1
|
Soueid DM, Garner AL. Adaptation of RiPCA for the Live-Cell Detection of mRNA-Protein Interactions. Biochemistry 2023; 62:3323-3336. [PMID: 37963240 PMCID: PMC11466511 DOI: 10.1021/acs.biochem.3c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
RNA-binding proteins (RBPs) act as essential regulators of cell fate decisions, through their ability to bind and regulate the activity of cellular RNAs. For protein-coding mRNAs, RBPs control the localization, stability, degradation, and ultimately translation of mRNAs to impact gene expression. Disruption of the vast network of mRNA-protein interactions has been implicated in many human diseases, and accordingly, targeting these interactions has surfaced as a new frontier in RNA-targeted drug discovery. To catalyze this new field, methods are needed to enable the detection and subsequent screening of mRNA-RBP interactions, particularly in live cells. Using our laboratory's RNA-interaction with Protein-mediated Complementation Assay (RiPCA) technology, herein we describe its application to mRNA-protein interactions and present a guide for the development of future RiPCA assays for structurally diverse classes of mRNA-protein interactions.
Collapse
Affiliation(s)
- Dalia M. Soueid
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
A Novel Strategy for Regulating mRNA's Degradation via Interfering the AUF1's Binding to mRNA. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103182. [PMID: 35630659 PMCID: PMC9143527 DOI: 10.3390/molecules27103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
The study on the mechanism and kinetics of mRNA degradation provides a new vision for chemical intervention on protein expression. The AU enrichment element (ARE) in mRNA 3′-UTR can be recognized and bound by the ARE binding protein (AU-rich Element factor (AUF1) to recruit RNase for degradation. In the present study, we proposed a novel strategy for expression regulation that interferes with the AUF1-RNA binding. A small-molecule compound, JNJ-7706621, was found to bind AUF1 protein and inhibit mRNA degradation by screening the commercial compound library. We discovered that JNJ-7706621 could inhibit the expression of AUF1 targeted gene IL8, an essential pro-inflammatory factor, by interfering with the mRNA homeostatic state. These studies provide innovative drug design strategies to regulate mRNA homeostasis.
Collapse
|
3
|
Jungers CF, Djuranovic S. Modulation of miRISC-Mediated Gene Silencing in Eukaryotes. Front Mol Biosci 2022; 9:832916. [PMID: 35237661 PMCID: PMC8882679 DOI: 10.3389/fmolb.2022.832916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Gene expression is regulated at multiple levels in eukaryotic cells. Regulation at the post-transcriptional level is modulated by various trans-acting factors that bind to specific sequences in the messenger RNA (mRNA). The binding of different trans factors influences various aspects of the mRNA such as degradation rate, translation efficiency, splicing, localization, etc. MicroRNAs (miRNAs) are short endogenous ncRNAs that combine with the Argonaute to form the microRNA-induced silencing complex (miRISC), which uses base-pair complementation to silence the target transcript. RNA-binding proteins (RBPs) contribute to post-transcriptional control by influencing the mRNA stability and translation upon binding to cis-elements within the mRNA transcript. RBPs have been shown to impact gene expression through influencing the miRISC biogenesis, composition, or miRISC-mRNA target interaction. While there is clear evidence that those interactions between RBPs, miRNAs, miRISC and target mRNAs influence the efficiency of miRISC-mediated gene silencing, the exact mechanism for most of them remains unclear. This review summarizes our current knowledge on gene expression regulation through interactions of miRNAs and RBPs.
Collapse
|
4
|
Gargani S, Lourou N, Arapatzi C, Tzanos D, Saridaki M, Dushku E, Chatzimike M, Sidiropoulos ND, Andreadou M, Ntafis V, Hatzis P, Kostourou V, Kontoyiannis DL. Inactivation of AUF1 in Myeloid Cells Protects From Allergic Airway and Tumor Infiltration and Impairs the Adenosine-Induced Polarization of Pro-Angiogenic Macrophages. Front Immunol 2022; 13:752215. [PMID: 35222366 PMCID: PMC8873154 DOI: 10.3389/fimmu.2022.752215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The four isoforms of the RNA-binding protein hnRNPD/AUF1 have been proposed to limit the use of inflammatory mRNAs in innate immune cells. Mice engineered to lack AUF1s in all tissues are sensitive to acute inflammatory assaults; however, they also manifest complex degenerations obscuring assessment of AUF1s’ roles in innate immune cells. Here, we restricted a debilitating AUF1 mutation to the mouse myeloid lineage and performed disease-oriented phenotypic analyses to assess the requirement of AUF1s in variable contexts of innate immune reactivity. Contrary to the whole-body mutants, the myeloid mutants of AUF1s did not show differences in their susceptibility to cytokine storms occurring during endotoxemia; neither in type-I cell-mediated reactions driving intestinal inflammation by chemical irritants. Instead, they were resistant to allergic airway inflammation and displayed reductions in inflammatory infiltrates and an altered T-helper balance. The ex-vivo analysis of macrophages revealed that the loss of AUF1s had a minimal effect on their proinflammatory gene expression. Moreover, AUF1s were dispensable for the classical polarization of cultured macrophages by LPS & IFNγ correlating with the unchanged response of mutant mice to systemic and intestinal inflammation. Notably, AUF1s were also dispensable for the alternative polarization of macrophages by IL4, TGFβ and IL10, known to be engaged in allergic reactions. In contrast, they were required to switch proinflammatory macrophages towards a pro-angiogenic phenotype induced by adenosine receptor signals. Congruent to this, the myeloid mutants of AUF1 displayed lower levels of vascular remodeling factors in exudates from allergen exposed lungs; were unable to support the growth and inflammatory infiltration of transplanted melanoma tumors; and failed to vascularize inert grafts unless supplemented with angiogenic factors. Mechanistically, adenosine receptor signals enhanced the association of AUF1s with the Vegfa, Il12b, and Tnf mRNAs to differentially regulate and facilitate the pro-angiogenic switch. Our data collectively demonstrates that AUF1s do not act as general anti-inflammatory factors in innate immune cells but have more specialized roles in regulons allowing specific innate immune cell transitions to support tissue infiltration and remodeling processes.
Collapse
Affiliation(s)
- Sofia Gargani
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Niki Lourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina Arapatzi
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
| | - Dimitris Tzanos
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
| | - Marania Saridaki
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
| | - Esmeralda Dushku
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Margarita Chatzimike
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
| | - Nikolaos D. Sidiropoulos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Margarita Andreadou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
| | - Vasileios Ntafis
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
| | - Pantelis Hatzis
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
| | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
| | - Dimitris L. Kontoyiannis
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Fundamental Biomedical Research, Vari, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Dimitris L. Kontoyiannis, ;
| |
Collapse
|
5
|
Tsitsipatis D, Grammatikakis I, Driscoll RK, Yang X, Abdelmohsen K, Harris SC, Yang JH, Herman AB, Chang MW, Munk R, Martindale JL, Mazan-Mamczarz K, De S, Lal A, Gorospe M. AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production. Nucleic Acids Res 2021; 49:1631-1646. [PMID: 33444453 PMCID: PMC7897478 DOI: 10.1093/nar/gkaa1246] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 01/06/2023] Open
Abstract
Mammalian circRNAs can influence different cellular processes by interacting with proteins and other nucleic acids. Here, we used ribonucleoprotein immunoprecipitation (RIP) analysis to identify systematically the circRNAs associated with the cancer-related protein AUF1. Among the circRNAs interacting with AUF1 in HeLa (human cervical carcinoma) cells, we focused on hsa_circ_0032434 (circPCNX), an abundant target of AUF1. Overexpression of circPCNX specifically interfered with the binding of AUF1 to p21 (CDKN1A) mRNA, thereby promoting p21 mRNA stability and elevating the production of p21, a major inhibitor of cell proliferation. Conversely, silencing circPCNX increased AUF1 binding to p21 mRNA, reducing p21 production and promoting cell division. Importantly, eliminating the AUF1-binding region of circPCNX abrogated the rise in p21 levels and rescued proliferation. Therefore, we propose that the interaction of circPCNX with AUF1 selectively prevents AUF1 binding to p21 mRNA, leading to enhanced p21 mRNA stability and p21 protein production, thereby suppressing cell growth.
Collapse
Affiliation(s)
- Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute IRP, NIH, Bethesda, MD, USA
| | - Riley K Driscoll
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Sophia C Harris
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Ming-Wen Chang
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute IRP, NIH, Bethesda, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging (NIA) Intramural Research Program (IRP), National Institutes of Health (NIH), Baltimore, MD, USA
| |
Collapse
|
6
|
Binas O, Tants JN, Peter SA, Janowski R, Davydova E, Braun J, Niessing D, Schwalbe H, Weigand JE, Schlundt A. Structural basis for the recognition of transiently structured AU-rich elements by Roquin. Nucleic Acids Res 2020; 48:7385-7403. [PMID: 32491174 PMCID: PMC7367199 DOI: 10.1093/nar/gkaa465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Adenylate/uridylate-rich elements (AREs) are the most common cis-regulatory elements in the 3′-untranslated region (UTR) of mRNAs, where they fine-tune turnover by mediating mRNA decay. They increase plasticity and efficacy of mRNA regulation and are recognized by several ARE-specific RNA-binding proteins (RBPs). Typically, AREs are short linear motifs with a high content of complementary A and U nucleotides and often occur in multiple copies. Although thermodynamically rather unstable, the high AU-content might enable transient secondary structure formation and modify mRNA regulation by RBPs. We have recently suggested that the immunoregulatory RBP Roquin recognizes folded AREs as constitutive decay elements (CDEs), resulting in shape-specific ARE-mediated mRNA degradation. However, the structural evidence for a CDE-like recognition of AREs by Roquin is still lacking. We here present structures of CDE-like folded AREs, both in their free and protein-bound form. Moreover, the AREs in the UCP3 3′-UTR are additionally bound by the canonical ARE-binding protein AUF1 in their linear form, adopting an alternative binding-interface compared to the recognition of their CDE structure by Roquin. Strikingly, our findings thus suggest that AREs can be recognized in multiple ways, allowing control over mRNA regulation by adapting distinct conformational states, thus providing differential accessibility to regulatory RBPs.
