1
|
Taghizadeh E, Mirzaei F, Jalilian N, Ghayour Mobarhan M, Ferns GA, Pasdar A. A novel mutation in
USF1
gene is associated with familial combined hyperlipidemia. IUBMB Life 2019; 72:616-623. [DOI: 10.1002/iub.2186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Eskandar Taghizadeh
- Department of Medical Genetics, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
- Cellular and Molecular Research CenterYasuj University of Medical Sciences Yasuj Iran
| | - Farzaneh Mirzaei
- Department of Medical Genetics, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Nazanin Jalilian
- Department of Clinical biochemistry, School of MedicineKermanshah University of Medical Sciences Kermanshah Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Centre, School of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Gordon A. Ferns
- Department of Medical EducationBrighton and Sussex Medical School Perso Falmer Brighton UK
| | - Alireza Pasdar
- Department of Medical Genetics, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
- Medical Genetics Research Centre, Faculty of MedicineMashhad University of Medical Sciences Mashhad Iran
- Division of Applied Medicine, Medical School, University of Aberdeen Foresterhill Aberdeen UK
| |
Collapse
|
2
|
A novel upstream transcription factor 1 target gene N4bp2l1 that regulates adipogenesis. Biochem Biophys Rep 2019; 20:100676. [PMID: 31440585 PMCID: PMC6698772 DOI: 10.1016/j.bbrep.2019.100676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/03/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
N4BP2l1, which is highly expressed in oral squamous cell carcinoma, is associated with poor prognosis. However, N4bp2l1's role in adipogenesis remains unknown. We aimed to clarify the expression profile and transcriptional regulation of N4bp2l1 to elucidate the functions underlying the role of N4bp2l1 in adipocyte differentiation. Our results revealed that N4bp2l1 mRNA expression increased in 3T3-L1 cells in a differentiation-dependent manner. To investigate the transcriptional regulation of N4bp2l1, the 2-kb 5′ region upstream of the mouse N4bp2l1 promoter was cloned into a luciferase vector. Luciferase reporter assays indicated that USF1 induces the N4bp2l1 promoter activity. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed that USF1 directly binds to the Ebox in the N4bp2l1 promoter. Furthermore, the expressions of adipocyte differentiation markers significantly decreased in N4bp2l1-knockdown cells compared with those in control cells. Our results demonstrated that N4bp2l1 is a novel USF1 target gene that may be involved in adipogenesis regulation. N4bp2l1 expression is increased in a differentiation-dependent manner in 3T3-L1. N4bp2l1 is a novel USF1 target gene. USF1 directly binds to the Ebox in the N4bp2l1 promoter. Inhibition of 3T3-L1 adipocyte differentiation by N4bp2l1 knockdown.
Collapse
|
3
|
Zhou X, Zhu HQ, Ma CQ, Li HG, Liu FF, Chang H, Lu J. Two polymorphisms of USF1 gene (-202G>A and -844C>T) may be associated with hepatocellular carcinoma susceptibility based on a case-control study in Chinese Han population. Med Oncol 2014; 31:301. [PMID: 25367853 DOI: 10.1007/s12032-014-0301-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a prototype of liver cancer, which is closely related to manifested metabolism of lip and glucose. Upstream transcription factor 1 (USF1) is an important transcription factor in human genome, and it regulates the expression of multiple genes associated with lipid and glucose metabolism. This study aims at investigating the correlation between seven common USF1 polymorphisms (i.e., -1994 G>A, -202 G>A, 7998 A>G, -844 C>T, 9042 C>G, 9441 T>C, and -2083 G>A) and the risk of HCC. Elucidation of the interaction might be of vital importance to the diagnosis and prognosis of HCC. One hundred and fifty-five HCC patients and 160 healthy controls from a Chinese Han population were involved in this study. Tag single-nucleotide polymorphisms (SNPs) were identified with reference to CBI-dbSNP and HapMap databases. DNA was extracted from blood samples, and matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was conducted to determine the polymorphisms of USF1. Odds ratio (OR) and 95% confidence interval were applied to evaluate the difference of genotype distribution. Seven SNPs were selected to be representatives. No significant difference was observed concerning -1994 G>A, 7998 A>G, 9042 C>G, 9441 T>C, and -2083 G>A polymorphisms (all P > 0.05). A significantly elevated genotype frequency regarding -202 G>A polymorphism was observed in HCC patients [AA vs. GG: OR 2.13 (1.13-4.01), P = 0.019; AA vs. GG+GA: OR 2.22 (1.32-3.75), P = 0.003; A allele vs. G allele: OR 1.46 (1.07-2.01), P = 0.018]. Subjects carrying mutant -844 C>T genotypes also had a higher risk of HCC [CT vs. CC: OR 1.88 (1.17-3.04), P = 0.009; CT+TT vs. CC: OR 1.83 (1.17-2.86), P = 0.008; T allele vs. C allele: OR 1.49 (1.06-2.09), P = 0.020]. Further studies are recommended to validate our findings in different ethnicity and to clarify the functional relationship between USF1 polymorphisms and the susceptibility of HCC.
Collapse
Affiliation(s)
- Xu Zhou
- Department of Hepatobiliary Surgery, Provincial Hospital Affiliated to Shandong University (East District), No. 9677 Jingshi Road, Jinan, 250014, Shandong Province, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Lye SH, Chahil JK, Bagali P, Alex L, Vadivelu J, Ahmad WAW, Chan SP, Thong MK, Zain SM, Mohamed R. Genetic polymorphisms in LDLR, APOB, PCSK9 and other lipid related genes associated with familial hypercholesterolemia in Malaysia. PLoS One 2013; 8:e60729. [PMID: 23593297 PMCID: PMC3620484 DOI: 10.1371/journal.pone.0060729] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/01/2013] [Indexed: 11/18/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disorder characterized by elevations in total cholesterol (TC) and low density lipoprotein cholesterol (LDLc). Development of FH can result in the increase of risk for premature cardiovascular diseases (CVD). FH is primarily caused by genetic variations in Low Density Lipoprotein Receptor (LDLR), Apolipoprotein B (APOB) or Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) genes. Although FH has been extensively studied in the Caucasian population, there are limited reports of FH mutations in the Asian population. We investigated the association of previously reported genetic variants that are involved in lipid regulation in our study cohort. A total of 1536 polymorphisms previously implicated in FH were evaluated in 141 consecutive patients with clinical FH (defined by the Dutch Lipid Clinic Network criteria) and 111 unrelated control subjects without FH using high throughput microarray genotyping platform. Fourteen Single Nucleotide Polymorphisms (SNPs) were found to be significantly associated with FH, eleven with increased FH risk and three with decreased FH risk. Of the eleven SNPs associated with an increased risk of FH, only one SNP was found in the LDLR gene, seven in the APOB gene and three in the PCSK9 gene. SNP rs12720762 in APOB gene is associated with the highest risk of FH (odds ratio 14.78, p<0.001). Amongst the FH cases, 108 out of 141 (76.60%) have had at least one significant risk-associated SNP. Our study adds new information and knowledge on the genetic polymorphisms amongst Asians with FH, which may serve as potential markers in risk prediction and disease management.
Collapse
Affiliation(s)
- Say-Hean Lye
- INFOVALLEY® Group of Companies, Jalan Tasik, MINES Resort City, Selangor, Malaysia
| | - Jagdish Kaur Chahil
- INFOVALLEY® Group of Companies, Jalan Tasik, MINES Resort City, Selangor, Malaysia
| | - Pramod Bagali
- INFOVALLEY® Group of Companies, Jalan Tasik, MINES Resort City, Selangor, Malaysia
| | - Livy Alex
- INFOVALLEY® Group of Companies, Jalan Tasik, MINES Resort City, Selangor, Malaysia
- * E-mail:
| | | | | | - Siew-Pheng Chan
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Meow-Keong Thong
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
5
|
Kanamoto N, Tagami T, Ueda-Sakane Y, Sone M, Miura M, Yasoda A, Tamura N, Arai H, Nakao K. Forkhead box A1 (FOXA1) and A2 (FOXA2) oppositely regulate human type 1 iodothyronine deiodinase gene in liver. Endocrinology 2012; 153:492-500. [PMID: 22067325 DOI: 10.1210/en.2011-1310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Type 1 iodothyronine deiodinase (D1), a selenoenzyme that catalyzes the bioactivation of thyroid hormone, is expressed mainly in the liver. Its expression and activity are modulated by several factors, but the precise mechanism of its transcriptional regulation remains unclear. In the present study, we have analyzed the promoter of human D1 gene (hDIO1) to identify factors that prevalently increase D1 activity in the human liver. Deletion and mutation analyses demonstrated that a forkhead box (FOX)A binding site and an E-box site within the region between nucleotides -187 and -132 are important for hDIO1 promoter activity in the liver. EMSA demonstrated that FOXA1 and FOXA2 specifically bind to the FOXA binding site and that upstream stimulatory factor (USF) specifically binds to the E-box element. Overexpression of FOXA2 decreased hDIO1 promoter activity, and short interfering RNA-mediated knockdown of FOXA2 increased the expression of hDIO1 mRNA. In contrast, overexpression of USF1/2 increased hDIO1 promoter activity. Short interfering RNA-mediated knockdown of FOXA1 decreased the expression of hDIO1 mRNA, but knockdown of both FOXA1 and FOXA2 restored it. The response of the hDIO1 promoter to USF was greatly attenuated in the absence of FOXA1. Taken together, these results indicate that a balance of FOXA1 and FOXA2 expression modulates hDIO1 expression in the liver.
