1
|
Wang Y, Li R, Zhao F, Wang S, Zhang Y, Fan D, Han S. Metabolic engineering of Komagataella phaffii for the efficient utilization of methanol. Microb Cell Fact 2024; 23:198. [PMID: 39014373 PMCID: PMC11253385 DOI: 10.1186/s12934-024-02475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Komagataella phaffii, a type of methanotrophic yeast, can use methanol, a favorable non-sugar substrate in eco-friendly bio-manufacturing. The dissimilation pathway in K. phaffii leads to the loss of carbon atoms in the form of CO2. However, the ΔFLD strain, engineered to lack formaldehyde dehydrogenase-an essential enzyme in the dissimilation pathway-displayed growth defects when exposed to a methanol-containing medium. RESULTS Inhibiting the dissimilation pathway triggers an excessive accumulation of formaldehyde and a decline in the intracellular NAD+/NADH ratio. Here, we designed dual-enzyme complex with the alcohol oxidase1/dihydroxyacetone synthase1 (Aox1/Das1), enhancing the regeneration of the formaldehyde receptor xylulose-5-phosphate (Xu5P). This strategy mitigated the harmful effects of formaldehyde accumulation and associated toxicity to cells. Concurrently, we elevated the NAD+/NADH ratio by overexpressing isocitrate dehydrogenase in the TCA cycle, promoting intracellular redox homeostasis. The OD600 of the optimized combination of the above strategies, strain DF02-1, was 4.28 times higher than that of the control strain DF00 (ΔFLD, HIS4+) under 1% methanol. Subsequently, the heterologous expression of methanol oxidase Mox from Hansenula polymorpha in strain DF02-1 resulted in the recombinant strain DF02-4, which displayed a growth at an OD600 4.08 times higher than that the control strain DF00 in medium containing 3% methanol. CONCLUSIONS The reduction of formaldehyde accumulation, the increase of NAD+/NADH ratio, and the enhancement of methanol oxidation effectively improved the efficient utilization of a high methanol concentration by strain ΔFLD strain lacking formaldehyde dehydrogenase. The modification strategies implemented in this study collectively serve as a foundational framework for advancing the efficient utilization of methanol in K. phaffii.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ruisi Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, China
| | - Shuai Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dexun Fan
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
Slama N, Abdellatif A, Bahria K, Gasmi S, Khames M, Hadji A, Birkmayer G, Oumouna M, Amrani Y, Benachour K. NADH Intraperitoneal Injection Prevents Lung Inflammation in a BALB/C Mice Model of Cigarette Smoke-Induced Chronic Obstructive Pulmonary Disease. Cells 2024; 13:881. [PMID: 38786103 PMCID: PMC11120028 DOI: 10.3390/cells13100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Cigarette smoke is one of the main factors in Chronic Obstructive Pulmonary Disease (COPD), a respiratory syndrome marked by persistent respiratory symptoms and increasing airway obstruction. Perturbed NAD+/NADH levels may play a role in various diseases, including lung disorders like COPD. In our study, we investigated the preventive effect of NADH supplementation in an experimental model of COPD induced by cigarette smoke extract (CSE). N = 64 mice randomly distributed in eight groups were injected with NADH (two doses of 100 mg/kg or 200 mg/kg) or dexamethasone (2 mg/kg) before being exposed to CSE for up to 9 weeks. Additionally, NADH supplementation preserved lung antioxidant defenses by preventing the functional loss of key enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase, and the expression levels of glutathione (GSH) (n = 4, p < 0.001). It also reduced oxidative damage markers, such as malondialdehyde (MDA) and nitrites (n = 4, p < 0.001). A marked increase in tissue myeloperoxidase activity was assessed (MPO), confirming neutrophils implication in the inflammatory process. The latter was significantly ameliorated in the NADH-treated groups (p < 0.001). Finally, NADH prevented the CSE-induced secretion of cytokines such as Tumor Necrosis Factor alpha (TNF-α), IL-17, and IFN-y (n = 4, p < 0.001). Our study shows, for the first time, the clinical potential of NADH supplementation in preventing key features of COPD via its unique anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Nada Slama
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Amina Abdellatif
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Karima Bahria
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Sara Gasmi
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Maamar Khames
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Abderrahmene Hadji
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - George Birkmayer
- Department of Medical Chemistry, University of Graz, 8020 Graz, Austria
- Birkmayer Laboratories, 1090 Vienna, Austria
| | - Mustapha Oumouna
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| | - Yassine Amrani
- Department of Respiratory Sciences, Institute of Lung Health and NIHR Leicester BRC-Respiratory, Glenfield Hospital, University of Leicester, Leicester LE1 7RH, UK;
| | - Karine Benachour
- Laboratory of Experimental Biology and Pharmacology, Faculty of Sciences, Dr. Yahia Fares University, Medea 26000, Algeria; (N.S.); (A.A.); (K.B.); (S.G.); (M.K.); (A.H.); (M.O.)
| |
Collapse
|
3
|
Guo F, Qiao Y, Xin F, Zhang W, Jiang M. Bioconversion of C1 feedstocks for chemical production using Pichia pastoris. Trends Biotechnol 2023; 41:1066-1079. [PMID: 36967258 DOI: 10.1016/j.tibtech.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
Bioconversion of C1 feedstocks for chemical production offers a promising solution to global challenges such as the energy and food crises and climate change. The methylotroph Pichia pastoris is an attractive host system for the production of both recombinant proteins and chemicals from methanol. Recent studies have also demonstrated its potential for utilizing CO2 through metabolic engineering or coupling with electrocatalysis. This review focuses on the bioconversion of C1 feedstocks for chemical production using P. pastoris. Herein the challenges and feasible strategies for chemical production in P. pastoris are discussed. The potential of P. pastoris to utilize other C1 feedstocks - including CO2 and formate - is highlighted, and new insights from the perspectives of synthetic biology and material science are proposed.
Collapse
Affiliation(s)
- Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Yangyi Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China.
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China
| |
Collapse
|
4
|
Abstract
The ability to maintain normoglycaemia, through glucose-sensitive insulin release, is a key aspect of postnatal beta cell function. However, terminally differentiated beta cell identity does not necessarily imply functional maturity. Beta cell maturation is therefore a continuation of beta cell development, albeit a process that occurs postnatally in mammals. Although many important features have been identified in the study of beta cell maturation, as of yet no unified mechanistic model of beta cell functional maturity exists. Here, we review recent findings about the underlying mechanisms of beta cell functional maturation. These findings include systemic hormonal and nutritional triggers that operate through energy-sensing machinery shifts within beta cells, resulting in primed metabolic states that allow for appropriate glucose trafficking and, ultimately, insulin release. We also draw attention to the expansive synergistic nature of these pathways and emphasise that beta cell maturation is dependent on overlapping regulatory and metabolic networks.
Collapse
Affiliation(s)
- Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Zhan C, Li X, Yang Y, Nielsen J, Bai Z, Chen Y. Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol Bioeng 2021; 118:3655-3668. [PMID: 34133022 DOI: 10.1002/bit.27862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
As alternatives to traditional fermentation substrates, methanol (CH3 OH), carbon dioxide (CO2 ) and methane (CH4 ) represent promising one-carbon (C1) sources that are readily available at low-cost and share similar metabolic pathway. Of these C1 compounds, methanol is used as a carbon and energy source by native methylotrophs, and can be obtained from CO2 and CH4 by chemical catalysis. Therefore, constructing and rewiring methanol utilization pathways may enable the use of one-carbon sources for microbial fermentations. Recent bioengineering efforts have shown that both native and nonnative methylotrophic organisms can be engineered to convert methanol, together with other carbon sources, into biofuels and other commodity chemicals. However, many challenges remain and must be overcome before industrial-scale bioprocessing can be established using these engineered cell refineries. Here, we provide a comprehensive summary and comparison of methanol metabolic pathways from different methylotrophs, followed by a review of recent progress in engineering methanol metabolic pathways in vitro and in vivo to produce chemicals. We discuss the major challenges associated with establishing efficient methanol metabolic pathways in microbial cells, and propose improved designs for future engineering.
Collapse
Affiliation(s)
- Chunjun Zhan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
6
|
Liu X, Qu H, Zheng Y, Liao Q, Zhang L, Liao X, Xiong X, Wang Y, Zhang R, Wang H, Tong Q, Liu Z, Dong H, Yang G, Zhu Z, Xu J, Zheng H. Mitochondrial glycerol 3-phosphate dehydrogenase promotes skeletal muscle regeneration. EMBO Mol Med 2019; 10:emmm.201809390. [PMID: 30389681 PMCID: PMC6284384 DOI: 10.15252/emmm.201809390] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
While adult mammalian skeletal muscle is stable due to its post‐mitotic nature, muscle regeneration is still essential throughout life for maintaining functional fitness. During certain diseases, such as the modern pandemics of obesity and diabetes, the regeneration process becomes impaired, which leads to the loss of muscle function and contributes to the global burden of these diseases. However, the underlying mechanisms of the impairment are not well defined. Here, we identify mGPDH as a critical regulator of skeletal muscle regeneration. Specifically, it regulates myogenic markers and myoblast differentiation by controlling mitochondrial biogenesis via CaMKKβ/AMPK. mGPDH−/− attenuated skeletal muscle regeneration in vitro and in vivo, while mGPDH overexpression ameliorated dystrophic pathology in mdx mice. Moreover, in patients and animal models of obesity and diabetes, mGPDH expression in skeletal muscle was reduced, further suggesting a direct correlation between its abundance and muscular regeneration capability. Rescuing mGPDH expression in obese and diabetic mice led to a significant improvement in their muscle regeneration. Our study provides a potential therapeutic target for skeletal muscle regeneration impairment during obesity and diabetes.