Collapse
Affiliation(s)
- Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| | - Jan-Niklas Tants
- Institute for Molecular Biosciences, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| | - Stephen A Peter
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Elena Davydova
- Institute of Structural Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Braun
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz-Zentrum München, 85764 Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Goethe University Frankfurt and Center for Biomolecular Magnetic Resonance (BMRZ), 60438 Frankfurt, Germany
| |
Collapse
|
7
|
TOP mRNPs: Molecular Mechanisms and Principles of Regulation. Biomolecules 2020; 10:biom10070969. [PMID: 32605040 PMCID: PMC7407576 DOI: 10.3390/biom10070969] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
The cellular response to changes in the surrounding environment and to stress requires the coregulation of gene networks aiming to conserve energy and resources. This is often achieved by downregulating protein synthesis. The 5’ Terminal OligoPyrimidine (5’ TOP) motif-containing mRNAs, which encode proteins that are essential for protein synthesis, are the primary targets of translational control under stress. The TOP motif is a cis-regulatory RNA element that begins directly after the m7G cap structure and contains the hallmark invariant 5’-cytidine followed by an uninterrupted tract of 4–15 pyrimidines. Regulation of translation via the TOP motif coordinates global protein synthesis with simultaneous co-expression of the protein components required for ribosome biogenesis. In this review, we discuss architecture of TOP mRNA-containing ribonucleoprotein complexes, the principles of their assembly, and the modes of regulation of TOP mRNA translation.
Collapse
|
8
|
Ma W, Qiao J, Zhou J, Gu L, Deng D. Characterization of novel LncRNA P14AS as a protector of ANRIL through AUF1 binding in human cells. Mol Cancer 2020; 19:42. [PMID: 32106863 PMCID: PMC7045492 DOI: 10.1186/s12943-020-01150-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Background The CDKN2A/B locus contains crucial tumor suppressors and a lncRNA gene ANRIL. However, the mechanisms that coordinately regulate their expression levels are not clear. Methods Novel RNAs transcribed from the CDKN2A gene were screened by CDKN2A-specific RNA capture deep-sequencing and confirmed by Northern blotting and clone-sequencing. Long non-coding RNA (lncRNA) binding proteins were characterized by RNA pull-down combined with mass spectrometry and RNA immunoprecipitation. LncRNA functions in human cells were studied using a set of biological assays in vitro and in vivo. Results We characterized a novel lncRNA, P14AS with its promoter in the antisense strand of the fragment near CDKN2A exon 1b in human cells. The mature P14AS is a three-exon linear cytoplasmic lncRNA (1043-nt), including an AU-rich element (ARE) in exon 1. P14AS decreases AUF1-ANRIL/P16 RNA interaction and then increases ANRIL/P16 expression by competitively binding to AUF1 P37 and P40 isoforms. Interestingly, P14AS significantly promoted the proliferation of cancer cells and tumor formation in NOD-SCID mice in a P16-independent pattern. Moreover, in human colon cancer tissues, the expression levels of P14AS and ANRIL lncRNAs were significantly upregulated compared with the paired normal tissues. Conclusion A novel lncRNA, P14AS, transcribed from the antisense strand of the CDKN2A/P14 gene, promotes colon cancer development by cis upregulating the expression of oncogenic ANRIL.
Collapse
Affiliation(s)
| | | | - Jing Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital & Institute, Fu-Cheng-Lu #52, Haidian District, Beijing, 100142, China.
| |
Collapse
|
9
|
Liu B, Merriman DK, Choi SH, Schumacher MA, Plangger R, Kreutz C, Horner SM, Meyer KD, Al-Hashimi HM. A potentially abundant junctional RNA motif stabilized by m 6A and Mg 2. Nat Commun 2018; 9:2761. [PMID: 30018356 PMCID: PMC6050335 DOI: 10.1038/s41467-018-05243-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/02/2018] [Indexed: 02/03/2023] Open
Abstract
N6-Methyladenosine (m6A) is an abundant post-transcriptional RNA modification that influences multiple aspects of gene expression. In addition to recruiting proteins, m6A can modulate RNA function by destabilizing base pairing. Here, we show that when neighbored by a 5' bulge, m6A stabilizes m6A-U base pairs, and global RNA structure by ~1 kcal mol-1. The bulge most likely provides the flexibility needed to allow optimal stacking between the methyl group and 3' neighbor through a conformation that is stabilized by Mg2+. A bias toward this motif can help explain the global impact of methylation on RNA structure in transcriptome-wide studies. While m6A embedded in duplex RNA is poorly recognized by the YTH domain reader protein and m6A antibodies, both readily recognize m6A in this newly identified motif. The results uncover potentially abundant and functional m6A motifs that can modulate the epitranscriptomic structure landscape with important implications for the interpretation of transcriptome-wide data.
Collapse
Affiliation(s)
- Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dawn K Merriman
- Department of Chemistry, Duke University, Durham, NC, 27710, USA
| | - Seung H Choi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Chemistry, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
White EJF, Matsangos AE, Wilson GM. AUF1 regulation of coding and noncoding RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27620010 DOI: 10.1002/wrna.1393] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/09/2016] [Accepted: 08/16/2016] [Indexed: 01/12/2023]
Abstract
AUF1 is a family of four RNA-binding proteins (RBPs) generated by alternative pre-messenger RNA (pre-mRNA) splicing, with canonical roles in controlling the stability and/or translation of mRNA targets based on recognition of AU-rich sequences within mRNA 3' untranslated regions. However, recent studies identifying AUF1 target sites across the transcriptome have revealed that these canonical functions are but a subset of its roles in posttranscriptional regulation of gene expression. In this review, we describe recent developments in our understanding of the RNA-binding properties of AUF1 together with their biochemical implications and roles in directing mRNA decay and translation. This is then followed by a survey of newly discovered activities for AUF1 proteins in control of miRNA synthesis and function, including miRNA assembly into microRNA (miRNA)-loaded RNA-induced silencing complexes (miRISCs), miRISC targeting to mRNA substrates, interplay with an expanding network of other cellular RBPs, and reciprocal regulatory relationships between miRNA and AUF1 synthesis. Finally, we discuss recently reported relationships between AUF1 and long noncoding RNAs and regulatory roles on viral RNA substrates. Cumulatively, these findings have significantly expanded our appreciation of the scope and diversity of AUF1 functions in the cell, and are prompting an exciting array of new questions moving forward. WIREs RNA 2017, 8:e1393. doi: 10.1002/wrna.1393 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Elizabeth J F White
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aerielle E Matsangos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Lee YS, Lee JA, Kaang BK. Regulation of mRNA stability by ARE-binding proteins in synaptic plasticity and memory. Neurobiol Learn Mem 2015; 124:28-33. [PMID: 26291750 DOI: 10.1016/j.nlm.2015.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 11/27/2022]
Abstract
Formation of long-term memories requires coordinated gene expression, which can be regulated at transcriptional, post-transcriptional, and translational levels. Post-transcriptional stabilization and destabilization of mRNAs provides precise temporal and spatial regulation of gene expression, which is critical for consolidation of synaptic plasticity and memory. mRNA stability is regulated by interactions between the cis-acting elements of mRNAs, such as adenine-uridine-rich elements (AREs), and the trans-acting elements, ARE-binding proteins (AUBPs). There are several AUBPs in the nervous system. Among AUBPs, Hu/ELAV-like proteins and AUF1 are the most studied mRNA stabilizing and destabilizing factors, respectively. Here, we summarize compelling evidence for critical roles of these AUBPs in synaptic plasticity, as well as learning and memory, in both vertebrates and invertebrates. Furthermore, we also briefly review the deregulations of AUBPs in neurological disorders.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea.
| | - Jin-A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Daejeon, South Korea
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
12
|
White MR, Khan MM, Deredge D, Ross CR, Quintyn R, Zucconi BE, Wysocki VH, Wintrode PL, Wilson GM, Garcin ED. A dimer interface mutation in glyceraldehyde-3-phosphate dehydrogenase regulates its binding to AU-rich RNA. J Biol Chem 2014; 290:1770-85. [PMID: 25451934 DOI: 10.1074/jbc.m114.618165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an enzyme best known for its role in glycolysis. However, extra-glycolytic functions of GAPDH have been described, including regulation of protein expression via RNA binding. GAPDH binds to numerous adenine-uridine rich elements (AREs) from various mRNA 3'-untranslated regions in vitro and in vivo despite its lack of a canonical RNA binding motif. How GAPDH binds to these AREs is still unknown. Here we discovered that GAPDH binds with high affinity to the core ARE from tumor necrosis factor-α mRNA via a two-step binding mechanism. We demonstrate that a mutation at the GAPDH dimer interface impairs formation of the second RNA-GAPDH complex and leads to changes in the RNA structure. We investigated the effect of this interfacial mutation on GAPDH oligomerization by crystallography, small-angle x-ray scattering, nano-electrospray ionization native mass spectrometry, and hydrogen-deuterium exchange mass spectrometry. We show that the mutation does not significantly affect GAPDH tetramerization as previously proposed. Instead, the mutation promotes short-range and long-range dynamic changes in regions located at the dimer and tetramer interface and in the NAD(+) binding site. These dynamic changes are localized along the P axis of the GAPDH tetramer, suggesting that this region is important for RNA binding. Based on our results, we propose a model for sequential GAPDH binding to RNA via residues located at the dimer and tetramer interfaces.
Collapse
Affiliation(s)
- Michael R White
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Mohd M Khan
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Christina R Ross
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Royston Quintyn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Beth E Zucconi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Patrick L Wintrode
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, and
| | - Elsa D Garcin
- From the Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250,
| |
Collapse
|
13
|
Cathcart AL, Rozovics JM, Semler BL. Cellular mRNA decay protein AUF1 negatively regulates enterovirus and human rhinovirus infections. J Virol 2013; 87:10423-34. [PMID: 23903828 PMCID: PMC3807403 DOI: 10.1128/jvi.01049-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/19/2013] [Indexed: 01/12/2023] Open
Abstract
To successfully complete their replication cycles, picornaviruses modify several host proteins to alter the cellular environment to favor virus production. One such target of viral proteinase cleavage is AU-rich binding factor 1 (AUF1), a cellular protein that binds to AU-rich elements, or AREs, in the 3' noncoding regions (NCRs) of mRNAs to affect the stability of the RNA. Previous studies found that, during poliovirus or human rhinovirus infection, AUF1 is cleaved by the viral proteinase 3CD and that AUF1 can interact with the long 5' NCR of these viruses in vitro. Here, we expand on these initial findings to demonstrate that all four isoforms of AUF1 bind directly to stem-loop IV of the poliovirus 5' NCR, an interaction that is inhibited through proteolytic cleavage of AUF1 by the viral proteinase 3CD. Endogenous AUF1 was observed to relocalize to the cytoplasm of infected cells in a viral protein 2A-driven manner and to partially colocalize with the viral protein 3CD. We identify a negative role for AUF1 in poliovirus infection, as AUF1 inhibited viral translation and, ultimately, overall viral titers. Our findings also demonstrate that AUF1 functions as an antiviral factor during infection by coxsackievirus or human rhinovirus, suggesting a common mechanism that targets these related picornaviruses.