Collapse
Affiliation(s)
- Naotetsu Kanamoto
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chamouton J, Hansmannel F, Bonzo JA, Clémencet MC, Chevillard G, Battle M, Martin P, Pineau T, Duncan S, Gonzalez FJ, Latruffe N, Mandard S, Nicolas-Francès V. The Peroxisomal 3-keto-acyl-CoA thiolase B Gene Expression Is under the Dual Control of PPARα and HNF4α in the Liver. PPAR Res 2011; 2010:352957. [PMID: 21437216 PMCID: PMC3061263 DOI: 10.1155/2010/352957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 12/01/2010] [Accepted: 12/09/2010] [Indexed: 01/10/2023] Open
Abstract
PPARα and HNF4α are nuclear receptors that control gene transcription by direct binding to specific nucleotide sequences. Using transgenic mice deficient for either PPARα or HNF4α, we show that the expression of the peroxisomal 3-keto-acyl-CoA thiolase B (Thb) is under the dependence of these two transcription factors. Transactivation and gel shift experiments identified a novel PPAR response element within intron 3 of the Thb gene, by which PPARα but not HNF4α transactivates. Intriguingly, we found that HNF4α enhanced PPARα/RXRα transactivation from TB PPRE3 in a DNA-binding independent manner. Coimmunoprecipitation assays supported the hypothesis that HNF4α was physically interacting with RXRα. RT-PCR performed with RNA from liver-specific HNF4α-null mice confirmed the involvement of HNF4α in the PPARα-regulated induction of Thb by Wy14,643. Overall, we conclude that HNF4α enhances the PPARα-mediated activation of Thb gene expression in part through interaction with the obligate PPARα partner, RXRα.
Collapse
Affiliation(s)
- J. Chamouton
- Centre de Recherche, INSERM U866, LBMN 6, Boulevard Gabriel, 21000 Dijon, France
- Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), Faculté des Sciences Gabriel, Université de Bourgogne, 21000 Dijon, France
| | - F. Hansmannel
- Centre de Recherche, INSERM U866, LBMN 6, Boulevard Gabriel, 21000 Dijon, France
- Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), Faculté des Sciences Gabriel, Université de Bourgogne, 21000 Dijon, France
- INSERM U744, Laboratoire d'Épidémiologie et Santé Publique, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, BP 245, 59019 Lille Cedex, France
| | - J. A. Bonzo
- Laboratory of Metabolism, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892, USA
| | - M. C. Clémencet
- Centre de Recherche, INSERM U866, LBMN 6, Boulevard Gabriel, 21000 Dijon, France
- Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), Faculté des Sciences Gabriel, Université de Bourgogne, 21000 Dijon, France
| | - G. Chevillard
- Centre de Recherche, INSERM U866, LBMN 6, Boulevard Gabriel, 21000 Dijon, France
- Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), Faculté des Sciences Gabriel, Université de Bourgogne, 21000 Dijon, France
- Lady Davis Institute for Medical Research, McGill University, 3755 Côte Ste. Catherine Road, Montreal, QC, Canada H3T 1E2
| | - M. Battle
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA
| | - P. Martin
- Laboratoire de Pharmacologie et Toxicologie, UR66, INRA, 31931, Toulouse, France
| | - T. Pineau
- Laboratoire de Pharmacologie et Toxicologie, UR66, INRA, 31931, Toulouse, France
| | - S. Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA
| | - F. J. Gonzalez
- Laboratory of Metabolism, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892, USA
| | - N. Latruffe
- Centre de Recherche, INSERM U866, LBMN 6, Boulevard Gabriel, 21000 Dijon, France
- Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), Faculté des Sciences Gabriel, Université de Bourgogne, 21000 Dijon, France
| | - S. Mandard
- Centre de Recherche, INSERM U866, LBMN 6, Boulevard Gabriel, 21000 Dijon, France
- Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), Faculté des Sciences Gabriel, Université de Bourgogne, 21000 Dijon, France
| | - V. Nicolas-Francès
- Centre de Recherche, INSERM U866, LBMN 6, Boulevard Gabriel, 21000 Dijon, France
- Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), Faculté des Sciences Gabriel, Université de Bourgogne, 21000 Dijon, France
| |
Collapse
|
7
|
Hu Z, Gallo SM. Identification of interacting transcription factors regulating tissue gene expression in human. BMC Genomics 2010; 11:49. [PMID: 20085649 PMCID: PMC2822763 DOI: 10.1186/1471-2164-11-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 01/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tissue gene expression is generally regulated by multiple transcription factors (TFs). A major first step toward understanding how tissues achieve their specificity is to identify, at the genome scale, interacting TFs regulating gene expression in different tissues. Despite previous discoveries, the mechanisms that control tissue gene expression are not fully understood. RESULTS We have integrated a function conservation approach, which is based on evolutionary conservation of biological function, and genes with highest expression level in human tissues to predict TF pairs controlling tissue gene expression. To this end, we have identified 2549 TF pairs associated with a certain tissue. To find interacting TFs controlling tissue gene expression in a broad spatial and temporal manner, we looked for TF pairs common to the same type of tissues and identified 379 such TF pairs, based on which TF-TF interaction networks were further built. We also found that tissue-specific TFs may play an important role in recruiting non-tissue-specific TFs to the TF-TF interaction network, offering the potential for coordinating and controlling tissue gene expression across a variety of conditions. CONCLUSION The findings from this study indicate that tissue gene expression is regulated by large sets of interacting TFs either on the same promoter of a gene or through TF-TF interaction networks.
Collapse
Affiliation(s)
- Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, Department of Biostatistics, Department of Medicine, State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Steven M Gallo
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York (SUNY), Buffalo, NY 14260, USA
| |
Collapse
|
8
|
Affiliation(s)
- Hitoshi Shimano
- From the Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukauba, Japan
| |
Collapse
|
9
|
Naukkarinen J, Nilsson E, Koistinen HA, Söderlund S, Lyssenko V, Vaag A, Poulsen P, Groop L, Taskinen MR, Peltonen L. Functional variant disrupts insulin induction of USF1: mechanism for USF1-associated dyslipidemias. ACTA ACUST UNITED AC 2009; 2:522-9. [PMID: 20031629 DOI: 10.1161/circgenetics.108.840421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The upstream transcription factor 1 (USF1) gene is associated with familial combined hyperlipidemia, the most common genetic dyslipidemia in humans, as well as with various dyslipidemic changes in numerous other studies. Typical of complex disease-associated genes, neither the explicit mutations have been described nor the functional consequences for risk allele carriers been reported at the cellular or tissue level. METHODS AND RESULTS In this study, we aimed at describing the molecular mechanism through which the strongest associating intronic single-nucleotide polymorphism variant in USF1 is involved in the development of dyslipidemia. The effects of the risk variant on gene expression were studied in 2 relevant human tissues, fat and muscle. Global transcript profiles of 47 fat biopsies ascertained for carriership of the risk allele were tested for differential expression of known USF1 target genes as well as for broader effects on the transcript profile. Allelic imbalance of USF1 in fat was assessed using a quantitative sequencing approach. The possible allele-specific effect of insulin on the expression of USF1 was studied in 118 muscle biopsies before and after a euglycemic hyperinsulinemic clamp. The risk allele of single-nucleotide polymorphism rs2073658 seems to eradicate the inductive effect of insulin on the expression of USF1 in muscle and fat. The expression of numerous target genes is in turn perturbed in adipose tissue. CONCLUSIONS In risk allele carriers, a defective response of USF1 to insulin results in the suboptimal response of relevant target genes that contributes to the enhanced risk of developing dyslipidemia and coronary heart disease.
Collapse
Affiliation(s)
- Jussi Naukkarinen
- Institute for Molecular Medicine Finland (FIMM), National Institute for Health and Welfare, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
van Deursen D, Jansen H, Verhoeven AJM. Glucose increases hepatic lipase expression in HepG2 liver cells through upregulation of upstream stimulatory factors 1 and 2. Diabetologia 2008; 51:2078-87. [PMID: 18758746 DOI: 10.1007/s00125-008-1125-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 07/17/2008] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS Elevated hepatic lipase (HL, also known as LIPC) expression is a key factor in the development of the atherogenic lipid profile in type 2 diabetes and insulin resistance. Recently, genetic screens revealed a possible association of type 2 diabetes and familial combined hyperlipidaemia with the USF1 gene. Therefore, we investigated the role of upstream stimulatory factors (USFs) in the regulation of HL. METHODS Levels of USF1, USF2 and HL were measured in HepG2 cells cultured in normal- or high-glucose medium (4.5 and 22.5 mmol/l, respectively) and in livers of streptozotocin-treated rats. RESULTS Nuclear extracts of cells cultured in high glucose contained 2.5 +/- 0.5-fold more USF1 and 1.4 +/- 0.2-fold more USF2 protein than cells cultured in normal glucose (mean +/- SD, n = 3). This coincided with higher DNA binding of nuclear proteins to the USF consensus DNA binding site. Secretion of HL (2.9 +/- 0.5-fold), abundance of HL mRNA (1.5 +/- 0.2-fold) and HL (-685/+13) promoter activity (1.8 +/- 0.3-fold) increased in parallel. In chromatin immunoprecipitation assays, the proximal HL promoter region was immunoprecipitated with anti-USF1 and anti-USF2 antibodies. Co-transfection with USF1 or USF2 cDNA stimulated HL promoter activity 6- to 16-fold. USF and glucose responsiveness were significantly reduced by removal of the -310E-box from the HL promoter. Silencing of the USF1 gene by RNA interference reduced glucose responsiveness of the HL (-685/+13) promoter region by 50%. The hyperglycaemia in streptozotocin-treated rats was associated with similar increases in USF abundance in rat liver nuclei, but not with increased binding of USF to the rat Hl promoter region. CONCLUSIONS/INTERPRETATION Glucose increases HL expression in HepG2 cells via elevation of USF1 and USF2. This mechanism may contribute to the development of the dyslipidaemia that is typical of type 2 diabetes.