Collapse
Affiliation(s)
- Xiufei Liu
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hua Qu
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi Zheng
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qian Liao
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Linlin Zhang
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyu Liao
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xin Xiong
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuren Wang
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Rui Zhang
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hui Wang
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Tong
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jing Xu
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hongting Zheng
- Translational Research Key Laboratory for Diabetes, Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Amino acid transporters in the regulation of insulin secretion and signalling. Biochem Soc Trans 2019; 47:571-590. [PMID: 30936244 DOI: 10.1042/bst20180250] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023]
Abstract
Amino acids are increasingly recognised as modulators of nutrient disposal, including their role in regulating blood glucose through interactions with insulin signalling. More recently, cellular membrane transporters of amino acids have been shown to form a pivotal part of this regulation as they are primarily responsible for controlling cellular and circulating amino acid concentrations. The availability of amino acids regulated by transporters can amplify insulin secretion and modulate insulin signalling in various tissues. In addition, insulin itself can regulate the expression of numerous amino acid transporters. This review focuses on amino acid transporters linked to the regulation of insulin secretion and signalling with a focus on those of the small intestine, pancreatic β-islet cells and insulin-responsive tissues, liver and skeletal muscle. We summarise the role of the amino acid transporter B0AT1 (SLC6A19) and peptide transporter PEPT1 (SLC15A1) in the modulation of global insulin signalling via the liver-secreted hormone fibroblast growth factor 21 (FGF21). The role of vesicular vGLUT (SLC17) and mitochondrial SLC25 transporters in providing glutamate for the potentiation of insulin secretion is covered. We also survey the roles SNAT (SLC38) family and LAT1 (SLC7A5) amino acid transporters play in the regulation of and by insulin in numerous affective tissues. We hypothesise the small intestine amino acid transporter B0AT1 represents a crucial nexus between insulin, FGF21 and incretin hormone signalling pathways. The aim is to give an integrated overview of the important role amino acid transporters have been found to play in insulin-regulated nutrient signalling.
Collapse
|
8
|
Neelankal John A, Jiang FX. An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic β-cells. J Diabetes Complications 2018; 32:429-443. [PMID: 29422234 DOI: 10.1016/j.jdiacomp.2017.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/03/2017] [Accepted: 12/07/2017] [Indexed: 02/07/2023]
Abstract
One significant health issue that plagues contemporary society is that of Type 2 diabetes (T2D). This disease is characterised by higher-than-average blood glucose levels as a result of a combination of insulin resistance and insufficient insulin secretions from the β-cells of pancreatic islets of Langerhans. Previous developmental research into the pancreas has identified how early precursor genes of pancreatic β-cells, such as Cpal, Ngn3, NeuroD, Ptf1a, and cMyc, play an essential role in the differentiation of these cells. Furthermore, β-cell molecular characterization has also revealed the specific role of β-cell-markers, such as Glut2, MafA, Ins1, Ins2, and Pdx1 in insulin expression. The expression of these genes appears to be suppressed in the T2D β-cells, along with the reappearance of the early endocrine marker genes. Glucose transporters transport glucose into β-cells, thereby controlling insulin release during hyperglycaemia. This stimulates glycolysis through rises in intracellular calcium (a process enhanced by vitamin D) (Norman et al., 1980), activating 2 of 4 proteinases. The rise in calcium activates half of pancreatic β-cell proinsulinases, thus releasing free insulin from granules. The synthesis of ATP from glucose by glycolysis, Krebs cycle and oxidative phosphorylation plays a role in insulin release. Some studies have found that the β-cells contain high levels of the vitamin D receptor; however, the role that this plays in maintaining the maturity of the β-cells remains unknown. Further research is required to develop a more in-depth understanding of the role VDR plays in β-cell function and the processes by which the beta cell function is preserved.
Collapse
Affiliation(s)
- Abraham Neelankal John
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia
| | - Fang-Xu Jiang
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia; School of Medicine and Pharmacology, University of Western Australia, Carwley, Western Australia, Australia.
| |
Collapse
|
9
|
Abstract
Pancreatic islet β cells secrete insulin in response to nutrient secretagogues, like glucose, dependent on calcium influx and nutrient metabolism. One of the most intriguing qualities of β cells is their ability to use metabolism to amplify the amount of secreted insulin independent of further alterations in intracellular calcium. Many years studying this amplifying process have shaped our current understanding of β cell stimulus-secretion coupling; yet, the exact mechanisms of amplification have been elusive. Recent studies utilizing metabolomics, computational modeling, and animal models have progressed our understanding of the metabolic amplifying pathway of insulin secretion from the β cell. New approaches will be discussed which offer in-roads to a more complete model of β cell function. The development of β cell therapeutics may be aided by such a model, facilitating the targeting of aspects of the metabolic amplifying pathway which are unique to the β cell.
Collapse
Affiliation(s)
- Michael A Kalwat
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Melanie H Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
10
|
De Marchi U, Hermant A, Thevenet J, Ratinaud Y, Santo-Domingo J, Barron D, Wiederkehr A. A novel ATP-synthase-independent mechanism coupling mitochondrial activation to exocytosis in insulin-secreting cells. J Cell Sci 2017; 130:1929-1939. [PMID: 28404787 DOI: 10.1242/jcs.200741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/11/2017] [Indexed: 12/16/2022] Open
Abstract
Pancreatic β-cells sense glucose, promoting insulin secretion. Glucose sensing requires the sequential stimulation of glycolysis, mitochondrial metabolism and Ca2+ entry. To elucidate how mitochondrial activation in β-cells contributes to insulin secretion, we compared the effects of glucose and the mitochondrial substrate methylsuccinate in the INS-1E insulin-secreting cell line at the respective concentrations at which they maximally activate mitochondrial respiration. Both substrates induced insulin secretion with distinct respiratory profiles, mitochondrial hyperpolarization, NADH production and ATP-to-ADP ratios. In contrast to glucose, methylsuccinate failed to induce large [Ca2+] rises and exocytosis proceeded largely independently of mitochondrial ATP synthesis. Both glucose- and methylsuccinate-induced secretion was blocked by diazoxide, indicating that Ca2+ is required for exocytosis. Dynamic assessment of the redox state of mitochondrial thiols revealed a less marked reduction in response to methylsuccinate than with glucose. Our results demonstrate that insulin exocytosis can be promoted by two distinct mechanisms one of which is dependent on mitochondrial ATP synthesis and large Ca2+ transients, and one of which is independent of mitochondrial ATP synthesis and relies on small Ca2+ signals. We propose that the combined effects of Ca2+ and redox reactions can trigger insulin secretion by these two mechanisms.
Collapse
Affiliation(s)
- Umberto De Marchi
- Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, Lausanne CH-1015, Switzerland
| | - Aurelie Hermant
- Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, Lausanne CH-1015, Switzerland
| | - Jonathan Thevenet
- Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, Lausanne CH-1015, Switzerland
| | - Yann Ratinaud
- Natural Bioactives and screening, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building H, Lausanne CH-1015, Switzerland
| | - Jaime Santo-Domingo
- Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, Lausanne CH-1015, Switzerland
| | - Denis Barron
- Natural Bioactives and screening, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building H, Lausanne CH-1015, Switzerland
| | - Andreas Wiederkehr
- Mitochondrial Function, Nestlé Institute of Health Sciences, EPFL Innovation Park, Building G, Lausanne CH-1015, Switzerland
| |
Collapse
|
11
|
Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Kołosowska K, Krząścik P, Płaźnik A. Is the interaction between fatty acids and tryptophan responsible for the efficacy of a ketogenic diet in epilepsy? The new hypothesis of action. Neuroscience 2016; 313:130-48. [DOI: 10.1016/j.neuroscience.2015.11.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 01/09/2023]
|
12
|
Spégel P, Andersson LE, Storm P, Sharoyko V, Göhring I, Rosengren AH, Mulder H. Unique and Shared Metabolic Regulation in Clonal β-Cells and Primary Islets Derived From Rat Revealed by Metabolomics Analysis. Endocrinology 2015; 156:1995-2005. [PMID: 25774549 DOI: 10.1210/en.2014-1391] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As models for β-cell metabolism, rat islets are, to some extent, a, heterogeneous cell population stressed by the islet isolation procedure, whereas rat-derived clonal β-cells exhibit a tumor-like phenotype. To describe to what extent either of these models reflect normal cellular metabolism, we compared metabolite profiles and gene expression in rat islets and the INS-1 832/13 line, a widely used clonal β-cell model. We found that insulin secretion and metabolic regulation provoked by glucose were qualitatively similar in these β-cell models. However, rat islets exhibited a more pronounced glucose-provoked increase of glutamate, glycerol-3-phosphate, succinate, and lactate levels, whereas INS-1 832/13 cells showed a higher glucose-elicited increase in glucose-6-phosphate, alanine, isocitrate, and α-ketoglutarate levels. Glucose induced a decrease in levels of γ-aminobutyrate (GABA) and aspartate in rat islets and INS-1 832/13 cells, respectively. Genes with cellular functions related to proliferation and the cell cycle were more highly expressed in the INS-1 832/13 cells. Most metabolic pathways that were differentially expressed included GABA metabolism, in line with altered glucose responsiveness of GABA. Also, lactate dehydrogenase A, which is normally expressed at low levels in mature β-cells, was more abundant in rat islets than in INS-1 832/13 cells, confirming the finding of elevated glucose-provoked lactate production in the rat islets. Overall, our results suggest that metabolism in rat islets and INS-1 832/13 cells is qualitatively similar, albeit with quantitative differences. Differences may be accounted for by cellular heterogeneity of islets and proliferation of the INS-1 832/13 cells.
