1
|
Watanabe M, Yoshiike K, Miki E, Kuroki K. 3,5-Dihydroxy-4-methoxybenzyl alcohol, a novel antioxidant isolated from oyster meat, inhibits the hypothalamus-pituitary-adrenal axis to regulate the stress response. Brain Res 2024; 1845:149290. [PMID: 39461666 DOI: 10.1016/j.brainres.2024.149290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Antioxidants that can scavenge reactive oxygen in the brain and inhibit hyperactivity of the HPA axis are desirable. AIMS We investigated the cerebral translocation of the antioxidant 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA) and the effects of DHMBA administration on the hypothalamus-pituitary-adrenal (HPA) axis in stress-loaded rats. METHODS Experiment 1: Plasma and brain DHMBA concentrations were measured over time after oral DHMBA administration to male B6 mice. Experiment 2: Female Wistar Imamichi rats were used. The normal group was not subjected to stress. The stress, DHMBA, and vitamin E groups were subjected to individual and overcrowding stress. Brain and hippocampal 8-hydroxy-2'-deoxyguanosine levels, hippocampal glucocorticoid receptor-α levels, plasma corticosterone levels and RNA levels of glutathione peroxidase 4, catalase, and glutathione reductase in the hippocampus were measured. RESULTS In Experiment 1, DHMBA was not detected in the plasma or brain before DHMBA administration but was detected in both after administration. In Experiment 2, brain and hippocampal 8-hydroxy-2'-deoxyguanosine levels and plasma corticosterone levels were significantly lower in the DHMBA than in the stress group. Glucocorticoid receptor-α levels were higher in the DHMBA than in the stress group. DHMBA increased RNA levels of antioxidant enzymes in the hippocampus. CONCLUSION DHMBA was translocated to the brain after administration. DHMBA administration decreased 8-hydroxy-2'-deoxyguanosine levels in the brain and hippocampus, increased hippocampal glucocorticoid receptor-α levels, and decreased the plasma corticosterone concentration, suggesting that DHMBA inhibits hyperactivity of the HPA axis. Nrf2 pathway activity induced by DHMBA resulted in increased antioxidant enzyme levels in the hippocampus.
Collapse
Affiliation(s)
- Mitsugu Watanabe
- Watanabe Oyster Laboratory Co., Ltd., Hachioji, Tokyo, Japan; Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan; Faculty of Health Sciences, Hokkaido University, Kitaku, Sapporo, Japan.
| | - Kenji Yoshiike
- Watanabe Oyster Laboratory Co., Ltd., Hachioji, Tokyo, Japan
| | - Emiko Miki
- Watanabe Oyster Laboratory Co., Ltd., Hachioji, Tokyo, Japan
| | - Katsuya Kuroki
- Watanabe Oyster Laboratory Co., Ltd., Hachioji, Tokyo, Japan
| |
Collapse
|
2
|
Al-Kufaishi AMA, Al-Musawi NJT. Hypothalamus-pituitary-adrenal axis in patients with post-traumatic stress disorders and related to oxidative stress. Horm Mol Biol Clin Investig 2024; 0:hmbci-2024-0017. [PMID: 39140180 DOI: 10.1515/hmbci-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES The study involves the effect of hypothalamus-pituitary-adrenal hormones disorders, and related to oxidative stress in individuals with PTSD to those in the healthy group after they experience a specific event that results in a congenital illness or limb loss. METHODS Obtaining serum samples from males exclusively in cases where psychiatrists have determined that the men have experienced psychological damage brought on by a particular tragedy, and testing the men for hypothalamus-pituitary-adrenal axis and oxidative stress parameters in comparison to healthy participants. RESULTS It was observed that there was a notable rise in cortisol levels (5.60 ± 0.93) at 4 pm compared with healthy control (3.43 ± 0.64) resulting from the stimulating effect of the pituitary gland, and this increase has a role in raising levels of oxidative stress in patients total oxidant status (1.08 ± 0.13) compared with control (0.70 ± 0.10). High oxidative stress may lead to increased prolactin levels and decreased testosterone levels. CONCLUSIONS Transmission of incorrect chemical signals from the central nervous system has a role in causing disturbances in hormonal levels of the hypothalamus and its associated glands, and thus an imbalance in the metabolic rate due to high cortisol. Also, high levels of prolactin hormones play a role in a significant decrease in testosterone levels.
Collapse
Affiliation(s)
- Ali M A Al-Kufaishi
- Department of Medical Laboratory Techniques, Al-Furat Al-Awsat Technical University/College of Health and Medical Techniques, Kufa, Iraq
| | | |
Collapse
|
3
|
Escudero DS, Fantinelli JC, Martínez VR, González Arbeláez LF, Amarillo ME, Pérez NG, Díaz RG. Hydrocortisone cardioprotection in ischaemia/reperfusion injury involves antioxidant mechanisms. Eur J Clin Invest 2024; 54:e14172. [PMID: 38293760 DOI: 10.1111/eci.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Glucocorticoid (GR) and mineralocorticoid (MR) receptors are highly expressed in cardiac tissue, and both can be activated by corticosteroids. MR activation, in acute myocardial infarction (AMI), worsens cardiac function, and increase NHE activity contributing to the deleterious process. In contrast, effects of GR activation are not fully understood, probably because of the controversial scenario generated by using different doses or potencies of corticosteroids. AIMS We tested the hypothesis that an acute dose of hydrocortisone (HC), a low-potency glucocorticoid, in a murine model of AMI could be cardioprotective by regulating NHE1 activity, leading to a decrease in oxidative stress. MATERIALS AND METHODS Isolated hearts from Wistar rats were subjected to regional ischemic protocol. HC (10 nmol/L) was added to the perfusate during early reperfusion. Infarct size and oxidative stress were determined. Isolated papillary muscles from non-infarcted hearts were used to evaluate HC effect on sodium-proton exchanger 1 (NHE1) by analysing intracellular pH recovery from acute transient acidosis. RESULTS HC treatment decreased infarct size, improved cardiac mechanics, reduced oxidative stress after AMI, while restoring the decreased level of the pro-fusion mitochondrial protein MFN-2. Co-treatment with the GR-blocker Mifepristone avoided these effects. HC reduced NHE1 activity by increasing the NHE1 pro-inhibiting Ser648 phosphorylation site and its upstream kinase AKT. HC restored the decreased AKT phosphorylation and anti-apoptotic BCL-2 protein expression detected after AMI. CONCLUSIONS Our results provide the first evidence that acute HC treatment during early reperfusion induces cardioprotection against AMI, associated with a non-genomic HC-triggered NHE1 inhibition by AKT and antioxidant action that might involves mitochondrial dynamics improvement.
Collapse
Affiliation(s)
- Daiana S Escudero
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
- Established Investigator of Comisión de Investigaciones Científicas (CIC), Buenos Aires, Argentina
| | - Juliana C Fantinelli
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
- Established Investigators of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria R Martínez
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
- Established Investigators of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luisa F González Arbeláez
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
- Established Investigators of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María E Amarillo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
- Fellow of Agencia Nacional de Promoción Científica y Tecnológica (Agencia I+D+i), Buenos Aires, Argentina
| | - Néstor G Pérez
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
- Established Investigators of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Romina G Díaz
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', Facultad de Ciencias Médicas de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
- Established Investigators of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Shcholok T, Eftekharpour E. Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models. BIOLOGY 2024; 13:180. [PMID: 38534450 DOI: 10.3390/biology13030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues occurs at the physiological levels of reactive oxygen species (ROS), but they are reduced by a supply of thiol antioxidant molecules including glutathione, glutaredoxin, and thioredoxin. While these molecules show complex compensatory roles in experimental conditions, transgenic animal models provide a comprehensive picture to pinpoint the role of each antioxidant. In this review, we have specifically focused on the available literature on thioredoxin-1 system transgenic models that include thioredoxin and thioredoxin reductase proteins. As the identification of thioredoxin protein targets is technically challenging, the true contribution of this system in maintaining cellular balance remains unidentified, including the role of this system in the brain.
Collapse
Affiliation(s)
- Tetiana Shcholok
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, 631-BMSB, 745 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
Zhu M, Dagah OMA, Silaa BB, Lu J. Thioredoxin/Glutaredoxin Systems and Gut Microbiota in NAFLD: Interplay, Mechanism, and Therapeutical Potential. Antioxidants (Basel) 2023; 12:1680. [PMID: 37759983 PMCID: PMC10525532 DOI: 10.3390/antiox12091680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common clinical disease, and its pathogenesis is closely linked to oxidative stress and gut microbiota dysbiosis. Recently accumulating evidence indicates that the thioredoxin and glutaredoxin systems, the two thiol-redox dependent antioxidant systems, are the key players in the NAFLD's development and progression. However, the effects of gut microbiota dysbiosis on the liver thiol-redox systems are not well clarified. This review explores the role and mechanisms of oxidative stress induced by bacteria in NAFLD while emphasizing the crucial interplay between gut microbiota dysbiosis and Trx mediated-redox regulation. The paper explores how dysbiosis affects the production of specific gut microbiota metabolites, such as trimethylamine N-oxide (TMAO), lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), amino acids, bile acid, and alcohol. These metabolites, in turn, significantly impact liver inflammation, lipid metabolism, insulin resistance, and cellular damage through thiol-dependent redox signaling. It suggests that comprehensive approaches targeting both gut microbiota dysbiosis and the thiol-redox antioxidant system are essential for effectively preventing and treating NAFLD. Overall, comprehending the intricate relationship between gut microbiota dysbiosis and thiol-redox systems in NAFLD holds significant promise in enhancing patient outcomes and fostering the development of innovative therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Jun Lu
- Engineering Research Center of Coptis Development and Utilization/Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education (Southwest University), College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; (M.Z.); (O.M.A.D.); (B.B.S.)
| |
Collapse
|
6
|
Ogata FT, Simões Sato AY, Coppo L, Arai RJ, Stern AI, Pequeno Monteiro H. Thiol-Based Antioxidants and the Epithelial/Mesenchymal Transition in Cancer. Antioxid Redox Signal 2022; 36:1037-1050. [PMID: 34541904 DOI: 10.1089/ars.2021.0199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: The epithelial/mesenchymal transition (EMT) is commonly associated with tumor metastasis. Oxidative and nitrosative stress is maintained in cancer cells and is involved in the EMT. Cancer cells are endowed with high levels of enzymatic and nonenzymatic antioxidants, which counteract the effects of oxidative and nitrosative stress. Thiol-based antioxidant systems such as the thioredoxin/thioredoxin reductase (Trx/TrxR) and glutathione/glutaredoxin (GSH/Grx) are continually active in cancer cells, while the thioredoxin-interacting protein (Txnip), the negative regulator of the Trx/TrxR system, is downregulated. Recent Advances: Trx/TrxR and GSH/Grx systems play a major role in maintaining EMT signaling and cancer cell progression. Critical Issues: Enhanced stress conditions stimulated in cancer cells inhibit EMT signaling. The elevated expression levels of the Trx/TrxR and GSH/Grx systems in these cells provide the antioxidant protection necessary to guarantee the occurrence of the EMT. Future Directions: Elevation of the intracellular reactive oxygen species and nitric oxide concentrations in cancer cells has been viewed as a promising strategy for elimination of these cells. The development of inhibitors of GSH synthesis and of the Trx/TrxR system together with genetic-based strategies to enhance Txnip levels may provide the necessary means to achieve this goal. Antioxid. Redox Signal. 36, 1037-1050.