Collapse
Affiliation(s)
- Andrea L Cathcart
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697 USA
| | | | | |
Collapse
|
14
|
Zucconi BE, Wilson GM. Assembly of functional ribonucleoprotein complexes by AU-rich element RNA-binding protein 1 (AUF1) requires base-dependent and -independent RNA contacts. J Biol Chem 2013; 288:28034-48. [PMID: 23940053 DOI: 10.1074/jbc.m113.489559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AU-rich element RNA-binding protein 1 (AUF1) regulates the stability and/or translational efficiency of diverse mRNA targets, including many encoding products controlling the cell cycle, apoptosis, and inflammation by associating with AU-rich elements residing in their 3'-untranslated regions. Previous biochemical studies showed that optimal AUF1 binding requires 33-34 nucleotides with a strong preference for U-rich RNA despite observations that few AUF1-associated cellular mRNAs contain such extended U-rich domains. Using the smallest AUF1 isoform (p37(AUF1)) as a model, we employed fluorescence anisotropy-based approaches to define thermodynamic parameters describing AUF1 ribonucleoprotein (RNP) complex formation across a panel of RNA substrates. These data demonstrated that 15 nucleotides of AU-rich sequence were sufficient to nucleate high affinity p37(AUF1) RNP complexes within a larger RNA context. In particular, p37(AUF1) binding to short AU-rich RNA targets was significantly stabilized by interactions with a 3'-purine residue and largely base-independent but non-ionic contacts 5' of the AU-rich site. RNP stabilization by the upstream RNA domain was associated with an enhanced negative change in heat capacity consistent with conformational changes in protein and/or RNA components, and fluorescence resonance energy transfer-based assays demonstrated that these contacts were required for p37(AUF1) to remodel local RNA structure. Finally, reporter mRNAs containing minimal high affinity p37(AUF1) target sequences associated with AUF1 and were destabilized in a p37(AUF1)-dependent manner in cells. These findings provide a mechanistic explanation for the diverse population of AUF1 target mRNAs but also suggest how AUF1 binding could regulate protein and/or microRNA binding events at adjacent sites.
Collapse
Affiliation(s)
- Beth E Zucconi
- From the Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | | |
Collapse
|
15
|
Uehata T, Akira S. mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:708-13. [DOI: 10.1016/j.bbagrm.2013.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/04/2013] [Accepted: 03/04/2013] [Indexed: 01/14/2023]
|
16
|
Ehlers C, Schirmer S, Kehlenbach RH, Hauber J, Chemnitz J. Post-transcriptional regulation of CD83 expression by AUF1 proteins. Nucleic Acids Res 2013; 41:206-19. [PMID: 23161671 PMCID: PMC3592417 DOI: 10.1093/nar/gks1069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/27/2012] [Accepted: 10/11/2012] [Indexed: 12/31/2022] Open
Abstract
Mature dendritic cells (DC), activated lymphocytes, mononuclear cells and neutrophils express CD83, a surface protein apparently necessary for effective DC-mediated activation of naïve T-cells and T-helper cells, thymic T-cell maturation and the regulation of B-cell activation and homeostasis. Although a defined ligand of CD83 remains elusive, the multiple cellular subsets expressing CD83, as well as its numerous potential implications in immunological processes suggest that CD83 plays an important regulatory role in the mammalian immune system. Lately, nucleocytoplasmic translocation of CD83 mRNA was shown to be mediated by direct interaction between the shuttle protein HuR and a novel post-transcriptional regulatory element (PRE) located in the CD83 transcript's coding region. Interestingly, this interaction commits the CD83 mRNA to efficient nuclear export through the CRM1 protein translocation pathway. More recently, the cellular phosphoprotein and HuR ligand ANP32B (APRIL) was demonstrated to be directly involved in this intracellular transport process by linking the CD83 mRNA:HuR ribonucleoprotein (RNP) complex with the CRM1 export receptor. Casein kinase II regulates this process by phosphorylating ANP32B. Here, we identify another RNA binding protein, AUF1 (hnRNP D) that directly interacts with CD83 PRE. Unlike HuR:PRE binding, this interaction has no impact on intracellular trafficking of CD83 mRNA-containing complexes; but it does regulate translation of CD83 mRNA. Thus, our data shed more light on the complex process of post-transcriptional regulation of CD83 expression. Interfering with this process may provide a novel strategy for inhibiting CD83, and thereby cellular immune activation.
Collapse
Affiliation(s)
- Christina Ehlers
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Susann Schirmer
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Ralph H. Kehlenbach
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Jan Chemnitz
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, D-20251 Hamburg and Zentrum für Biochemie und Molekulare Zellbiologie, Universität Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| |
Collapse
|
17
|
Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:680-8. [PMID: 23246978 DOI: 10.1016/j.bbagrm.2012.12.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022]
Abstract
AUF1 is a family of four proteins generated by alternative pre-mRNA splicing that form high affinity complexes with AU-rich, mRNA-destabilizing sequences located within the 3' untranslated regions of many labile mRNAs. While AUF1 binding is most frequently associated with accelerated mRNA decay, emerging examples have demonstrated roles as a mRNA stabilizer or even translational regulator for specific transcripts. In this review, we summarize recent advances in our understanding of mRNA recognition by AUF1 and the biochemical and functional consequences of these interactions. In addition, unique properties of individual AUF1 isoforms and the roles of these proteins in modulating expression of genes associated with inflammatory, neoplastic, and cardiac diseases are discussed. Finally, we describe mechanisms that regulate AUF1 expression in cells, and current knowledge of regulatory switches that modulate the cellular levels and/or activities of AUF1 isoforms through distinct protein post-translational modifications. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
18
|
Hsp70 is a novel posttranscriptional regulator of gene expression that binds and stabilizes selected mRNAs containing AU-rich elements. Mol Cell Biol 2012; 33:71-84. [PMID: 23109422 DOI: 10.1128/mcb.01275-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AU-rich elements (AREs) encoded within many mRNA 3' untranslated regions (3'UTRs) are targets for factors that control transcript longevity and translational efficiency. Hsp70, best known as a protein chaperone with well-defined peptide-refolding properties, is known to interact with ARE-like RNA substrates in vitro. Here, we show that cofactor-free preparations of Hsp70 form direct, high-affinity complexes with ARE substrates based on specific recognition of U-rich sequences by both the ATP- and peptide-binding domains. Suppressing Hsp70 in HeLa cells destabilized an ARE reporter mRNA, indicating a novel ARE-directed mRNA-stabilizing role for this protein. Hsp70 also bound and stabilized endogenous ARE-containing mRNAs encoding vascular endothelial growth factor (VEGF) and Cox-2, which involved a mechanism that was unaffected by an inhibitor of its protein chaperone function. Hsp70 recognition and stabilization of VEGF mRNA was mediated by an ARE-like sequence in the proximal 3'UTR. Finally, stabilization of VEGF mRNA coincided with the accumulation of Hsp70 protein in HL60 promyelocytic leukemia cells recovering from acute thermal stress. We propose that the binding and stabilization of selected ARE-containing mRNAs may contribute to the cytoprotective effects of Hsp70 following cellular stress but may also provide a novel mechanism linking constitutively elevated Hsp70 expression to the development of aggressive neoplastic phenotypes.
Collapse
|
19
|
Barker A, Epis MR, Porter CJ, Hopkins BR, Wilce MCJ, Wilce JA, Giles KM, Leedman PJ. Sequence requirements for RNA binding by HuR and AUF1. J Biochem 2012; 151:423-37. [PMID: 22368252 DOI: 10.1093/jb/mvs010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The stability of RNAs bearing AU-rich elements in their 3'-UTRs, and thus the level of expression of their protein products, is regulated by interactions with cytoplasmic RNA-binding proteins. Binding by HuR generally leads to mRNA stabilization and increased protein production, whereas binding by AUF1 isoforms generally lead to rapid degradation of the mRNA and reduced protein production. The exact nature of the interplay between these and other RNA-binding proteins remains unclear, although recent studies have shown close interactions between them and even suggested competition between the two for binding to their cognate recognition sequences. Other recent reports have suggested that the sequences recognized by the two proteins are different. We therefore performed a detailed in vitro analysis of the binding site(s) for HuR and AUF1 present in androgen receptor mRNA to define their exact target sequences, and show that the same sequence is contacted by both proteins. Furthermore, we analysed a proposed HuR target within the 3'-UTR of MTA1 mRNA, and show that the contacted bases lie outside of the postulated motif and are a better match to a classical ARE than the postulated motif. The defining features of these HuR binding sites are their U-richness and single strandedness.
Collapse
Affiliation(s)
- Andrew Barker
- Laboratory for Cancer Medicine, Centre for Medical Research, Western Australian Institute for Medical Research, Perth, WA, 6000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zucconi BE, Wilson GM. Modulation of neoplastic gene regulatory pathways by the RNA-binding factor AUF1. FRONT BIOSCI-LANDMRK 2011; 16:2307-25. [PMID: 21622178 PMCID: PMC3589912 DOI: 10.2741/3855] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mRNA-binding protein AUF1 regulates the expression of many key players in cancer including proto-oncogenes, regulators of apoptosis and the cell cycle, and pro-inflammatory cytokines, principally by directing the decay kinetics of their encoded mRNAs. Most studies support an mRNA-destabilizing role for AUF1, although other findings suggest additional functions for this factor. In this review, we explore how changes in AUF1 isoform distribution, subcellular localization, and post-translational protein modifications can influence the metabolism of targeted mRNAs. However, several lines of evidence also support a role for AUF1 in the initiation and/or development of cancer. Many AUF1-targeted transcripts encode products that control pro- and anti-oncogenic processes. Also, overexpression of AUF1 enhances tumorigenesis in murine models, and AUF1 levels are enhanced in some tumors. Finally, signaling cascades that modulate AUF1 function are deregulated in some cancerous tissues. Together, these features suggest that AUF1 may play a prominent role in regulating the expression of many genes that can contribute to tumorigenic phenotypes, and that this post-transcriptional regulatory control point may be subverted by diverse mechanisms in neoplasia.
Collapse
Affiliation(s)
- Beth E. Zucconi
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201
| |
Collapse
|
21
|
Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation. Mol Cell Biol 2011; 31:1419-31. [PMID: 21245386 DOI: 10.1128/mcb.00907-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues--Ser(15), Ser(78), and Ser(82)-by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2-Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization.