Collapse
Affiliation(s)
- D van Deursen
- Department of Biochemistry, Cardiovascular Research School COEUR, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
11
|
Collings A, Höyssä S, Fan M, Kähönen M, Hutri-Kähönen N, Marniemi J, Juonala M, Viikari JSA, Raitakari OT, Lehtimäki TJ. Allelic variants of upstream transcription factor 1 associate with carotid artery intima-media thickness: the Cardiovascular Risk in Young Finns study. Circ J 2008; 72:1158-64. [PMID: 18577828 DOI: 10.1253/circj.72.1158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Polymorphisms of the upstream transcription factor 1 (USF1) have been associated with familial combined hyperlipidemia and coronary heart disease. The impact of this gene on subclinical atherosclerosis is unknown. Associations of 3 allelic variants of the USF1 gene and their haplotypes with carotid artery intima - media thickness (IMT), carotid artery compliance (CAC) and brachial artery flow mediated dilatation (FMD) were studied in a population of Finnish healthy young adults. METHODS AND RESULTS The study population comprised 2,281 individuals participating in the Cardiovascular Risk in Young Finns study. IMT, CAC and FMD values were measured by ultrasound examination. Genotypes were analysed using the 5' nuclease assay. A significant difference in IMT was found for usf1s1 (rs3737787) and usf1s8 (rs2516838) genotypes (p-values 0.046 and 0.021, respectively). Moreover, there was a significant difference between groups in haplotype 1 and haplotype 2 for IMT (p-values 0.011 and 0.028 respectively). In multivariate stepwise linear regression models adjusted by age, sex, body mass index, systolic and diastolic blood pressures, smoking, C-reactive protein, glucose, high- and low-density lipoprotein-cholesterols and triglycerides there were significant associations for the usf1s1 minor genotype AA to predict low IMT (p=0.038) and usf1s8 minor genotype GG to predict high IMT (p=0.003). There was also a significant association for haplotype 2 to predict low IMT in the otherwise similar multivariate model (p=0.006). No associations were found for polymorphisms and CAC, FMD or serum lipids. CONCLUSIONS The rs2516838 and rs3737787 polymorphisms of USF1 influence the carotid artery IMT, which is a new finding.
Collapse
Affiliation(s)
- Auni Collings
- Department of Clinical Chemistry, Centre for Laboratory Medicine, Tampere University Hospital, PO Box 2000, 33521 Tampere, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Archer A, Lauter G, Hauptmann G, Mode A, Gustafsson JÅ. Transcriptional activity and developmental expression of liver X receptor (lxr) in Zebrafish. Dev Dyn 2008; 237:1090-8. [DOI: 10.1002/dvdy.21476] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
Lee SK, Kim HJ, Kim BJ, Jo YS, Park KS, Baik HW, Hyun SH, Lee JC, Kim SA. Body mass index is associated with USF1 haplotype in Korean premenopausal women. J Korean Med Sci 2008; 23:83-8. [PMID: 18303204 PMCID: PMC2526481 DOI: 10.3346/jkms.2008.23.1.83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The upstream stimulatory factor 1 (USF1) gene has been shown to play an essential role as the cause of familial combined hyperlipidemia, and there are several association studies on the relationship between USF1 and metabolic disorders. In this study, we analyzed two single nucleotide polymorphisms in USF1 rs2073653 (306A>G) and rs2516840 (1748C>T) between the case (dyslipidemia or obesity) group and the control group in premenopausal females, postmenopausal females, and males among 275 Korean subjects. We observed a statistically significant difference in the GC haplotype between body mass index (BMI) > or =25 kg/m2) and BMI <25 kg/m2 groups in premenopausal females ( chi2=4.23, p=0.04). It seems that the USF1 GC haplotype is associated with BMI in premenopausal Korean females.
Collapse
Affiliation(s)
- Seong-Kyu Lee
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Korea
- Department of Biochemistry-Molecular Biology, School of Medicine, Eulji University, Daejeon, Korea
| | - Hyun-Jin Kim
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Korea
| | - Byung-Joon Kim
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Korea
| | - Young-Suk Jo
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Korea
| | - Kang-Seo Park
- Department of Internal Medicine, School of Medicine, Eulji University, Daejeon, Korea
| | - Haing-Woon Baik
- Department of Biochemistry-Molecular Biology, School of Medicine, Eulji University, Daejeon, Korea
| | - Sung Hee Hyun
- Department of Clinical Pathology, School of Medicine, Eulji University, Daejeon, Korea
| | - Je Chul Lee
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Korea
| |
Collapse
|
14
|
Park KY, Russo AF. Control of the Calcitonin Gene-related Peptide Enhancer by Upstream Stimulatory Factor in Trigeminal Ganglion Neurons. J Biol Chem 2008; 283:5441-51. [DOI: 10.1074/jbc.m708662200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
15
|
Castellani LW, Nguyen CN, Charugundla S, Weinstein MM, Doan CX, Blaner WS, Wongsiriroj N, Lusis AJ. Apolipoprotein AII is a regulator of very low density lipoprotein metabolism and insulin resistance. J Biol Chem 2007; 283:11633-44. [PMID: 18160395 DOI: 10.1074/jbc.m708995200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein AII (apoAII) transgenic (apoAIItg) mice exhibit several traits associated with the insulin resistance (IR) syndrome, including IR, obesity, and a marked hypertriglyceridemia. Because treatment of the apoAIItg mice with rosiglitazone ameliorated the IR and hypertriglyceridemia, we hypothesized that the hypertriglyceridemia was due largely to overproduction of very low density lipoprotein (VLDL) by the liver, a normal response to chronically elevated insulin and glucose. We now report in vivo and in vitro studies that indicate that hepatic fatty acid oxidation was reduced and lipogenesis increased, resulting in a 25% increase in triglyceride secretion in the apoAIItg mice. In addition, we observed that hydrolysis of triglycerides from both chylomicrons and VLDL was significantly reduced in the apoAIItg mice, further contributing to the hypertriglyceridemia. This is a direct, acute effect, because when mouse apoAII was injected into mice, plasma triglyceride concentrations were significantly increased within 4 h. VLDL from both control and apoAIItg mice contained significant amounts of apoAII, with approximately 4 times more apoAII on apoAIItg VLDL. ApoAII was shown to transfer spontaneously from high density lipoprotein (HDL) to VLDL in vitro, resulting in VLDL that was a poorer substrate for hydrolysis by lipoprotein lipase. These results indicate that one function of apoAII is to regulate the metabolism of triglyceride-rich lipoproteins, with HDL serving as a plasma reservoir of apoAII that is transferred to the triglyceride-rich lipoproteins in much the same way as VLDL and chylomicrons acquire most of their apoCs from HDL.
Collapse
Affiliation(s)
- Lawrence W Castellani
- Departments of Medicine/Cardiology University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Choquette AC, Bouchard L, Houde A, Bouchard C, Pérusse L, Vohl MC. Associations between USF1 gene variants and cardiovascular risk factors in the Quebec Family Study. Clin Genet 2007; 71:245-53. [PMID: 17309647 DOI: 10.1111/j.1399-0004.2007.00755.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cardiovascular (CVD) risk factors are under the influence of environmental and genetic factors. Human upstream transcription factor 1 gene (USF1) encodes for a transcription factor, which modulates the expression of genes involved in lipid and carbohydrate metabolic pathways. The aim of this study was to test the hypothesis that USF1 gene variants are associated with CVD risk factors in the Quebec Family Study (QFS). USF1 has been sequenced in 20 QFS subjects with high plasma apolipoprotein B100 (APOB) levels (>1.14 g/l) and small, dense low-density lipoprotein (LDL) particles (> or =250.7 Angstroms and < or =255.9 Angstroms), as well as in five subjects with larger LDL particles. Ten variants were identified in non-coding regions of USF1. Two of these polymorphisms (intron 7 c.561-100 G>A, and exon 11 c.*187 C>T) as well as the c.-56 A>G polymorphism, were genotyped and analyzed in 760 subjects from QFS. Association studies showed that women with c.561-100 A/A and c.*187 T/T genotypes had more favorable adiposity indices (<0.04). In summary, significant associations between relatively common USF1 genetic variants and CVD risk factors were observed in French Canadians.
Collapse
|
17
|
Arpiainen S, Lämsä V, Pelkonen O, Yim SH, Gonzalez FJ, Hakkola J. Aryl hydrocarbon receptor nuclear translocator and upstream stimulatory factor regulate Cytochrome P450 2a5 transcription through a common E-box site. J Mol Biol 2007; 369:640-52. [PMID: 17466327 DOI: 10.1016/j.jmb.2007.03.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/28/2007] [Accepted: 03/28/2007] [Indexed: 12/15/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) belongs to the basic-helix-loop-helix (bHLH) transcription factors and regulates several genes as heterodimers with other bHLH proteins. ARNT is also able to homodimerize, but no mammalian target genes for the homodimer have been shown. We identified a palindromic E-box element in the 5' regulatory region of the murine cytochrome P450 (Cyp) 2a5 gene that was found to be important for Cyp2a5 transcription in primary hepatocytes, and was found by chromatin immunoprecipitation assays to interact with ARNT. Electrophoretic mobility-shift assay experiments with in vitro translated ARNT showed binding without heterodimerization partner, indicating binding as a homodimer. Transfection studies in wild-type and ARNT-deficient Hepa-1 cells revealed that ARNT expression is necessary for full activity of the Cyp2a5 promoter. In the liver-specific Arnt-null mouse line, the level of hepatic CYP2A5 mRNA was decreased significantly. Co-transfection studies with an ARNT expression vector lacking the transactivation domain (TAD) demonstrated that the ARNT TAD is needed for Cyp2a5 activation, which suggests that ARNT transactivates Cyp2a5 as a homodimer. In primary hepatocytes, the mRNA levels of both CYP2A5 and ARNT splice variant 1 were increased during cultivation. Upstream stimulatory factors 1 and 2a were also able to bind to the same E-box as ARNT, indicating that there may be competition for DNA binding between these factors. Indeed, the upstream stimulatory factors activated the Cyp2a5 promoter through the E-box only in the presence of hepatocyte nuclear factor-4alpha, while ARNT transactivation was independent of hepatocyte nuclear factor-4alpha. In conclusion, these results indicate that ARNT controls Cyp2a5 transcription and thus, for the first time, suggest active involvement of the ARNT homodimer in mammalian gene regulation.
Collapse
Affiliation(s)
- Satu Arpiainen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
18
|
van der Vleuten GM, Isaacs A, Hijmans A, van Duijn CM, Stalenhoef AFH, de Graaf J. The involvement of upstream stimulatory factor 1 in Dutch patients with familial combined hyperlipidemia. J Lipid Res 2006; 48:193-200. [PMID: 17065663 DOI: 10.1194/jlr.m600184-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, the upstream stimulatory factor 1 gene (USF1) was proposed as a candidate gene for familial combined hyperlipidemia (FCH). In this study, we examined the previously identified risk haplotype of USF1 with respect to FCH and its related phenotypes in 36 Dutch FCH families. The diagnosis of FCH was based on both the traditional diagnostic criteria and a nomogram. The two polymorphisms, USF1s1 and USF1s2, were in complete linkage disequilibrium. No association was found for the individual single nucleotide polymorphisms (SNPs) with FCH defined by the nomogram (USF1s1, P = 0.53; USF1s2, P = 0.53), whereas suggestive associations were found when using the traditional diagnostic criteria for FCH (USF1s1, P = 0.08; USF1s2, P = 0.07). USF1 was associated with total cholesterol (USF1s1, P = 0.05; USF1s2, P = 0.04) and apolipoprotein B (USF1s1, P = 0.06; USF1s2, P = 0.04). Small dense LDL showed a suggestive association (USF1s1, P = 0.10; USF1s2, P = 0.09). The results from the haplotype analyses supported the results obtained for the individual SNPs. In conclusion, the previously identified risk haplotype of USF1 showed a suggestive association with FCH and contributed to the related lipid traits in our Dutch FCH families.