Collapse
Affiliation(s)
- Fernando Toshio Ogata
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alex Yuri Simões Sato
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lucia Coppo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roberto Jun Arai
- Department of Oncology and Radiology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina-Universidade de São Paulo, São Paulo, Brazil
| | - Arnold Ira Stern
- Grossman School of Medicine, New York University, New York, New York, USA
| | - Hugo Pequeno Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMol, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Karanikas E. Psychologically Traumatic Oxidative Stress; A Comprehensive Review of Redox Mechanisms and Related Inflammatory Implications. PSYCHOPHARMACOLOGY BULLETIN 2021; 51:65-86. [PMID: 34887600 PMCID: PMC8601764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The organism's energy requirements for homeostatic balance are covered by the redox mechanisms. Yet in case of psychologically traumatic stress, allostatic regulations activate both pro-oxidant and antioxidant molecules as well as respective components of the inflammatory system. Thus a new setpoint of dynamic interactions among redox elements is reached. Similarly, a multifaceted interplay between redox and inflammatory fields is activated with the mediation of major effector systems such as the immune system, Hypothalamic-Pituitary-Adrenal axis, kynurenine, and the glycaemic regulatory one. In case of sustained and/or intense traumatic stress the prophylactic antioxidant components are inadequate to provide the organism with neuroprotection finally culminating in Oxidative Stress and subsequently to cellular apoptosis. In parallel multiple inflammatory systems trigger and/or are triggered by the redox systems in tight fashion so that the causation sequence appears obscure. This exhaustive review aims at the comprehension of the interaction among components of the redox system as well as to the collection of disperse findings relative to the redox-inflammatory interplay in the context of traumatic stress so that new research strategies could be developed.
Collapse
Affiliation(s)
- Evangelos Karanikas
- Karanikas, Department of Psychiatry, General Military Hospital, Thessaloniki, Greece
| |
Collapse
|
8
|
Kokkinopoulou I, Diakoumi A, Moutsatsou P. Glucocorticoid Receptor Signaling in Diabetes. Int J Mol Sci 2021; 22:ijms222011173. [PMID: 34681832 PMCID: PMC8537243 DOI: 10.3390/ijms222011173] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Stress and depression increase the risk of Type 2 Diabetes (T2D) development. Evidence demonstrates that the Glucocorticoid (GC) negative feedback is impaired (GC resistance) in T2D patients resulting in Hypothalamic-Pituitary-Adrenal (HPA) axis hyperactivity and hypercortisolism. High GCs, in turn, activate multiple aspects of glucose homeostasis in peripheral tissues leading to hyperglycemia. Elucidation of the underlying molecular mechanisms revealed that Glucocorticoid Receptor (GR) mediates the GC-induced dysregulation of glucose production, uptake and insulin signaling in GC-sensitive peripheral tissues, such as liver, skeletal muscle, adipose tissue, and pancreas. In contrast to increased GR peripheral sensitivity, an impaired GR signaling in Peripheral Blood Mononuclear Cells (PBMCs) of T2D patients, associated with hyperglycemia, hyperlipidemia, and increased inflammation, has been shown. Given that GR changes in immune cells parallel those in brain, the above data implicate that a reduced brain GR function may be the biological link among stress, HPA hyperactivity, hypercortisolism and hyperglycemia. GR polymorphisms have also been associated with metabolic disturbances in T2D while dysregulation of micro-RNAs—known to target GR mRNA—has been described. Collectively, GR has a crucial role in T2D, acting in a cell-type and context-specific manner, leading to either GC sensitivity or GC resistance. Selective modulation of GR signaling in T2D therapy warrants further investigation.
Collapse
|
9
|
Branco V, Aschner M, Carvalho C. Neurotoxicity of mercury: an old issue with contemporary significance. ADVANCES IN NEUROTOXICOLOGY 2021; 5:239-262. [PMID: 34263092 PMCID: PMC8276940 DOI: 10.1016/bs.ant.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mercury exerts a variety of toxic effects, depending on the specific compound and route of exposure. However, neurotoxicity in virtue of its consequence to health causes the greatest concern for toxicologists. This is particularly true regarding fetal development, where neurotoxic effects are much more severe than in adults, and the toxicity threshold is lower. Here, we review the major concepts regarding the neurotoxicity of mercury compounds (mercury vapor; methylmercury and ethylmercury), from exposure routes to toxicokinetic particularities leading to brain deposition and the development of neurotoxic effects. Albeit research on the neurotoxicity of mercury compounds has significantly advanced from the second half of the twentieth century onwards, several grey areas regarding the mechanism of toxicity still exist. Thus, we emphasize research advances during the last two decades concerning the molecular interactions of mercury which cause neurotoxic effects. Highlights include the disruption of glutamate signaling and excitotoxicity resulting from exposure to mercury and the interaction with redox active residues such as cysteines and selenocysteines which are the premise accounting for the disruption of redox homeostasis caused by mercurials. We also address how immunotoxic effects at the CNS, namely microglia and astrocyte activation modulate developmental neurotoxicity, a major topic in contemporary research.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, USA
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
10
|
Cock IE, Cheesman M. Plants of the genus Terminalia: Phytochemical and antioxidant profiles, proliferation, and cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Seco-Cervera M, González-Cabo P, Pallardó FV, Romá-Mateo C, García-Giménez JL. Thioredoxin and Glutaredoxin Systems as Potential Targets for the Development of New Treatments in Friedreich's Ataxia. Antioxidants (Basel) 2020; 9:antiox9121257. [PMID: 33321938 PMCID: PMC7763308 DOI: 10.3390/antiox9121257] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The thioredoxin family consists of a small group of redox proteins present in all organisms and composed of thioredoxins (TRXs), glutaredoxins (GLRXs) and peroxiredoxins (PRDXs) which are found in the extracellular fluid, the cytoplasm, the mitochondria and in the nucleus with functions that include antioxidation, signaling and transcriptional control, among others. The importance of thioredoxin family proteins in neurodegenerative diseases is gaining relevance because some of these proteins have demonstrated an important role in the central nervous system by mediating neuroprotection against oxidative stress, contributing to mitochondrial function and regulating gene expression. Specifically, in the context of Friedreich’s ataxia (FRDA), thioredoxin family proteins may have a special role in the regulation of Nrf2 expression and function, in Fe-S cluster metabolism, controlling the expression of genes located at the iron-response element (IRE) and probably regulating ferroptosis. Therefore, comprehension of the mechanisms that closely link thioredoxin family proteins with cellular processes affected in FRDA will serve as a cornerstone to design improved therapeutic strategies.
Collapse
Affiliation(s)
- Marta Seco-Cervera
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Pilar González-Cabo
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Carlos Romá-Mateo
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (J.L.G.-G.); Tel.: +34-963-864-646 (C.R.-M. & J.L.G.-G.)
| | - José Luis García-Giménez
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (J.L.G.-G.); Tel.: +34-963-864-646 (C.R.-M. & J.L.G.-G.)
| |
Collapse
|
12
|
Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J, Tian H. Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther 2020; 5:248. [PMID: 33110061 PMCID: PMC7588592 DOI: 10.1038/s41392-020-00345-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is emphysema and/or chronic bronchitis characterised by long-term breathing problems and poor airflow. The prevalence of COPD has increased over the last decade and the drugs most commonly used to treat it, such as glucocorticoids and bronchodilators, have significant therapeutic effects; however, they also cause side effects, including infection and immunosuppression. Here we reviewed the pathogenesis and progression of COPD and elaborated on the effects and mechanisms of newly developed molecular targeted COPD therapeutic drugs. Among these new drugs, we focussed on thioredoxin (Trx). Trx effectively prevents the progression of COPD by regulating redox status and protease/anti-protease balance, blocking the NF-κB and MAPK signalling pathways, suppressing the activation and migration of inflammatory cells and the production of cytokines, inhibiting the synthesis and the activation of adhesion factors and growth factors, and controlling the cAMP-PKA and PI3K/Akt signalling pathways. The mechanism by which Trx affects COPD is different from glucocorticoid-based mechanisms which regulate the inflammatory reaction in association with suppressing immune responses. In addition, Trx also improves the insensitivity of COPD to steroids by inhibiting the production and internalisation of macrophage migration inhibitory factor (MIF). Taken together, these findings suggest that Trx may be the ideal drug for treating COPD.
Collapse
Affiliation(s)
- Cuixue Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jiedong Zhou
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Jinquan Wang
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Shujing Li
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China
| | - Atsushi Fukunaga
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Junji Yodoi
- Laboratory of Infection and Prevention, Department of Biological Response, Institute for Virus Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Hai Tian
- Department of Basic Medicine, Medical College, Shaoxing University, Shaoxing, 312000, China.