Collapse
|
22
|
Bernstein J, Ballin JD, Patterson DN, Wilson GM, Toth EA. Unique properties of the Mtr4p-poly(A) complex suggest a role in substrate targeting. Biochemistry 2010; 49:10357-70. [PMID: 21058657 DOI: 10.1021/bi101518x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mtr4p is a DEVH-box helicase required for 3'-end processing and degradation of various nuclear RNA substrates. In particular, Mtr4p is essential for the creation of 5.8S rRNA, U4 snRNA, and some snoRNAs and for the degradation of cryptic unstable transcripts (CUTs), aberrant mRNAs, and aberrant tRNAs. Many instances of 3'-end processing require limited polyadenylation to proceed. While polyadenylation can signal degradation in species from bacteria to humans, the mechanism whereby polyadenylated substrates are delivered to the degradation machinery is unknown. Our previous work has shown that Mtr4p preferentially binds poly(A) RNA. We suspect that this preference aids in targeting polyadenylated RNAs to the exosome. In these studies, we have investigated the mechanism underlying the preference of Mtr4p for poly(A) substrates as a means of understanding how Mtr4p might facilitate targeting. Our analysis has revealed that recognition of poly(A) substrates involves sequence-specific changes in the architecture of Mtr4p-RNA complexes. Furthermore, these differences significantly affect downstream activities. In particular, homopolymeric stretches like poly(A) ineffectively stimulate the ATPase activity of Mtr4p and suppress the rate of dissociation of the Mtr4p-RNA complex. These findings indicate that the Mtr4p-poly(A) complex is unique and ideally suited for targeting key substrates to the exosome.
Collapse
Affiliation(s)
- Jade Bernstein
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | | | | | | | | |
Collapse
|
23
|
Gratacós FM, Brewer G. The role of AUF1 in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2010; 1:457-73. [PMID: 21956942 PMCID: PMC3608466 DOI: 10.1002/wrna.26] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Messenger ribonucleic acid (mRNA) turnover is a major control point in gene expression. In mammals, many mRNAs encoding inflammatory cytokines, oncoproteins, and G-protein-coupled receptors are destabilized by the presence of AU-rich elements (AREs) in their 3'-untranslated regions. Association of ARE-binding proteins (AUBPs) with these mRNAs promotes rapid mRNA degradation. ARE/poly(U)-binding/degradation factor 1 (AUF1), one of the best-characterized AUBPs, binds to many ARE-mRNAs and assembles other factors necessary to recruit the mRNA degradation machinery. These factors include translation initiation factor eIF4G, chaperones hsp27 and hsp70, heat-shock cognate protein hsc70, lactate dehydrogenase, poly(A)-binding protein, and other unidentified proteins. Numerous signaling pathways alter the composition of this AUF1 complex of proteins to effect changes in ARE-mRNA degradation rates. This review briefly describes the roles of mRNA decay in gene expression in general and ARE-mediated decay (AMD) in particular, with a focus on AUF1 and the different modes of regulation that govern AUF1 involvement in AMD.
Collapse
Affiliation(s)
- Frances M. Gratacós
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854-5635, USA
| | - Gary Brewer
- Department of Molecular Genetics, Microbiology and Immunology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08854-5635, USA
| |
Collapse
|
24
|
Zucconi BE, Ballin JD, Brewer BY, Ross CR, Huang J, Toth EA, Wilson GM. Alternatively expressed domains of AU-rich element RNA-binding protein 1 (AUF1) regulate RNA-binding affinity, RNA-induced protein oligomerization, and the local conformation of bound RNA ligands. J Biol Chem 2010; 285:39127-39. [PMID: 20926381 DOI: 10.1074/jbc.m110.180182] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AU-rich element RNA-binding protein 1 (AUF1) binding to AU-rich elements (AREs) in the 3'-untranslated regions of mRNAs encoding many cytokines and other regulatory proteins modulates mRNA stability, thereby influencing protein expression. AUF1-mRNA association is a dynamic paradigm directed by various cellular signals, but many features of its function remain poorly described. There are four isoforms of AUF1 that result from alternative splicing of exons 2 and 7 from a common pre-mRNA. Preliminary evidence suggests that the different isoforms have varied functional characteristics, but no detailed quantitative analysis of the properties of each isoform has been reported despite their differential expression and regulation. Using purified recombinant forms of each AUF1 protein variant, we used chemical cross-linking and gel filtration chromatography to show that each exists as a dimer in solution. We then defined the association mechanisms of each AUF1 isoform for ARE-containing RNA substrates and quantified relevant binding affinities using electrophoretic mobility shift and fluorescence anisotropy assays. Although all AUF1 isoforms generated oligomeric complexes on ARE substrates by sequential dimer association, sequences encoded by exon 2 inhibited RNA-binding affinity. By contrast, the exon 7-encoded domain enhanced RNA-dependent protein oligomerization, even permitting cooperative RNA-binding activity in some contexts. Finally, fluorescence resonance energy transfer-based assays showed that the different AUF1 isoforms remodel bound RNA substrates into divergent structures as a function of protein:RNA stoichiometry. Together, these data describe isoform-specific characteristics among AUF1 ribonucleoprotein complexes, which likely constitute a mechanistic basis for differential functions and regulation among members of this protein family.
Collapse
Affiliation(s)
- Beth E Zucconi
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
David Gerecht PS, Taylor MA, Port JD. Intracellular localization and interaction of mRNA binding proteins as detected by FRET. BMC Cell Biol 2010; 11:69. [PMID: 20843363 PMCID: PMC2949623 DOI: 10.1186/1471-2121-11-69] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 09/15/2010] [Indexed: 02/10/2023] Open
Abstract
Background A number of RNA binding proteins (BPs) bind to A+U rich elements (AREs), commonly present within 3'UTRs of highly regulated RNAs. Individual RNA-BPs proteins can modulate RNA stability, RNA localization, and/or translational efficiency. Although biochemical studies have demonstrated selectivity of ARE-BPs for individual RNAs, less certain is the in vivo composition of RNA-BP multiprotein complexes and how their composition is affected by signaling events and intracellular localization. Using FRET, we previously demonstrated that two ARE-BPs, HuR and AUF1, form stable homomeric and heteromeric associations in the nucleus and cytoplasm. In the current study, we use immuno-FRET of endogenous proteins to examine the intracellular localization and interactions of HuR and AUF1 as well as KSRP, TIA-1, and Hedls. These results were compared to those obtained with their exogenously expressed, fluorescently labeled counterparts. Results All ARE-BPs examined were found to colocalize and to form stable associations with selected other RNA-BPs in one or more cellular locations variably including the nucleus, cytoplasm (in general), or in stress granules or P bodies. Interestingly, FRET based interaction of the translational suppressor, TIA-1, and the decapping protein, Hedls, was found to occur at the interface of stress granules and P bodies, dynamic sites of intracellular RNA storage and/or turnover. To explore the physical interactions of RNA-BPs with ARE containing RNAs, in vitro transcribed Cy3-labeled RNA was transfected into cells. Interestingly, Cy3-RNA was found to coalesce in P body like punctate structures and, by FRET, was found to interact with the RNA decapping proteins, Hedls and Dcp1. Conclusions Biochemical methodologies, such as co-immunoprecipitation, and cell biological approaches such as standard confocal microscopy are useful in demonstrating the possibility of proteins and/or proteins and RNAs interacting. However, as demonstrated herein, colocalization of proteins and proteins and RNA is not always indicative of interaction. To this point, using FRET and immuno-FRET, we have demonstrated that RNA-BPs can visually colocalize without producing a FRET signal. In contrast, proteins that appear to be delimited to one or another intracellular compartment can be shown to interact when those compartments are juxtaposed.
Collapse
Affiliation(s)
- Pamela S David Gerecht
- Department of Medicine/Cardiology and Pharmacology, University of Colorado School of Medicine, 12700 East 19th Avenue, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
26
|
Misquitta C, Ghosh P, Mwanjewe J, Grover A. Role of cis-acting elements in the control of SERCA2b Ca2+ pump mRNA decay by nuclear proteins. Biochem J 2009; 388:291-7. [PMID: 15656788 PMCID: PMC1186718 DOI: 10.1042/bj20041568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alternative splicing at position 3495 b yields SERCA2 (sarco/endoplasmic reticulum Ca2+ pump 2) RNA species, namely SERCA2a and SERCA2b which differ in 3'-end regions. This results in SERCA2b RNA being less stable. In vitro decay experiments show that, in the presence of protein extracts from nuclei of LVMs (left ventricular myocytes), the rate of decay of both SERCA2b RNA and synthetic RNA from its 3'-region is greater than that of the corresponding SERCA2a RNA. To search for cis-acting instability elements in the 3'-region of SERCA2b, we examined the effects of LVM nuclear protein extracts on the in vitro decay of six short overlapping capped [m7G(5')ppp(5')Gm] and polyadenylated (A40) RNA fragments from the 3'-end region (3444-4472) of SERCA2b. The proximal fragment 2B1 (3444-3753) was the most unstable. 2B1 RNA without a cap or a polyadenylated tail was analysed further in electrophoretic mobility-shift assays, and was observed to bind to protein(s) in the nuclear extracts. Based on competition for binding to nuclear proteins between radiolabelled 2B1 RNA and short unlabelled RNA fragments, the cis-acting element involved in this binding was the sequence 2B1-4. 2B1-4 is a 35-base (3521-3555, CCAGUCCUGCUCGUUGUGGGCGUGCACCGAGGGGG) GC-rich region just past the splice site (3495). Nuclear extracts decreased the electrophoretic mobility of the radiolabelled 2B1-4 RNA which bound to two proteins (19 and 21 kDa) in cross-linking experiments. Excess 2B1-4 RNA decreased the decay of the 2B1 RNA by the nuclear protein extract. 2B1-del 4 RNA (2B1 with the 2B1-4 domain deleted) also decayed more slowly than the control 2B1 RNA. Thus SERCA2b contains a novel GC-rich cis-acting element involved in its decay by nuclear proteins.
