1
|
He J, Huang Z, He M, Liao J, Zhang Q, Wang S, Xie L, Ouyang L, Koeffler HP, Yin D, Liu A. Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol Cancer 2020; 19:17. [PMID: 31992303 PMCID: PMC6986105 DOI: 10.1186/s12943-019-1120-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023] Open
Abstract
Background Recent evidences have shown that circular RNAs (circRNAs) are frequently dysregulated and play paramount roles in various cancers. circRNAs are abundant in central nervous system (CNS); however, few studies describe the clinical significance and role of circRNAs in gliomas, which is the most common and aggressive primary malignant tumor in the CNS. Methods A bioinformatics analysis was performed to profile and screen the dyregulated circRNAs during early neural development. Quantitative real-time PCR was used to detect the expression of circ-MAPK4 and target miRNAs. Glioma cells were transfected with circ-MAPK4 siRNAs, then cell proliferation, apoptosis, transwell assays, as well as tumorigenesis and TUNEL assays, were performed to examine effect of circ-MAPK4 in vitro and vivo. Biotinylated-circ-MAPK4 probe based pull-down assay was conducted to confirm the relationship between circ-MAPK4 and miR-125-3p. Results In this study, we identified a circRNA, circ-MAPK4 (has_circ_0047688), which was downregulated during early neural differentiation. In gliomas, circ-MAPK4 acted as an oncogene, was inversely upregulated and linked to clinical pathological stage of gliomas (P < 0.05). Next, we verified that circ-MAPK4 promoted the survival and inhibited the apoptosis of glioma cells in vitro and in vivo. Furthermore, we proved that circ-MAPK4 was involved in regulating p38/MAPK pathway, which affected glioma proliferation and apoptosis. Finally, miR-125a-3p, a miRNA exhibited tumor-suppressive function through impairing p38/MAPK pathway, which was increased by inhibiting circ-MAPK4 and could be pulled down by circ-MAPK4. Inhibition of miR-125a-3p could partly rescue the increased phosphorylation levels of p38/MAPK and the elevated amount of apoptosis inducing by knockdown of circ-MAPK4. Conclusions Our findings suggest that circ-MAPK4 is a critical player in glioma cell survival and apoptosis via p38/MAPK signaling pathway through modulation of miR-125a-3p, which can serve as a new therapeutic target for treatment of gliomas.
Collapse
Affiliation(s)
- Jiehua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Zuoyu Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Mingliang He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Jianyou Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Qianqian Zhang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shengwen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Lin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - Leping Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China
| | - H Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China.
| | - Anmin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan-Jiang Xi Road, Guangzhou, 510120, China.
| |
Collapse
|
2
|
He Z, Chen X, Fu M, Tang J, Li X, Cao H, Wang Y, Zheng SJ. Inhibition of fowl adenovirus serotype 4 replication in Leghorn male hepatoma cells by SP600125 via blocking JNK MAPK pathway. Vet Microbiol 2019; 228:45-52. [DOI: 10.1016/j.vetmic.2018.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022]
|
3
|
Zhang B, Zhang Z, Wang J, Yang B, Zhao Y, Rao Z, Gao J. Dihydroartemisinin sensitizes Lewis lung carcinoma cells to carboplatin therapy via p38 mitogen-activated protein kinase activation. Oncol Lett 2018; 15:7531-7536. [PMID: 29740482 PMCID: PMC5934725 DOI: 10.3892/ol.2018.8276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/21/2017] [Indexed: 01/18/2023] Open
Abstract
Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin isolated from the traditional Chinese herb Artemisia annua, is an effective novel antimalarial agent. Studies have suggested that it also exhibits anticancer effects when administered alone or in combination with conventional chemotherapeutic agents. The present study investigated the therapeutic effect of DHA combined with carboplatin (CBP) on Lewis lung carcinoma (LLC) cells and the possible underlying molecular mechanisms. MTT and clonogenic assays demonstrated that the proliferation activity of LLC cells was inhibited in a dose-dependent manner by DHA combined with CBP. In addition, flow cytometry analysis revealed that cell cycle arrest was induced at the G0/G1 phase and apoptosis was induced following treatment with the combination. When administered in combination with CBP, DHA exhibited more effective anticancer activity compared with DHA or CBP used alone, via increased apoptosis. Following treatment with DHA with or without CBP, the expression of phosphorylated-p38 mitogen-activated protein kinase (MAPK), which can be inhibited with the selective inhibitor SB202190, was detected by western blotting. To summarize, the results of the present study indicated that DHA may sensitize LLC cells to CBP therapy via the activation of p38MAPK, which suggests that a combined treatment of DHA and CBP may be a potential novel therapeutic schedule for lung adenocarcinoma.
