Golgi-to-plasma membrane delivery revealed many dynamic post-Golgi carriers (PGCs) originating from the distal side of the Golgi apparatus consisting of heterogeneous vesicles and long, tubular-like extensions. Vesicles and tubular extensions were also observed in HBL-100 cells expressing a human, disease-linked, Golgi-localized Cx26 mutant, D66H-GFP. A diffuse cell surface rim of fluorescent-protein-tagged wild-type connexins was observed prior to the appearance of punctate gap junctions, which suggests that random fusion of PGCs occurred with the plasma membrane followed by lateral diffusion of connexins into clusters. Fluorescence recovery after photobleaching studies revealed that Cx26-YFP was more mobile within gap junction plaques compared with Cx43-GFP. Intriguingly, Cx43-GFP delivery and gap junction regeneration was inhibited by BFA and nocodazole, whereas Cx26-GFP delivery was prevented by BFA but not nocodazole. Collectively, these studies suggest that during gap junction biogenesis two phylogenetically distinct members of the connexin family, Cx43 and Cx26, share common secretory pathways, types of transport intermediates and turnover dynamics but differ in their microtubule-dependence and mobility within the plasma membrane, which might reflect differences in binding to protein scaffolds.
Collapse
Affiliation(s)
- Tamsin Thomas
- Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, Rm. 00077, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | |
Collapse
|
39
|
Breidert S, Jacob R, Ngezahayo A, Kolb HA, Naim HY. Trafficking pathways of Cx49-GFP in living mammalian cells. Biol Chem 2005; 386:155-60. [PMID: 15843159 DOI: 10.1515/bc.2005.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study we examined the trafficking pathways of connexin49 (Cx49) fused to green fluorescent protein (GFP) in polar and non-polar cell lines. The Cx49 gene was isolated from ovine lens by RT-PCR. Cx49 cDNA was fused to GFP and the hybrid cDNA was transfected into several cell lines. After transfection of Cx49-GFP cDNA into HeLa cells, it was shown using the double whole-cell patch-clamp technique that the expressed fusion protein was still able to form conducting gap junction channels. Synthesis, assembly, and turnover of the Cx49-GFP hybrid protein were investigated using a pulse-chase protocol. A major 78-kDa protein band corresponding to Cx49-GFP could be detected with a turnover of 16-20 h and a half-life time of 10 h. The trafficking pathways of Cx49-GFP were monitored by confocal laser microscopy. Fusion proteins were localized in subcellular compartments, including the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment, the Golgi apparatus, and the trans-Golgi network, as well as vesicles traveling towards the plasma membrane. Time-dependent sequential localization of Cx49-GFP in the ER and then the Golgi apparatus supports the notion of a slow turnover of Cx49-GFP compared to other connexins analyzed so far. Gap junction plaques resembling the usual punctuate distribution pattern could be demonstrated for COS-1 and MDCK cells. Basolateral distribution of Cx49-GFP was observed in polar MDCK cells, indicating specific sorting behavior of Cx49 in polarized cells. Together, this report describes the first characterization of biosynthesis and trafficking of lens Cx49.
Collapse
Affiliation(s)
- Stephanie Breidert
- Institute of Biophysics, University of Hannover, Herrenhäuserstrasse 2, D-30419 Hannover, Germany
| | | | | | | | | |
Collapse
|
40
|
Maza J, Das Sarma J, Koval M. Defining a minimal motif required to prevent connexin oligomerization in the endoplasmic reticulum. J Biol Chem 2005; 280:21115-21. [PMID: 15817491 DOI: 10.1074/jbc.m412612200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to most multimeric transmembrane complexes that oligomerize in the endoplasmic reticulum (ER), the gap junction protein connexin43 (Cx43) oligomerizes in an aspect of the Golgi apparatus. The mechanisms that prevent oligomerization of Cx43 and related connexins in the ER are not well understood. Also, some studies suggest that connexins can oligomerize in the ER. We used connexin constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) transfected into HeLa cells to study early events in connexin oligomerization. Using this approach, Cx43-HKKSL was retained in the ER and prevented from oligomerization. However, another ER-retained HKKSL-tagged connexin, Cx32-HKKSL, had the capacity to oligomerize. Because this suggested that Cx43 contains a motif that prevented oligomerization in the ER, a series of HKKSL-tagged and untagged Cx32/Cx43 chimeras was screened to define this motif. The minimal motif, which prevented ER oligomerization, consisted of the complete third transmembrane domain and the second extracellular loop from Cx43 on a Cx32 backbone. We propose that charged residues present in Cx43 and related connexins help prevent ER oligomerization by stabilizing the third transmembrane domain in the membrane bilayer.