- Jiaozhimei Biotechnology (Shaoxing) Co, Ltd, Shaoxing, 312000, China.
| |
Collapse
|
13
|
Blubber proteome response to repeated ACTH administration in a wild marine mammal. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100644. [PMID: 31786479 DOI: 10.1016/j.cbd.2019.100644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/17/2019] [Accepted: 11/02/2019] [Indexed: 12/21/2022]
Abstract
While the response to acute stress is adaptive in nature, repeated or chronic stress can impact an animal's fitness by depleting its energy stores and suppressing immune function and reproduction. This can be especially deleterious for species that rely on energy reserves to fuel key life history stages (e.g. reproduction), already experience physiological extremes (e.g. fasting), and/or have undergone significant population declines, such as many marine mammals. However, identifying chronically stressed individuals is difficult due to the practical challenges to sample collection from large aquatic animals and a paucity of information on downstream consequences of the stress response. We previously simulated repeated stress by ACTH administration in a model marine mammal, the northern elephant seal, and showed that changes in blubber gene expression, but not circulating cortisol levels, could distinguish between single and repeated responses to ACTH. Here, we profiled changes in the proteome of the same blubber cell population and identified a set of differentially expressed proteins that included extracellular matrix components, heat shock and mitochondrial proteins, metabolic enzymes, and metabolite transporters. Differentially expressed proteins and genes shared similar functions that suggest that repeated corticosteroid elevation may affect blubber tissue proteostasis, mitochondrial activity, adipogenesis, and metabolism in marine mammals. For marine mammal species from which blubber biopsies, but not blood can be obtained by remote sampling, measurement of abundance of such proteins may serve as a novel method for identifying chronically stressed animals.
Collapse
|
14
|
Guo NN, Sun XJ, Xie YK, Yang GW, Kang CJ. Cloning and functional characterization of thioredoxin gene from kuruma shrimp Marsupenaeus japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:429-435. [PMID: 30502470 DOI: 10.1016/j.fsi.2018.11.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
As an important disulfide reductase of the intracellular antioxidant system, Thioredoxin (Trx) plays an important role in maintaining oxidative stress balance and protecting cells from oxidative damage. In recent years, there is increasing evidence that Trx is a key molecule in the pathogenesis of various diseases and a potential therapeutic target for major diseases including lung, colon, cervical, gastric and pancreatic cancer. However, few knowledge is known about the function of Trx in virus infection. In this study, we reported the cloning and functional investigation of a Trx homologue gene, named MjTrx, in shrimp Marsupenaeus japonicus suffered white spot syndrome virus (WSSV) infection. MjTrx is a 105-amino acid polypeptide with a conservative Cys-Gly-Pro-Cys motif in the catalytic center. Phylogenetic trees analysis showed that MjTrx has a higher relationship with Trx from other invertebrate and clustered with Trx1 from arthropod. MjTrx transcripts is abundant in the gill and intestine tissues and can be detected in the hemocytes, heart, stomach, and hepatopancreas tissues. The transcription levels of MjTrx in hemocytes, gills and intestine tissues of shrimp were significantly up-regulated after white spot syndrome virus infection. MjTrx was recombinant expressed in vitro and exhibited obvious disulfide reductase activity. In addition, overexpression MjTrx in shrimp resulted in the increase of hydrogen peroxide (H2O2) concentration in vivo. All these results strongly suggested that MjTrx functioned in redox homeostasis regulating and played an important role in shrimp antiviral immunity.
Collapse
Affiliation(s)
- Ning-Ning Guo
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xue-Jun Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Ya-Kai Xie
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Gui-Wen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Cui-Jie Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, 72 Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
15
|
Redox dysregulation as a link between childhood trauma and psychopathological and neurocognitive profile in patients with early psychosis. Proc Natl Acad Sci U S A 2018; 115:12495-12500. [PMID: 30455310 PMCID: PMC6298080 DOI: 10.1073/pnas.1812821115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early traumatic experiences interact with redox regulation and oxidative stress. Blood glutathione peroxidase (GPx) activity, involved in reducing peroxides, may reflect the oxidation status of the organism, thus allowing for the stratification of patients. Traumatized patients with psychosis who have a high blood oxidation status (high-GPx) have smaller hippocampal volumes (but not a smaller amygdala or intracranial volume), and this is associated with more severe clinical symptoms, while those with a lower oxidation status (low-GPx) showed better cognition and a correlated activation of the antioxidant thioredoxin/peroxiredoxin system. Thus, in patients with psychosis, traumatic experiences during childhood may interact with various redox systems, leading to long-term neuroanatomical and clinical defects. This redox profile may represent important biomarkers for patient stratification, defining treatment strategies at early stages of psychosis. Exposure to childhood trauma (CT) increases the risk for psychosis and affects the development of brain structures, possibly through oxidative stress. As oxidative stress is also linked to psychosis, it may interact with CT, leading to a more severe clinical phenotype. In 133 patients with early psychosis (EPP), we explored the relationships between CT and hippocampal, amygdala, and intracranial volume (ICV); blood antioxidant defenses [glutathione peroxidase (GPx) and thioredoxin/peroxiredoxin (Trx/Prx)]; psychopathological results; and neuropsychological results. Nonadjusted hippocampal volume correlated negatively with GPx activity in patients with CT, but not in patients without CT. In patients with CT with high GPx activity (high-GPx+CT), hippocampal volume was decreased compared with that in patients with low-GPx+CT and patients without CT, who had similar hippocampal volumes. Patients with high-GPx+CT had more severe positive and disorganized symptoms than other patients. Interestingly, Trx and oxidized Prx levels correlated negatively with GPx only in patients with low-GPx+CT. Moreover, patients with low-GPx+CT performed better than other patients on cognitive tasks. Discriminant analysis combining redox markers, hippocampal volume, clinical scores, and cognitive scores allowed for stratification of the patients into subgroups. In conclusion, traumatized EPP with high peripheral oxidation status (high-GPx activity) had smaller hippocampal volumes and more severe symptoms, while those with lower oxidation status (low-GPx activity) showed better cognition and regulation of GPx and Trx/Prx systems. These results suggest that maintained regulation of various antioxidant systems allowed for compensatory mechanisms preventing long-term neuroanatomical and clinical impacts. The redox marker profile may thus represent important biomarkers for defining treatment strategies in patients with psychosis.
Collapse
|
16
|
Oonk S, Schuurmans T, Pabst M, de Smet LCPM, de Puit M. Proteomics as a new tool to study fingermark ageing in forensics. Sci Rep 2018; 8:16425. [PMID: 30401937 PMCID: PMC6219553 DOI: 10.1038/s41598-018-34791-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/26/2018] [Indexed: 01/10/2023] Open
Abstract
Fingermarks are trace evidence of great forensic importance, and their omnipresence makes them pivotal in crime investigation. Police and law enforcement authorities have exploited fingermarks primarily for personal identification, but crucial knowledge on when fingermarks were deposited is often lacking, thereby hindering crime reconstruction. Biomolecular constituents of fingermark residue, such as amino acids, lipids and proteins, may provide excellent means for fingermark age determination, however robust methodologies or detailed knowledge on molecular mechanisms in time are currently not available. Here, we address fingermark age assessment by: (i) drafting a first protein map of fingermark residue, (ii) differential studies of fresh and aged fingermarks and (iii), to mimic real-world scenarios, estimating the effects of donor contact with bodily fluids on the identification of potential age biomarkers. Using a high-resolution mass spectrometry-based proteomics approach, we drafted a characteristic fingermark proteome, of which five proteins were identified as promising candidates for fingermark age estimation. This study additionally demonstrates successful identification of both endogenous and contaminant proteins from donors that have been in contact with various bodily fluids. In summary, we introduce state-of-the-art proteomics as a sensitive tool to monitor fingermark aging on the protein level with sufficient selectivity to differentiate potential age markers from body fluid contaminants.
Collapse
Affiliation(s)
- Stijn Oonk
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands. .,Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Tom Schuurmans
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands
| | - Martin Pabst
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Louis C P M de Smet
- Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Wageningen University & Research, Laboratory of Organic Chemistry, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marcel de Puit
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands. .,Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
17
|
Pan H, Jansson KH, Beshiri ML, Yin J, Fang L, Agarwal S, Nguyen H, Corey E, Zhang Y, Liu J, Fan H, Lin H, Kelly K. Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer. Oncotarget 2017; 8:77181-77194. [PMID: 29100379 PMCID: PMC5652772 DOI: 10.18632/oncotarget.20424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/26/2017] [Indexed: 01/19/2023] Open
Abstract
Advanced prostate cancer (PrCa) is treated with androgen deprivation therapy, and although there is usually a significant initial response, recurrence arises as castrate resistant prostate cancer (CRPC). New approaches are needed to treat this genetically heterogeneous, phenotypically plastic disease. CRPC with combined homozygous alterations to PTEN and TP53 comprise about 30% of clinical samples. We screened eleven traditional Chinese medicines against a panel of androgen-independent Pten/Tp53 null PrCa-derived cell lines and identified gambogic acid (GA) as a highly potent growth inhibitor. Mechanistic analyses revealed that GA disrupted cellular redox homeostasis, observed as elevated reactive oxygen species (ROS), leading to apoptotic and ferroptotic death. Consistent with this, we determined that GA inhibited thioredoxin, a necessary component of cellular anti-oxidative, protein-reducing activity. In other clinically relevant models, GA displayed submicromolar, growth inhibitory activity against a number of genomically-representative, CRPC patient derived xenograft organoid cultures. Inhibition of ROS with N-acetyl-cysteine partially reversed growth inhibition in CRPC organoids, demonstrating ROS imbalance and implying that GA may have additional mechanisms of action. These data suggest that redox imbalances initiated by GA may be useful, especially in combination therapies, for treating the heterogeneity and plasticity that contributes to the therapeutic resistance of CRPC.