Collapse
Affiliation(s)
- Gerly M van der Vleuten
- Department of Medicine, Division of General Internal Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Crusselle-Davis VJ, Vieira KF, Zhou Z, Anantharaman A, Bungert J. Antagonistic regulation of beta-globin gene expression by helix-loop-helix proteins USF and TFII-I. Mol Cell Biol 2006; 26:6832-43. [PMID: 16943425 PMCID: PMC1592872 DOI: 10.1128/mcb.01770-05] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human beta-globin genes are expressed in a developmental stage-specific manner in erythroid cells. Gene-proximal cis-regulatory DNA elements and interacting proteins restrict the expression of the genes to the embryonic, fetal, or adult stage of erythropoiesis. In addition, the relative order of the genes with respect to the locus control region contributes to the temporal regulation of the genes. We have previously shown that transcription factors TFII-I and USF interact with the beta-globin promoter in erythroid cells. Herein we demonstrate that reducing the activity of USF decreased beta-globin gene expression, while diminishing TFII-I activity increased beta-globin gene expression in erythroid cell lines. Furthermore, a reduction of USF activity resulted in a significant decrease in acetylated H3, RNA polymerase II, and cofactor recruitment to the locus control region and to the adult beta-globin gene. The data suggest that TFII-I and USF regulate chromatin structure accessibility and recruitment of transcription complexes in the beta-globin gene locus and play important roles in restricting beta-globin gene expression to the adult stage of erythropoiesis.
Collapse
Affiliation(s)
- Valerie J Crusselle-Davis
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, P.O. Box 100245, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
20
|
Kantartzis K, Fritsche A, Machicao F, Stumvoll M, Machann J, Schick F, Häring HU, Stefan N. Upstream transcription factor 1 gene polymorphisms are associated with high antilipolytic insulin sensitivity and show gene–gene interactions. J Mol Med (Berl) 2006; 85:55-61. [PMID: 17016691 DOI: 10.1007/s00109-006-0105-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 08/08/2006] [Indexed: 10/24/2022]
Abstract
Upstream transcription factor 1 (USF1) regulates the expression of many genes involved in lipid and glucose metabolism, among them genes regulating lipolysis. USF1 specifically regulates the expression of the hormone-sensitive lipase gene (HSL) in adipocytes and the hepatic lipase gene (LIPC) in the liver, which was found to be involved in liver fat accumulation. The usf1s1 C > T and usf1s2 G > A single-nucleotide polymorphisms (SNPs) in USF1 are associated with increased in vitro catecholamine-induced lipolysis in adipocytes. We investigated first whether SNPs in USF1 affect the lipolysis-suppressing action of insulin in vivo, and second, whether they interact with the -60C > G SNP in HSL on lipolysis and the -514C > T SNP in LIPC on liver fat. The usf1s1 C > T and usf1s2 G > A SNPs, together with the SNPs in HSL and LIPC, were determined in 407 Caucasians. Lipolysis was estimated as a change in free fatty acid (FFA) levels from baseline to 2 h of a 75-g oral glucose tolerance test (OGTT). Fifty-four subjects had data from a euglycemic hyperinsulinemic clamp with calculation of antilipolytic insulin sensitivity. Subjects carrying the minor alleles (T of usf1s1 and A of usf1s2) had lower 2 h FFA (p = 0.01) and a larger decrease in FFA concentrations during the OGTT (p = 0.02). Antilipolytic insulin sensitivity was higher in these individuals (p = 0.03). No interaction of the usf1s1 C > T and usf1s2 G > A SNPs with the -60C > G SNP in HSL on antilipolytic insulin sensitivity was detected. Liver fat, measured by (1)H magnetic resonance spectroscopy, was elevated only in subjects who were both homozygous for the major alleles of usf1s1 and usf1s2 and carriers of the T allele of the -514C > T SNP in LIPC (p = 0.01). In conclusion, subjects carrying the T allele of SNP usf1s1 and the A allele of SNP usf1s2 have a higher antilipolytic insulin sensitivity. Moreover, both SNPs may interact with the -514C > T SNP in LIPC to determine liver fat.
Collapse
Affiliation(s)
- Konstantinos Kantartzis
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Vascular Medicine and Clinical Chemistry, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rufibach LE, Duncan SA, Battle M, Deeb SS. Transcriptional regulation of the human hepatic lipase (LIPC) gene promoter. J Lipid Res 2006; 47:1463-77. [PMID: 16603721 DOI: 10.1194/jlr.m600082-jlr200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatic lipase (HL) plays a key role in the metabolism of plasma lipoproteins, and its level of activity requires tight regulation, given the association of both low and high levels with atherosclerosis and coronary artery disease. However, little is known about the factors responsible for HL expression. Here, we report that the human hepatic lipase gene (LIPC) promoter is regulated by hepatocyte nuclear factor 4alpha (HNF4alpha), peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), apolipoprotein A-I regulatory protein-1 (ARP-1), and hepatocyte nuclear factor 1alpha (HNF1alpha). Reporter analysis showed that HNF4alpha directly regulates the LIPC promoter via two newly identified direct repeat elements, DR1 and DR4. PGC-1alpha is capable of stimulating the HNF4alpha-dependent transactivation of the LIPC promoter. ARP-1 displaces HNF4alpha from the DR1 site and blocks its ability to activate the LIPC promoter. Induction by HNF1alpha requires the HNF1 binding site and upon cotransfection with HNF4alpha leads to an additive effect. In addition, the in vivo relevance of HNF4alpha in LIPC expression is shown by the ability of the HNF4alpha antagonist Medica 16 to repress endogenous LIPC mRNA expression. Furthermore, disruption of Hnf4alpha in mice prevents the expression of HL mRNA in liver. The overall effect these transcription factors have on HL expression will ultimately depend on the interplay between these various factors and their relative intracellular concentrations.
Collapse
Affiliation(s)
- Laura E Rufibach
- Department of Medical Genetics, University of Washington, Seattle, USA.
| | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Familial combined hyperlipidemia is a common complex disease that accounts for up to 20% of premature coronary heart disease. The upstream transcription factor 1, located on 1q21, was recently shown to be linked and associated with familial combined hyperlipidemia in Finnish families. Upstream transcription factor 1 is the first gene identified by positional cloning for familial combined hyperlipidemia. Replication studies are critical to investigation of complex diseases because only they can verify the importance of the original findings. We review recent studies that examine the genetic contribution and functional consequence of upstream transcription factor 1 variants to familial combined hyperlipidemia and type 2 diabetes mellitus. Aiming beyond upstream transcription factor 1, we also evaluate novel strategies that have made it possible to globally examine the genome and the transcriptome. RECENT FINDINGS Three independent studies support the role of upstream transcription factor 1 in familial combined hyperlipidemia. The results for type 2 diabetes mellitus and the metabolic syndrome have been less conclusive highlight novel strategies for gene identification in familial combined hyperlipidemia. SUMMARY Currently, genetic and functional evidence is supportive of a role for upstream transcription factor 1 in the etiology of familial combined hyperlipidemia and its component traits, although the mechanism of causality still remains largely unknown.
Collapse
Affiliation(s)
- Jenny C Lee
- Department of Human Genetics bDepartment of Medicine/Division of Cardiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
23
|
Abstract
Familial combined hyperlipidemia (FCHL) constitutes a substantial risk factor for atherosclerosis since it is observed in about 20% of coronary heart disease (CHD) patients under 60 years. FCHL, characterized by elevated levels of total cholesterol (TC) and triglycerides (TGs), or both, is also one of the most common familial hyperlipidemias with a prevalence of 1%-6% in Western populations. Numerous studies have been performed to identify genes contributing to FCHL. The recent linkage and association studies and their replications are beginning to elucidate the genetic variations underlying the susceptibility to FCHL. Three chromosomal regions on 1q21-23, 11p and 16q22-24.1 have been replicated in different study samples, offering targets for gene hunting. In addition, several candidate gene studies have replicated the influence of the lipoprotein lipase (LPL) gene and apolipoprotein A1/C3/A4/A5 (APOA1/C3/A4/A5) gene cluster in FCHL. Recently, the linked region on chromosome 1q21 was successfully fine-mapped and the upstream transcription factor 1 (USF1) gene identified as the underlying gene for FCHL. This finding has now been replicated in independent FCHL samples. However, the total number of variants, the risk related to each variant and their relative contributions to the disease susceptibility are not known yet.
Collapse
Affiliation(s)
- Elina Suviolahti
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-7088, USA
| | | | | |
Collapse
|
24
|
Naukkarinen J, Gentile M, Soro-Paavonen A, Saarela J, Koistinen HA, Pajukanta P, Taskinen MR, Peltonen L. USF1 and dyslipidemias: converging evidence for a functional intronic variant. Hum Mol Genet 2005; 14:2595-605. [PMID: 16076849 DOI: 10.1093/hmg/ddi294] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Upstream transcription factor 1 (USF1), the first gene associated with familial combined hyperlipidemia (FCHL), regulates numerous genes of glucose and lipid metabolism. Phenotypic overlap between FCHL, type 2 diabetes and the metabolic syndrome makes this gene an intriguing candidate in the disease process of these traits as well. As no disease-associated mutations in the coding region of USF1 have been identified, we addressed the functional role of intronic single nucleotide polymorphisms (SNPs) which define the FCHL-risk alleles of USF1, and identified that a 20 bp DNA sequence, containing the critical intronic SNP, binds nuclear protein(s), representing a likely transcriptional regulatory element. This functional role is further supported by the differential expression of USF1-regulated genes in fat biopsy between individuals carrying different allelic variants of USF1. Importantly, apolipoprotein E (APOE) is the most downregulated gene in the risk individuals, linking the potential risk alleles of USF1 with the impaired APOE-dependent catabolism of atherogenic lipoprotein particles.