Collapse
Affiliation(s)
- Peter Spégel
- Unit of Molecular Metabolism (P.S., L.E.A., V.S., I.G., H.M.), Lund University Diabetes Centre, Clinical Research Center, Skåne University Hospital, and Lund University Diabetes Centre (P.S., A.H.R.), Clinical Research Center, Skåne University Hospital, 205 02 Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Luo X, Li R, Yan LJ. Roles of Pyruvate, NADH, and Mitochondrial Complex I in Redox Balance and Imbalance in β Cell Function and Dysfunction. J Diabetes Res 2015; 2015:512618. [PMID: 26568959 PMCID: PMC4629043 DOI: 10.1155/2015/512618] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/25/2022] Open
Abstract
Pancreatic β cells not only use glucose as an energy source, but also sense blood glucose levels for insulin secretion. While pyruvate and NADH metabolic pathways are known to be involved in regulating insulin secretion in response to glucose stimulation, the roles of many other components along the metabolic pathways remain poorly understood. Such is the case for mitochondrial complex I (NADH/ubiquinone oxidoreductase). It is known that normal complex I function is absolutely required for episodic insulin secretion after a meal, but the role of complex I in β cells in the diabetic pancreas remains to be investigated. In this paper, we review the roles of pyruvate, NADH, and complex I in insulin secretion and hypothesize that complex I plays a crucial role in the pathogenesis of β cell dysfunction in the diabetic pancreas. This hypothesis is based on the establishment that chronic hyperglycemia overloads complex I with NADH leading to enhanced complex I production of reactive oxygen species. As nearly all metabolic pathways are impaired in diabetes, understanding how complex I in the β cells copes with elevated levels of NADH in the diabetic pancreas may provide potential therapeutic strategies for diabetes.
Collapse
Affiliation(s)
- Xiaoting Luo
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Rongrong Li
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
- *Liang-Jun Yan:
| |
Collapse
|
14
|
Martens GA. Species-Related Differences in the Proteome of Rat and Human Pancreatic Beta Cells. J Diabetes Res 2015; 2015:549818. [PMID: 26064985 PMCID: PMC4442007 DOI: 10.1155/2015/549818] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
The core proteomes of human and rat pancreatic beta cells were compared by label-free LC-MS/MS: this resulted in quantification of relative molar abundances of 707 proteins belonging to functional pathways of intermediary metabolism, protein synthesis, and cytoskeleton. Relative molar abundances were conserved both within and between pathways enabling the selection of a housekeeping network for geometric normalization and the analysis of potentially relevant differential expressions. Human beta cells differed from rat beta cells in their lower level of enzymes involved in glucose sensing (MDH1, PC, and ACLY) and upregulation of lysosomal enzymes. Human cells also expressed more heat shock proteins and radical scavenging systems: apart from SOD2, they expressed high levels of H2O2-scavenger peroxiredoxin 3 (PRDX3), confirmed by microarray, Western blotting, and microscopy. Besides conferring lower susceptibility to oxidative stress to human cells PRDX3 might also play a role in physiological redox regulation as, in rat, its expression was restricted to a beta cell subset with higher metabolic glucose responsiveness. In conclusion, although their core proteomic architecture is conserved, human and rat beta cells differ in their molar expression of key enzymes involved in glucose sensing and redox control.
Collapse
Affiliation(s)
- G. A. Martens
- B-Probe, Diabetes Research Center, Brussels Free University (VUB), Belgium
- Department of Clinical Chemistry & Radioimmunology, University Hospital Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
- *G. A. Martens:
| |
Collapse
|
15
|
Lavington E, Cogni R, Kuczynski C, Koury S, Behrman EL, O'Brien KR, Schmidt PS, Eanes WF. A small system--high-resolution study of metabolic adaptation in the central metabolic pathway to temperate climates in Drosophila melanogaster. Mol Biol Evol 2014; 31:2032-41. [PMID: 24770333 DOI: 10.1093/molbev/msu146] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In this article, we couple the geographic variation in 127 single-nucleotide polymorphism (SNP) frequencies in genes of 46 enzymes of central metabolism with their associated cis-expression variation to predict latitudinal or climatic-driven gene expression changes in the metabolic architecture of Drosophila melanogaster. Forty-two percent of the SNPs in 65% of the genes show statistically significant clines in frequency with latitude across the 20 local population samples collected from southern Florida to Ontario. A number of SNPs in the screened genes are also associated with significant expression variation within the Raleigh population from North Carolina. A principal component analysis of the full variance-covariance matrix of latitudinal changes in SNP-associated standardized gene expression allows us to identify those major genes in the pathway and its associated branches that are likely targets of natural selection. When embedded in a central metabolic context, we show that these apparent targets are concentrated in the genes of the upper glycolytic pathway and pentose shunt, those controlling glycerol shuttle activity, and finally those enzymes associated with the utilization of glutamate and pyruvate. These metabolites possess high connectivity and thus may be the points where flux balance can be best shifted. We also propose that these points are conserved points associated with coupling energy homeostasis and energy sensing in mammals. We speculate that the modulation of gene expression at specific points in central metabolism that are associated with shifting flux balance or possibly energy-state sensing plays a role in adaptation to climatic variation.
Collapse
Affiliation(s)
- Erik Lavington
- Department of Ecology and Evolution, Stony Brook University
| | - Rodrigo Cogni
- Department of Ecology and Evolution, Stony Brook University
| | | | - Spencer Koury
- Department of Ecology and Evolution, Stony Brook University
| | | | | | | | - Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University
| |
Collapse
|
16
|
Kuliawat R, Klein L, Gong Z, Nicoletta-Gentile M, Nemkal A, Cui L, Bastie C, Su K, Huffman D, Surana M, Barzilai N, Fleischer N, Muzumdar R. Potent humanin analog increases glucose-stimulated insulin secretion through enhanced metabolism in the β cell. FASEB J 2013; 27:4890-8. [PMID: 23995290 DOI: 10.1096/fj.13-231092] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Humanin (HN) is a 24-aa polypeptide that offers protection from Alzheimer's disease and myocardial infarction, increases insulin sensitivity, improves survival of β cells, and delays onset of diabetes. Here we examined the acute effects of HN on insulin secretion and potential mechanisms through which they are mediated. Effects of a potent HN analog, HNGF6A, on glucose-stimulated insulin secretion (GSIS) were assessed in vivo and in isolated pancreatic islets and cultured murine β cell line (βTC3) in vitro. Sprague-Dawley rats (3 mo old) that received HNGF6A required a significantly higher glucose infusion rate and demonstrated higher insulin levels during hyperglycemic clamps compared to saline controls. In vitro, compared to scrambled peptide controls, HNGF6A increased GSIS in isolated islets from both normal and diabetic mice as well as in βTC3 cells. Effects of HNGF6A on GSIS were dose dependent, K-ATP channel independent, and associated with enhanced glucose metabolism. These findings demonstrate that HNGF6A increases GSIS in whole animals, from isolated islets and from cells in culture, which suggests a direct effect on the β cell. The glucose-dependent effects on insulin secretion along with the established effects on insulin action suggest potential for HN and its analogs in the treatment of diabetes.
Collapse
Affiliation(s)
- Regina Kuliawat
- 2Department of Pediatrics, Golding Bldg. 705, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huypens PR, Huang M, Joseph JW. Overcoming the spatial barriers of the stimulus secretion cascade in pancreatic β-cells. Islets 2012; 4:1-116. [PMID: 22143007 DOI: 10.4161/isl.18338] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of the pancreatic β-cells to adapt the rate of insulin release in accordance to changes in circulating glucose levels is essential for glucose homeostasis. Two spatial barriers imposed by the plasma membrane and inner mitochondrial membrane need to be overcome in order to achieve stringent coupling between the different steps in the stimulus-secretion cascade. The first spatial barrier is overcome by the presence of a glucose transporter (GLUT) in the plasma membrane, whereas a low affinity hexokinase IV (glucokinase, GK) in the cytosol conveys glucose availability into a metabolic flux that triggers and accelerates insulin release. The mitochondrial inner membrane comprises a second spatial barrier that compartmentalizes glucose metabolism into glycolysis (cytosol) and tricarboxylate (TCA) cycle (mitochondrial matrix). The exchange of metabolites between cytosol and mitochondrial matrix is mediated via a set of mitochondrial carriers, including the aspartate-glutamate carrier (aralar1), α- ketoglutarate carrier (OGC), ATP/ADP carrier (AAC), glutamate carrier (GC1), dicarboxylate carrier (DIC) and citrate/isocitrate carrier (CIC). The scope of this review is to provide an overview of the role these carriers play in stimulus-secretion coupling and discuss the importance of these findings in the context of the exquisite glucose responsive state of the pancreatic β-cell.