Collapse
Affiliation(s)
- Christine M. Misquitta
- *Department of Biology, HSC 4N41 McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | - Paromita Ghosh
- †Department of Medicine, HSC 4N41 McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | - James Mwanjewe
- †Department of Medicine, HSC 4N41 McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | - Ashok K. Grover
- *Department of Biology, HSC 4N41 McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
- †Department of Medicine, HSC 4N41 McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Quaresma AJ, Bressan G, Gava L, Lanza D, Ramos C, Kobarg J. Human hnRNP Q re-localizes to cytoplasmic granules upon PMA, thapsigargin, arsenite and heat-shock treatments. Exp Cell Res 2009; 315:968-80. [DOI: 10.1016/j.yexcr.2009.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 01/13/2009] [Accepted: 01/17/2009] [Indexed: 12/15/2022]
|
28
|
Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element-mediated mRNA decay. Mol Cell Biol 2008; 28:5223-37. [PMID: 18573886 DOI: 10.1128/mcb.00431-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Controlled, transient cytokine production by monocytes depends heavily upon rapid mRNA degradation, conferred by 3' untranslated region-localized AU-rich elements (AREs) that associate with RNA-binding proteins. The ARE-binding protein AUF1 forms a complex with cap-dependent translation initiation factors and heat shock proteins to attract the mRNA degradation machinery. We refer to this protein assembly as the AUF1- and signal transduction-regulated complex, ASTRC. Rapid degradation of ARE-bearing mRNAs (ARE-mRNAs) requires ubiquitination of AUF1 and its destruction by proteasomes. Activation of monocytes by adhesion to capillary endothelium at sites of tissue damage and subsequent proinflammatory cytokine induction are prominent features of inflammation, and ARE-mRNA stabilization plays a critical role in the induction process. Here, we demonstrate activation-induced subunit rearrangements within ASTRC and identify chaperone Hsp27 as a novel subunit that is itself an ARE-binding protein essential for rapid ARE-mRNA degradation. As Hsp27 has well-characterized roles in protein ubiquitination as well as in adhesion-induced cytoskeletal remodeling and cell motility, its association with ASTRC may provide a sensing mechanism to couple proinflammatory cytokine induction with monocyte adhesion and motility.
Collapse
|
29
|
Ballin JD, Prevas JP, Bharill S, Gryczynski I, Gryczynski Z, Wilson GM. Local RNA conformational dynamics revealed by 2-aminopurine solvent accessibility. Biochemistry 2008; 47:7043-52. [PMID: 18543944 DOI: 10.1021/bi800487c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acrylamide quenching is widely used to monitor the solvent exposure of fluorescent probes in vitro. Here, we tested the utility of this technique to discriminate local RNA secondary structures using the fluorescent adenine analogue 2-aminopurine (2-AP). Under native conditions, the solvent accessibilities of most 2-AP-labeled RNA substrates were poorly resolved by classical single-population models; rather, a two-state quencher accessibility algorithm was required to model acrylamide-dependent changes in 2-AP fluorescence in structured RNA contexts. Comparing 2-AP quenching parameters between structured and unstructured RNA substrates permitted the effects of local RNA structure on 2-AP solvent exposure to be distinguished from nearest neighbor effects or environmental influences on intrinsic 2-AP photophysics. Using this strategy, the fractional accessibility of 2-AP for acrylamide ( f a) was found to be highly sensitive to local RNA structure. Base-paired 2-AP exhibited relatively poor accessibility, consistent with extensive shielding by adjacent bases. 2-AP in a single-base bulge was uniformly accessible to solvent, whereas the fractional accessibility of 2-AP in a hexanucleotide loop was indistinguishable from that of an unstructured RNA. However, these studies also provided evidence that the f a parameter reflects local conformational dynamics in base-paired RNA. Enhanced base pair dynamics at elevated temperatures were accompanied by increased f a values, while restricting local RNA breathing by adding a C-G base pair clamp or positioning 2-AP within extended RNA duplexes significantly decreased this parameter. Together, these studies show that 2-AP quenching studies can reveal local RNA structural and dynamic features beyond those that can be measured by conventional spectroscopic approaches.
Collapse
Affiliation(s)
- Jeff D Ballin
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kinzy TG, De Stefano LA, Esposito AM, Hurley JM, Roy R, Valentin-Acevedo AJ, Chang KH, Davila J, Defren JM, Donovan J, Irizarry-Barreto P, Soto A, Ysla RM, Copeland HL, Copeland PR. A birth-to-death view of mRNA from the RNA recognition motif perspective. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 36:1-8. [PMID: 21591152 DOI: 10.1002/bmb.20149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
RNA binding proteins are a large and varied group of factors that are the driving force behind post-transcriptional gene regulation. By analogy with transcription factors, RNA binding proteins bind to various regions of the mRNAs that they regulate, usually upstream or downstream from the coding region, and modulate one of the five major processes in mRNA metabolism: splicing, polyadenylation, export, translation and decay. The most abundant RNA binding protein domain is called the RNA Recognition Motif (RRM)1. It is probably safe to say that an RRM-containing protein is making some contact with an mRNA throughout its existence. The transcriptional counterpart would likely be the histones, yet the multitude of specific functions that are results of RRM based interactions belies the universality of the motif. This complex and diverse application of a single protein motif was used as the basis to develop an advanced graduate level seminar course in RNA:protein interactions. The course, utilizing a learner-centered empowerment model, was developed to dissect each step in RNA metabolism from the perspective of an RRM containing protein. This provided a framework to discuss the development of specificity for the RRM for each required process.
Collapse
Affiliation(s)
- Terri Goss Kinzy
- UMDNJ Robert Wood Johnson Medical School Graduate School of Biomedical Sciences and Rutgers, The State University of New Jersey Joint Program in Molecular Biosciences, NJ; Department of Molecular Genetics, Microbiology and Immunology, UMDNJ Robert Wood Johnson Medical School, NJ
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The abundance of a cytoplasmic mRNA in eukaryotes often determines the level of the encoded protein product. The rates at which an mRNA is synthesized, exported, and degraded collectively contribute to its abundance in all cell types. Numerous mRNAs, particularly those encoding structural proteins, are very stable, with half-lives in the order of many hours. In contrast, mRNAs encoding regulatory proteins, including oncoproteins, cytokines, and signaling proteins, are relatively unstable with half-lives of an hour or less. As a result, modest changes in their decay rates affect their levels over a relatively short time period. This is particularly important to ensure rapid responses to extracellular signaling events. Messenger RNAs often harbor sequence elements that dictate their degradation rates. Adenylate uridylate (A+U)-rich elements (AREs), first identified in 1986, are perhaps the best characterized sequences that promote rapid mRNA degradation. These elements, localized within 3'-untranslated regions, sometimes contain AUUUA pentamers within an overall U-rich sequence, but this does not always define a bona fide ARE. Thus, experimental validation is essential before bestowing upon a suspected A+U-rich sequence the title of "ARE." This chapter describes a reporter gene system that permits quantitative assessment of the effects of candidate A+U-rich sequences on mRNA half-life. This system employs tetracycline-controlled transcriptional silencing of the reporter gene, isolation of total-cell RNA at selected time points, quantitative reverse transcriptase polymerase chain reaction analysis of reporter mRNA levels, and nonlinear regression analysis of mRNA level as a function of time to quantitatively define parameters describing mRNA decay kinetics. Finally, this chapter describes more specialized assays to characterize ARE-mediated mRNA decay pathways, including deadenylation, and discusses decapping.
Collapse
|
32
|
Bernstein J, Patterson DN, Wilson GM, Toth EA. Characterization of the essential activities of Saccharomyces cerevisiae Mtr4p, a 3'->5' helicase partner of the nuclear exosome. J Biol Chem 2007; 283:4930-42. [PMID: 18096702 DOI: 10.1074/jbc.m706677200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mtr4p belongs to the Ski2p family of DEVH-box containing proteins and is required for processing and degradation of a variety of RNA substrates in the nucleus. In particular, Mtr4p is required for creating the 5.8 S ribosomal RNA from its 7 S precursor, proper 3'-end processing of the U4 small nuclear RNA and some small nucleolar RNAs, and degradation of aberrant mRNAs and tRNAs. In these studies we have shown that Mtr4p has RNA-dependent ATPase (or dATPase) activity that is stimulated effectively by likely substrates (e.g. tRNA) but surprisingly weakly by poly(A). Using an RNA strand-displacement assay, we have demonstrated that Mtr4p can, in the presence of ATP or dATP, unwind the duplex region of a partial duplex RNA substrate in the 3'-->5' direction. We have examined the ability of Mtr4p to bind model RNA substrates in the presence of nucleotides that mimic the stages (i.e. ATP-bound, ADP-bound, and nucleotide-free) of the unwinding reaction. Our results demonstrate that the presence of a non-hydrolyzable ATP analog allows Mtr4p to discriminate between partial duplex RNA substrates, binding a 3'-tailed substrate with 5-fold higher affinity than a 5'-tailed substrate. In addition, Mtr4p displays a marked preference for binding to poly(A) RNA relative to an oligoribonucleotide of the same length and a random sequence. This binding exhibits apparent cooperativity and different dynamic behavior from binding to the random single-stranded RNA. This unique binding mode might be employed primarily for degradation.
Collapse
Affiliation(s)
- Jade Bernstein
- Department of Biochemistry and Molecular Biology, and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
33
|
Ing NH, Massuto DA, Jaeger LA. Estradiol up-regulates AUF1p45 binding to stabilizing regions within the 3'-untranslated region of estrogen receptor alpha mRNA. J Biol Chem 2007; 283:1764-1772. [PMID: 18029355 DOI: 10.1074/jbc.m704745200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estradiol up-regulates expression of the estrogen receptor alpha gene in the uterus by stabilizing estrogen receptor alpha mRNA. Previously, we defined two discrete minimal estradiol-modulated stability sequences (MEMSS) within the extensive 3'-untranslated region of estrogen receptor alpha mRNA with an in vitro stability assay using cytosolic extracts from sheep uterus. We report here that excess MEMSS RNA inhibited the enhanced stability of estrogen receptor alpha mRNA in extracts from estradiol-treated ewes compared with those from control ewes. Several estradiol-induced MEMSS-binding proteins were characterized by UV cross-linking in uterine extracts from ewes in a time course study (0, 8, 16, and 24 h after estradiol injection). The pattern of binding proteins changed at 16 h post-injection, concurrent with enhanced estrogen receptor alpha mRNA stability and the highest rate of accumulation of estrogen receptor alpha mRNA. The predominant MEMSS-binding protein induced by estradiol treatment was identified as AUF1 (A + U-rich RNA-binding factor 1) protein isoform p45 (a product of the heterogeneous nuclear ribonucleoprotein D gene). Immunoblot analysis indicated that only two of four AUF1 protein isoforms were present in the uterine cytosolic extracts and that estradiol treatment strongly increased the ratio of AUF1 isoforms p45 to p37. Nonphosphorylated recombinant AUF1p45 protected estrogen receptor alpha mRNA in vitro in a dose-dependent manner. These studies describe estrogenic induction of AUF1p45 binding to the estrogen receptor alpha mRNA as a molecular mechanism for post-transcriptional up-regulation of gene expression.