Collapse
Affiliation(s)
- Jussi Naukkarinen
- Department of Molecular Medicine, National Public Health Institute, Finland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Coon H, Xin Y, Hopkins PN, Cawthon RM, Hasstedt SJ, Hunt SC. Upstream stimulatory factor 1 associated with familial combined hyperlipidemia, LDL cholesterol, and triglycerides. Hum Genet 2005; 117:444-51. [PMID: 15959806 DOI: 10.1007/s00439-005-1340-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 04/21/2005] [Indexed: 10/25/2022]
Abstract
Positive evidence has been reported for linkage and association between the upstream stimulatory factor 1 gene (USF1) and familial combined hyperlipidemia (FCHL). We genotyped the two most positive single-nucleotide polymorphisms (SNPs) (usf1s1: rs3737787 and usf1s2: rs2073658) from previous studies in a large family sample. This sample included 2,195 subjects in 87 Utah pedigrees ascertained for early death due to coronary heart disease (CHD), early strokes, or early onset hypertension. There were a total of 262 relative pairs in these families with FCHL. In the full family sample, FCHL was associated with usf1s1 (P = 0.02). Triglyceride and LDL cholesterol defined qualitatively or quantitatively were also associated with usf1s1 (P = 0.02-0.05). Results were strengthened for qualitative and quantitative triglyceride and LDL cholesterol when data from males only was analyzed, revealing associations for usf1s1 (P = 0.001-0.02), usf1s2 (P = 0.02-0.05) and the haplotype of these two SNPs (P = 0.01-0.04). The strongest results were in the subset of subjects from families ascertained for premature stroke or hypertension, rather than those ascertained for premature CHD. This study replicates the involvement of USF1 in FCHL and related lipid traits in a family sample not ascertained for FCHL.
Collapse
Affiliation(s)
- Hilary Coon
- Neurodevelopmental Genetics Project, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Archer A, Sauvaget D, Chauffeton V, Bouchet PE, Chambaz J, Pinçon-Raymond M, Cardot P, Ribeiro A, Lacasa M. Intestinal apolipoprotein A-IV gene transcription is controlled by two hormone-responsive elements: a role for hepatic nuclear factor-4 isoforms. Mol Endocrinol 2005; 19:2320-34. [PMID: 15928313 DOI: 10.1210/me.2004-0462] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the small intestine, the expression of the apolipoprotein (apo) C-III and A-IV genes is restricted to the enterocytes of the villi. We have previously shown that, in transgenic mice, specific expression of the human apo C-III requires a hormone-responsive element (HRE) located in the distal region of the human apoA-IV promoter. This HRE binds the hepatic nuclear factors (HNF)-4alpha and gamma. Here, intraduodenal injections in mice and infections of human enterocytic Caco-2/TC7 cells with an adenovirus expressing a dominant-negative form of HNF-4alpha repress the expression of the apoA-IV gene, demonstrating that HNF-4 controls the apoA-IV gene expression in enterocytes. We show that HNF-4alpha and gamma functionally interact with a second HRE present in the proximal region of the human apoA-IV promoter. New sets of transgenic mice expressing mutated forms of the promoter, combined with the human apo C-III enhancer, demonstrate that, whereas a single HRE is sufficient to reproduce the physiological cephalo-caudal gradient of apoA-IV gene expression, both HREs are required for expression that is restricted to villi. The combination of multiple HREs may specifically recruit regulatory complexes associating HNF-4 and either coactivators in villi or corepressors in crypts.
Collapse
Affiliation(s)
- Amena Archer
- Unité Mixte de Recherche 505, Institut National de la Santé et de la Recherche Médicale-Université Pierre & Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen J, Malcolm T, Estable MC, Roeder RG, Sadowski I. TFII-I regulates induction of chromosomally integrated human immunodeficiency virus type 1 long terminal repeat in cooperation with USF. J Virol 2005; 79:4396-406. [PMID: 15767439 PMCID: PMC1061576 DOI: 10.1128/jvi.79.7.4396-4406.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) replication is coupled to T-cell activation through its dependence on host cell transcription factors. Despite the enormous sequence variability of these factors, several cis elements for host factors are highly conserved within the 5' long terminal repeats (LTRs) of viruses from AIDS patients; among these is the RBEIII upstream element for the Ras response element binding factor 2 (RBF-2). Here we show that RBF-2 is comprised of a USF1/USF2 heterodimer and TFII-I, which bind cooperatively to RBEIII. Recombinant USF1/USF2 binds to the RBEIII core sequence 160-fold less efficiently than it binds to an E box element, but the interaction with RBEIII is stimulated by TFII-I. Chromosomally integrated HIV-1 LTRs bearing an RBEIII mutation have slightly elevated basal transcription in unstimulated Jurkat cells but are unresponsive to cross-linking of the T-cell receptor or stimulation with phorbol myristate acetate (PMA) and ionomycin. Induction is inhibited by dominant interfering USF and TFII-I but not by the dominant negative I-kappaB protein. USF1, USF2, and TFII-I bind to the integrated wild-type LTR in unstimulated cells and become phosphorylated during the induction of transcription upon stimulation with PMA. These results demonstrate that USF1/USF2 and TFII-I interact cooperatively at the upstream RBEIII element and are necessary for the induction of latent HIV-1 in response to T-cell activation signals.
Collapse
Affiliation(s)
- Jiguo Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
28
|
Shoulders CC, Naoumova RP. USF1 implicated in the aetiology of familial combined hyperlipidaemia and the metabolic syndrome. Trends Mol Med 2005; 10:362-5. [PMID: 15310455 DOI: 10.1016/j.molmed.2004.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The upstream stimulatory factor (USF) proteins are ubiquitously expressed and, as such, represent unusual candidates for involvement in disorders of carbohydrate and lipid metabolism. Nonetheless, a recent study has reported an association between specific alleles of USF1 and familial combined hyperlipidaemia, a common disorder that substantially increases the risk of premature atherosclerotic cardiovascular disease. USF1 might, therefore, also contribute to the metabolic syndrome. The use of chromatin immunoprecipitation methodologies combined with promoter microarray assays will help to define the transcriptional networks that underlie whole-body glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Carol C Shoulders
- MRC Clinical Sciences Centre, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
29
|
Viney TJ, Schmidt TW, Gierasch W, Sattar AW, Yaggie RE, Kuburas A, Quinn JP, Coulson JM, Russo AF. Regulation of the cell-specific calcitonin/calcitonin gene-related peptide enhancer by USF and the Foxa2 forkhead protein. J Biol Chem 2004; 279:49948-55. [PMID: 15385550 DOI: 10.1074/jbc.m406659200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An 18-bp enhancer controls cell-specific expression of the calcitonin/calcitonin gene-related peptide gene. The enhancer is bound by a heterodimer of the bHLH-Zip protein USF-1 and -2 and a cell-specific factor from thyroid C cell lines. In this report we have identified the cell-specific factor as the forkhead protein Foxa2 (previously HNF-3beta). Binding of Foxa2 to the 18-bp enhancer was demonstrated using electrophoretic mobility shift assays. The cell-specific DNA-protein complex was selectively competed by a series of Foxa2 DNA binding sites, and the addition of Foxa2 antiserum supershifted the complex. Likewise, a complex similar to that seen with extracts from thyroid C cell lines was generated using an extract from heterologous cells expressing recombinant Foxa2. Interestingly, overexpression of Foxa2 activated the 18-bp enhancer in heterologous cells but only in the presence of the adjacent helix-loop-helix motif. Likewise, coexpression of USF proteins with Foxa2 yielded greater activation than by Foxa2 alone. Unexpectedly, Foxa2 overexpression repressed activity in the CA77 thyroid C cell line, suggesting that Foxa2 may interact with additional cofactors. The stimulatory role of Foxa2 at the calcitonin/calcitonin gene-related peptide gene enhancer was confirmed by short interfering RNA-mediated knockdown of Foxa2. As seen with Foxa2 overexpression, the effect of Foxa2 knockdown also required the adjacent helix-loop-helix motif. These results provide the first evidence for combinatorial control of gene expression by bHLH-Zip and forkhead proteins.
Collapse
Affiliation(s)
- Tim J Viney
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Putt W, Palmen J, Nicaud V, Tregouet DA, Tahri-Daizadeh N, Flavell DM, Humphries SE, Talmud PJ. Variation in USF1 shows haplotype effects, gene : gene and gene : environment associations with glucose and lipid parameters in the European Atherosclerosis Research Study II. Hum Mol Genet 2004; 13:1587-97. [PMID: 15175273 DOI: 10.1093/hmg/ddh168] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Upstream stimulatory factor 1 (USF 1), is a transcription factor controlling expression of several genes involved in lipid and glucose homeostasis and co-localizes with familial combined hyperlipidemia (FCHL) and type 2 diabetes on chromosome 1q22-23. We sequenced USF1 in 24 UK FCHL probands, but found no rare or common cSNPs. Three common intronic single nucleotide ploymorphisms (SNP), 306A>G, 475C>T and 1748C>T, were identified and their association was examined with fasting and postprandial lipids and after an oral glucose tolerance test (OGTT) in the European Atherosclerosis Research Study II offspring study. There were no significant differences in allelic frequencies of the SNPs between cases and controls. Individually none of the SNPs showed significant associations with any parameter. In haplotype analysis, compared with other haplotypes, 475C/1748T showed significantly higher and 475T/1748T showed lower peak glucose (P=0.004 and 0.07, respectively) during the OGTT. There was significant case-control heterogeneity in the interaction of genotype with body mass index, on fasting low density lipoprotein with 306A>G and 1748C>T, and on borderline significance with fasting glucose with 475C>T (P=0.002, 0.0007 and 0.015, respectively). Furthermore, 475C>T showed interaction with both HSL-60C>G (case-control heterogeneity P=0.0002) on AUC TG and APOC3 -482C>T on plasma apoE levels (P=0.0012). Thus, in these healthy young men, variation in USF1 was the influencing feature of both glucose and lipid homeostasis showing case-control heterogeneity.