Collapse
Affiliation(s)
- Peter R Huypens
- School of Pharmacy; Health Science Campus; University of Waterloo; Kitchener, CN Canada
| | - Mei Huang
- School of Pharmacy; Health Science Campus; University of Waterloo; Kitchener, CN Canada
| | - Jamie W Joseph
- School of Pharmacy; Health Science Campus; University of Waterloo; Kitchener, CN Canada
| |
Collapse
|
18
|
The level of menadione redox-cycling in pancreatic β-cells is proportional to the glucose concentration: role of NADH and consequences for insulin secretion. Toxicol Appl Pharmacol 2011; 258:216-25. [PMID: 22115979 DOI: 10.1016/j.taap.2011.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/26/2011] [Accepted: 11/07/2011] [Indexed: 12/25/2022]
Abstract
Pancreatic β-cells release insulin in response to elevation of glucose from basal (4-7mM) to stimulatory (8-16mM) levels. Metabolism of glucose by the β-cell results in the production of low levels of reactive oxygen intermediates (ROI), such as hydrogen peroxide (H(2)O(2)), a newly recognized coupling factor linking glucose metabolism to insulin secretion. However, high and toxic levels of H(2)O(2) inhibit insulin secretion. Menadione, which produces H(2)O(2) via redox cycling mechanism in a dose-dependent manner, was investigated for its effect on β-cell metabolism and insulin secretion in INS-1 832/13, a rat β-cell insulinoma cell line, and primary rodent islets. Menadione-dependent redox cycling and resulting H(2)O(2) production under stimulatory glucose exceeded several-fold those reached at basal glucose. This was paralleled by a differential effect of menadione (0.1-10μM) on insulin secretion, which was enhanced at basal, but inhibited at stimulatory glucose. Redox cycling of menadione and H(2)O(2) formation was dependent on glycolytically-derived NADH, as inhibition of glycolysis and application of non-glycogenic insulin secretagogues did not support redox cycling. In addition, activity of plasma membrane electron transport, a system dependent in part on glycolytically-derived NADH, was also inhibited by menadione. Menadione-dependent redox cycling was sensitive to the NQO1 inhibitor dicoumarol and the flavoprotein inhibitor diphenylene iodonium, suggesting a role for NQO1 and other oxidoreductases in this process. These data may explain the apparent dichotomy between the stimulatory and inhibitory effects of H(2)O(2) and menadione on insulin secretion.
Collapse
|
19
|
Protein markers for insulin-producing beta cells with higher glucose sensitivity. PLoS One 2010; 5:e14214. [PMID: 21151894 PMCID: PMC2997773 DOI: 10.1371/journal.pone.0014214] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 10/16/2010] [Indexed: 01/02/2023] Open
Abstract
Background and Methodology Pancreatic beta cells show intercellular differences in their metabolic glucose sensitivity and associated activation of insulin production. To identify protein markers for these variations in functional glucose sensitivity, rat beta cell subpopulations were flow-sorted for their level of glucose-induced NAD(P)H and their proteomes were quantified by label-free data independent alternate scanning LC-MS. Beta cell-selective proteins were also identified through comparison with rat brain and liver tissue and with purified islet alpha cells, after geometrical normalization using 6 stably expressed reference proteins. Principal Findings All tissues combined, 943 proteins were reliably quantified. In beta cells, 93 out of 467 quantifiable proteins were uniquely detected in this cell type; several other proteins presented a high molar abundance in beta cells. The proteome of the beta cell subpopulation with high metabolic and biosynthetic responsiveness to 7.5 mM glucose was characterized by (i) an on average 50% higher expression of protein biosynthesis regulators such as 40S and 60S ribosomal constituents, NADPH-dependent protein folding factors and translation elongation factors; (ii) 50% higher levels of enzymes involved in glycolysis and in the cytosolic arm of the malate/aspartate-NADH-shuttle. No differences were noticed in mitochondrial enzymes of the Krebs cycle, beta-oxidation or respiratory chain. Conclusions Quantification of subtle variations in the proteome using alternate scanning LC-MS shows that beta cell metabolic glucose responsiveness is mostly associated with higher levels of glycolytic but not of mitochondrial enzymes.
Collapse
|
20
|
Jitrapakdee S, Wutthisathapornchai A, Wallace JC, MacDonald MJ. Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia 2010; 53:1019-32. [PMID: 20225132 PMCID: PMC2885902 DOI: 10.1007/s00125-010-1685-0] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/06/2010] [Indexed: 12/23/2022]
Abstract
Pancreatic beta cells are specialised endocrine cells that continuously sense the levels of blood sugar and other fuels and, in response, secrete insulin to maintain normal fuel homeostasis. During postprandial periods an elevated level of plasma glucose rapidly stimulates insulin secretion to decrease hepatic glucose output and promote glucose uptake into other tissues, principally muscle and adipose tissues. Beta cell mitochondria play a key role in this process, not only by providing energy in the form of ATP to support insulin secretion, but also by synthesising metabolites (anaplerosis) that can act, both intra- and extramitochondrially, as factors that couple glucose sensing to insulin granule exocytosis. ATP on its own, and possibly modulated by these coupling factors, triggers closure of the ATP-sensitive potassium channel, resulting in membrane depolarisation that increases intracellular calcium to cause insulin secretion. The metabolic imbalance caused by chronic hyperglycaemia and hyperlipidaemia severely affects mitochondrial metabolism, leading to the development of impaired glucose-induced insulin secretion in type 2 diabetes. It appears that the anaplerotic enzyme pyruvate carboxylase participates directly or indirectly in several metabolic pathways which are important for glucose-induced insulin secretion, including: the pyruvate/malate cycle, the pyruvate/citrate cycle, the pyruvate/isocitrate cycle and glutamate-dehydrogenase-catalysed alpha-ketoglutarate production. These four pathways enable 'shuttling' or 'recycling' of these intermediate(s) into and out of mitochondrion, allowing continuous production of intracellular messenger(s). The purpose of this review is to present an account of recent progress in this area of central importance in the realm of diabetes and obesity research.
Collapse
Affiliation(s)
- S Jitrapakdee
- Molecular Metabolism Research Group, Department of Biochemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phya-Thai, Bangkok 10400, Thailand.
| | | | | | | |
Collapse
|
21
|
Abstract
Insulinomas are rare neuroendocrine tumors of pancreatic islet cells that retain the ability to produce and secrete insulin. In contrast to normally differentiated β-cells, insulinoma cells continue to secrete insulin and proinsulin at low blood glucose. This deregulated insulin secretion manifests clinically as fasting hypoglycemia. The molecular pathways that characterize normal insulin secretion and β-cell growth are reviewed and contrasted to the biology of insulinomas. The second half of this review summarizes the clinical approach to the disorder. The diagnosis of insulinoma is established by demonstrating inappropriately high insulin levels with coincident hypoglycemia at the time of a supervised fast. Localization of insulinomas is challenging owing to their small size but should be attempted to maximize the chance for successful surgical resection and avoid risks associated with reoperation. In the majority of cases, successful surgical resection leads to lifelong cure.
Collapse
Affiliation(s)
- Jean-Marc Guettier
- National Institute of Diabetes and Digestive and Kidney Diseases, Building 10-CRC, Room 6-5952, 10 Center Drive, Bethesda, MD 20892-1612, USA, Tel.: +1 301 496 1913, ,
| | | |
Collapse
|
22
|
Rafacho A, Marroquí L, Taboga SR, Abrantes JLF, Silveira LR, Boschero AC, Carneiro EM, Bosqueiro JR, Nadal A, Quesada I. Glucocorticoids in vivo induce both insulin hypersecretion and enhanced glucose sensitivity of stimulus-secretion coupling in isolated rat islets. Endocrinology 2010; 151:85-95. [PMID: 19880808 DOI: 10.1210/en.2009-0704] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity.
Collapse
Affiliation(s)
- Alex Rafacho
- Instituto de Bioingeniería, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Elche 03202, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Silencing of the mitochondrial NADH shuttle component aspartate-glutamate carrier AGC1/Aralar1 in INS-1E cells and rat islets. Biochem J 2009; 424:459-66. [PMID: 19764902 DOI: 10.1042/bj20090729] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transfer of reducing equivalents between cytosolic compartments and the mitochondrial matrix is mediated by NADH shuttles. Among these, the malate-aspartate shuttle has been proposed to play a major role in beta-cells for the control of glucose-stimulated insulin secretion. AGC1 or Aralar1 (aspartate-glutamate carrier 1) is a key component of the malate-aspartate shuttle. Overexpression of AGC1 increases the capacity of the malate-aspartate shuttle, resulting in enhanced metabolism-secretion coupling, both in INS-1E cells and rat islets. In the present study, knockdown of AGC1 was achieved in the same beta-cell models, using adenovirus-mediated delivery of shRNA (small-hairpin RNA). Compared with control INS-1E cells, down-regulation of AGC1 blunted NADH formation (-57%; P<0.05), increased lactate production (+16%; P<0.001) and inhibited glucose oxidation (-22%; P<0.01). This correlated with a reduced secretory response at 15 mM glucose (-25%; P<0.05), while insulin release was unchanged at intermediate 7.5 mM and basal 2.5 mM glucose. In isolated rat islets, efficient AGC1 knockdown did not alter insulin exocytosis evoked by 16.7 mM glucose. However, 4 mM amino-oxyacetate, commonly used to block transaminases of the malate-aspartate shuttle, inhibited glucose-stimulated insulin secretion to similar extents in INS-1E cells (-66%; P<0.01) and rat islets (-56%; P<0.01). These results show that down-regulation of the key component of the malate-aspartate shuttle AGC1 reduced glucose-induced oxidative metabolism and insulin secretion in INS-1E cells, whereas similar AGC1 knockdown in rat islets did not affect their secretory response.