Collapse
Affiliation(s)
- Jose Maza
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
41
|
He LQ, Cai F, Liu Y, Liu MJ, Tan ZP, Pan Q, Fang FY, Liang DS, Wu LQ, Long ZG, Dai HP, Xia K, Xia JH, Zhang ZH. Cx31 is assembled and trafficked to cell surface by ER-Golgi pathway and degraded by proteasomal or lysosomal pathways. Cell Res 2005; 15:455-64. [PMID: 15987604 DOI: 10.1038/sj.cr.7290314] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gap junctions, consisting of connexins, allow the exchange of small molecules (less than 1 KD) between adjacent cells, thus providing a mechanism for synchronizing the responses of groups of cells to environmental stimuli. Connexin 31 is a member of the connexin family. Mutations on connexin 31 are associated with erythrokeratodermia variabilis, hearing impairment and peripheral neuropathy. However, the pathological mechanism for connexin 31 mutants in these diseases are still unknown. In this study, we analyzed the assembly, trafficking and metabolism of connexin 31 in HeLa cells stably expressing connexin 31. Calcein transfer assay showed that calcein transfer was inhibited when cells were treated with Brefeldin A or cytochalasin D, but not when treated with nocodazole or a-glycyrrhetinic acid, suggesting that Golgi apparatus and actin filaments, but not microtubules, are crucial to the trafficking and assembly of connexin 31, as well as the formation of gap junction intercellular communication by connexin 31. Additionally, a-glycyrrhetinic acid did not effectively inhibit gap junctional intercellular communication formed by connexin 31. Pulse-chase assay revealed that connexin 31 had a half-life of about 6 h. Moreover, Western blotting and fluorescent staining demonstrated that in HeLa cells stably expressing connexin 31, the amount of connexin 31 was significantly increased after these cells were treated with proteasomal or lysosomal inhibitors. These findings indicate that connexin 31 was rapidly renewed, and possibly degraded by both proteasomal and lysosomal pathways.
Collapse
Affiliation(s)
- Li Qiang He
- National Laboratory of Medical Genetics, Central South University, Changsha 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Moreno AP. Connexin phosphorylation as a regulatory event linked to channel gating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1711:164-71. [PMID: 15955301 DOI: 10.1016/j.bbamem.2005.02.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 02/24/2005] [Accepted: 02/25/2005] [Indexed: 01/09/2023]
Abstract
The main proteins required for functional gap junction channels are known as connexins and most of their isoforms indicate that they can become phosphorylated. Connexin phosphorylation has been reported to participate in modifying junctional communication and the mechanisms involved apparently depend on which kinase becomes involved. Although multiple reports have suggested a strong influence of phosphorylation on channel gating, not enough physiological studies have been performed to determine precisely the gating mechanisms implicated. Moreover, gap junction channels follow other various gating mechanisms, including voltage gating and chemical gating, where phosphorylation could act as a modulator. The quest for this chapter has been to discriminate those instances where phosphorylation acts directly as a gating trigger and where it acts indirectly or only as a modulator. Despite recent efforts, the mechanisms involved in all these cases are barely understood.
Collapse
Affiliation(s)
- Alonso P Moreno
- Krannert Institute of Cardiology, Indiana University School of Medicine, 1800 N. Capitol Ave. Suite 310, Indianapolis, IN 46202, United States.
| |
Collapse
|
43
|
Giessmann D, Theiss C, Breipohl W, Meller K. Decreased gap junctional communication in neurobiotin microinjected lens epithelial cells after taxol treatment. ACTA ACUST UNITED AC 2005; 209:391-400. [PMID: 15864639 DOI: 10.1007/s00429-005-0456-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2005] [Indexed: 11/26/2022]
Abstract
The aim of the study was to examine gap-junction-mediated intercellular communication after experimentally induced aggregations of microtubules in cultured bovine lens epithelial cells. Intercellular communication between lens cells appears to be crucial for normal lens homeostasis. However, investigations on the maintenance of direct ion and metabolite exchange via gap junctions and its quantified dependency of cytoskeletal microtubules have not been available under conditions leading to bundling of microtubules. Thus, metabolic coupling of neighboring lens epithelial cells was quantified following microinjections of neurobiotin into single cells under various conditions. In controls, intensive gap-junction-mediated intercellular communication could be documented by dye-spreading of microinjected neurobiotin. In contrast, taxol treatment for 1-3 days impaired, but did not completely block gap-junction-mediated intercellular communication. After depletion of taxol, a complete recovery of intercellular communication was achieved. In addition, confocal laser scanning microscopy and rapid-freeze deep-etch electron microscopy revealed a displacement of actin-filaments from the perinuclear cytoplasm, accompanied by an abnormal aggregation of microtubules after taxol treatment, including impeded translocation of connexin 43 from the cytoplasm into the plasma membrane. Incubation of cells with nocodazole destroyed the microtubule network, accompanied by a clear reduction of plasma-membrane-integrated connexin 43 and significant impairment of dye spreading. Thus, in lens epithelial cells intercellular communication at gap junctions made by connexin 43 depends on the integrity of the microtubule network through the translocation of connexins to the plasma membrane.