Collapse
Affiliation(s)
- Hong Pan
- Laboratory of Cancer, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keith H. Jansson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael L. Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Holly Nguyen
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Ying Zhang
- Laboratory of Cancer, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jie Liu
- Laboratory of Cancer, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - HuiTing Fan
- Laboratory of Cancer, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - HongSheng Lin
- Laboratory of Cancer, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Monteiro HP, Ogata FT, Stern A. Thioredoxin promotes survival signaling events under nitrosative/oxidative stress associated with cancer development. Biomed J 2017; 40:189-199. [PMID: 28918907 PMCID: PMC6136292 DOI: 10.1016/j.bj.2017.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023] Open
Abstract
Accumulating mutations may drive cells into the acquisition of abnormal phenotypes that are characteristic of cancer cells. Cancer cells feature profound alterations in proliferation programs that result in a new population of cells that overrides normal tissue construction and maintenance programs. To achieve this goal, cancer cells are endowed with up regulated survival signaling pathways. They also must counteract the cytotoxic effects of high levels of nitric oxide (NO) and of reactive oxygen species (ROS), which are by products of cancer cell growth. Accumulating experimental evidence associates cancer cell survival with their capacity to up-regulate antioxidant systems. Elevated expression of the antioxidant protein thioredoxin-1 (Trx1) has been correlated with cancer development. Trx1 has been characterized as a multifunctional protein, playing different roles in different cell compartments. Trx1 migrates to the nucleus in cells exposed to nitrosative/oxidative stress conditions. Trx1 nuclear migration has been related to the activation of transcription factors associated with cell survival and cell proliferation. There is a direct association between the p21Ras-ERK1/2 MAP Kinases survival signaling pathway and Trx1 nuclear migration under nitrosative stress. The expression of the cytoplasmic protein, the thioredoxin-interacting protein (Txnip), determines the change in Trx1 cellular compartmentalization. The anti-apoptotic actions of Trx1 and its denitrosylase activity occur in the cytoplasm and serve as important regulators of cell survival. Within this context, this review focuses on the participation of Trx1 in cells under nitrosative/oxidative stress in survival signaling pathways associated with cancer development.
Collapse
Affiliation(s)
- Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy - CTCMol, Paulista Medical School/Federal University of São Paulo, SP, Brazil
| | - Fernando T Ogata
- Department of Biochemistry, Center for Cellular and Molecular Therapy - CTCMol, Paulista Medical School/Federal University of São Paulo, SP, Brazil; Division of Biochemistry, Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Jakobs P, Serbulea V, Leitinger N, Eckers A, Haendeler J. Nuclear Factor (Erythroid-Derived 2)-Like 2 and Thioredoxin-1 in Atherosclerosis and Ischemia/Reperfusion Injury in the Heart. Antioxid Redox Signal 2017; 26:630-644. [PMID: 27923281 PMCID: PMC5397216 DOI: 10.1089/ars.2016.6795] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Redox signaling is one of the key elements involved in cardiovascular diseases. Two important molecules are the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the oxidoreductase thioredoxin-1 (Trx-1). Recent Advances: During the previous years, a lot of studies investigated Nrf2 and Trx-1 as protective proteins in cardiovascular disorders. Moreover, post-translational modifications of those molecules were identified that play an important role in the cardiovascular system. This review will summarize changes in the vasculature in atherosclerosis and ischemia reperfusion injury of the heart and the newest findings achieved with Nrf2 and Trx-1 therein. Interestingly, Nrf2 and Trx-1 can act together as well as independently of each other in protection against atherosclerosis and ischemia and reperfusion injury. CRITICAL ISSUES In principle, pharmacological activation of a transcription factor-like Nrf2 can be dangerous, since a transcription regulator has multiple targets and the pleiotropic effects of such activation should not be ignored. Moreover, overactivation of Nrf2 as well as long-term treatment with Trx-1 could be deleterious for the cardiovascular system. FUTURE DIRECTIONS Therefore, the length of treatment with Nrf2 activators and/or Trx-1 has first to be studied in more detail in cardiovascular disorders. Moreover, a combination of Nrf2 activators and Trx-1 should be investigated and taken into consideration. Antioxid. Redox Signal. 26, 630-644.
Collapse
Affiliation(s)
- Philipp Jakobs
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
- Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Anna Eckers
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Judith Haendeler
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
20
|
Thioredoxin and redox signaling: Roles of the thioredoxin system in control of cell fate. Arch Biochem Biophys 2017; 617:101-105. [DOI: 10.1016/j.abb.2016.09.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
|
21
|
Response of esophageal cancer cells to epigenetic inhibitors is mediated via altered thioredoxin activity. J Transl Med 2016; 96:307-16. [PMID: 26692290 DOI: 10.1038/labinvest.2015.148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/14/2015] [Accepted: 09/03/2015] [Indexed: 01/01/2023] Open
Abstract
We previously showed that histone deacetylase inhibitor (HDACi) and 5-azacytidine (AZA) treatment selectively induced cell death of esophageal cancer cells. The mechanisms of cancer selectivity, however, remained unclear. Here we examined whether the cancer selectivity of HDACi/AZA treatment is mediated by the thioredoxin (Trx) system and reactive oxygen species (ROS) in esophageal cancer cells. For this, we first analyzed human tissue specimens of 37 esophageal cancer patients by immunohistochemistry for Trx, Trx-interacting protein (TXNIP) and Trx reductase (TXNRD). This revealed a loss or at least reduction of nuclear Trx in esophageal cancer cells, compared with normal epithelial cells (P<0.001). Although no differences were observed for TXNIP, TXNRD was more frequently expressed in cancer cells (P<0.001). In the two main histotypes of esophageal squamous cell carcinomas (ESCCs, n=19) and esophageal adenomcarcinomas (EAC, n=16), similar Trx, TXNIP and TXNRD expression patterns were observed. Also in vitro, nuclear Trx was only detectable in non-neoplastic Het-1A cells, but not in OE21/ESCC or OE33/EAC cell lines. Moreover, the two cancer cell lines showed an increased Trx activity, being significant for OE21 (P=0.0237). After treatment with HDACi and/or AZA, ROS were exclusively increased in both cancer cell lines (P=0.048-0.017), with parallel decrease of Trx activity. This was variably accompanied by increased TXNIP levels upon AZA, MS-275 or MS-275/AZA treatment for 6 or 24 h in OE21, but not in Het-1A or OE33 cells. In summary, this study evaluated Trx and its associated proteins TXNIP and TXNRD for the first time in esophageal cancers. The analyses revealed an altered subcellular localization of Trx and strong upregulation of TXNRD in esophageal cancer cells. Moreover, HDACi and AZA disrupted Trx function and induced accumulation of ROS with subsequent apoptosis in esophageal cancer cells exclusively. Trx function is hence an important cellular mediator conferring non-neoplastic cell resistance for HDACi and/or AZA.
Collapse
|
22
|
Adult male mice conceived by in vitro fertilization exhibit increased glucocorticoid receptor expression in fat tissue. J Dev Orig Health Dis 2015; 7:73-82. [DOI: 10.1017/s2040174415007825] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prenatal development is highly plastic and readily influenced by the environment. Adverse conditions have been shown to alter organ development and predispose offspring to chronic diseases, including diabetes and hypertension. Notably, it appears that the changes in glucocorticoid hormones or glucocorticoid receptor (GR) levels in peripheral tissues could play a role in the development of chronic diseases. We have previously demonstrated that in vitro fertilization (IVF) and preimplantation embryo culture is associated with growth alterations and glucose intolerance in mice. However, it is unknown if GR signaling is affected in adult IVF offspring. Here we show that GR expression is increased in inbred (C57Bl6/J) and outbred (CF-1× B6D2F1/J) blastocysts following in vitro culture and elevated levels are also present in the adipose tissue of adult male mice. Importantly, genes involved in lipolysis and triglyceride synthesis and responsive to GR were also increased in adipose tissue, indicating that increased GR activates downstream gene pathways. The promoter region of GR, previously reported to be epigenetically modified by perinatal manipulation, showed no changes in DNA methylation status. Our findings demonstrate that IVF results in a long-term change in GR gene expression in a sex- and tissue-specific manner. These changes in adipose tissues may well contribute to the metabolic phenotype in mice conceived by IVF.
Collapse
|
23
|
Cock IE. The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacology 2015; 23:203-29. [DOI: 10.1007/s10787-015-0246-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 02/06/2023]
|
24
|
Cock IE. The Genus Aloe: Phytochemistry and Therapeutic Uses Including Treatments for Gastrointestinal Conditions and Chronic Inflammation. PROGRESS IN DRUG RESEARCH 2015; 70:179-235. [DOI: 10.1007/978-3-0348-0927-6_6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
25
|
Wu C, Jain MR, Li Q, Oka SI, Li W, Kong ANT, Nagarajan N, Sadoshima J, Simmons WJ, Li H. Identification of novel nuclear targets of human thioredoxin 1. Mol Cell Proteomics 2014; 13:3507-18. [PMID: 25231459 DOI: 10.1074/mcp.m114.040931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of protein oxidative post-translational modifications has been implicated in stress-related diseases. Trx1 is a key reductase that reduces specific disulfide bonds and other cysteine post-translational modifications. Although commonly in the cytoplasm, Trx1 can also modulate transcription in the nucleus. However, few Trx1 nuclear targets have been identified because of the low Trx1 abundance in the nucleus. Here, we report the large-scale proteomics identification of nuclear Trx1 targets in human neuroblastoma cells using an affinity capture strategy wherein a Trx1C35S mutant is expressed. The wild-type Trx1 contains a conserved C32XXC35 motif, and the C32 thiol initiates the reduction of a target disulfide bond by forming an intermolecular disulfide with one of the oxidized target cysteines, resulting in a transient Trx1-target protein complex. The reduction is rapidly consummated by the donation of a C35 proton to the target molecule, forming a Trx1 C32-C35 disulfide, and results in the concurrent release of the target protein containing reduced thiols. By introducing a point mutation (C35 to S35) in Trx1, we ablated the rapid dissociation of Trx1 from its reduction targets, thereby allowing the identification of 45 putative nuclear Trx1 targets. Unexpectedly, we found that PSIP1, also known as LEDGF, was sensitive to both oxidation and Trx1 reduction at Cys 204. LEDGF is a transcription activator that is vital for regulating cell survival during HIV-1 infection. Overall, this study suggests that Trx1 may play a broader role than previously believed that might include regulating transcription, RNA processing, and nuclear pore function in human cells.