Collapse
Affiliation(s)
- Wendy Putt
- Division of Cardiovascular Genetics, Department of Medicine, Royal Free and University College Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sauvaget D, Chauffeton V, Dugué-Pujol S, Kalopissis AD, Guillet-Deniau I, Foufelle F, Chambaz J, Leturque A, Cardot P, Ribeiro A. In vitro transcriptional induction of the human apolipoprotein A-II gene by glucose. Diabetes 2004; 53:672-8. [PMID: 14988251 DOI: 10.2337/diabetes.53.3.672] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 2 diabetic patients present high triglyceride and low HDL levels, significant determinants for the risk of atherosclerosis. Transgenic mice overproducing human apolipoprotein (apo)A-II, one of the two major apos of HDLs, display the same lipid disorders. Here, we investigated the possible regulation of apoA-II gene expression by glucose. In primary rat hepatocytes and in HepG2 cells, the transcription of the human apoA-II gene was upregulated by glucose. This response was mediated by a hormone-responsive element within the enhancer of the apoA-II promoter and was dependent on hepatocyte nuclear factor-4alpha. Accordingly, in transgenic mice, the human apoA-II gene is stimulated by a high-carbohydrate diet after fasting and at weaning. By contrast, the apoA-II mRNA level is not modified in streptozotocin-induced diabetic rats. In transgenic mice overexpressing the human apoA-II gene, plasma human apoA-II concentration was positively correlated with blood glucose levels. These mice displayed a marked delay in plasma glucose tolerance as compared with control mice. We hypothesize that the following pathogenic pathway might occur in the course of type 2 diabetes: increased apoA-II level causes a rise in plasma triglyceride level and glucose intolerance, resulting in hyperglycemia, which in turn might further increase apoA-II gene transcription.
Collapse
Affiliation(s)
- Dominique Sauvaget
- Institut National de la Santé et de la Recherche Médicale (INSERM) U505, Institut Biomédical des Cordeliers, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pajukanta P, Lilja HE, Sinsheimer JS, Cantor RM, Lusis AJ, Gentile M, Duan XJ, Soro-Paavonen A, Naukkarinen J, Saarela J, Laakso M, Ehnholm C, Taskinen MR, Peltonen L. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nat Genet 2004; 36:371-6. [PMID: 14991056 DOI: 10.1038/ng1320] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2003] [Accepted: 01/27/2004] [Indexed: 11/09/2022]
Abstract
Familial combined hyperlipidemia (FCHL), characterized by elevated levels of serum total cholesterol, triglycerides or both, is observed in about 20% of individuals with premature coronary heart disease. We previously identified a locus linked to FCHL on 1q21-q23 in Finnish families with the disease. This region has also been linked to FCHL in families from other populations as well as to type 2 diabetes mellitus. These clinical entities have several overlapping phenotypic features, raising the possibility that the same gene may underlie the obtained linkage results. Here, we show that the human gene encoding thioredoxin interacting protein (TXNIP) on 1q, which underlies combined hyperlipidemia in mice, is not associated with FCHL. We show that FCHL is linked and associated with the gene encoding upstream transcription factor 1 (USF1) in 60 extended families with FCHL, including 721 genotyped individuals (P = 0.00002), especially in males with high triglycerides (P = 0.0000009). Expression profiles in fat biopsy samples from individuals with FCHL seemed to differ depending on their carrier status for the associated USF1 haplotype. USF1 encodes a transcription factor known to regulate several genes of glucose and lipid metabolism.
Collapse
Affiliation(s)
- Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California 90095-7088, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hatzivassiliou E, Koukos G, Ribeiro A, Zannis V, Kardassis D. Functional specificity of two hormone response elements present on the human apoA-II promoter that bind retinoid X receptor alpha/thyroid receptor beta heterodimers for retinoids and thyroids: synergistic interactions between thyroid receptor beta and upstream stimulatory factor 2a. Biochem J 2003; 376:423-31. [PMID: 12959642 PMCID: PMC1223787 DOI: 10.1042/bj20030549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 08/05/2003] [Accepted: 09/05/2003] [Indexed: 11/17/2022]
Abstract
DNA binding and mutagenesis in vitro established that the -67/-55 region of the apoA-II (apolipoprotein A-II) promoter contains a thyroid HRE (hormone response element), which strongly binds RXRalpha (retinoid X receptor alpha)/T(3)Rbeta (thyroid receptor beta) heterodimers and weakly T(3)Rbeta homodimers, but does not bind other homo- or heterodimers of RXRalpha or orphan nuclear receptors. Transactivation was abolished by point mutations in the thyroid HRE. In co-transfection experiments of HEK-293 (human embryonic kidney 293) cells, the -911/+29 human apoA-II promoter was transactivated strongly by RXRalpha/T(3)Rbeta heterodimers in the presence of RA (9- cis retinoic acid) or T(3) (tri-iodothyronine). Homopolymeric promoters containing either three copies of the -73/-40 (element AIIAB) or four copies of the -738/-712 (element AIIJ) apoA-II promoter could be transactivated by RXRalpha/T(3)Rbeta heterodimers in COS-7 cells only in the presence of T(3) or RA respectively. RXRalpha/T(3)Rbeta heterodimers and USF2a (upstream stimulatory factor 2a) synergistically transactivated the -911/+29 apoA-II promoter in the presence of T(3). USF2a also enhanced the activity of a GAL4-T(3)Rbeta fusion protein in the presence of T(3) and suppressed the activity of a GAL4-RXRalpha fusion protein in the presence of RA. These findings suggest a functional specificity of the two HREs of the apoA-II promoter for retinoids and thyroids, which is modulated by synergistic or antagonistic interactions between RXRalpha/T(3)Rbeta heterodimers and the ubiquitous transcription factor USF2a.
Collapse
Affiliation(s)
- Eudoxia Hatzivassiliou
- Biomedical Sciences Research Center Al. Fleming, Institute of Immunology, 14-16 Al. Fleming Str., Vari GR-16672, Greece
| | | | | | | | | |
Collapse
|
34
|
Ge Y, Jensen TL, Matherly LH, Taub JW. Physical and Functional Interactions between USF and Sp1 Proteins Regulate Human Deoxycytidine Kinase Promoter Activity. J Biol Chem 2003; 278:49901-10. [PMID: 14514691 DOI: 10.1074/jbc.m305085200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deoxycytidine kinase (EC 2.7.1.74, dCK) is central to drug activity of anticancer and antiviral agents such as cytosine arabinoside (araC) and gemcitabine. HepG2 hepatocellular carcinoma cells were used to study the transcriptional regulation of dCK. 5'-Deletion and site-directed mutagenesis of the dCK upstream region (positions -464 to -27) confirmed the importance of two GC-boxes (positions -317 to -309 and -213 to -206) and two E-boxes (positions -302 to -297 and -278 to -273). In vitro electromobility shift assays with HepG2 nuclear extracts and in vivo chromatin immunoprecipitation assays with HepG2 chromatin extracts confirmed the presence of bound Sp1/Sp3 and USF1/2. Co-transfections in HepG2 cells showed that USF1 and USF2a stimulated and Sp1 repressed promoter activity from a dCK-luciferase reporter gene construct. In Sp- and USF-null Drosophila Mel-2 cells, both Sp1 and USF1 stimulated dCK promoter activity in a dose-dependent manner, however, both Sp3 and USF2a were effectively inert. Combined Sp1 and USF1 showed additive transactivation at lower concentrations of Sp1. Sp1 was inhibitory at higher levels. Stimulation by combined USF1/USF2a with Sp1 was similar to that for USF1 alone with Sp1, whereas transactivation by Sp1 and USF2a without USF1 was synergistic. Physical interactions between USF and Sp proteins were confirmed by immunoprecipitations with Sp- and USF-specific antibodies. Domain mapping of USF1 and USF2a localized the functional interactions between USF and Sp proteins to the DNA binding domain of USF. Identifying the physical and functional interactions between Sp and USF proteins may lead to a better understanding of the basis for differential expression of the dCK gene in tumor cells and may foster strategies for up-regulating dCK gene expression and improving chemotherapy with araC and gemcitabine.
Collapse
Affiliation(s)
- Yubin Ge
- Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
35
|
Kim E, Xie S, Yeh SD, Lee YF, Collins LL, Hu YC, Shyr CR, Mu XM, Liu NC, Chen YT, Wang PH, Chang C. Disruption of TR4 orphan nuclear receptor reduces the expression of liver apolipoprotein E/C-I/C-II gene cluster. J Biol Chem 2003; 278:46919-26. [PMID: 12954636 DOI: 10.1074/jbc.m304088200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein E (apoE) is synthesized in many tissues, and the liver is the primary site from which apoE redistributes cholesterol and other lipids to peripheral tissues. Here we demonstrate that the TR4 orphan nuclear receptor (TR4) can induce apoE expression in HepG2 cells. This TR4-mediated regulation of apoE gene expression was further confirmed in vivo using TR4 knockout mice. Both serum apoE protein and liver apoE mRNA levels were significantly reduced in TR4 knockout mice. Gel shift and luciferase reporter gene assays further demonstrated that TR4 can induce apoE gene expression via a TR4 response element located in the hepatic control region that is 15 kb downstream of the apoE gene. Furthermore our in vivo data from TR4 knockout mice prove that TR4 can also regulate apolipoprotein C-I and C-II gene expression via the TR4 response element within the hepatic control region. Together our data show that loss of TR4 down-regulates expression of the apoE/C-I/C-II gene cluster in liver cells, demonstrating important roles of TR4 in the modulation of lipoprotein metabolism.