Collapse
|
24
|
Xu J, Han J, Long YS, Lock J, Weir GC, Epstein PN, Liu YQ. Malic enzyme is present in mouse islets and modulates insulin secretion. Diabetologia 2008; 51:2281-9. [PMID: 18802677 PMCID: PMC2777632 DOI: 10.1007/s00125-008-1155-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 08/18/2008] [Indexed: 11/29/2022]
Abstract
AIMS/HYPOTHESIS The pyruvate-malate shuttle is a metabolic cycle in pancreatic beta cells and is important for beta cell function. Cytosolic malic enzyme (ME) carries out an essential step in the shuttle by converting malate to pyruvate and generating NADPH. In rat islets the pyruvate-malate shuttle may regulate insulin secretion and it has been shown to play a critical role in adaptation to obesity and insulin resistance. However, ME has not been demonstrated in mouse islets and three reports indicate that mouse islets contain no ME activity. If mouse islets lack ME, rat and mouse islets must regulate insulin secretion by different mechanisms. METHODS We measured ME activity by a fluorometric enzymatic assay and Me mRNA by real-time PCR. ME activity was also measured in streptozotocin-treated mouse islets. FACS-purified beta cells were obtained from MIP-GFP mouse islets, agouti-L obese mouse islets and mouse beta cell line MIN-6. Insulin secretion and NADPH/NADP(+) ratios were measured in Me siRNA-treated beta cells. RESULTS ME activity and Me mRNA were present in C57BL/6 mouse islets. ME activity was reduced in streptozotocin-treated mouse islets. ME activity was also measurable in FACS-purified mouse beta cells. In addition, ME activity was significantly increased in obese agouti-L mouse islets and the mouse MIN-6 cell line. Me siRNA inhibited ME activity and reduced glucose-stimulated insulin secretion and also inhibited NADPH products. CONCLUSIONS/INTERPRETATION Mouse islets contain ME, which plays a significant role in regulating insulin secretion.
Collapse
Affiliation(s)
- Jianxiang Xu
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202
| | - Junying Han
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202
- The Research Institute for Children, Children’s Hospital; Department of Pediatrics, LSUHSC, New Orleans, LA 70118
| | - Yun Shi Long
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202
| | - Jennifer Lock
- Joslin Diabetes Center, One Joslin Place, Harvard Medical School, Boston, MA, 02215
| | - Gordon C. Weir
- Joslin Diabetes Center, One Joslin Place, Harvard Medical School, Boston, MA, 02215
| | - Paul N. Epstein
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202
| | - Ye Qi Liu
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202
- The Research Institute for Children, Children’s Hospital; Department of Pediatrics, LSUHSC, New Orleans, LA 70118
| |
Collapse
|
25
|
Tissue specificity of mitochondrial glutamate pathways and the control of metabolic homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:965-72. [PMID: 18486589 DOI: 10.1016/j.bbabio.2008.04.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/11/2008] [Accepted: 04/22/2008] [Indexed: 11/24/2022]
Abstract
Glutamate is implicated in numerous metabolic and signalling functions that vary according to specific tissues. Glutamate metabolism is tightly controlled by activities of mitochondrial enzymes and transmembrane carriers, in particular glutamate dehydrogenase and mitochondrial glutamate carriers that have been identified in recent years. It is remarkable that, although glutamate-specific enzymes and transporters share similar properties in most tissues, their regulation varies greatly according to particular organs in order to achieve tissue specific functions. This is illustrated in this review when comparing glutamate handling in liver, brain, and pancreatic beta-cells. We describe the main cellular glutamate pathways and their specific functions in different tissues, ultimately contributing to the control of metabolic homeostasis at the organism level.
Collapse
|
26
|
Polakof S, Míguez JM, Soengas JL. In vitro evidences for glucosensing capacity and mechanisms in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1410-20. [PMID: 17567722 DOI: 10.1152/ajpregu.00283.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We aimed to support in vitro the glucosensing capacity observed in vivo in rainbow trout hypothalamus, hindbrain, and Brockmann bodies (BB) and to obtain preliminary evidence of the mechanisms involved. The response of parameters involved in the glucosensing capacity [hexokinase, hexokinase IV (glucokinase), and pyruvate kinase activities and glucose and glycogen levels] was assessed in these tissues incubated for 1 h with 2, 4, or 8 mM d-glucose alone (control) or with specific agonists/inhibitors of the steps involved in glucosensing capacity in mammals. These agents were a competitor for glucose phosphorylation (15 mM mannose), sulfonylurea receptor-1 effectors (500 μM tolbutamide or diazoxide), glycolytic intermediates (15 mM glycerol, lactate, or pyruvate), and inhibitors of glucose transport (10 μM cytochalasin B), glycolysis [20 mM 2-deoxy-d-glucose (2-DG)], and L-type calcium channel (1 μM nifedipine). Control incubations of the three tissues displayed increased glucose and glycogen levels and glucokinase activities in response to increased medium glucose, thus supporting our previous in vivo studies. Furthermore, critical components of the glucosensing mammalian machinery are apparently functioning in the three tissues. The responses in brain regions to all substances tested (except 2-DG and nifedipine) were similar to those observed in mammals, suggesting a similar glucosensing machinery. In contrast, in BB, only the effects of 2-DG, lactate, pyruvate, diazoxide, and nifedipine were similar to those of mammalian β-cells, suggesting that some of the components of the piscine glucosensing model are different than those of mammals. Such differences may relate to the importance of amino acids rather than glucose signaling in the trout BB.
Collapse
Affiliation(s)
- Sergio Polakof
- Laboratorio de Fisioloxía Animal, Facultade de Bioloxía, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Spain
| | | | | |
Collapse
|
27
|
Martens GA, Wang Q, Kerckhofs K, Stangé G, Ling Z, Pipeleers D. Metabolic activation of glucose low-responsive beta-cells by glyceraldehyde correlates with their biosynthetic activation in lower glucose concentration range but not at high glucose. Endocrinology 2006; 147:5196-204. [PMID: 16916947 DOI: 10.1210/en.2006-0580] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin synthesis and release activities of beta-cells can be acutely regulated by glucose through its glycolytic and mitochondrial breakdown involving a glucokinase-dependent rate-limiting step. Isolated beta-cell populations are composed of cells with intercellular differences in acute glucose responsiveness that have been attributed to differences in glucokinase (GK) expression and activity. This study first shows that glyceraldehyde can be used as GK-bypassing oxidative substrate and then examines whether the triose can metabolically activate beta-cells with low glucose responsiveness. Glyceraldehyde 1 mm induced a similar cellular (14)CO(2) output and metabolic redox state as glucose 4 mM. Using flow cytometric analysis, glyceraldehyde (0.25-2 mM) was shown to concentration-dependently increase the percent metabolically activated cells at all tested glucose concentrations (2.5-20 mM). Its ability to activate beta-cells that are unresponsive to the prevailing glucose level was further illustrated in glucose low-responsive cells that were isolated by flow sorting. Metabolic activation by glyceraldehyde was associated with an activation of nutrient-driven translational control proteins and an increased protein synthetic response to glucose, however not beyond the maximal rates that are inducible by glucose alone. It is concluded that glucose low-responsive beta-cells can be metabolically activated by the GK-bypassing glyceraldehyde, increasing their acute biosynthetic response to glucose but not their maximal glucose-inducible biosynthetic capacity, which is considered subject to chronic regulation.
Collapse
Affiliation(s)
- G A Martens
- Diabetes Research Center, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Bryan J, Muñoz A, Zhang X, Düfer M, Drews G, Krippeit-Drews P, Aguilar-Bryan L. ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Pflugers Arch 2006; 453:703-18. [PMID: 16897043 DOI: 10.1007/s00424-006-0116-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 06/08/2006] [Indexed: 11/28/2022]
Abstract
The sulfonylurea receptors (SURs) ABCC8/SUR1 and ABCC9/SUR2 are members of the C-branch of the transport adenosine triphosphatase superfamily. Unlike their brethren, the SURs have no identified transport function; instead, evolution has matched these molecules with K(+) selective pores, either K(IR)6.1/KCNJ8 or K(IR)6.2/KCNJ11, to assemble adenosine triphosphate (ATP)-sensitive K(+) channels found in endocrine cells, neurons, and both smooth and striated muscle. Adenine nucleotides, the major regulators of ATP-sensitive K(+) (K(ATP)) channel activity, exert a dual action. Nucleotide binding to the pore reduces the activity or channel open probability, whereas Mg-nucleotide binding and/or hydrolysis in the nucleotide-binding domains of SUR antagonize this inhibitory action to stimulate channel openings. Mutations in either subunit can alter this balance and, in the case of the SUR1/KIR6.2 channels found in neurons and insulin-secreting pancreatic beta cells, are the cause of monogenic forms of hyperinsulinemic hypoglycemia and neonatal diabetes. Additionally, the subtle dysregulation of K(ATP) channel activity by a K(IR)6.2 polymorphism has been suggested as a predisposing factor in type 2 diabetes mellitus. Studies on K(ATP) channel null mice are clarifying the roles of these metabolically sensitive channels in a variety of tissues.
Collapse
Affiliation(s)
- Joseph Bryan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Gustavsson N, Larsson-Nyrén G, Lindström P. Pancreatic beta cells from db/db mice show cell-specific [Ca2+]i and NADH responses to glucose but not to alpha-ketoisocaproic acid. Pancreas 2005; 31:242-50. [PMID: 16163056 DOI: 10.1097/01.mpa.0000175891.58918.c8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE We recently showed that timing and magnitude of the glucose-induced cytoplasmic calcium [Ca2+]i response are reproducible and specific for the individual beta cell. We now wanted to identify which step(s) of stimulus-secretion coupling determine the cell specificity of the [Ca2+]i response and whether cell specificity is lost in beta-cells from diabetic animals. Besides glucose, we studied the effects of glyceraldehyde, a glycolytic intermediate, and alpha-ketoisocaproic acid (KIC), a mitochondrial substrate. METHODS Early [Ca2+]i changes were studied stimulations in fura-2-labeled dispersed beta cells from lean, ob/ob, and db/db mice. Lag time and peak height were compared during 2 consecutive stimulations with the same stimulator. Nicotinamide adenine dinucleotide (NADH) responses to glucose and KIC were studied as a measure of metabolic flux. RESULTS Both glyceraldehyde and KIC induced cell-specific temporal responses in lean mouse beta cells with a correlation between lag times for [Ca2+]i rise during the first and second stimulation. Beta cells from ob/ob and db/db mice showed cell-specific temporal [Ca2+]i responses to glucose and glyceraldehyde but not to KIC. Glucose induced cell-specific NADH responses in all 3 models, but KIC did so only in lean mouse [beta] cells. CONCLUSIONS A cell-specific response may be induced at several steps of beta-cell stimulus-secretion coupling. Mitochondrial metabolism generates a cell-specific response in normal beta cells but not in db/db and ob/ob mouse beta cells.