Collapse
Affiliation(s)
- Changgong Wu
- From the ‡Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers University-New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, New Jersey 07103
| | - Mohit Raja Jain
- From the ‡Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers University-New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, New Jersey 07103
| | - Qing Li
- From the ‡Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers University-New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, New Jersey 07103
| | - Shin-Ichi Oka
- ¶Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, 185 S. Orange Ave., Newark, New Jersey 07103
| | - Wenge Li
- ‖Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, New York 10461
| | - Ah-Ng Tony Kong
- **Department of Pharmaceutics, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Narayani Nagarajan
- ¶Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, 185 S. Orange Ave., Newark, New Jersey 07103
| | - Junichi Sadoshima
- ¶Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, 185 S. Orange Ave., Newark, New Jersey 07103
| | - William J Simmons
- From the ‡Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers University-New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, New Jersey 07103
| | - Hong Li
- From the ‡Center for Advanced Proteomics Research and Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers University-New Jersey Medical School Cancer Center, 205 S. Orange Ave., Newark, New Jersey 07103;
| |
Collapse
|
26
|
Enns GM, Moore T, Le A, Atkuri K, Shah MK, Cusmano-Ozog K, Niemi AK, Cowan TM. Degree of glutathione deficiency and redox imbalance depend on subtype of mitochondrial disease and clinical status. PLoS One 2014; 9:e100001. [PMID: 24941115 PMCID: PMC4062483 DOI: 10.1371/journal.pone.0100001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/18/2014] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial disorders are associated with decreased energy production and redox imbalance. Glutathione plays a central role in redox signaling and protecting cells from oxidative damage. In order to understand the consequences of mitochondrial dysfunction on in vivo redox status, and to determine how this varies by mitochondrial disease subtype and clinical severity, we used a sensitive tandem mass spectrometry assay to precisely quantify whole blood reduced (GSH) and oxidized (GSSG) glutathione levels in a large cohort of mitochondrial disorder patients. Glutathione redox potential was calculated using the Nernst equation. Compared to healthy controls (n = 59), mitochondrial disease patients (n = 58) as a group showed significant redox imbalance (redox potential -251 mV ± 9.7, p<0.0001) with an increased level of oxidation by ∼ 9 mV compared to controls (-260 mV ± 6.4). Underlying this abnormality were significantly lower whole blood GSH levels (p = 0.0008) and GSH/GSSG ratio (p = 0.0002), and significantly higher GSSG levels (p<0.0001) in mitochondrial disease patients compared to controls. Redox potential was significantly more oxidized in all mitochondrial disease subgroups including Leigh syndrome (n = 15), electron transport chain abnormalities (n = 10), mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (n = 8), mtDNA deletion syndrome (n = 7), mtDNA depletion syndrome (n = 7), and miscellaneous other mitochondrial disorders (n = 11). Patients hospitalized in metabolic crisis (n = 7) showed the greatest degree of redox imbalance at -242 mV ± 7. Peripheral whole blood GSH and GSSG levels are promising biomarkers of mitochondrial dysfunction, and may give insights into the contribution of oxidative stress to the pathophysiology of the various mitochondrial disorders. In particular, evaluation of redox potential may be useful in monitoring of clinical status or response to redox-modulating therapies in clinical trials.
Collapse
Affiliation(s)
- Gregory M. Enns
- Department of Pediatrics, Division of Medical Genetics, Lucile Packard Children’s Hospital, Stanford University, Stanford, California, United States of America
- * E-mail:
| | - Tereza Moore
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Anthony Le
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Kondala Atkuri
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Monisha K. Shah
- Department of Pediatrics, Division of Medical Genetics, Lucile Packard Children’s Hospital, Stanford University, Stanford, California, United States of America
| | - Kristina Cusmano-Ozog
- Department of Pediatrics, Division of Medical Genetics, Lucile Packard Children’s Hospital, Stanford University, Stanford, California, United States of America
| | - Anna-Kaisa Niemi
- Department of Pediatrics, Division of Medical Genetics, Lucile Packard Children’s Hospital, Stanford University, Stanford, California, United States of America
| | - Tina M. Cowan
- Department of Pathology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
27
|
Carter EL, Ragsdale SW. Modulation of nuclear receptor function by cellular redox poise. J Inorg Biochem 2014; 133:92-103. [PMID: 24495544 DOI: 10.1016/j.jinorgbio.2014.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/28/2013] [Accepted: 01/09/2014] [Indexed: 02/09/2023]
Abstract
Nuclear receptors (NRs) are ligand-responsive transcription factors involved in diverse cellular processes ranging from metabolism to circadian rhythms. This review focuses on NRs that contain redox-active thiol groups, a common feature within the superfamily. We will begin by describing NRs, how they regulate various cellular processes and how binding ligands, corepressors and/or coactivators modulate their activity. We will then describe the general area of redox regulation, especially as it pertains to thiol-disulfide interconversion and the cellular systems that respond to and govern this redox equilibrium. Lastly, we will discuss specific examples of NRs whose activities are regulated by redox-active thiols. Glucocorticoid, estrogen, and the heme-responsive receptor, Rev-erb, will be described in the most detail as they exhibit archetypal redox regulatory mechanisms.
Collapse
Affiliation(s)
- Eric L Carter
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
García-Giménez JL, Seco-Cervera M, Aguado C, Romá-Mateo C, Dasí F, Priego S, Markovic J, Knecht E, Sanz P, Pallardó FV. Lafora disease fibroblasts exemplify the molecular interdependence between thioredoxin 1 and the proteasome in mammalian cells. Free Radic Biol Med 2013; 65:347-359. [PMID: 23850970 DOI: 10.1016/j.freeradbiomed.2013.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/30/2022]
Abstract
Thioredoxin 1 (Trx1) is a key regulator of cellular redox balance and participates in cellular signaling events. Recent evidence from yeast indicates that members of the Trx family interact with the 20S proteasome, indicating redox regulation of proteasome activity. However, there is little information about the interrelationship of Trx proteins with the proteasome system in mammalian cells, especially in the nucleus. Here, we have investigated this relationship under various cellular conditions in mammalian cells. We show that Trx1 levels and its subcellular localization (cytosol, endoplasmic reticulum, and nucleus) depend on proteasome activity during the cell cycle in NIH3T3 fibroblasts and under stress conditions, when proteasomes are inhibited. In addition, we also studied in these cells how the main cellular antioxidant systems are stimulated when proteasome activity is inhibited. Finally, we describe a reduction in Trx1 levels in Lafora disease fibroblasts and demonstrate that the nuclear colocalization of Trx1 with 20S proteasomes in laforin-deficient cells is altered compared with control cells. Our results indicate a close relationship between Trx1 and the 20S nuclear proteasome and give a new perspective to the study of diseases or physiopathological conditions in which defects in the proteasome system are associated with oxidative stress.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Fundación del Hospital Clínico Universitat de Valencia-INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Marta Seco-Cervera
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Carmen Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Romá-Mateo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Francisco Dasí
- Fundación del Hospital Clínico Universitat de Valencia-INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, 46010 Valencia, Spain
| | - Sonia Priego
- Research Core Facility, Medical School, University of Valencia, 46010 Valencia, Spain
| | - Jelena Markovic
- Research Core Facility, Medical School, University of Valencia, 46010 Valencia, Spain
| | - Erwin Knecht
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Pascual Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain; Fundación del Hospital Clínico Universitat de Valencia-INCLIVA, Valencia, Spain; Department of Physiology, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
29
|
Mahmood DFD, Abderrazak A, El Hadri K, Simmet T, Rouis M. The thioredoxin system as a therapeutic target in human health and disease. Antioxid Redox Signal 2013; 19:1266-303. [PMID: 23244617 DOI: 10.1089/ars.2012.4757] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thioredoxin (Trx) system comprises Trx, truncated Trx (Trx-80), Trx reductase, and NADPH, besides a natural Trx inhibitor, the thioredoxin-interacting protein (TXNIP). This system is essential for maintaining the balance of the cellular redox status, and it is involved in the regulation of redox signaling. It is also pivotal for growth promotion, neuroprotection, inflammatory modulation, antiapoptosis, immune function, and atherosclerosis. As an ubiquitous and multifunctional protein, Trx is expressed in all forms of life, executing its function through its antioxidative, protein-reducing, and signal-transducing activities. In this review, the biological properties of the Trx system are highlighted, and its implications in several human diseases are discussed, including cardiovascular diseases, heart failure, stroke, inflammation, metabolic syndrome, neurodegenerative diseases, arthritis, and cancer. The last chapter addresses the emerging therapeutic approaches targeting the Trx system in human diseases.
Collapse
|
30
|
Manoharan R, Seong HA, Ha H. Thioredoxin inhibits MPK38-induced ASK1, TGF-β, and p53 function in a phosphorylation-dependent manner. Free Radic Biol Med 2013; 63:313-24. [PMID: 23747528 DOI: 10.1016/j.freeradbiomed.2013.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 11/20/2022]
Abstract
Murine protein serine-threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family. The factors that regulate MPK38 activity and function are not yet elucidated. Here, thioredoxin (Trx) was shown to be a negative regulator of MPK38. The redox-dependent association of MPK38 and Trx was mediated through the C-terminal domain of MPK38. Single and double amino acid substitution mutagenesis of MPK38 (C286S, C339S, C377S, and C339S/C377S) and Trx (C32S, C35S, and C32S/C35S) demonstrated that Cys(339) and Cys(377) of MPK38 and Cys(32) and Cys(35) of Trx are required for MPK38-Trx complex formation. MPK38 directly interacted with and phosphorylated Trx at Thr(76). Expression of wild-type Trx, but not the Trx mutants C32S/C35S and T76A, inhibited MPK38-induced ASK1, TGF-β, and p53 function by destabilizing MPK38. The E3 ubiquitin-protein ligase Mdm2 played a critical role in the regulation of MPK38 stability by Trx. Treatment of cells with 1-chloro-2,4-dinitrobenzene, a specific inhibitor of Trx reductase, decreased MPK38-Trx complex formation and subsequently increased MPK38 stability and activity, indicating that Trx negatively regulates MPK38 activity in vivo. Finally, we used ASK1-, Smad3-, and p53-null mouse embryonic fibroblasts to demonstrate that ASK1, Smad3, and p53 play important roles in the activity and function of MPK38, suggesting a functional link between MPK38 and ASK1, TGF-β, and p53 signaling pathways. These results indicate that Trx functions as a physiological inhibitor of MPK38, which plays an important role in inducing ASK1-, TGF-β-, and p53-mediated activity.