Collapse
Affiliation(s)
- Eungseok Kim
- George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Salero E, Giménez C, Zafra F. Identification of a non-canonical E-box motif as a regulatory element in the proximal promoter region of the apolipoprotein E gene. Biochem J 2003; 370:979-86. [PMID: 12444925 PMCID: PMC1223214 DOI: 10.1042/bj20021142] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 11/15/2002] [Accepted: 11/25/2002] [Indexed: 11/17/2022]
Abstract
We have used the yeast one-hybrid system to identify transcription factors with binding capability to specific sequences in proximal regions of the apolipoprotein E gene ( APOE ) promoter. The sequence between -113 and -80 nt, which contains regulatory elements in various cell types, was used as a bait to screen a human brain cDNA library. Four cDNA clones that encoded portions of the human upstream-stimulatory-factor (USF) transcription factor were isolated. Electrophoretic-mobility-shift assays ('EMSAs') using nuclear extracts from various human cell lines as well as from rat brain and liver revealed the formation of two DNA-protein complexes within the sequence CACCTCGTGAC (region -101/-91 of the APOE promoter) that show similarity to the E-box element. The retarded complexes contained USF1, as deduced from competition and supershift assays. Functional experiments using different APOE promoter-luciferase reporter constructs transiently transfected into U87, HepG2 or HeLa cell lines showed that mutations that precluded the formation of complexes decreased the basal activity of the promoter by about 50%. Overexpression of USF1 in U87 glioblastoma cells led to an increased activity of the promoter that was partially mediated by the atypical E-box. The stimulatory effect of USF1 was cell-type specific, as it was not observed in hepatoma HepG2 cells. Similarly, overexpression of a USF1 dominant-negative mutant decreased the basal activity of the promoter in glioblastoma, but not in hepatoma, cells. These data indicated that USF, and probably other related transcription factors, might be involved in the basal transcriptional machinery of APOE by binding to a non-canonical E-box motif within the proximal promoter.
Collapse
Affiliation(s)
- Enrique Salero
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid-CSIC, 28049 Madrid, Spain
| | | | | |
Collapse
|
37
|
Coulson JM, Edgson JL, Marshall-Jones ZV, Mulgrew R, Quinn JP, Woll PJ. Upstream stimulatory factor activates the vasopressin promoter via multiple motifs, including a non-canonical E-box. Biochem J 2003; 369:549-61. [PMID: 12403649 PMCID: PMC1223122 DOI: 10.1042/bj20021176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Revised: 10/22/2002] [Accepted: 10/28/2002] [Indexed: 11/17/2022]
Abstract
We have described previously a complex E-box enhancer (-147) of the vasopressin promoter in small-cell lung cancer (SCLC) extracts [Coulson, Fiskerstrand, Woll and Quinn, (1999) Biochem. J. 344, 961-970]. Upstream stimulatory factor (USF) heterodimers were one of the complexes binding to this site in vitro. We now report that USF overexpression in non-SCLC (NSCLC) cells can functionally activate vasopressin promoter-driven reporters that are otherwise inactive in this type of lung cancer cell. Site-directed mutagenesis and electrophoretic mobility-shift analysis demonstrate that although the -147 E-box contributes, none of the previously predicted E-boxes (-147, -135, -34) wholly account for this USF-mediated activation in NSCLC. 5' Deletion showed the key promoter region as -52 to +42; however, USF-2 binding was not reliant on the -34 E-box, but on a novel adjacent CACGGG non-canonical E-box at -42 (motif E). This mediated USF binding in both SCLC and USF-2-transfected NSCLC cells. Mutation of motif E or the non-canonical TATA box abolished activity, implying both are required for transcriptional initiation on overexpression of USF-2. Co-transfected dominant negative USF confirmed that binding was required through motif E for function, but that the classical activation domain of USF was not essential. USF-2 bound motif E with 10-fold lower affinity than the -147 E-box. In NSCLC, endogenous USF-2 expression is low, and this basal level appears to be insufficient to activate transcription of arginine vasopressin (AVP). In summary, we have demonstrated a novel mechanism for USF activation, which contributes to differential vasopressin expression in lung cancer.
Collapse
Affiliation(s)
- Judy M Coulson
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Coulson JM. Positive and negative regulators of the vasopressin gene promoter in small cell lung cancer. PROGRESS IN BRAIN RESEARCH 2002; 139:329-43. [PMID: 12436947 DOI: 10.1016/s0079-6123(02)39028-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- J M Coulson
- Departments of Physiology and Human Anatomy and Cell Biology, Sherrington Buildings, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
39
|
Dillner NB, Sanders MM. Upstream stimulatory factor (USF) is recruited into a steroid hormone-triggered regulatory circuit by the estrogen-inducible transcription factor delta EF1. J Biol Chem 2002; 277:33890-4. [PMID: 12107170 DOI: 10.1074/jbc.m204399200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the past decade, investigation into steroid hormone signaling has focused on the mechanisms of steroid hormone receptors as they act as signaling molecules and transcription factors in cells. However, the majority of hormone-responsive genes are not directly regulated by hormone receptors. These genes are termed secondary response genes. To explore the molecular mechanisms by which the steroid hormone estrogen regulates secondary response genes, the ovalbumin (Ov) gene was analyzed. Three protein-protein complexes (Chirp-I, -II, -III), which do not contain the estrogen receptor, are induced by estrogen to bind to the 5'-flanking region of the Ov gene. The Chirp-III DNA binding site, which is required for estrogen induction, binds a complex of proteins that contains the estrogen-inducible transcription factor deltaEF1. Experiments undertaken to identify proteins complexed with deltaEF1 led to the elucidation of a novel mechanism of action of upstream stimulatory factor-1 (USF-1), which involves its tethering to the Ov gene 5'-flanking region by deltaEF1. Gel mobility shift assays and co-immunoprecipitation experiments identify USF-1 as a component of Chirp-III. However, USF-1 is not able to bind to the Chirp-III site independently. In addition, USF-1 overexpression is able to induce Ov gene promoter activity in transfection experiments. USF-1 can also potentiate the induction of the Ov gene by the transcription factor deltaEF1. Moreover, mutating the deltaEF1 binding sites in the 5'-flanking region of the Ov gene abrogates induction of the gene by USF-1. These data begin to establish a molecular mechanism by which hormone-inducible transcription factors and ubiquitous transcription factors cooperate to regulate estrogen-induced secondary response gene expression.
Collapse
Affiliation(s)
- Naomi B Dillner
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA
| | | |
Collapse
|
40
|
Inoue Y, Hayhurst GP, Inoue J, Mori M, Gonzalez FJ. Defective ureagenesis in mice carrying a liver-specific disruption of hepatocyte nuclear factor 4alpha (HNF4alpha ). HNF4alpha regulates ornithine transcarbamylase in vivo. J Biol Chem 2002; 277:25257-65. [PMID: 11994307 DOI: 10.1074/jbc.m203126200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) regulates the expression of many genes preferentially expressed in liver. HNF4alpha-null mice die during embryogenesis precluding the analysis of its function in the adult. To circumvent this problem, liver-specific HNF4alpha-null mice were produced. Mice lacking hepatic HNF4alpha expression exhibited increased serum ammonia and reduced serum urea. This disruption in ureagenesis may be explained by a marked decrease in expression and activity of hepatic ornithine transcarbamylase (OTC). To determine the molecular mechanisms involved in transcriptional regulation of the mouse OTC gene, the OTC promoter region was analyzed. Sequence analysis revealed the presence of two putative HNF4alpha-binding sites in the mouse OTC promoter region. By using transient transfection analysis, it was established that high levels of promoter activity were dependent on both HNF4alpha-binding sites and the expression of HNF4alpha. Furthermore, the proximal HNF4alpha-binding site was found to be more important than the distal one for transactivating OTC promoter. These data demonstrate that HNF4alpha is critical for urea homeostasis by direct regulation of the OTC gene in vivo.
Collapse
Affiliation(s)
- Yusuke Inoue
- Laboratory of Metabolism, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Pastier D, Lacorte JM, Chambaz J, Cardot P, Ribeiro A. Two initiator-like elements are required for the combined activation of the human apolipoprotein C-III promoter by upstream stimulatory factor and hepatic nuclear factor-4. J Biol Chem 2002; 277:15199-206. [PMID: 11839757 DOI: 10.1074/jbc.m200227200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human apoC-III (-890/+24) promoter activity is strongly activated by hepatic nuclear factor (HNF)-4 through its binding to the proximal (-87/-72) element B. This site overlaps the binding site for an activity that we identified as the ubiquitously expressed upstream stimulatory factor (USF) (Ribeiro, A., Pastier, D., Kardassis, D., Chambaz, J., and Cardot, P. (1999) J. Biol. Chem. 274, 1216-1225). In the present study, we characterized the relationship between USF and HNF-4 in the activation of human apoC-III transcription. Although USF and HNF-4 binding to element B is mutually exclusive, co-transfection experiments in HepG2 cells surprisingly showed a combined effect of USF and HNF-4 in the transactivation of the (-890/+24) apoC-III promoter. This effect only requires the proximal region (-99/+24) of the apoC-III promoter and depends neither on USF binding to its cognate site in element B nor on a USF-dependent facilitation of HNF-4 binding to its site. By contrast, we found by electrophoretic mobility shift assay and footprinting analysis two USF low affinity binding sites, located within the proximal promoter at positions -58/-31 (element II) and -19/-4 (element I), which are homologous to initiator-like element sequence. Co-transfection experiments in HepG2 cells show that a mutation in element II reduces 2-fold the USF transactivation effect on the proximal promoter of apoC-III and that a mutation in element I inhibits the combined effect of USF and HNF-4. In conclusion, these initiator-like elements are directly involved in the transactivation of the apoC-III promoter by USF and are necessary to the combined effect between USF and HNF-4 for the apoC-III transcription.
Collapse
Affiliation(s)
- Daniele Pastier
- U505 INSERM, Université Pierre et Marie Curie, Institut des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | |
Collapse
|
42
|
Calomme C, Nguyen TLA, de Launoit Y, Kiermer V, Droogmans L, Burny A, Van Lint C. Upstream stimulatory factors binding to an E box motif in the R region of the bovine leukemia virus long terminal repeat stimulates viral gene expression. J Biol Chem 2002; 277:8775-89. [PMID: 11741930 DOI: 10.1074/jbc.m107441200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bovine leukemia virus (BLV) promoter is located in its 5'-long terminal repeat and is composed of the U3, R, and U5 regions. BLV transcription is regulated by cis-acting elements located in the U3 region, including three 21-bp enhancers required for transactivation of the BLV promoter by the virus-encoded transactivator Tax(BLV). In addition to the U3 cis-acting elements, both the R and U5 regions contain stimulatory sequences. To date, no transcription factor-binding site has been identified in the R region. Here sequence analysis of this region revealed the presence of a potential E box motif (5'-CACGTG-3'). By competition and supershift gel shift assays, we demonstrated that the basic helix-loop-helix transcription factors USF1 and USF2 specifically interacted with this R region E box motif. Mutations abolishing upstream stimulatory factor (USF) binding caused a reproducible decrease in basal or Tax-activated BLV promoter-driven gene expression in transient transfection assays of B-lymphoid cell lines. Cotransfection experiments showed that the USF1 and USF2a transactivators were able to act through the BLV R region E box. Taken together, these results physically and functionally characterize a USF-binding site in the R region of BLV. This E box motif located downstream of the transcription start site constitutes a new positive regulatory element involved in the transcriptional activity of the BLV promoter and could play an important role in virus replication.