Collapse
Affiliation(s)
- Nancy H Ing
- Department of Animal Science, Texas A & M University, College Station, Texas 77843; Veterinary Integrative Biosciences, Texas A & M University, College Station, Texas 77843.
| | - Dana A Massuto
- Veterinary Integrative Biosciences, Texas A & M University, College Station, Texas 77843
| | - Laurie A Jaeger
- Veterinary Integrative Biosciences, Texas A & M University, College Station, Texas 77843
| |
Collapse
|
34
|
Ballin JD, Bharill S, Fialcowitz-White EJ, Gryczynski I, Gryczynski Z, Wilson GM. Site-specific variations in RNA folding thermodynamics visualized by 2-aminopurine fluorescence. Biochemistry 2007; 46:13948-60. [PMID: 17997580 DOI: 10.1021/bi7011977] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fluorescent base analogue 2-aminopurine (2-AP) is commonly used to study specific conformational and protein binding events involving nucleic acids. Here, combinations of steady-state and time-resolved fluorescence spectroscopy of 2-AP were employed to monitor conformational transitions within a model hairpin RNA from diverse structural perspectives. RNA substrates adopting stable, unambiguous secondary structures were labeled with 2-AP at an unpaired base, within the loop, or inside the base-paired stem. Steady-state fluorescence was monitored as the RNA hairpins made the transitions between folded and unfolded conformations using thermal denaturation, urea titration, and cation-mediated folding. Unstructured control RNA substrates permitted the effects of higher-order RNA structures on 2-AP fluorescence to be distinguished from stimulus-dependent changes in intrinsic 2-AP photophysics and/or interactions with adjacent residues. Thermodynamic parameters describing local conformational changes were thus resolved from multiple perspectives within the model RNA hairpin. These data provided energetic bases for construction of folding mechanisms, which varied among different folding-unfolding stimuli. Time-resolved fluorescence studies further revealed that 2-AP exhibits characteristic signatures of component fluorescence lifetimes and respective fractional contributions in different RNA structural contexts. Together, these studies demonstrate localized conformational events contributing to RNA folding and unfolding that could not be observed by approaches monitoring only global structural transitions.
Collapse
Affiliation(s)
- Jeff D Ballin
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
35
|
David PS, Tanveer R, Port JD. FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1. RNA (NEW YORK, N.Y.) 2007; 13:1453-68. [PMID: 17626845 PMCID: PMC1950754 DOI: 10.1261/rna.501707] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A number of highly regulated gene classes are regulated post-transcriptionally at the level of mRNA stability. A central feature in these mRNAs is the presence of A+U-rich elements (ARE) within their 3' UTRs. Two ARE binding proteins, HuR and AUF1, are associated with mRNA stabilization and destabilization, respectively. Previous studies have demonstrated homomultimerization of each protein and the capacity to bind simultaneous or competitively to a single ARE. To investigate this possibility further, cell biological and biophysical approaches were undertaken. Protein-protein interaction was monitored by fluorescence resonance energy transfer (FRET) and by immunocytochemistry in live and fixed cells using fluorescently labeled CFP/YFP fusion proteins of HuR and p37AUF1. Strong nuclear FRET between HuR/HuR and AUF1/AUF1 homodimers as well as HuR/AUF1 heterodimers was observed. Treatment with the MAP kinase activator, anisomycin, which commonly stabilizes ARE-containing mRNAs, caused rapid nuclear to cytoplasmic shuttling of HuR. AUF1 also underwent shuttling, but on a longer time scale. After shuttling, HuR/HuR, AUF1/AUF1, and HuR/AUF1, FRET was also observed in the cytoplasm. In further studies, arsenite rapidly induced the formation of stress granules containing HuR and TIA-1 but not AUF1. The current studies demonstrate that two mRNA binding proteins, HuR and AUF1, are colocalized and are capable of functional interaction in both the nucleus and cytoplasm. FRET-based detection of AUF1/HuR interaction may serve as a basis of opening up new dimensions in delineating the functional interaction of mRNA binding proteins with RNA turnover.
Collapse
Affiliation(s)
- Pamela S David
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
36
|
Fialcowitz-White EJ, Brewer BY, Ballin JD, Willis CD, Toth EA, Wilson GM. Specific protein domains mediate cooperative assembly of HuR oligomers on AU-rich mRNA-destabilizing sequences. J Biol Chem 2007; 282:20948-59. [PMID: 17517897 PMCID: PMC2244793 DOI: 10.1074/jbc.m701751200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The RNA-binding factor HuR is a ubiquitously expressed member of the Hu protein family that binds and stabilizes mRNAs containing AU-rich elements (AREs). Hu proteins share a common domain organization of two tandemly arrayed RNA recognition motifs (RRMs) near the N terminus, followed by a basic hinge domain and a third RRM near the C terminus. In this study, we engineered recombinant wild-type and mutant HuR proteins lacking affinity tags to characterize their ARE-binding properties. Using combinations of electrophoretic mobility shift and fluorescence anisotropy-based binding assays, we show that HuR can bind ARE substrates as small as 13 nucleotides with low nanomolar affinity, but forms cooperative oligomeric protein complexes on ARE substrates of at least 18 nucleotides in length. Analyses of deletion mutant proteins indicated that RRM3 does not contribute to high affinity recognition of ARE substrates, but is required for cooperative assembly of HuR oligomers on RNA. Finally, the hinge domain between RRM2 and RRM3 contributes significant binding energy to HuR.ARE complex formation in an ARE length-dependent manner. The hinge does not enhance RNA-binding activity by increased ion pair formation despite extensive positive charge within this region, and it does not thermodynamically stabilize protein folding. Together, the results define distinct roles for the HuR hinge and RRM3 domains in formation of cooperative HuR.ARE complexes in solution.
Collapse
Affiliation(s)
- Elizabeth J. Fialcowitz-White
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Brandy Y. Brewer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Jeff D. Ballin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Chris D. Willis
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Eric A. Toth
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
37
|
Abstract
This review addresses the scope of influence of mRNA decay on cellular functions and its potential role in normal and malignant hematopoiesis. Evidence is emerging that leukemic oncogenes and hematopoietic cytokines interact with mRNA decay pathways. These pathways can co-regulate functionally related genes through specific motifs in the 3'-untranslated region of targeted transcripts. The steps that link external stimuli to transcript turnover are not fully understood, but include subcellular relocalization or post-transcriptional modification of specific transcript-stabilizing or -destabilizing proteins. Improper functioning of these regulators of mRNA turnover can impede normal cellular differentiation or promote cancers. By delineating how subsets of transcripts decay in synchrony during normal hematopoiesis, it may be possible to determine whether this post-transcriptional regulatory pathway is hijacked in leukemogenesis.
Collapse
Affiliation(s)
- R A Steinman
- University of Pittsburgh Cancer Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
38
|
Eberhardt W, Doller A, Akool ES, Pfeilschifter J. Modulation of mRNA stability as a novel therapeutic approach. Pharmacol Ther 2007; 114:56-73. [PMID: 17320967 DOI: 10.1016/j.pharmthera.2007.01.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/10/2007] [Accepted: 01/10/2007] [Indexed: 12/21/2022]
Abstract
During the last decade evidence has accumulated that modulation of mRNA stability plays a central role in cellular homeostasis, including cell differentiation, proliferation and adaptation to external stimuli. The functional relevance of posttranscriptional gene regulation is highlighted by many pathologies, wherein occurrence tightly correlates with a dysregulation in mRNA stability, including chronic inflammation, cardiovascular diseases and cancer. Most commonly, the cis-regulatory elements of mRNA decay are represented by the adenylate- and uridylate (AU)-rich elements (ARE) which are specifically bound by trans-acting RNA binding proteins, which finally determine whether mRNA decay is delayed or facilitated. Regulation of mRNA decay by RNA stabilizing and RNA destabilizing factors is furthermore controlled by different intrinsic and environmental stimuli. The modulation of mRNA binding proteins, therefore, illuminates a promising approach for the pharmacotherapy of those key pathologies mentioned above and characterized by a posttranscriptional dysregulation. Most promisingly, intracellular trafficking of many of the mRNA stability regulating factors is, in turn, regulated by some major signaling pathways, including the mitogen-activated protein kinase (MAPK) cascade, the AMP-activated kinase (AMPK) and the protein kinase (PK) C (PKC) family. In this review, we present timely examples of genes regulated by mRNA stability with a special focus on signaling pathways involved in the ARE-dependent mRNA decay. A better understanding of these processes may form the basis for the development of novel therapeutics to treat major human diseases.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
39
|
Brewer BY, Ballin JD, Fialcowitz-White EJ, Blackshear PJ, Wilson GM. Substrate dependence of conformational changes in the RNA-binding domain of tristetraprolin assessed by fluorescence spectroscopy of tryptophan mutants. Biochemistry 2007; 45:13807-17. [PMID: 17105199 PMCID: PMC1640280 DOI: 10.1021/bi061320j] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Association of tristetraprolin (TTP) with mRNAs containing selected AU-rich mRNA-destabilizing elements (AREs) initiates rapid cytoplasmic degradation of these transcripts. The RNA-binding activity of TTP is mediated by an internal tandem zinc finger domain that preferentially recognizes U-rich RNA ligands containing adjacent UUAU half-sites and is accompanied by conformational changes within the peptide. Here, we have used analogues of the TTP RNA-binding domain containing specific tryptophan substitutions to probe the Zn2+ and RNA substrate dependence of conformational events within individual zinc fingers. Fluorescence methods demonstrate that the N-terminal, but not C-terminal, zinc finger domain adopts a stably folded conformation in the presence of Zn2+. Denaturant titrations suggest that both the N- and C-terminal zinc fingers exhibit limited structural heterogeneity in the absence of RNA substrates, although this is more pronounced for the C-terminal finger. Binding to a cognate ARE substrate induced significant conformational changes within each zinc finger, which also included increased resistance to chemical denaturation. Studies with mutant ARE ligands revealed that a single UUAU half-site was sufficient to induce structural modulation of the N-terminal finger. However, RNA-dependent folding of the C-terminal zinc finger was only observed in the presence of tandem UUAU half-sites, suggesting that the conformation of this domain is linked not only to RNA substrate recognition but also to the ligand occupancy and/or conformational status of the N-terminal finger. Coupled with previous structural and thermodynamic analyses, these data provide a mechanistic framework for discrimination of RNA substrates involving ligand-dependent conformational adaptation of both zinc fingers within the TTP RNA-binding domain.