Collapse
Affiliation(s)
- Natalia Gustavsson
- Department of Integrative Medical Biology, Section for Histology and Cell Biology, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|
30
|
Zakrzewska A, Schnell PO, Striet JB, Hui A, Robbins JR, Petrovic M, Conforti L, Gozal D, Wathelet MG, Czyzyk-Krzeska MF. Hypoxia-activated metabolic pathway stimulates phosphorylation of p300 and CBP in oxygen-sensitive cells. J Neurochem 2005; 94:1288-96. [PMID: 16000154 PMCID: PMC1411962 DOI: 10.1111/j.1471-4159.2005.03293.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription co-activators and histone acetyltransferases, p300 and cyclic AMP responsive element-binding protein-binding protein (CBP), participate in hypoxic activation of hypoxia-inducible genes. Here, we show that exposure of PC12 and cells to 1-10% oxygen results in hyperphosphorylation of p300/CBP. This response is fast, long lasting and specific for hypoxia, but not for hypoxia-mimicking agents such as desferioxamine or Co2+ ions. It is also cell-type specific and occurs in pheochromocytoma PC12 cells and the carotid body of rats but not in hepatoblastoma cells. The p300 hyperphosphorylation specifically depends on the release of intracellular calcium from inositol 1,4,5-triphosphate (IP3)-sensitive stores. However, it is not inhibited by pharmacological inhibitors of any of the kinases traditionally known to be directly or indirectly calcium regulated. On the other hand, p300 hyperphosphorylation is inhibited by several different inhibitors of the glucose metabolic pathway from generation of NADH by glyceraldehyde 3-phosphate dehydrogenase, through the transfer of NADH through the glycerol phosphate shuttle to ubiquinone and complex III of the mitochondrial respiratory chain. Inhibition of IP3-sensitive calcium stores decreases generation of ATP, and this inhibition is significantly stronger in hypoxia than in normoxia. We propose that the NADH glycerol phosphate shuttle participates in generating a pool of ATP that serves either as a co-factor or a modulator of the kinases involved in the phosphorylation of p300/CBP during hypoxia.
Collapse
Affiliation(s)
| | | | - Justin B. Striet
- Departments of Genome Science
- Molecular and Cellular Physiology and
| | - Anna Hui
- Departments of Genome Science
- Molecular and Cellular Physiology and
| | - Jennifer R. Robbins
- Medicine, Division of Nephrology and Hypertension, University of Cincinnati, Ohio, USA
| | - Milan Petrovic
- Medicine, Division of Nephrology and Hypertension, University of Cincinnati, Ohio, USA
| | - Laura Conforti
- Molecular and Cellular Physiology and
- Medicine, Division of Nephrology and Hypertension, University of Cincinnati, Ohio, USA
| | - David Gozal
- Departments of Pediatrics, Pharmacology, and Toxicology, Kosair Children’s Hospital Research Institute, University of Louisville, Kentucky, USA
| | | | - Maria F. Czyzyk-Krzeska
- Departments of Genome Science
- Molecular and Cellular Physiology and
- Address correspondence and reprint requests to Maria F. Czyzyk-Krzeska, Department of Genome Science, University of Cincinnati, College of Medicine, 2180 E Galbraith Road., Cincinnati, OH 45267–0505, USA. E-mail:
| |
Collapse
|
31
|
Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 2004; 145:667-78. [PMID: 14592952 DOI: 10.1210/en.2003-1099] [Citation(s) in RCA: 469] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Rat insulinoma-derived INS-1 cells constitute a widely used beta-cell surrogate. However, due to their nonclonal nature, INS-1 cells are heterogeneous and are not stable over extended culture periods. We have isolated clonal INS-1E cells from parental INS-1 based on both their insulin content and their secretory responses to glucose. Here we describe the stable differentiated INS-1E beta-cell phenotype over 116 passages (no. 27-142) representing a 2.2-yr continuous follow-up. INS-1E cells can be safely cultured and used within passages 40-100 with average insulin contents of 2.30 +/- 0.11 microg/million cells. Glucose-induced insulin secretion was dose-related and similar to rat islet responses. Secretion saturated with a 6.2-fold increase at 15 mm glucose, showing a 50% effective concentration of 10.4 mm. Secretory responses to amino acids and sulfonylurea were similar to those of islets. Moreover, INS-1E cells retained the amplifying pathway, as judged by glucose-evoked augmentation of insulin release in a depolarized state. Regarding metabolic parameters, INS-1E cells exhibited glucose dose-dependent elevations of NAD(P)H, cytosolic Ca(2+), and mitochondrial Ca(2+) levels. In contrast, mitochondrial membrane potential, ATP levels, and cell membrane potential were all fully activated by 7.5 mm glucose. Using the perforated patch clamp technique, 7.5 and 15 mm glucose elicited electrical activity to a similar degree. A K(ATP) current was identified in whole cell voltage clamp using diazoxide and tolbutamide. As in native beta-cells, tolbutamide induced electrical activity, indicating that the K(ATP)conductance is important in setting the resting potential. Therefore, INS-1E cells represent a stable and valuable beta-cell model.
Collapse
Affiliation(s)
- Arnaud Merglen
- Division of Clinical Biochemistry, Department of Internal Medicine, DBC-9100, University Medical Center, 1 rue Michel-Servet, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Yamada S, Komatsu M, Sato Y, Yamauchi K, Aizawa T, Kojima I. Nutrient modulation of palmitoylated 24-kilodalton protein in rat pancreatic islets. Endocrinology 2003; 144:5232-41. [PMID: 12960032 DOI: 10.1210/en.2003-0719] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein acylation in glucose stimulation of insulin secretion in the beta-cells has been implicated. Accordingly, we attempted to identify the target(s) of acylation in the pancreatic islets. Rat pancreatic islets were labeled with [3H]palmitic acid for 1 h at 37 C, and the whole cell lysate was analyzed by SDS-PAGE and two-dimensional gel electrophoresis. The labeling of the proteins by [3H]palmitic acid was shown to be palmitoylation by chemical analyses. Palmitoylation of four distinct bands was recognized, and the palmitoylation was significantly reduced in all of them when the labeling was performed with high glucose. Quite interestingly, the degree of attenuation was particularly dominant for a 24-kDa doublet. Palmitoylation of the 24-kDa doublet was preferentially attenuated also by the mitochondrial fuels and an acylation inhibitor, cerulenin. The half-life of the labeling of the doublet was apparently shorter (approximately 45 min) than that of other bands on pulse chasing of the islets, irrespective of the presence or absence of high glucose. High glucose attenuation of the palmitoylation of the 24-kDa doublet was partially blocked by 20 mm mannoheptulose, a glucokinase inhibitor. Two-dimensional gel electrophoresis revealed that the doublet was composed of acidic peptides, and, by immunoprecipitation, it was shown not to be synaptosome-associated protein of 25 kDa. We identified rapidly turning over palmitoylated 24-kDa acidic proteins distinct from synaptosome-associated protein of 25 kDa in the pancreatic islets, which are preferentially modulated by fuel secretagogues. The data suggested a functional role of the palmitoylated 24-kDa doublet in nutrient stimulation of insulin secretion.
Collapse
Affiliation(s)
- Satoko Yamada
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Barberà A, Gudayol M, Eto K, Corominola H, Maechler P, Miró O, Cardellach F, Gomis R. A high carbohydrate diet does not induce hyperglycaemia in a mitochondrial glycerol-3-phosphate dehydrogenase-deficient mouse. Diabetologia 2003; 46:1394-401. [PMID: 13680126 DOI: 10.1007/s00125-003-1206-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS/HYPOTHESIS The electrons of the glycolysis-derived reduced form of NADH are transferred to mitochondria through the NADH shuttle system. There are two NADH shuttles: the glycerol phosphate and malate-aspartate shuttle. Mice with a targeted disruption of mitochondrial glycerol-3-phosphate dehydrogenase, a rate-limiting enzyme of the glycerol phosphate shuttle, are not diabetic and have normal islet glucose-induced secretion. In this study, we analyzed if environmental factors, such as a high carbohydrate diet could contribute to the development of Type 2 diabetes mellitus in mice with a specific defective genetic background. METHODS The mice were fed with a high carbohydrate diet for 1 and 6 months, and several biochemical parameters were analysed. The mitochondrial respiratory activity was assayed by polarography; and the islet function was studied by islet perifusion and pancreas perfusion. RESULTS The high carbohydrate diet induced hyperglycaemia, hyperinsulinaemia, and islet hyperplasia in the wild-type and heterozygote mice. Activity of the respiratory chain complex I also increased in these mice. In contrast, these effects were not observed in the null mice fed with the diet; in addition, these null mice had an increased insulin sensitivity compared to wild-type mice. CONCLUSION/INTERPRETATION The phenotype of the mice with an impairment of NADH shuttles does not worsen when fed a high carbohydrate diet; moreover, the diet does not compromise islet function.