Collapse
Affiliation(s)
- Ravi Manoharan
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | | | |
Collapse
|
31
|
Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 2013; 18:1557-93. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neuroscience (CNR), Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
32
|
Mohanty S, Cock IE. The chemotherapeutic potential of Terminalia ferdinandiana: Phytochemistry and bioactivity. Pharmacogn Rev 2012; 6:29-36. [PMID: 22654402 PMCID: PMC3358965 DOI: 10.4103/0973-7847.95855] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 03/25/2011] [Accepted: 05/08/2012] [Indexed: 12/02/2022] Open
Abstract
Plants contain a myriad of natural compounds which exhibit important bioactive properties. These compounds may provide alternatives to current medications and afford a significant avenue for new drug discovery. Despite this, little information is available in the literature regarding native Australian plants and their potential for medicinal and industrial uses. Recent studies have reported Terminalia ferdinandiana to be an extremely good source of antioxidants. Indeed, T. ferdinandiana has been reported to have ascorbic acid levels per gram of fruit more than 900 times higher than blueberries. T. ferdinandiana also has high levels of a variety of other antioxidants, including phenolic compounds and anthocyanins. Antioxidants have been associated with the prevention of cancer, cardiovascular diseases, and neurological degenerative disorders. They are also linked with antidiabetic bioactivities and have been associated with the reduction of obesity. Antioxidants can directly scavenge free radicals, protecting cells against oxidative stress-related damage to proteins, lipids, and nucleic acids. Therefore, T. ferdinandiana has potential in the treatment of a variety of diseases and disorders and its potential bioactivities warrant further investigation.
Collapse
Affiliation(s)
- S Mohanty
- Biomolecular and Physical Sciences, Environmental Future Centre, Nathan Campus, Griffith University, Nathan Brisbane, Queensland, Australia
| | | |
Collapse
|
33
|
Huang JY, Liu WJ, Wang HC, Lee DY, Leu JH, Wang HC, Tsai MH, Kang ST, Chen IT, Kou GH, Chang GD, Lo CF. Penaeus monodon thioredoxin restores the DNA binding activity of oxidized white spot syndrome virus IE1. Antioxid Redox Signal 2012; 17:914-26. [PMID: 22332765 PMCID: PMC3392615 DOI: 10.1089/ars.2011.4264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS In this study we identified viral gene targets of the important redox regulator thioredoxin (Trx), and explored in depth how Trx interacts with the immediate early gene #1 (IE1) of the white spot syndrome virus (WSSV). RESULTS In a pull-down assay, we found that recombinant Trx bound to IE1 under oxidizing conditions, and a coimmunoprecipitation assay showed that Trx bound to WSSV IE1 when the transfected cells were subjected to oxidative stress. A pull-down assay with Trx mutants showed that no IE1 binding occurred when cysteine 62 was replaced by serine. Electrophoretic mobility shift assay (EMSA) showed that the DNA binding activity of WSSV IE1 was downregulated under oxidative conditions, and that Penaeus monodon Trx (PmTrx) restored the DNA binding activity of the inactivated, oxidized WSSV IE1. Another EMSA experiment showed that IE1's Cys-X-X-Cys motif and cysteine residue 55 were necessary for DNA binding. Measurement of the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in WSSV-infected shrimp showed that oxidative stress was significantly increased at 48 h postinfection. The biological significance of Trx was also demonstrated in a double-strand RNA Trx knockdown experiment where suppression of shrimp Trx led to significant decreases in mortality and viral copy numbers. INNOVATION AND CONCLUSION WSSV's pathogenicity is enhanced by the virus' use of host Trx to rescue the DNA binding activity of WSSV IE1 under oxidizing conditions.
Collapse
Affiliation(s)
- Jiun-Yan Huang
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thioredoxin-1 Promotes Anti-Inflammatory Macrophages of the M2 Phenotype and Antagonizes Atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32:1445-52. [DOI: 10.1161/atvbaha.112.249334] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Oxidative stress is believed to play a key role in cardiovascular disorders. Thioredoxin (Trx) is an oxidative stress-limiting protein with anti-inflammatory and antiapoptotic properties. Here, we analyzed whether Trx-1 might exert atheroprotective effects by promoting macrophage differentiation into the M2 anti-inflammatory phenotype.
Methods and Results—
Trx-1 at 1 μg/mL induced downregulation of p16
INK4a
and significantly promoted the polarization of anti-inflammatory M2 macrophages in macrophages exposed to interleukin (IL)-4 at 15 ng/mL or IL-4/IL-13 (10 ng/mL each) in vitro, as evidenced by the expression of the CD206 and IL-10 markers. In addition, Trx-1 induced downregulation of nuclear translocation of activator protein-1 and Ref-1, and significantly reduced the lipopolysaccharide-induced differentiation of inflammatory M1 macrophages, as indicated by the decreased expression of the M1 cytokines, tumor necrosis factor-α and monocyte chemoattractant protein-1. Consistently, Trx-1 administered to hyperlipoproteinemic ApoE2.Ki mice at 30 μg/30 g body weight challenged either with lipopolysaccharide at 30 μg/30 g body weight or with IL-4 at 500 ng/30 g body weight significantly induced the M2 phenotype while inhibiting differentiation of macrophages into the M1 phenotype in liver and thymus. ApoE2.Ki mice challenged once weekly with lipopolysaccharide for 5 weeks developed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. In contrast, however, daily injections of Trx-1 shifted the phenotype pattern of lesional macrophages in these animals to predominantly M2 over M1, and the aortic lesion area was significantly reduced (from 100%±18% to 62.8%±9.8%; n=8;
P
<0.01). Consistently, Trx-1 colocalized with M2 but not with M1 macrophage markers in human atherosclerotic vessel specimens.
Conclusion—
The ability of Trx-1 to promote differentiation of macrophages into an alternative, anti-inflammatory phenotype may explain its protective effects in cardiovascular diseases. These data provide novel insight into the link between oxidative stress and cardiovascular diseases.
Collapse
|
35
|
Billing AM, Revets D, Hoffmann C, Turner JD, Vernocchi S, Muller CP. Proteomic profiling of rapid non-genomic and concomitant genomic effects of acute restraint stress on rat thymocytes. J Proteomics 2012; 75:2064-79. [PMID: 22270012 DOI: 10.1016/j.jprot.2012.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/16/2011] [Accepted: 01/07/2012] [Indexed: 02/06/2023]
Abstract
In order to investigate rapid non-genomic effects of acute stress, rats were restrained for 15 min which was sufficient to activate the hypothalamus-pituitary-adrenal (HPA) axis but too short to induce massive genomic effects of cortisol. Subcellular fractions of thymocytes (cytosol, nucleus, membrane) were investigated using quantitative 2D DIGE with MALDI-TOF/TOF mass spectrometry. In total, 108 proteins with differential subcellular localizations were identified. The specificity of the changes induced by psychological stress was reflected by the prominent modulation of proteins involved in the HPA and sympathoadrenal medullar (SAM) axis such as HMGB1 and NHERF1. Intracellular trafficking was characterized by a dominant protein exodus from the cytosol. Real translocation was observed for 9 proteins with 6 that shuttled from the cytosol to the nucleus (HYOU1, HNRPF, HNRPC, STRAP, PSA1, PPA1) and 3 from the nucleus to the cytosol (HMGB1, NHERF1, PSMA1). Proteins showing subcellular reshuffling were largely involved in transcription and translation processes (39 of 108) with a significant enrichment of RNA splicing factors. Bioinformatics analysis revealed significant enrichment for protein kinase A and 14-3-3 signaling, probably reflecting real non-genomic effects. This is the first study investigating rapid effects of stress-induced HPA activation in vivo at the proteome level.
Collapse
Affiliation(s)
- Anja M Billing
- Institute of Immunology, Centre de Recherche Public de la Santé/National Public Health Laboratory, 20A, rue Auguste Lumière, L-1950 Luxembourg, Luxembourg
| | | | | | | | | | | |
Collapse
|
36
|
Tome ME, Jaramillo MC, Briehl MM. Hydrogen peroxide signaling is required for glucocorticoid-induced apoptosis in lymphoma cells. Free Radic Biol Med 2011; 51:2048-59. [PMID: 21964507 PMCID: PMC3208737 DOI: 10.1016/j.freeradbiomed.2011.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 09/01/2011] [Accepted: 09/01/2011] [Indexed: 12/21/2022]
Abstract
Glucocorticoid-induced apoptosis is exploited clinically for the treatment of hematologic malignancies. Determining the required molecular events for glucocorticoid-induced apoptosis will identify resistance mechanisms and suggest strategies for overcoming resistance. In this study, we found that glucocorticoid treatment of WEHI7.2 murine thymic lymphoma cells increased the steady-state [H(2)O(2)] and oxidized the intracellular redox environment before cytochrome c release. Removal of glucocorticoids after the H(2)O(2) increase resulted in a 30% clonogenicity; treatment with PEG-CAT increased clonogenicity to 65%. Human leukemia cell lines also showed increased H(2)O(2) in response to glucocorticoids and attenuated apoptosis after PEG-CAT treatment. WEHI7.2 cells that overexpress catalase (CAT2, CAT38) or were selected for resistance to H(2)O(2) (200R) removed enough of the H(2)O(2) generated by glucocorticoids to prevent oxidation of the intracellular redox environment. CAT2, CAT38, and 200R cells showed a 90-100% clonogenicity. The resistant cells maintained pERK survival signaling in response to glucocorticoids, whereas the sensitive cells did not. Treating the resistant cells with a MEK inhibitor sensitized them to glucocorticoids. These data indicate that: (1) an increase in H(2)O(2) is necessary for glucocorticoid-induced apoptosis in lymphoid cells, (2) increased H(2)O(2) removal causes glucocorticoid resistance, and (3) MEK inhibition can sensitize oxidative stress-resistant cells to glucocorticoids.