Collapse
Affiliation(s)
- Daniel Giessmann
- Institut für Anatomie, Abteilung für Cytologie, Medizinische Fakultät, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
44
|
Arnold JM, Phipps MW, Chen J, Phipps J. Cellular sublocalization of Cx43 and the establishment of functional coupling in IMR-32 neuroblastoma cells. Mol Carcinog 2005; 42:159-69. [PMID: 15605363 DOI: 10.1002/mc.20072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuroblastoma (NB) is the most common solid pediatric tumor. IMR-32 cells are a highly malignant human NB cell line with uncontrolled proliferation but with the potential to be differentiated under specific conditions. Preliminary research indicated that connexin 43 (Cx43), the most widespread of the Cx family, is aberrantly located in IMR-32 cells, which renders these cells incapable of gap junction (GJ) intercellular communication. Functioning GJ intercellular communication has been strongly associated with growth control and a decrease in tumorigenicity. 8-br-cAMP, known to initiate the differentiation process in cancer cells, was used to examine changes in Cx43 localization and expression via immunocytochemistry, Western blot analysis, and flow cytometry. Exposure of IMR-32 cells to 8-br-cAMP decreased cell proliferation, restored the abnormally localized Cx43 from around the nucleus to the cell membrane, increased de novo Cx43 protein expression, and appeared to phosphorylate Cx43 on serine (Ser) 255 and Ser262. Forskolin, an activator of cAMP dependent protein kinase (PKA), produced identical results to 8-br-cAMP demonstrating the effect that was not unique to a cAMP analog. The use of a PKA inhibitor further confirmed the specificity of 8-br-cAMP and forskolin's effect on Cx43. The cellular relocation of Cx43, combined with the increased protein expression, established first ever GJ intercellular communication between IMR-32 cells as revealed by scrape loading. These results suggest that the GJ-mediated return of growth control, as a prerequisite for further differentiation, offers a new therapeutic avenue in the treatment of NB.
Collapse
Affiliation(s)
- Jennifer M Arnold
- SIMS, PharmaGap, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Contreras JE, Sánchez HA, Véliz LP, Bukauskas FF, Bennett MV, Sáez JC. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. ACTA ACUST UNITED AC 2005; 47:290-303. [PMID: 15572178 PMCID: PMC3651737 DOI: 10.1016/j.brainresrev.2004.08.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2004] [Indexed: 01/24/2023]
Abstract
Gap junction channels and hemichannels formed of connexin subunits are found in most cell types in vertebrates. Gap junctions connect cells via channels not open to the extracellular space and permit the passage of ions and molecules of approximately 1 kDa. Single connexin hemichannels, which are connexin hexamers, are present in the surface membrane before docking with a hemichannel in an apposed membrane. Because of their high conductance and permeability in cell-cell channels, it had been thought that connexin hemichannels remained closed until docking to form a cell-cell channel. Now it is clear that at least some hemichannels can open to allow passage of molecules between the cytoplasm and extracellular space. Here we review evidence that gap junction channels may allow intercellular diffusion of necrotic or apoptotic signals, but may also allow diffusion of ions and substances from healthy to injured cells, thereby contributing to cell survival. Moreover, opening of gap junction hemichannels may exacerbate cell injury or mediate paracrine or autocrine signaling. In addition to the cell specific features of an ischemic insult, propagation of cell damage and death within affected tissues may be affected by expression and regulation of gap junction channels and hemichannels formed by connexins.