Collapse
Affiliation(s)
- A Barberà
- Laboratory of Metabolic Diseases, Rockefeller University, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Eto K, Yamashita T, Hirose K, Tsubamoto Y, Ainscow EK, Rutter GA, Kimura S, Noda M, Iino M, Kadowaki T. Glucose metabolism and glutamate analog acutely alkalinize pH of insulin secretory vesicles of pancreatic beta-cells. Am J Physiol Endocrinol Metab 2003; 285:E262-71. [PMID: 12644449 DOI: 10.1152/ajpendo.00542.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate.
Collapse
Affiliation(s)
- Kazuhiro Eto
- Dept. of Metabolic Diseases, Graduate School of Medicine, Univ. of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Terauchi Y, Matsui J, Suzuki R, Kubota N, Komeda K, Aizawa S, Eto K, Kimura S, Nagai R, Tobe K, Lienhard GE, Kadowaki T. Impact of genetic background and ablation of insulin receptor substrate (IRS)-3 on IRS-2 knock-out mice. J Biol Chem 2003; 278:14284-90. [PMID: 12493745 DOI: 10.1074/jbc.m211045200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although we and others have generated IRS-2 knock-out (IRS-2(-/-)) mice, significant differences were seen between the two lines of IRS-2(-/-) mice in the severity of diabetes and alterations of beta-cell mass. It has been reported that although IRS-1 and IRS-3 knock-out mice showed normal blood glucose levels, IRS-1/IRS-3 double knock-out mice exhibited marked hyperglycemia. Thus, IRS-1 and IRS-3 compensate each other's functions in maintaining glucose homeostasis. To assess the effect of genetic background and also ablation of IRS-3 on IRS-2(-/-), we generated IRS-2/IRS-3 double knock-out (IRS-2(-/-)IRS-3(-/-)) mice by crossing IRS-3(-/-) mice (129/Sv and C57Bl/6 background) with our IRS-2(-/-) mice (CBA and C57Bl/6 background). Intercrosses of IRS-2(+/-)IRS-3(+/-) mice yielded nine genotypes, and all of them including IRS-2(-/-)IRS-3(-/-) mice were apparently healthy and showed normal growth. However, at 10-20 weeks of age, 20-30% mice carrying a null mutation for the IRS-2 gene, irrespective of the IRS-3 genotype, developed diabetes. When mice with diabetes were excluded from the analysis of glucose and insulin tolerance test, IRS-2(-/-)IRS-3(-/-) showed a degree of glucose intolerance and insulin resistance similar to those of IRS-2(-/-) mice. Both IRS-2(-/-) and IRS-2(-/-)IRS-3(-/-) mice had moderately reduced beta-cell mass despite having insulin resistance. Insulin-positive beta-cells were decreased to nearly zero in IRS-2(-/-) mice with diabetes. Although Pdx1 and glucose transporter 2 expressions were essentially unaltered in islets from IRS-2(-/-) mice without diabetes, they were dramatically decreased in IRS-2(-/-) mice with diabetes. Taken together, these observations indicate that IRS-3 does not play a role compensating for the loss of IRS-2 in maintaining glucose homeostasis and that the severity of diabetes in IRS-2(-/-) mice depends upon genetic background, suggesting the existence of modifier gene(s) for diabetes in mice of the 129/Sv genetic strain.
Collapse
Affiliation(s)
- Yasuo Terauchi
- Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee B, Miles PD, Vargas L, Luan P, Glasco S, Kushnareva Y, Kornbrust ES, Grako KA, Wollheim CB, Maechler P, Olefsky JM, Anderson CM. Inhibition of mitochondrial Na+-Ca2+ exchanger increases mitochondrial metabolism and potentiates glucose-stimulated insulin secretion in rat pancreatic islets. Diabetes 2003; 52:965-73. [PMID: 12663468 DOI: 10.2337/diabetes.52.4.965] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrial Na(+)-Ca(2+) exchanger (mNCE) mediates efflux of Ca(2+) from mitochondria in exchange for influx of Na(+). We show that inhibition of the mNCE enhances mitochondrial oxidative metabolism and increases glucose-stimulated insulin secretion in rat islets and INS-1 cells. The benzothiazepine CGP37157 inhibited mNCE activity in INS-1 cells (50% inhibition at IC(50) = 1.5 micro mol/l) and increased the glucose-induced rise in mitochondrial Ca(2+) ([Ca(2+)](m)) 2.1 times. Cellular ATP content was increased by 13% in INS-1 cells and by 49% in rat islets by CGP37157 (1 micro mol/l). Krebs cycle flux was also stimulated by CGP37157 when glucose was present. Insulin secretion was increased in a glucose-dependent manner by CGP37157 in both INS-1 cells and islets. In islets, CGP37157 increased insulin secretion dose dependently (half-maximal efficacy at EC(50) = 0.06 micro mol/l) at 8 mmol/l glucose and shifted the glucose dose response curve to the left. In perifused islets, mNCE inhibition had no effect on insulin secretion at 2.8 mmol/l glucose but increased insulin secretion by 46% at 11 mmol/l glucose. The effects of CGP37157 could not be attributed to interactions with the plasma membrane sodium calcium exchanger, L-type calcium channels, ATP-sensitive K(+) channels, or [Ca(2+)](m) uniporter. In hyperglycemic clamp studies of Wistar rats, CGP37157 increased plasma insulin and C-peptide levels only during the hyperglycemic phase of the study. These results illustrate the potential utility of agents that affect mitochondrial metabolism as novel insulin secretagogues.
Collapse
Affiliation(s)
- Bumsup Lee
- Division of Metabolic Diseases, MitoKor, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakano K, Takeo T, Sato T, Suga S, Eto K, Kadowaki T, Wakui M. Role of mitochondrial NADH shuttle system in acute amylase secretion by acetylcholine from mouse pancreatic acinar cells. TOHOKU J EXP MED 2002; 198:151-62. [PMID: 12597242 DOI: 10.1620/tjem.198.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using the mice that lack mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), a rate limiting enzyme of the glycerol-phosphate NADH shuttle, we investigated the role of the NADH shuttle system in amylase secretion in response to acetylcholine (ACh) in pancreatic acinar cells. The pancreatic acinar cells of mGPDH-deficient mice were not different in histology and immunohistochemistry from those of wild-type mice. In both types of pancreatic acinar cells from wild-type and mGPDH-deficient mice, ACh similarly potentiated amylase secretion, measured in 30 minutes after the ACh stimulation. A 30 minutes pre-treatment of wild-type cells with aminooxyacetate (AOA), an inhibitor of aspartate aminotransferases of the malate-aspartate NADH shuttle, did not change the rate of ACh-induced amylase secretion, measured in the following 30 minutes. In also mGPDH-deficient cells treated with AOA, thus in this situation all mitochondrial NADH shuttles being dysfunctioning, ACh induced amylase release in a similar amount to that in AOA-untreated cells. The basal levels of intracellular Ca2+ concentration ([Ca2+]i), the ACh-stimulated levels of [Ca2+]i and Ca2+ oscillation patterns in response to ACh were similar in wild-type and mGPDH-deficient cells, and the AOA-treatment did not affect these [Ca2+]i responses. The levels of intracellular concentration of ATP before and during stimulation with ACh were similar in wild-type and mGPDH-defficient cells. In only AOA-treated mGPDH-deficient cells, the level of ATP decreased after the ACh stimulation. These results suggest that acute response of amylase secretion to ACh from mouse pancreatic acinar cells does not require simultaneous functioning of the mitochondrial NADH shuttle system, although the supply of intracellular ATP decreases during the ACh stimulation.
Collapse
Affiliation(s)
- Kyoko Nakano
- Department of Medical Technology, Hirosaki University School of Health Sciences, Hirosaki 036-8564, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
MacDonald MJ. Differences between mouse and rat pancreatic islets: succinate responsiveness, malic enzyme, and anaplerosis. Am J Physiol Endocrinol Metab 2002; 283:E302-10. [PMID: 12110535 DOI: 10.1152/ajpendo.00041.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Succinic acid methyl esters are potent insulin secretagogues in rat pancreatic islets, but they do not stimulate insulin release in mouse islets. Unlike rat and human islets, mouse islets lack malic enzyme and, therefore, are unable to form pyruvate from succinate-derived malate for net synthesis of acetyl-CoA. Dimethyl-[2,3-(14)C]succinate is metabolized in the citric acid cycle in mouse islets to the same extent as in rat islets, indicating that endogenous acetyl-CoA condenses with oxaloacetate derived from succinate. However, without malic enzyme, the net synthesis from succinate of the citric acid cycle intermediates citrate, isocitrate, and alpha-ketoglutarate cannot occur. Glucose and other nutrients that augment alpha-ketoglutarate formation are secretagogues in mouse islets with potencies similar to those in rat islets. All cycle intermediates can be net-synthesized from alpha-ketoglutarate. Rotenone, an inhibitor of site I of the electron transport chain, inhibits methyl succinate-induced insulin release in rat islets even though succinate oxidation forms ATP at sites II and III of the respiratory chain. Thus generating ATP, NADH, and anaplerosis of succinyl-CoA plus the four-carbon dicarboxylic acids of the cycle and its metabolism in the citric acid cycle is insufficient for a fuel to be insulinotropic; it must additionally promote anaplerosis of alpha-ketoglutarate or two intermediates interconvertible with alpha-ketoglutarate, citrate, and isocitrate.