Collapse
Affiliation(s)
- Bicheng Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhimin Zhang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jun Wang
- Department of Oncology, General Hospital of Jinan Command, People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Bo Yang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Yong Zhao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Zhiguo Rao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jianfei Gao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
4
|
Duan Y, He Q, Yue K, Si H, Wang J, Zhou X, Wang X. Hypoxia induced Bcl-2/Twist1 complex promotes tumor cell invasion in oral squamous cell carcinoma. Oncotarget 2018; 8:7729-7739. [PMID: 28032603 PMCID: PMC5352356 DOI: 10.18632/oncotarget.13890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Bcl-2 and Twist1 can be coactivated by hypoxia in hepatocellular carcinoma to promote tumor cell metastasis and vasculogenic mimicry, but their function in oral squamous cell carcinoma (OSCC) remains undefined. We employed a cohort of 82 cases of OSCC samples to examine the coexpression of Bcl-2 and Twist1 by immunohistochemistry and demonstrate the interaction between Bcl-2 and Twist1 by coimmunoprecipitation. Bcl-2 and Twist1 overexpression was associated with a poor pathological grade and tumor prognosis, and the two factors functions as a complex. Knocking down Bcl-2/Twist1 inhibited cell migration, decreased cell invasion and inversed cell epithelial-mesenchymal transition (EMT) procession. An animal model derived from the Tca8113 cell line was used to further validate the role of Bcl-2/Twist1 depletion in suppressing tumor EMT and growth. In conclusion, Bcl-2/Twist1 complex can be treated as a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yuansheng Duan
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Qinghua He
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Kai Yue
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Haishan Si
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Jiaxin Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Xuan Zhou
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| | - Xudong Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Preventionand Therapy, Tianjin 300060, China
| |
Collapse
|
5
|
Zhang B, Wu T, Wang Z, Zhang Y, Wang J, Yang B, Zhao Y, Rao Z, Gao J. p38MAPK activation mediates tumor necrosis factor-α-induced apoptosis in glioma cells. Mol Med Rep 2014; 11:3101-7. [PMID: 25434304 DOI: 10.3892/mmr.2014.3002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 10/31/2014] [Indexed: 11/06/2022] Open
Abstract
Gliomas are a type of heterogeneous primary central nervous system tumor, which arise from the glial cells; these types of tumor generally respond poorly to surgery, radiation and conventional chemotherapy. Tumor necrosis factor‑α (TNF‑α) has been suggested to produce an antitumor effect by binding to specific receptors on the tumor cell membrane to induce apoptosis. TNF‑α is known to activate a number of signaling pathways, including extracellular signal‑regulated protein kinase, c‑Jun N‑terminal kinase (JNK), p38 mitogen‑activated protein kinase (p38MAPK), nuclear factor‑κB and caspase cascades, depending on the cell type. However, the involvement of p38MAPK signaling in TNF‑α‑induced apoptosis in glioma cells remains unclear. In the current study, the role of p38MAPK in TNF‑α‑induced apoptosis in rat glioma C6 cells was investigated. TNF‑α was observed to induce cell apoptosis and the phosphorylation of p38MAPK in C6 cells. In addition, the inhibition of p38MAPK markedly reduced TNF‑α‑induced apoptosis, while JNK inhibition did not affect apoptosis. Furthermore, p38MAPK transfection altered the cell cycle of glioma cells and increased the rate of apoptosis. It also led to an increase in the level of soluble TNF‑α in the culture supernatant and membrane TNF receptor I levels in tumor cells. In conclusion, the results of the current study demonstrated that the activation of p38MAPK mediates TNF‑α‑induced apoptosis in glioma C6 cells, suggesting p38MAPK as a potential target for glioma therapy.
Collapse
Affiliation(s)
- Bicheng Zhang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Tingting Wu
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Zhigang Wang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Yafei Zhang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jun Wang
- Department of Oncology, General Hospital, Jinan Command of People's Liberation Army, Jinan, Shandong 250031, P.R. China
| | - Bo Yang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Yong Zhao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Zhiguo Rao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| | - Jianfei Gao
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
6
|
Sun Y, Tang S, Jin X, Zhang C, Zhao W, Xiao X. Opposite effects of JNK and p38 MAPK signaling pathways on furazolidone-stimulated S phase cell cycle arrest of human hepatoblastoma cell line. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 755:24-9. [DOI: 10.1016/j.mrgentox.2013.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/30/2013] [Accepted: 04/27/2013] [Indexed: 01/24/2023]
|
7
|
Lee TY, Lee KC, Chang HH. Modulation of the cannabinoid receptors by andrographolide attenuates hepatic apoptosis following bile duct ligation in rats with fibrosis. Apoptosis 2010; 15:904-14. [PMID: 20446039 DOI: 10.1007/s10495-010-0502-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bile acid-induced apoptosis plays an important role in the pathogenesis of cholestatic liver disease, and its prevention is of therapeutic interest. The aim of this study was to test whether the andrographolide limits the evolution of apoptosis in a murine model of bile duct ligation (BDL)-induced hepatic fibrosis. Male Sprague-Dawley rats were divided into four groups and hepatic apoptosis was induced by BDL for 2 weeks. The BDL animals were also treated with andrographolide (50, 100, and 200 mg/kg, i.p.) during the same time period. BDL-induced liver injury was associated with apoptosis and fibrosis, and the latter was significantly reduced in animals receiving andrographolide. The increase in serum alanine aminotransferase, asparate aminotransferase, tumor necrosis factor-alpha and IL-1beta levels caused by BDL were also significantly reduced by treatment with andrographolide. Andrographolide decreased the intrahepatic protein levels of cannabinoid receptor 1 (CB1), Bax, and cytochrome c, along with of alpha-smooth muscle actin (alpha-SMA) and transforming growth factor-beta (TGF-beta), two markers of fibrogenesis. This effect was mediated by the inactivation of the c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK1/2) phosphorylation cascade, but it did not affect the p38 mitogen-activated protein kinase pathway. Additionally, andrographolide reduced the generation of hepatic lipid peroxidation and enhance senescence marker protein-30 levels to resist the hepatic oxidative stress in the presence of BDL. In conclusion, this study has identified AP as a potent protector against cholestasis-induced apoptosis in vivo. Its anti-apoptotic action largely relies on the inhibition of the oxidative stress pathway.