Collapse
Affiliation(s)
- Jorge E. Contreras
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
| | - Helmuth A. Sánchez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
- Corresponding author. Tel.: +56 2 6862860; fax: +56 2 2225515. (H.A. Sánchez)
| | - Loreto P. Véliz
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
| | | | - Michael V.L. Bennett
- Department of Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan C. Sáez
- Departamento de Ciencias Fisiológicas, Pontificia Universidad Católica de Chile, Chile
- Department of Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
46
|
Fischer R, Reinehr R, Lu TP, Schönicke A, Warskulat U, Dienes HP, Häussinger D. Intercellular communication via gap junctions in activated rat hepatic stellate cells. Gastroenterology 2005; 128:433-48. [PMID: 15685554 DOI: 10.1053/j.gastro.2004.11.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Gap junctional communication was studied in quiescent and activated hepatic stellate cells. METHODS Connexin expression and intercellular dye transfer were studied in rat hepatic stellate cells in culture and in vivo. RESULTS Protein expression of connexin 43 was up-regulated in activated hepatic stellate cells in vivo and in vitro and was mainly localized on the cell surface, whereas connexin 26 was found intracellularly. In contrast to hepatocytes, hepatic stellate cells do not express connexin 32. Confluent hepatic stellate cells in culture communicate via gap junctions, resulting in lucifer yellow transfer and propagation of intracellular calcium signals. Phorbol ester induces a protein kinase C-dependent hyperphosphorylation and degradation of connexin 43 and inhibits intercellular communication on a short-term time scale. At the long-term level, vitamin D(3) , lipopolysaccharide, thyroid hormone T(3), dexamethasone, platelet-derived growth factor, endothelin 1, and interleukin 1beta up-regulate connexin 43 protein and messenger RNA expression and enhance intercellular communication. Slight down-regulation of connexin 43 is observed in response to vitamin A. Connexin 43 induction by endothelin 1 is inhibited by both endothelin A and endothelin B receptor antagonists. In coculture systems, hepatic stellate cells communicate with each other, which is suggestive of a syncytial organization, but no communication was found between hepatic stellate cells and other liver cell types. As shown by immunohistochemistry and electron microscopy, gap junctions are formed between activated hepatic stellate cells in vivo. CONCLUSIONS Gap junctional communication occurs between hepatic stellate cells, is enhanced after activation, and underlies complex regulation by cytokines, hormones, and vitamins.
Collapse
Affiliation(s)
- Richard Fischer
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Wentlandt K, Carlen PL, Kushnir M, Naus CC, El-Beheiry H. General anesthetics attenuate gap junction coupling in P19 cell line. J Neurosci Res 2005; 81:746-52. [PMID: 15971264 DOI: 10.1002/jnr.20577] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gap junction communication is widespread throughout the mammalian nervous system among neurons as well as glia. We addressed the hypothesis that general anesthetics attenuate gap junction mediated coupling in P19 cell line that can differentiate into neuronal-like cells and astrocytes and oligodendrocytes. We characterized the extent of dye coupling over time in the P19 cell line using colocalization of chlormethylbenzamido-1,1 dioctadecyl-3,3,3',3'-tetramethylindocarbocyamine (CM-DiI) and calcein-AM in donor and recipient cells in cocultures. After seeding, the gap junction permeant dye calcein spreads from donor to recipient cells. CM-DiI and calcein fluorescence identified donor and recipient cells, respectively. The extent of intercellular connections was evaluated using cell counting and flow cytometry up to 2 hr after treatment. Clinically relevant concentrations of the intravenous anesthetics propofol (15 microM) and thiopental (10 microM) attenuated gap junction permeability in P19 cell cultures. In contrast, halothane, a volatile anesthetic in a concentration (0.64 mM) relevant to its free aqueous EC50 had no effect on gap junction coupling; however, very high halothane concentrations (2.8 mM) blocked dye transfer by approximately 90%. The results indicate that halothane concentrations pertinent to clinical anesthesia were unable to attenuate gap junction communication in a cell line that can express neuronal and glial gap junction proteins; however, clinically relevant concentrations of propofol and thiopental depressed gap junction coupling.
Collapse
Affiliation(s)
- Kirsten Wentlandt
- University Health Network, Toronto Western Research Institute, Division of Cellular and Molecular Biology, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
48
|
Fiorini C, Mograbi B, Cronier L, Bourget I, Decrouy X, Nebout M, Ferrua B, Malassine A, Samson M, Fénichel P, Segretain D, Pointis G. Dominant negative effect of connexin33 on gap junctional communication is mediated by connexin43 sequestration. J Cell Sci 2004; 117:4665-72. [PMID: 15331631 DOI: 10.1242/jcs.01335] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gap junctional intercellular communication is involved in the control of cell proliferation and differentiation. Connexin33, a member of the multi-gene family of gap junction proteins, exerts an inhibitory effect on intercellular communication when injected into Xenopus oocytes. However, the molecular mechanisms involved remain to be elucidated. Our results show that connexin33 was only expressed within the seminiferous tubules in the testis. In contrast to the majority of connexins, connexin33 was unphosphorylated. Immunoprecipitation experiments revealed that connexin33 physically interacted with connexin43, mainly with the phosphorylated P1 isoform of connexin43 but not with connexin26 and connexin32, two other connexins expressed in the tubular compartment. In Sertoli cells and COS-7 cells, connexin43 was located at the plasma membrane, whereas in connexin33 transfected cells, the specific association of connexin33/43 was sequestered in the intracellular compartment. High-resolution fluorescent deconvolution microscopy indicated that the connexin33/43 complex was mainly found within early endosomes. Sequestration of connexin33/43 complex was associated with a complete inhibition of the gap junctional coupling between adjacent cells. These findings provide the first evidence of a new mechanistic model by which a native connexin, exerting a dominant negative effect, can inhibit gap junctional intercellular communication. In the testis, connexin33 could exert a specific role on germ cell proliferation by suppressing the regulatory effect of connexin43.