Collapse
Affiliation(s)
- Margaret E Tome
- Department of Pathology, University of Arizona, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
37
|
Wu C, Parrott AM, Fu C, Liu T, Marino SM, Gladyshev VN, Jain MR, Baykal AT, Li Q, Oka S, Sadoshima J, Beuve A, Simmons WJ, Li H. Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies. Antioxid Redox Signal 2011; 15:2565-604. [PMID: 21453190 PMCID: PMC3176348 DOI: 10.1089/ars.2010.3831] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite the significance of redox post-translational modifications (PTMs) in regulating diverse signal transduction pathways, the enzymatic systems that catalyze reversible and specific oxidative or reductive modifications have yet to be firmly established. Thioredoxin 1 (Trx1) is a conserved antioxidant protein that is well known for its disulfide reductase activity. Interestingly, Trx1 is also able to transnitrosylate or denitrosylate (defined as processes to transfer or remove a nitric oxide entity to/from substrates) specific proteins. An intricate redox regulatory mechanism has recently been uncovered that accounts for the ability of Trx1 to catalyze these different redox PTMs. In this review, we will summarize the available evidence in support of Trx1 as a specific disulfide reductase, and denitrosylation and transnitrosylation agent, as well as the biological significance of the diverse array of Trx1-regulated pathways and processes under different physiological contexts. The dramatic progress in redox proteomics techniques has enabled the identification of an increasing number of proteins, including peroxiredoxin 1, whose disulfide bond formation and nitrosylation status are regulated by Trx1. This review will also summarize the advancements of redox proteomics techniques for the identification of the protein targets of Trx1-mediated PTMs. Collectively, these studies have shed light on the mechanisms that regulate Trx1-mediated reduction, transnitrosylation, and denitrosylation of specific target proteins, solidifying the role of Trx1 as a master regulator of redox signal transduction.
Collapse
Affiliation(s)
- Changgong Wu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School Cancer Center, Newark, 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Song MY, Makino A, Yuan JXJ. Role of reactive oxygen species and redox in regulating the function of transient receptor potential channels. Antioxid Redox Signal 2011; 15:1549-65. [PMID: 21126186 PMCID: PMC3151422 DOI: 10.1089/ars.2010.3648] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cellular redox status, regulated by production of reactive oxygen species (ROS), greatly contributes to the regulation of vascular smooth muscle cell contraction, migration, proliferation, and apoptosis by modulating the function of transient receptor potential (TRP) channels in the plasma membrane. ROS functionally interact with the channel protein via oxidizing the redox-sensitive residues, whereas nitric oxide (NO) regulates TRP channel function by cyclic GMP/protein kinase G-dependent and -independent pathways. Based on the structural differences among different TRP isoforms, the effects of ROS and NO are also different. In addition to regulating TRP channels in the plasma membrane, ROS and NO also modulate Ca(2+) release channels (e.g., IP(3) and ryanodine receptors) on the sarcoplasmic/endoplasmic reticulum membrane. This review aims at briefly describing (a) the role of TRP channels in receptor-operated and store-operated Ca(2+) entry, and (b) the role of ROS and redox status in regulating the function and structure of TRP channels.
Collapse
Affiliation(s)
- Michael Y Song
- Biomedical Sciences Graduate Program, University of California-San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
39
|
Ditt RF, Gentile A, Tavares RG, Camargo SR, Fernandez JH, Silva MJD, Menossi M. Analysis of the stress-inducible transcription factor SsNAC23 in sugarcane plants. SCIENTIA AGRICOLA 2011. [PMID: 0 DOI: 10.1590/s0103-90162011000400010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
40
|
Increased inflammatory signaling and lethality of influenza H1N1 by nuclear thioredoxin-1. PLoS One 2011; 6:e18918. [PMID: 21526215 PMCID: PMC3078150 DOI: 10.1371/journal.pone.0018918] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Accepted: 03/25/2011] [Indexed: 01/30/2023] Open
Abstract
Background Cell culture studies show that the antioxidant thiol protein, thioredoxin-1 (Trx1), translocates to cell nuclei during stress, facilitates DNA binding of transcription factors NF-κB and glucocorticoid receptor (GR) and potentiates signaling in immune cells. Excessive proinflammatory signaling in vivo contributes to immune hyper-responsiveness and disease severity, but no studies have addressed whether nuclear Trx1 mediates such responses. Methodology/Principal Findings Transgenic mice (Tg) expressing human Trx1 (hTrx1) with added nuclear localization signal (NLS) showed broad tissue expression and nuclear localization. The role of nuclear Trx1 in inflammatory signaling was examined in Tg and wild-type (WT) mice following infection with influenza (H1N1) virus. Results showed that Tg mice had earlier and more extensive NF-κB activation, increased TNF-α and IL-6 expression, greater weight loss, slower recovery and increased mortality compared to WT. Decreased plasma glutathione (GSH) and oxidized plasma GSH/GSSG redox potential (EhGSSG) following infection in Tg mice showed that the increased nuclear thiol antioxidant caused a paradoxical downstream oxidative stress. An independent test of this nuclear reductive stress showed that glucocorticoid-induced thymocyte apoptosis was increased by NLS-Trx1. Conclusion/Significance Increased Trx1 in cell nuclei can increase severity of disease responses by potentiation of redox-sensitive transcription factor activation.
Collapse
|
41
|
Monitoring of Cellular Dynamics with Electrochemical Detection Techniques. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Issaeva I, Cohen AA, Eden E, Cohen-Saidon C, Danon T, Cohen L, Alon U. Generation of double-labeled reporter cell lines for studying co-dynamics of endogenous proteins in individual human cells. PLoS One 2010; 5:e13524. [PMID: 20975952 PMCID: PMC2958823 DOI: 10.1371/journal.pone.0013524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/24/2010] [Indexed: 01/01/2023] Open
Abstract
Understanding the dynamic relationship between components of a system or pathway at the individual cell level is a current challenge. To address this, we developed an approach that allows simultaneous tracking of several endogenous proteins of choice within individual living human cells. The approach is based on fluorescent tagging of proteins at their native locus by directed gene targeting. A fluorescent tag-encoding DNA is introduced as a new exon into the intronic region of the gene of interest, resulting in expression of a full-length fluorescently tagged protein. We used this approach to establish human cell lines simultaneously expressing two components of a major antioxidant defense system, thioredoxin 1 (Trx) and thioredoxin reductase 1 (TrxR1), labeled with CFP and YFP, respectively. We find that the distributions of both proteins between nuclear and cytoplasmic compartments were highly variable between cells. However, the two proteins did not vary independently of each other: protein levels of Trx and TrxR1 in both the whole cell and the nucleus were substantially correlated. We further find that in response to a stress-inducing drug (CPT), both Trx and TrxR1 accumulated in the nuclei in a manner that was highly temporally correlated. This accumulation considerably reduced cell-to-cell variability in nuclear content of both proteins, suggesting a uniform response of the thioredoxin system to stress. These results indicate that Trx and TrxR1 act in concert in response to stress in regard to both time course and variability. Thus, our approach provides an efficient tool for studying dynamic relationship between components of systems of interest at a single-cell level.
Collapse
Affiliation(s)
- Irina Issaeva
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (II); (UA)
| | - Ariel A. Cohen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Eden
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cellina Cohen-Saidon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Danon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lydia Cohen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (II); (UA)
| |
Collapse
|
43
|
Grek CL, Townsend DM, Tew KD. The impact of redox and thiol status on the bone marrow: Pharmacological intervention strategies. Pharmacol Ther 2010; 129:172-84. [PMID: 20951732 DOI: 10.1016/j.pharmthera.2010.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 09/14/2010] [Indexed: 10/18/2022]
Abstract
Imbalances in cancer cell redox homeostasis provide a platform for new opportunities in the development of anticancer drugs. The control of severe dose-limiting toxicities associated with redox regulation, including myelosuppression and immunosuppression, remains a challenge. Recent evidence implicates a critical role for redox regulation and thiol balance in pathways that control myeloproliferation, hematopoietic progenitor cell mobilization, and immune response. Hematopoietic stem cell (HSC) self-renewal and differentiation are dependent upon levels of intracellular reactive oxygen species (ROS) and niche microenvironments. Redox status and the equilibrium of free thiol:disulfide couples are important in modulating immune response and lymphocyte activation, proliferation and differentiation. This subject matter is the focus of the present review. The potential of redox modulating chemotherapeutics as myeloproliferative and immunomodulatory agents is also covered.
Collapse
Affiliation(s)
- Christina L Grek
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
44
|
Abstract
Proteins with oxidizable thiols are essential to many functions of cell nuclei, including transcription, chromatin stability, nuclear protein import and export, and DNA replication and repair. Control of the nuclear thiol-disulfide redox states involves both the elimination of oxidants to prevent oxidation and the reduction of oxidized thiols to restore function. These processes depend on the common thiol reductants, glutathione (GSH) and thioredoxin-1 (Trx1). Recent evidence shows that these systems are controlled independent of the cytoplasmic counterparts. In addition, the GSH and Trx1 couples are not in redox equilibrium, indicating that these reductants have nonredundant functions in their support of proteins involved in transcriptional regulation, nuclear protein trafficking, and DNA repair. Specific isoforms of glutathione peroxidases, glutathione S-transferases, and peroxiredoxins are enriched in nuclei, further supporting the interpretation that functions of the thiol-dependent systems in nuclei are at least quantitatively distinct, and probably also qualitatively distinct, from similar processes in the cytoplasm. Elucidation of the distinct nuclear functions and regulation of the thiol redox pathways in nuclei can be expected to improve understanding of nuclear processes and also to provide the basis for novel approaches to treat aging and disease processes associated with oxidative stress in the nuclei.