Collapse
Affiliation(s)
- Claire Calomme
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Rue des Profs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Yang XP, Freeman LA, Knapper CL, Amar MJ, Remaley A, Brewer HB, Santamarina-Fojo S. The E-box motif in the proximal ABCA1 promoter mediates transcriptional repression of the ABCA1 gene. J Lipid Res 2002. [DOI: 10.1016/s0022-2275(20)30172-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
44
|
Blanco-Vaca F, Escolà-Gil JC, Martín-Campos JM, Julve J. Role of apoA-II in lipid metabolism and atherosclerosis: advances in the study of an enigmatic protein. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31499-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
van 't Hooft FM, Ruotolo G, Boquist S, de Faire U, Eggertsen G, Hamsten A. Human evidence that the apolipoprotein a-II gene is implicated in visceral fat accumulation and metabolism of triglyceride-rich lipoproteins. Circulation 2001; 104:1223-8. [PMID: 11551871 DOI: 10.1161/hc3601.095709] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Apolipoprotein (apo) A-II is a major structural protein of plasma HDLs, but little is known regarding its functions. METHODS AND RESULTS To investigate the physiological role of apoA-II in humans, we screened the promoter region of the apoA-II gene for a functional polymorphism and used this polymorphism as a tool in association studies. A common, functional polymorphism in the promoter region of the apoA-II gene, a T to C substitution at position -265, was found. Electrophoretic mobility shift assays demonstrated that the -265T/C polymorphism influences the binding of nuclear proteins, whereas transient transfection studies in human hepatoma cells showed a reduced basal rate of transcription of the -265C allele compared with the -265T allele. The -265C allele was associated with decreased plasma apoA-II concentration and decreased waist circumference in healthy 50-year-old men. In addition, oral fat tolerance tests provided evidence that the -265C allele enhances postprandial metabolism of large VLDLs. CONCLUSIONS ApoA-II appears to promote visceral fat accumulation and impair metabolism of large VLDLs.
Collapse
Affiliation(s)
- F M van 't Hooft
- Atherosclerosis Research Unit, Department of Medicine, Karolinska Hospital, Sweden.
| | | | | | | | | | | |
Collapse
|
46
|
Eeckhoute J, Formstecher P, Laine B. Maturity-onset diabetes of the young Type 1 (MODY1)-associated mutations R154X and E276Q in hepatocyte nuclear factor 4alpha (HNF4alpha) gene impair recruitment of p300, a key transcriptional co-activator. Mol Endocrinol 2001; 15:1200-10. [PMID: 11435618 DOI: 10.1210/mend.15.7.0670] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) is a nuclear receptor involved in glucose homeostasis and is required for normal beta-cell function. Mutations in the HNF4alpha gene are associated with maturity-onset diabetes of the young type 1. E276Q and R154X mutations were previously shown to impair intrinsic transcriptional activity (without exogenously supplied co-activators) of HNF4alpha. Given that transcriptional partners of HNF4alpha modulate its intrinsic transcriptional activity and play crucial roles in HNF4alpha function, we investigated the effects of these mutations on potentiation of HNF4alpha activity by p300, a key co-activator for HNF4alpha. We show here that loss of HNF4alpha function by both mutations is increased through impaired physical interaction and functional cooperation between HNF4alpha and p300. Impairment of p300-mediated potentiation of HNF4alpha transcriptional activity is of particular importance for the E276Q mutant since its intrinsic transcriptional activity is moderately affected. Together with previous results obtained with chicken ovalbumin upstream promoter-transcription factor II, our results highlight that impairment of recruitment of transcriptional partners represents an important mechanism leading to abnormal HNF4alpha function resulting from the MODY1 E276Q mutation. The impaired potentiations of HNF4alpha activity were observed on the promoter of HNF1alpha, a transcription factor involved in a transcriptional network and required for beta-cell function. Given its involvement in a regulatory signaling cascade, loss of HNF4alpha function may cause reduced beta-cell function secondary to defective HNF1alpha expression. Our results also shed light on a better structure-function relationship of HNF4alpha and on p300 sequences involved in the interaction with HNF4alpha.
Collapse
Affiliation(s)
- J Eeckhoute
- Unité 459 INSERM Laboratoire de Biologie Cellulaire Université H. Warembourg Lille, France F 59045
| | | | | |
Collapse
|
47
|
Ge Y, Konrad MA, Matherly LH, Taub JW. Transcriptional regulation of the human cystathionine beta-synthase -1b basal promoter: synergistic transactivation by transcription factors NF-Y and Sp1/Sp3. Biochem J 2001; 357:97-105. [PMID: 11415440 PMCID: PMC1221932 DOI: 10.1042/0264-6021:3570097] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cystathionine beta-synthase (CBS) catalyses the condensation of serine and homocysteine to form cystathionine, an intermediate step in the synthesis of cysteine. Human CBS encodes five distinct 5' non-coding exons, the most frequent termed CBS -1a and CBS -1b, each transcribed from its own unique GC-rich TATA-less promoter. The minimal transcriptional region (-3792 to -3667) of the CBS -1b promoter was defined by 5'- and 3'-deletions, and transient transfections of reporter gene constructs in HepG2 cells, characterized by CBS transcription exclusively from the -1b promoter. Included in this 125 bp region are 3 GC-boxes (termed GC-a, GC-b and GC-c), an inverted CAAT-box and an E-box. By gel-shift and supershift assays, binding of specificity protein (Sp)1 and Sp3 to the GC-box elements, upstream stimulatory factor 1 (USF-1) to the E-box, and both nuclear factor (NF)-Y and an NF-1-like factor to the CAAT box could be demonstrated. By transient trans fections and reporter gene assays in HepG2 and Drosophila SL2 cells, a functional interplay was indicated between NF-Y binding to the CAAT-box, or between USF-1 binding to the E-box, and Sp1/Sp3 binding to the GC-box elements. In SL2 cells, NF-Y and Sp1/Sp3 were synergistic. Furthermore, both Sp1 and the long Sp3 isoform transactivated the CBS -1b minimal promoter; however, the short Sp3 isoforms were potent repressors. These results may explain the cell- or tissue-specific regulation of CBS transcription, and clarify the bases for alterations in CBS gene expression in human disease and Down's syndrome.
Collapse
Affiliation(s)
- Y Ge
- Experimental and Clinical Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 110 East Warren Avenue, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
48
|
Samoylenko A, Roth U, Jungermann K, Kietzmann T. The upstream stimulatory factor-2a inhibits plasminogen activator inhibitor-1 gene expression by binding to a promoter element adjacent to the hypoxia-inducible factor-1 binding site. Blood 2001; 97:2657-66. [PMID: 11313255 DOI: 10.1182/blood.v97.9.2657] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) expression is induced by hypoxia (8% O(2)) via the PAI-1 promoter region -175/-159 containing a hypoxia response element (HRE-2) binding the hypoxia-inducible factor-1 (HIF-1) and an adjacent response element (HRE-1) binding a so far unknown factor. The aim of the present study was to identify this factor and to investigate its role in the regulation of PAI-1 expression. It was found by supershift assays that the upstream stimulatory factor-2a (USF-2a) bound mainly to the HRE-1 of the PAI-1 promoter and to a lesser extent to HRE-2. Overexpression of USF-2a inhibited PAI-1 messenger RNA and protein expression and activated L-type pyruvate kinase expression in primary rat hepatocytes under normoxia and hypoxia. Luciferase (Luc) gene constructs driven by 766 and 276 base pairs of the 5'-flanking region of the PAI-1 gene were transfected into primary hepatocytes together with expression vectors encoding wild-type USF-2a and a USF-2a mutant lacking DNA binding and dimerization activity (DeltaHU2a). Cotransfection of the wild-type USF-2a vector reduced Luc activity by about 8-fold, whereas cotransfection of DeltaHU2a did not influence Luc activity. Mutation of the HRE-1 (-175/-168) in the PAI-1 promoter Luc constructs decreased USF-dependent inhibition of Luc activity. Mutation of the HRE-2 (-165/-158) was less effective. Cotransfection of a HIF-1alpha vector could compete for the binding of USF at HRE-2. These results indicated that the balance between 2 transcriptional factors, HIF-1 and USF-2a, which can bind adjacent HRE sites, appears to be involved in the regulation of PAI-1 expression in many clinical conditions.
Collapse
Affiliation(s)
- A Samoylenko
- Institut für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, Göttingen, Germany
| | | | | | | |
Collapse
|
49
|
Zannis VI, Kan HY, Kritis A, Zanni EE, Kardassis D. Transcriptional regulatory mechanisms of the human apolipoprotein genes in vitro and in vivo. Curr Opin Lipidol 2001; 12:181-207. [PMID: 11264990 DOI: 10.1097/00041433-200104000-00012] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present review summarizes recent advances in the transcriptional regulation of the human apolipoprotein genes, focusing mostly, but not exclusively, on in-vivo studies and signaling mechanisms that affect apolipoprotein gene transcription. An attempt is made to explain how interactions of transcription factors that bind to proximal promoters and distal enhancers may bring about gene transcription. The experimental approaches used and the transcriptional regulatory mechanisms that emerge from these studies may also be applicable in other gene systems that are associated with human disease. Understanding extracellular stimuli and the specific mechanisms that underlie apolipoprotein gene transcription may in the long run allow us to selectively switch on antiatherogenic genes, and switch off proatherogenic genes. This may have beneficial effects and may confer protection from atherosclerosis to humans.
Collapse
Affiliation(s)
- V I Zannis
- Section of Molecular Genetics, Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA.
| | | | | | | | | |
Collapse
|
50
|
ApoA-II expression in CETP transgenic mice increases VLDL production and impairs VLDL clearance. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31685-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|