Collapse
Affiliation(s)
| | | | | | | | - Gerald M. Wilson
- *To whom correspondence should be addressed: Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201. Telephone: (410)706-8904. Fax: (410)706-8297. e-mail:
| |
Collapse
|
40
|
Cosson B, Gautier-Courteille C, Maniey D, Aït-Ahmed O, Lesimple M, Osborne HB, Paillard L. Oligomerization of EDEN-BP is required for specific mRNA deadenylation and binding. Biol Cell 2007; 98:653-65. [PMID: 16836486 DOI: 10.1042/bc20060054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION mRNA deadenylation [shortening of the poly(A) tail] is often triggered by specific sequence elements present within mRNA 3' untranslated regions and generally causes rapid degradation of the mRNA. In vertebrates, many of these deadenylation elements are called AREs (AU-rich elements). The EDEN (embryo deadenylation element) sequence is a Xenopus class III ARE. EDEN acts by binding a specific factor, EDEN-BP (EDEN-binding protein), which in turn stimulates deadenylation. RESULTS We show here that EDEN-BP is able to oligomerize. A 27-amino-acid region of EDEN-BP was identified as a key domain for oligomerization. A mutant of EDEN-BP lacking this region was unable to oligomerize, and a peptide corresponding to this region competitively inhibited the oligomerization of full-length EDEN-BP. Impairing oligomerization by either of these two methods specifically abolished EDEN-dependent deadenylation. Furthermore, impairing oligomerization inhibited the binding of EDEN-BP to its target RNA, demonstrating a strong coupling between EDEN-BP oligomerization and RNA binding. CONCLUSIONS These data, showing that the oligomerization of EDEN-BP is required for binding of the protein on its target RNA and for EDEN-dependent deadenylation in Xenopus embryos, will be important for the identification of cofactors required for the deadenylation process.
Collapse
Affiliation(s)
- Bertrand Cosson
- CNRS UMR 6061, IFR 140, Université de Rennes 1, Faculté de Médecine, 2 Avenue Léon Bernard, 35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Sagliocco F, Laloo B, Cosson B, Laborde L, Castroviejo M, Rosenbaum J, Ripoche J, Grosset C. The ARE-associated factor AUF1 binds poly(A) in vitro in competition with PABP. Biochem J 2006; 400:337-47. [PMID: 16834569 PMCID: PMC1652824 DOI: 10.1042/bj20060328] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ARE (AU-rich element) is a post-transcriptional element controlling both mRNA turnover and translation initiation by primarily inducing poly(A) tail shortening. The mechanisms by which the ARE-associated proteins induce deadenylation are still obscure. One possibility among others would be that an ARE-ARE-BP (ARE-binding protein) complex intervenes in the PABP [poly(A)-binding protein]-poly(A) tail association and facilitates poly(A) tail accessibility to deadenylases. Here, we show by several experimental approaches that AUF1 (AU-rich element RNA-binding protein 1)/hnRNP (heterogeneous nuclear ribonucleoprotein) D, an mRNA-destabilizing ARE-BP, can bind poly(A) sequence in vitro. First, endogenous AUF1 proteins from HeLa cells specifically bound poly(A), independently of PABP. Secondly, using polyadenylated RNA probes, we showed that (i) the four recombinant AUF1 isoforms bind poly(A) as efficiently as PABP, (ii) the AUF1 binding to poly(A) does not change when the polyadenylated probe contains the GM-CSF (granulocyte/macrophage-colony stimulating factor) ARE, suggesting that, in vitro, the AUF1-poly(A) association was independent of the ARE sequence itself. In vitro, the binding of AUF1 isoforms to poly(A) displayed oligomeric and co-operative properties and AUF1 efficiently displaced PABP from the poly(A). Finally, the AUF1 molar concentration in HeLa cytoplasm was only 2-fold lower than that of PABP, whereas in the nucleus, its molar concentration was similar to that of PABP. These in vitro results suggest that, in vivo, AUF1 could compete with PABP for the binding to poly(A). Altogether, our results may suggest a role for AUF1 in controlling PABP-poly(A) tail association.
Collapse
Affiliation(s)
- Francis Sagliocco
- *INSERM, E362, Bordeaux, F-33076 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France
- †IFR66, Bordeaux, F-33076 France
| | - Benoît Laloo
- *INSERM, E362, Bordeaux, F-33076 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France
- †IFR66, Bordeaux, F-33076 France
| | - Bertrand Cosson
- ‡CNRS, UMR 6061, Rennes F-35043, France; Université Rennes I, Rennes, F-35043 France
| | - Laurence Laborde
- *INSERM, E362, Bordeaux, F-33076 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France
- †IFR66, Bordeaux, F-33076 France
| | - Michel Castroviejo
- †IFR66, Bordeaux, F-33076 France
- §CNRS, UMR 5097, Bordeaux, F-33076 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France
| | - Jean Rosenbaum
- *INSERM, E362, Bordeaux, F-33076 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France
- †IFR66, Bordeaux, F-33076 France
| | - Jean Ripoche
- *INSERM, E362, Bordeaux, F-33076 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France
- †IFR66, Bordeaux, F-33076 France
| | - Christophe Grosset
- *INSERM, E362, Bordeaux, F-33076 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France
- †IFR66, Bordeaux, F-33076 France
- To whom correspondence should be addressed (email )
| |
Collapse
|
42
|
Lu JY, Sadri N, Schneider RJ. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 2006; 20:3174-84. [PMID: 17085481 PMCID: PMC1635151 DOI: 10.1101/gad.1467606] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Excessive production of proinflammatory cytokines, particularly tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta), plays a critical role in septic shock induced by bacterial endotoxin (endotoxemia). Precise control of cytokine expression depends on rapid degradation of cytokine mRNAs, mediated by an AU-rich element (ARE) in the 3' noncoding region and by interacting ARE-binding proteins, which control the systemic inflammatory response. To understand the function of the ARE-binding protein AUF1, we developed an AUF1 knockout mouse. We show that AUF1 normally functions to protect against the lethal progression of endotoxemia. Upon endotoxin challenge, AUF1 knockout mice display symptoms of severe endotoxic shock, including vascular hemorrhage, intravascular coagulation, and high mortality, resulting from overproduction of TNFalpha and IL-1beta. Overexpression of these two cytokines is specific, and shown to result from an inability to rapidly degrade these mRNAs in macrophages following induction. Neutralizing antibodies to TNFalpha and IL-1beta protect AUF1 knockout mice against lethal endotoxic shock. These and other data describe a novel post-transcriptional mechanism whereby AUF1 acts as a crucial attenuator of the inflammatory response, promoting the rapid decay of selective proinflammatory cytokine mRNAs following endotoxin activation. Defects in the AUF1 post-transcriptionally controlled pathway may be involved in human inflammatory disease.
Collapse
Affiliation(s)
- Jin-Yu Lu
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
43
|
Paschoud S, Dogar AM, Kuntz C, Grisoni-Neupert B, Richman L, Kühn LC. Destabilization of interleukin-6 mRNA requires a putative RNA stem-loop structure, an AU-rich element, and the RNA-binding protein AUF1. Mol Cell Biol 2006; 26:8228-41. [PMID: 16954375 PMCID: PMC1636780 DOI: 10.1128/mcb.01155-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interleukin-6 mRNA is unstable and degraded with a half-life of 30 min. Instability determinants can entirely be attributed to the 3' untranslated region. By grafting segments of this region to stable green fluorescent protein mRNA and subsequent scanning mutagenesis, we have identified two conserved elements, which together account for most of the instability. The first corresponds to a short noncanonical AU-rich element. The other, 80 nucleotides further 5', comprises a sequence predicted to form a stem-loop structure. Neither element alone was sufficient to confer full instability, suggesting that they might cooperate. Overexpression of myc-tagged AUF1 p37 and p42 isoforms as well as suppression of endogenous AUF1 by RNA interference stabilized interleukin-6 mRNA. Both effects required the AU-rich instability element. Similarly, the proteasome inhibitor MG132 stabilized interleukin-6 mRNA probably through an increase of AUF1 levels. The mRNA coimmunoprecipitated specifically with myc-tagged AUF1 p37 and p42 in cell extracts but only when the AU-rich instability element was present. These results indicate that AUF1 binds to the AU-rich element in vivo and promotes IL-6 mRNA degradation.
Collapse
Affiliation(s)
- Serge Paschoud
- Swiss Institute for Experimental Cancer Research, Genetics Unit, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland.
| | | | | | | | | | | |
Collapse
|
44
|
Passos DO, Quaresma AJC, Kobarg J. The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization. Biochem Biophys Res Commun 2006; 346:517-25. [PMID: 16765914 DOI: 10.1016/j.bbrc.2006.05.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/21/2006] [Indexed: 11/19/2022]
Abstract
Protein arginine methylation is an irreversible post-translational protein modification catalyzed by a family of at least nine different enzymes entitled PRMTs (protein arginine methyl transferases). Although PRMT1 is responsible for 85% of the protein methylation in human cells, its substrate spectrum has not yet been fully characterized nor are the functional consequences of methylation for the protein substrates well understood. Therefore, we set out to employ the yeast two-hybrid system in order to identify new substrate proteins for human PRMT1. We were able to identify nine different PRMT1 interacting proteins involved in different aspects of RNA metabolism, five of which had been previously described either as substrates for PRMT1 or as functionally associated with PRMT1. Among the four new identified possible protein substrates was hnRNPQ3 (NSAP1), a protein whose function has been implicated in diverse steps of mRNA maturation, including splicing, editing, and degradation. By in vitro methylation assays we were able to show that hnRNPQ3 is a substrate for PRMT1 and that its C-terminal RGG box domain is the sole target for methylation. By further studies with the inhibitor of methylation Adox we provide evidence that hnRNPQ1-3 are methylated in vivo. Finally, we demonstrate by immunofluorescence analysis of HeLa cells that the methylation of hnRNPQ is important for its nuclear localization, since Adox treatment causes its re-distribution from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Dario O Passos
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Campinas, SP, Brazil
| | | | | |
Collapse
|
45
|
Misquitta CM, Chen T, Grover AK. Control of protein expression through mRNA stability in calcium signalling. Cell Calcium 2006; 40:329-46. [PMID: 16765440 DOI: 10.1016/j.ceca.2006.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 03/22/2006] [Accepted: 04/12/2006] [Indexed: 01/14/2023]
Abstract
Specific sequences (cis-acting elements) in the 3'-untranslated region (UTR) of RNA, together with stabilizing and destabilizing proteins (trans-acting factors), determine the mRNA stability, and consequently, the level of expression of several proteins. Such interactions were discovered initially for short-lived mRNAs encoding cytokines and early genes like c-jun and c-myc. However, they may also determine the fate of more stable mRNAs in a tissue and disease-dependent manner. The interactions between the cis-acting elements and the trans-acting factors may also be modulated by Ca(2+) either directly or via a control of the phosphorylation status of the trans-acting factors. We focus initially on the basic concepts in mRNA stability with the trans-acting factors AUF1 (destabilizing) and HuR (stabilizing). Sarco/endoplasmic reticulum Ca(2+) pumps, SERCA2a (cardiac and slow twitch muscles) and SERCA2b (most cells including smooth muscle cells), are pivotal in Ca(2+) mobilization during signal transduction. SERCA2a and SERCA2b proteins are encoded by relatively stable mRNAs that contain cis-acting stability determinants in their 3'-regions. We present several pathways where 3'-UTR mediated mRNA decay is key to Ca(2+) signalling: SERCA2a and beta-adrenergic receptors in heart failure, renin-angiotensin system, and parathyroid hormones. Other examples discussed include cytokines vascular endothelial growth factor, endothelin and endothelial nitric oxide synthase. Roles of Ca(2+) and Ca(2+)-binding proteins in mRNA stability are also discussed. We anticipate that these novel modes of control of protein expression will form an emerging area of research that may explore the central role of Ca(2+) in cell function during development and in disease.