Collapse
Affiliation(s)
- Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
45
|
Brunati AM, Pagano MA, Bindoli A, Rigobello MP. Thiol redox systems and protein kinases in hepatic stellate cell regulatory processes. Free Radic Res 2010; 44:363-78. [PMID: 20166884 DOI: 10.3109/10715760903555836] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatic stellate cells (HSC) are the major producers of collagen in the liver and their conversion from resting cells to a proliferating, contractile and fibrogenic phenotype ('activation') is a critical step, leading to liver fibrosis characterized by deposition of excessive extracellular matrix. Cytokines, growth factors, reactive oxygen and nitrogen species (ROS/RNS), lipid peroxides and their products deriving from hepatocytes, Kupffer cells and other cells converge on HSC and influence their activation. This review focuses on glutathione and thioredoxin pathways, with particular emphasis on their role in HSC. These two systems have been shown to act in the metabolism of hydrogen peroxide, control of thiol redox balance and regulation of signalling pathways. Particular attention is paid to mitochondria and NADPH oxidase. Detailed knowledge of specific signalling, redox conditions and apoptotic processes will be of help in devising proper pharmacological treatments for liver fibrosis.
Collapse
Affiliation(s)
- Anna Maria Brunati
- Dipartimento di Chimica Biologica, Viale G. Colombo 3, 35121 Padova, Italy.
| | | | | | | |
Collapse
|
46
|
Lukosz M, Jakob S, Büchner N, Zschauer TC, Altschmied J, Haendeler J. Nuclear redox signaling. Antioxid Redox Signal 2010; 12:713-42. [PMID: 19737086 DOI: 10.1089/ars.2009.2609] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species have been described to modulate proteins within the cell, a process called redox regulation. However, the importance of compartment-specific redox regulation has been neglected for a long time. In the early 1980s and 1990s, many in vitro studies introduced the possibility that nuclear redox signaling exists. However, the functional relevance for that has been greatly disregarded. Recently, it has become evident that nuclear redox signaling is indeed one important signaling mechanism regulating a variety of cellular functions. Transcription factors, and even kinases and phosphatases, have been described to be redox regulated in the nucleus. This review describes several of these proteins in closer detail and explains their functions resulting from nuclear localization and redox regulation. Moreover, the redox state of the nucleus and several important nuclear redox regulators [Thioredoxin-1 (Trx-1), Glutaredoxins (Grxs), Peroxiredoxins (Prxs), and APEX nuclease (multifunctional DNA-repair enzyme) 1 (APEX1)] are introduced more precisely, and their necessity for regulation of transcription factors is emphasized.
Collapse
Affiliation(s)
- Margarete Lukosz
- Molecular Cell & Aging Research, IUF (Institute for Molecular Preventive Medicine), At the University of Duesseldorf gGmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Meyer Y, Buchanan BB, Vignols F, Reichheld JP. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 2009; 43:335-67. [PMID: 19691428 DOI: 10.1146/annurev-genet-102108-134201] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since their discovery as a substrate for ribonucleotide reductase (RNR), the role of thioredoxin (Trx) and glutaredoxin (Grx) has been largely extended through their regulatory function. Both proteins act by changing the structure and activity of a broad spectrum of target proteins, typically by modifying redox status. Trx and Grx are members of families with multiple and partially redundant genes. The number of genes clearly increased with the appearance of multicellular organisms, in part because of new types of Trx and Grx with orthologs throughout the animal and plant kingdoms. The function of Trx and Grx also broadened as cells achieved increased complexity, especially in the regulation arena. In view of these progressive changes, the ubiquitous distribution of Trx and the wide occurrence of Grx enable these proteins to serve as indicators of the evolutionary history of redox regulation. In so doing, they add a unifying element that links the diverse forms of life to one another in an uninterrupted continuum. It is anticipated that future research will embellish this continuum and further elucidate the properties of these proteins and their impact on biology. The new information will be important not only to our understanding of the role of Trx and Grx in fundamental cell processes but also to future societal benefits as the proteins find new applications in a range of fields.
Collapse
Affiliation(s)
- Yves Meyer
- Université de Perpignan, Génome et dévelopement des plantes, CNRS-UP-IRD UMR 5096, F 66860 Perpignan Cedex, France.
| | | | | | | |
Collapse
|
48
|
Mihailidou AS, Loan Le TY, Mardini M, Funder JW. Glucocorticoids Activate Cardiac Mineralocorticoid Receptors During Experimental Myocardial Infarction. Hypertension 2009; 54:1306-12. [DOI: 10.1161/hypertensionaha.109.136242] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myocardial ischemia-reperfusion leads to significant changes in redox state, decreased postischemic functional recovery, and cardiomyocyte apoptosis, with development and progression of heart failure. Ischemia-reperfusion in the isolated perfused rat heart has been used as a model of heart failure. Clinically, mineralocorticoid receptor blockade in heart failure decreases morbidity and mortality versus standard care alone. The effects of corticosteroids on infarct area and apoptosis were determined in rat hearts subjected to 30 minutes of ischemia and 2.5 hours of reperfusion. Both aldosterone and cortisol increased infarct area and apoptotic index, an effect half-maximal between 1 and 10 nM and reversed by spironolactone. Dexamethasone and mifepristone aggravated infarct area and apoptotic index, similarly reversed by spironolactone. Spironolactone alone reduced infarct area and apoptotic index below ischemia-reperfusion alone, in hearts from both intact and adrenalectomized rats. The present study shows that cardiac damage is aggravated by activation of mineralocorticoid receptors by aldosterone or cortisol or of glucocorticoid receptors by dexamethasone. Mifepristone unexpectedly acted as a glucocorticoid receptor agonist, for which there are several precedents. Spironolactone protected cardiomyocytes via inverse agonist activity at mineralocorticoid receptors, an effect near maximal at a relatively low dose (10 nM). Spironolactone acts not merely by excluding corticosteroids from mineralocorticoid receptors but as a protective inverse agonist at low concentration. Mineralocorticoid receptor antagonists may, thus, provide an additional therapeutic advantage in unstable angina and acute myocardial infarction.
Collapse
Affiliation(s)
- Anastasia S. Mihailidou
- From the Department of Cardiology (A.S.M., T.Y.L.L., M.M.), Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney (A.S.M., T.Y.L.L., M.M.), Sydney, New South Wales, Australia; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South Wales, Australia; Prince Henrys Medical Research Institute (J.W.F.), Clayton, Victoria, Australia
| | - Thi Yen Loan Le
- From the Department of Cardiology (A.S.M., T.Y.L.L., M.M.), Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney (A.S.M., T.Y.L.L., M.M.), Sydney, New South Wales, Australia; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South Wales, Australia; Prince Henrys Medical Research Institute (J.W.F.), Clayton, Victoria, Australia
| | - Mahidi Mardini
- From the Department of Cardiology (A.S.M., T.Y.L.L., M.M.), Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney (A.S.M., T.Y.L.L., M.M.), Sydney, New South Wales, Australia; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South Wales, Australia; Prince Henrys Medical Research Institute (J.W.F.), Clayton, Victoria, Australia
| | - John W. Funder
- From the Department of Cardiology (A.S.M., T.Y.L.L., M.M.), Royal North Shore Hospital, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney (A.S.M., T.Y.L.L., M.M.), Sydney, New South Wales, Australia; Department of Cardiology (M.M.), Westmead Hospital, Sydney, New South Wales, Australia; Prince Henrys Medical Research Institute (J.W.F.), Clayton, Victoria, Australia
| |
Collapse
|
49
|
Redox regulation of transcriptional activity of retinoic acid receptor by thioredoxin glutathione reductase (TGR). Biochem Biophys Res Commun 2009; 390:241-6. [DOI: 10.1016/j.bbrc.2009.09.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 12/12/2022]
|
50
|
Jeong W, Jung Y, Kim H, Park SJ, Rhee SG. Thioredoxin-related protein 14, a new member of the thioredoxin family with disulfide reductase activity: implication in the redox regulation of TNF-alpha signaling. Free Radic Biol Med 2009; 47:1294-303. [PMID: 19628032 DOI: 10.1016/j.freeradbiomed.2009.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 07/11/2009] [Accepted: 07/14/2009] [Indexed: 12/16/2022]
Abstract
Thioredoxin-related protein 14 (TRP14) is a novel 14-kDa disulfide reductase with two active site Cys residues in its WCPDC motif, which is comparable to the WCGPC motif of thioredoxin (Trx). Although the active site cysteine of TRP14 is sufficiently nucleophilic, its redox potential is similar to that of Trx1, and it receives the electrons from Trx reductase 1 (TrxR1) as does Trx1. TRP14 does not target the same substrate as Trx1, suggesting that TRP14 and Trx1 might act on distinct substrate proteins. Comparison of the crystal structures of TRP14 and Trx1 reveals distinct surface structures in the vicinity of their active sites. Both TRP14 and Trx1 inhibit the pathways of nuclear factor-kappaB (NF-kappaB), mitogen-activated protein kinases, and apoptosis in cells stimulated with tumor necrosis factor-alpha (TNF-alpha), but they appear to do so by acting on target proteins, some of which do not overlap. TRP14 inhibits the TNF-alpha-induced NF-kappaB activation to a greater extent than Trx1. The dynein light chain LC8 was identified as a new target of disulfide reductase activity of TRP14, and LC8 was shown to bind IkappaBalpha in a redox-dependent manner, thereby preventing its phosphorylation by IkappaB kinase. These findings elucidate the molecular mechanism by which NF-kappaB activation is regulated through TRP14.
Collapse
Affiliation(s)
- Woojin Jeong
- Department of Life Science, Division of Life and Pharmaceutical Sciences, and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea.
| | | | | | | | | |
Collapse
|