Collapse
Affiliation(s)
- Michael J MacDonald
- University of Wisconsin Childrens Diabetes Center, Madison, Wisconsin 53706, USA>
| |
Collapse
|
39
|
Antinozzi PA, Ishihara H, Newgard CB, Wollheim CB. Mitochondrial metabolism sets the maximal limit of fuel-stimulated insulin secretion in a model pancreatic beta cell: a survey of four fuel secretagogues. J Biol Chem 2002; 277:11746-55. [PMID: 11821387 DOI: 10.1074/jbc.m108462200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The precise metabolic steps that couple glucose catabolism to insulin secretion in the pancreatic beta cell are incompletely understood. ATP generated from glycolytic metabolism in the cytosol, from mitochondrial metabolism, and/or from the hydrogen shuttles operating between cytosolic and mitochondrial compartments has been implicated as an important coupling factor. To identify the importance of each of these metabolic pathways, we have compared the fates of four fuel secretagogues (glucose, pyruvate, dihydroxyacetone, and glycerol) in the INS1-E beta cell line. Two of these fuels, dihydroxyacetone and glycerol, are normally ineffective as secretagogues but are enabled by adenovirus-mediated expression of glycerol kinase. Comparison of these two particular fuels allows the effect of redox state on insulin secretion to be evaluated since the phosphorylated products dihydroxyacetone phosphate and glycerol phosphate lie on opposite sides of the NADH-consuming glycerophosphate dehydrogenase reaction. Based upon measurements of glycolytic metabolites, mitochondrial oxidation, mitochondrial matrix calcium, and mitochondrial membrane potential, we find that insulin secretion most tightly correlates with mitochondrial metabolism for each of the four fuels. In the case of glucose stimulation, the high control strength of glucose phosphorylation sets the pace of glucose metabolism and thus the rate of insulin secretion. However, bypassing this reaction with pyruvate, dihydroxyacetone, or glycerol uncovers constraints imposed by mitochondrial metabolism, each of which attains a similar maximal limit of insulin secretion. More specifically, we found that the hyperpolarization of the mitochondrial membrane, related to the proton export from the mitochondrial matrix, correlates well with insulin secretion. Based on these findings, we propose that fuel-stimulated secretion is in fact limited by the inherent thermodynamic constraints of proton gradient formation.
Collapse
Affiliation(s)
- Peter A Antinozzi
- Division of Clinical Biochemistry and Experimental Diabetology, Department of Internal Medicine, University Medical Center, CH-1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
40
|
Abstract
The heart requires a large amount of energy to sustain both ionic homeostasis and contraction. Under normal conditions, adenosine triphosphate (ATP) production meets this demand. Hence, there is a complex regulatory system that adjusts energy production to meet this demand. However, the mechanisms for this control are a topic of active debate. Energy metabolism can be divided into three main stages: substrate delivery to the tricarboxylic acid (TCA) cycle, the TCA cycle, and oxidative phosphorylation. Each of these processes has multiple control points and exerts control over the other stages. This review discusses the basic stages of energy metabolism, mechanisms of control, and the mathematical and computational models that have been used to study these mechanisms.
Collapse
Affiliation(s)
- M S Jafri
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas 75083, USA.
| | | | | |
Collapse
|
41
|
Eto K, Yamashita T, Tsubamoto Y, Terauchi Y, Hirose K, Kubota N, Yamashita S, Taka J, Satoh S, Sekihara H, Tobe K, Iino M, Noda M, Kimura S, Kadowaki T. Phosphatidylinositol 3-kinase suppresses glucose-stimulated insulin secretion by affecting post-cytosolic [Ca(2+)] elevation signals. Diabetes 2002; 51:87-97. [PMID: 11756327 DOI: 10.2337/diabetes.51.1.87] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of phosphatidylinositol (PI) 3-kinase in the regulation of pancreatic beta-cell function was investigated. PI 3-kinase activity in p85 alpha regulatory subunit-deficient (p85 alpha(-/-)) islets was decreased to approximately 20% of that in wild-type controls. Insulin content and mass of rough endoplasmic reticula were decreased in beta-cells from p85 alpha(-/-) mice with increased insulin sensitivity. However, p85 alpha(-/-) beta-cells exhibited a marked increase in the insulin secretory response to higher concentrations of glucose. When PI 3-kinase in wild-type islets was suppressed by wortmannin or LY294002, the secretion was also substantially potentiated. Wortmannin's potentiating effect was not due to augmentation in glucose metabolism or cytosolic [Ca(2+)] elevation. Results of p85 alpha(-/-) islets and wortmannin-treated wild-type islets stimulated with diazoxide and KCl showed that inhibition of PI 3-kinase activity exerted its effect on secretion, at least in part, distal to a cytosolic [Ca(2+)] elevation. These results suggest that PI 3-kinase activity normally plays a crucial role in the suppression of glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Kazuhiro Eto
- Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Insulin secretion from pancreatic islet beta-cells is a tightly regulated process, under the close control of blood glucose concentrations, and several hormones and neurotransmitters. Defects in glucose-triggered insulin secretion are ultimately responsible for the development of type II diabetes, a condition in which the total beta-cell mass is essentially unaltered, but beta-cells become progressively "glucose blind" and unable to meet the enhanced demand for insulin resulting for peripheral insulin resistance. At present, the mechanisms by which glucose (and other nutrients including certain amino acids) trigger insulin secretion in healthy individuals are understood only in part. It is clear, however, that the metabolism of nutrients, and the generation of intracellular signalling molecules including the products of mitochondrial metabolism, probably play a central role. Closure of ATP-sensitive K+(K(ATP)) channels in the plasma membrane, cell depolarisation, and influx of intracellular Ca2+, then prompt the "first phase" on insulin release. However, recent data indicate that glucose also enhances insulin secretion through mechanisms which do not involve a change in K(ATP) channel activity, and seem likely to underlie the second, sustained phase of glucose-stimulated insulin secretion. In this review, I will discuss recent advances in our understanding of each of these signalling processes.
Collapse
Affiliation(s)
- G A Rutter
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
43
|
Weitzel JM, Kutz S, Radtke C, Grott S, Seitz HJ. Hormonal regulation of multiple promoters of the rat mitochondrial glycerol-3-phosphate dehydrogenase gene: identification of a complex hormone-response element in the ubiquitous promoter B. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4095-103. [PMID: 11454004 DOI: 10.1046/j.1432-1327.2001.02332.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rat mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) is regulated by multiple promoters in a tissue-specific manner. Here, we demonstrate that thyroid hormone (3,5,3'-tri-iodo-L-thyronine) and steroid hormone but not the peroxisome proliferator clofibrate and retinoic acid stimulate the activation of the ubiquitous promoter B in a receptor-dependent manner, whereas the more tissue-restricted promoters A and C are not inducible by these hormones. Thyroid hormone action is mediated by a direct repeat +4 (DR+4) hormone-response element as identified by deletion and mutation analyses of promoter B in transient transfection analyses. The DR+4 element was able to bind to an in vitro translated thyroid hormone receptor in band-shift and supershift experiments. The hormone-response element comaps with a recognition site for the transcription factor Sp1, suggesting complex regulation of this sequence element. Mutation of this Sp1-recognition site reduces the basal promoter B activity dramatically in HepG2 and HEK293 cells in transient transfection and abolishes the binding of Sp1 in band-shift experiments. As demonstrated by Western-blot experiments, administration of tri-iodothyronine to euthyroid rats increases hepatic mGPDH protein concentrations in vivo. As it has recently been reported that human mGPDH promoter B is not regulated by tri-iodothyronine, this is the first example of a differentially tri-iodothyronine-regulated orthologous gene promoter in man and rat.
Collapse
Affiliation(s)
- J M Weitzel
- Institut für Medizinische Biochemie und Molekularbiologie, Universitätsklinikum Hamburg-Eppendorf, Germany.
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Ravier MA, Eto K, Jonkers FC, Nenquin M, Kadowaki T, Henquin JC. The oscillatory behavior of pancreatic islets from mice with mitochondrial glycerol-3-phosphate dehydrogenase knockout. J Biol Chem 2000; 275:1587-93. [PMID: 10636849 DOI: 10.1074/jbc.275.3.1587] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose stimulation of pancreatic beta cells induces oscillations of the membrane potential, cytosolic Ca(2+) ([Ca(2+)](i)), and insulin secretion. Each of these events depends on glucose metabolism. Both intrinsic oscillations of metabolism and repetitive activation of mitochondrial dehydrogenases by Ca(2+) have been suggested to be decisive for this oscillatory behavior. Among these dehydrogenases, mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), the key enzyme of the glycerol phosphate NADH shuttle, is activated by cytosolic [Ca(2+)](i). In the present study, we compared different types of oscillations in beta cells from wild-type and mGPDH(-/-) mice. In clusters of 5-30 islet cells and in intact islets, 15 mM glucose induced an initial drop of [Ca(2+)](i), followed by an increase in three phases: a marked initial rise, a partial decrease with rapid oscillations and eventually large and slow oscillations. These changes, in particular the frequency of the oscillations and the magnitude of the [Ca(2+)] rise, were similar in wild-type and mGPDH(-/-) mice. Glucose-induced electrical activity (oscillations of the membrane potential with bursts of action potentials) was not altered in mGPDH(-/-) beta cells. In single islets from either type of mouse, insulin secretion strictly followed the changes in [Ca(2+)](i) during imposed oscillations induced by pulses of high K(+) or glucose and during the biphasic elevation induced by sustained stimulation with glucose. An imposed and controlled rise of [Ca(2+)](i) in beta cells similarly increased NAD(P)H fluorescence in control and mGDPH(-/-) islets. Inhibition of the malate-aspartate NADH shuttle with aminooxyacetate only had minor effects in control islets but abolished the electrical, [Ca(2+)](i) and secretory responses in mGPDH(-/-) islets. The results show that the two distinct NADH shuttles play an important but at least partially redundant role in glucose-induced insulin secretion. The oscillatory behavior of beta cells does not depend on the functioning of mGPDH and on metabolic oscillations that would be generated by cyclic activation of this enzyme by Ca(2+).
Collapse
Affiliation(s)
- M A Ravier
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|