Collapse
Affiliation(s)
- Christine M Misquitta
- Banting and Best Department of Medical Research, 10th floor Donnelly CCBR, University of Toronto, 160 College Street, Toronto, Ont., Canada M5S 3E1
| | | | | |
Collapse
|
46
|
Lu JY, Bergman N, Sadri N, Schneider RJ. Assembly of AUF1 with eIF4G-poly(A) binding protein complex suggests a translation function in AU-rich mRNA decay. RNA (NEW YORK, N.Y.) 2006; 12:883-93. [PMID: 16556936 PMCID: PMC1440908 DOI: 10.1261/rna.2308106] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An AU-rich element (ARE) located in the 3'-untranslated region of many short-lived mRNAs functions as an instability determinant for these transcripts. AUF1/hnRNP D, an ARE-binding protein family consisting of four isoforms, promotes rapid decay of ARE-mRNAs. The mechanism by which AUF1 promotes rapid decay of ARE-mRNA is unclear. AUF1 has been shown to form an RNase-resistant complex in cells with the cap-initiation complex and heat shock proteins Hsp70 and Hsc70, as well as other unidentified factors. To understand the function of the AUF1 complex, we have biochemically investigated the association of AUF1 with the components of the translation initiation complex. We used purified recombinant proteins and a synthetic ARE RNA oligonucleotide to determine the hierarchy of protein interactions in vitro and the effect of AUF1 binding to the ARE on the formation of protein complexes. We demonstrate that all four AUF1 protein isoforms bind directly and strongly to initiation factor eIF4G at a C-terminal site regardless of AUF1 interaction with the ARE. AUF1 is shown to directly interact with poly(A) binding protein (PABP), both independently of eIF4G and in a complex with eIF4G. AUF1-PABP interaction is opposed by AUF1 binding to the ARE or Hsp70 heat shock protein. In vivo, AUF1 interaction with PABP does not alter PABP stability. Based on these and other data, we propose a model for the molecular interactions of AUF1 that involves translation-dependent displacement of AUF1-PABP complexes from ARE-mRNAs with possible unmasking of the poly(A) tail.
Collapse
Affiliation(s)
- Jin-Yu Lu
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
47
|
Glaser ND, Lukyanenko YO, Wang Y, Wilson GM, Rogers TB. JNK activation decreases PP2A regulatory subunit B56alpha expression and mRNA stability and increases AUF1 expression in cardiomyocytes. Am J Physiol Heart Circ Physiol 2006; 291:H1183-92. [PMID: 16603688 PMCID: PMC1564198 DOI: 10.1152/ajpheart.01162.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A central feature of heart disease is a molecular remodeling of signaling pathways in cardiac myocytes. This study focused on novel molecular elements of MAPK-mediated alterations in the pattern of gene expression of the protein phosphatase 2A (PP2A). In an established model of sustained JNK activation, a 70% decrease in expression of the targeting subunit of PP2A, B56alpha, was observed in either neonatal or adult cardiomyocytes. This loss in protein abundance was accompanied by a decrease of 69% in B56alpha mRNA steady-state levels. Given that the 3'-untranslated region of this transcript contains adenylate-uridylate-rich elements known to regulate mRNA degradation, experiments explored the notion that instability of B56alpha mRNA accounts for the response. mRNA time-course analyses with real-time PCR methods showed that B56alpha transcript was transformed from a stable (no significant decay over 1 h) to a labile form that rapidly degraded within minutes. These results were supported by complementary experiments that revealed that the RNA-binding protein AUF1, known to destabilize target mRNA, was increased fourfold in JNK-activated cells. A variety of other stress-related stimuli, such as p38 MAPK activation and phorbol ester, upregulated AUF1 expression in cultured cardiac cells as well. In addition, gel mobility shift assays demonstrated that p37AUF1 binds with nanomolar affinity to segments of the B56alpha 3'-untranslated region. Thus these studies provide new evidence that signaling-induced mRNA instability is an important mechanism that underlies the changes in the pattern of gene expression evoked by stress-activated pathways in cardiac cells.
Collapse
Affiliation(s)
- Nicole D. Glaser
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
| | - Yevgeniya O. Lukyanenko
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
| | - Yibin Wang
- Departments of Anesthesiology and Medicine, University of California at Los Angeles, Los Angeles, California
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
| | - Terry B. Rogers
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland and
- Institute of Molecular Cardiology, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland
- To whom correspondence should be addressed: Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore, MD 21201. Tel: 410-706-3169; Fax: 410-706-6676;
| |
Collapse
|
48
|
Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2006; 33:7138-50. [PMID: 16391004 PMCID: PMC1325018 DOI: 10.1093/nar/gki1012] [Citation(s) in RCA: 761] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The control of mRNA stability is an important process that allows cells to not only limit, but also rapidly adjust, the expression of regulatory factors whose over expression may be detrimental to the host organism. Sequence elements rich in A and U nucleotides or AU-rich elements (AREs) have been known for many years to target mRNAs for rapid degradation. In this survey, after briefly summarizing the data on the sequence characteristics of AREs, we present an analysis of the known ARE-binding proteins (ARE-BP) with respect to their mRNA targets and the consequences of their binding to the mRNA. In this analysis, both the changes in mRNA stability and the lesser studied effects on translation are considered. This analysis highlights the multitude of mRNAs bound by one ARE-BP and conversely the large number of ARE-BP that associate with any particular ARE-containing mRNA. This situation is discussed with respect to functional redundancies or antagonisms. The potential relationship between mRNA stability and translation is also discussed. Finally, we present several hypotheses that could unify the published data and suggest avenues for future research.
Collapse
Affiliation(s)
| | | | - H. Beverley Osborne
- To whom correspondence should be addressed. Tel: +33 223 23 4523; Fax: +33 223 23 4478;
| |
Collapse
|
49
|
Sommer S, Cui Y, Brewer G, Fuqua SAW. The c-Yes 3'-UTR contains adenine/uridine-rich elements that bind AUF1 and HuR involved in mRNA decay in breast cancer cells. J Steroid Biochem Mol Biol 2005; 97:219-29. [PMID: 16289864 DOI: 10.1016/j.jsbmb.2005.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2005] [Indexed: 11/19/2022]
Abstract
c-Yes is a member of the c-Src family of tyrosine kinases and has been implicated in intracellular signaling, cell morphology, and adhesion. Changes in its expression have also been associated with the aggressiveness of human breast and colon cancer cells. In MDA-MB-231 human breast cancer cells, overexpression of the small heat shock protein 27 (hsp27) results in a downregulation of c-Yes levels, concomitant with increased in vitro invasiveness and in vivo metastatic behavior. Very little is known, however, about the mechanisms regulating c-Yes expression. Here, we demonstrate that hsp27-induced c-Yes downregulation is not due to a reduction in transcriptional activity. However, the 3'-untranslated region (3'-UTR) of the c-Yes gene may be involved in its own regulation, since this region affects heterologous reporter gene activity in transactivation assays. This down-regulatory effect maps to three adenine/uridine-rich elements (AREs) that bind to cellular HuR and AUF1 (hnRNP D), two ARE-binding proteins (ARE-BPs) implicated in accelerated mRNA degradation. Our results suggest that the c-Yes 3'-UTR contains at least three newly identified AREs which are bound specifically by ARE-BPs, and provide a structural basis for post-transcriptional regulation of c-Yes expression.
Collapse
Affiliation(s)
- Stephanie Sommer
- Breast Center, Baylor College of Medicine and The Methodist Hospital, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
50
|
Schroeder JM, Ibrahim H, Taylor L, Curthoys NP. Role of deadenylation and AUF1 binding in the pH-responsive stabilization of glutaminase mRNA. Am J Physiol Renal Physiol 2005; 290:F733-40. [PMID: 16219914 DOI: 10.1152/ajprenal.00250.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During chronic metabolic acidosis, increased expression of renal glutaminase (GA) results from selective stabilization of the GA mRNA. This response is mediated by a direct repeat of an 8-base adenylate-uridylate (AU) sequence that binds zeta-crystallin and functions as a pH response element (pH-RE). A tetracycline-responsive promoter system was developed in LLC-PK(1)-F(+) cells to perform pulse-chase analysis of the turnover of a chimeric beta-globin (betaG) mRNA that contains 960 bp of the 3'-UTR of GA mRNA including the pH-RE. The betaG-GA mRNA exhibits a 14-fold increase in half-life when the LLC-PK(1)-F(+) cells are transferred to acidic medium. RNase H cleavage and Northern blot analysis of the 3'-ends established that rapid deadenylation occurred concomitantly with the rapid decay of the betaG-GA mRNA in cells grown in normal medium. Stabilization of the betaG-GA mRNA in acidic medium is associated with a pronounced decrease in the rate of deadenylation. Mutation of the pH-RE within the betaG-GA mRNA blocked the pH-responsive stabilization, but not the rapid decay, whereas insertion of only a 29-bp segment containing the pH-RE was sufficient to produce both a rapid decay and a pH-responsive stabilization. Various kidney cells express multiple isoforms of AUF1, an AU-binding protein that enhances mRNA turnover. RNA gel-shift assays demonstrated that the recombinant p40 isoform of AUF1 binds to the pH-RE with high affinity and specificity. Thus AUF1 may mediate the rapid turnover of the GA mRNA, whereas increased binding of zeta-crystallin during acidosis may inhibit degradation and result in selective stabilization.
Collapse
Affiliation(s)
- Jill M Schroeder
- Department of Biochemistry and Molecular Biology, Colorado State University, Campus Delivery 1870, Fort Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|