Collapse
Affiliation(s)
- Céline Fiorini
- INSERM EMI 00-09, IFR 50, Faculté de Médecine, Avenue de Valombrose, 06107 Nice CEDEX 02, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Locke D, Stein T, Davies C, Morris J, Harris AL, Evans WH, Monaghan P, Gusterson B. Altered permeability and modulatory character of connexin channels during mammary gland development. Exp Cell Res 2004; 298:643-60. [PMID: 15265710 DOI: 10.1016/j.yexcr.2004.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Abrupt developmental changes occur in structural form and function of connexin (Cx) channels in the mouse mammary gland. Microarray study shows that the principal connexin isoform in epithelial cells during pregnancy is Cx26, up-regulated and persisting from the virgin. After parturition, there is rapid induction of Cx32. In epithelial plasma membranes, size exclusion chromatography reveals that Cx32 organizes initially with Cx26 as heteromeric (Cx26-Cx32) hemichannels and later in heteromeric and homomeric Cx32 channels. Dramatic alterations of connexin channel function following these developmental changes in channel composition are characterized using native channels reconstituted into liposomes. Changes to channel stoichiometry increase the allowable physical size limits of permeant after parturition; the new Cx32 channels are wider than channels containing Cx26. Most remarkably, heteromeric Cx26-Cx32 channels are selectively permeability to adenosine 3',5' cyclic phosphate (cAMP), guanosine 3',5' cyclic phosphate (cGMP), and inositol 1,4,5-triphosphate (IP(3)), whereas homomeric channels are not. Homomeric Cx26 and heteromeric channels with high Cx26/Cx32 stoichiometry are also inhibited by taurine, an osmolyte playing a key role in milk protein synthesis. Taurine effect is reduced where heteromeric channels contain Cx32 > Cx26 and eliminated when channels contain only Cx32. Connexin channel stoichiometry, permeability, and chemical gating character change in precisely the desired fashion after parturition to maximize molecular and electrical coupling to support coordinated milk secretion.
Collapse
Affiliation(s)
- Darren Locke
- Department of Pharmacology and Physiology, UMDNJ, Newark, NJ 07101, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gemel J, Valiunas V, Brink PR, Beyer EC. Connexin43 and connexin26 form gap junctions, but not heteromeric channels in co-expressing cells. J Cell Sci 2004; 117:2469-80. [PMID: 15128867 DOI: 10.1242/jcs.01084] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many cells contain two (or more) gap junction proteins that are able to oligomerize with each other to form heteromeric gap junction channels and influence the properties of intercellular communication. Cx26 and Cx43 are found together in a number of cell types, but previous data have suggested that they might not form heteromeric connexons. We studied the possible interactions of these connexins by co-expression in three different cell lines. Analysis of N2aCx26/Cx43 cell pairs by double whole-cell patch-clamp methods showed that these cells were coupled, but contained only a small number of sizes of single channels consistent with those formed by homomeric Cx26 or Cx43 channels. Immunofluorescence studies showed that both connexins localized to appositional membranes, but in largely distinct domains. Analysis of Triton X-100-solubilized connexons from co-expressing cells by centrifugation through sucrose gradients or by affinity purification using a Ni-NTA column showed no evidence of mixing of Cx26 and Cx43. These results contrast with our observations in cells co-expressing other connexins with Cx43 and suggest that Cx26 and Cx43 do not form heteromeric hemichannels. Moreover, the incorporation of Cx26 and Cx43 into oligomers and into the membrane were similarly affected by treatment of co-expressing cells with brefeldin A or nocodazole, suggesting that the lack of mixing is due to incompatibility of these connexins, not to differences in biosynthetic trafficking.
Collapse
Affiliation(s)
- Joanna Gemel
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, University of Chicago, IL 60637-1470, USA
| | | | | | | |
Collapse
|