Collapse
Affiliation(s)
- Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, ROC
| | | | | |
Collapse
|
8
|
Li N, McLaren JE, Michael DR, Clement M, Fielding CA, Ramji DP. ERK is integral to the IFN-γ-mediated activation of STAT1, the expression of key genes implicated in atherosclerosis, and the uptake of modified lipoproteins by human macrophages. THE JOURNAL OF IMMUNOLOGY 2010; 185:3041-8. [PMID: 20675591 DOI: 10.4049/jimmunol.1000993] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proinflammatory cytokine IFN-gamma is a master regulator of atherosclerosis and mediates its cellular actions mainly through STAT1. Unfortunately, the impact of other IFN-gamma inducible pathways on STAT1 activation and the regulation of downstream responses associated with atherosclerosis in human macrophages are poorly understood and were therefore investigated. In this study, we demonstrate that the IFN-gamma-mediated phosphorylation of STAT1 on Ser(727), crucial for its maximal activity, was attenuated in human macrophages by pharmacological inhibition of ERK. In these cells, IFN-gamma induced changes in the expression of several key genes implicated in atherosclerosis, such as MCP-1, through an ERK-dependent mechanism. Additionally, the IFN-gamma-induced activity of STAT1-responsive promoters was attenuated by transfection of dominant-negative forms of ERK and other key components of this pathway. Furthermore, the IFN-gamma-induced uptake of acetylated and oxidized low-density lipoprotein by human macrophages was attenuated by pharmacological inhibition or RNA interference-mediated knockdown of ERK. These studies suggest a critical role for ERK signaling in the IFN-gamma-mediated changes in macrophage cholesterol homeostasis and gene expression during atherosclerosis.
Collapse
Affiliation(s)
- Na Li
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | |
Collapse
|
9
|
Jane EP, Pollack IF. Enzastaurin induces H2AX phosphorylation to regulate apoptosis via MAPK signalling in malignant glioma cells. Eur J Cancer 2009; 46:412-9. [PMID: 19913408 DOI: 10.1016/j.ejca.2009.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/29/2009] [Accepted: 10/09/2009] [Indexed: 12/29/2022]
Abstract
Enzastaurin is an acyclic bisindolylmaleimide derived from staurosporine that acts as an ATP competitor, and interferes with the activity of protein kinase C (PKC) isoforms. Our previous studies have shown that clinically achievable concentrations of this agent induce apoptosis in many glioma cell lines. Our goal in this study was to expand on the previous results and to determine the signalling mechanisms responsible for enzastaurin-induced inhibition of cell growth and induction of apoptosis. To address these issues, cell cycle progression following enzastaurin treatment was analysed by fluorescence-activated cell sorting (FACS) in parallel with analyses of growth and apoptosis signalling pathways. Enzastaurin treatment activated H2AX and Chk2 phosphorylation, and enhanced phosphorylation of mitogen-activated protein kinase (MAPK) family kinases. Inhibition of MAP kinases by chemical inhibitors reduced H2AX and Chk2 phosphorylation and decreased apoptosis induced by enzastaurin. These data call attention to a novel signalling pathway (MAPK/H2AX) to regulate apoptosis in malignant glioma cells.
Collapse
Affiliation(s)
- Esther P Jane
- Department of Neurosurgery, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute Brain Tumor Center, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
10
|
Chen TH, Pan SL, Guh JH, Liao CH, Huang DY, Chen CC, Teng CM. Moscatilin induces apoptosis in human colorectal cancer cells: a crucial role of c-Jun NH2-terminal protein kinase activation caused by tubulin depolymerization and DNA damage. Clin Cancer Res 2008; 14:4250-8. [PMID: 18594007 DOI: 10.1158/1078-0432.ccr-07-4578] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To study the effect of moscatilin (purified from the stem of orchid Dendrobrium loddigesii) on the proliferation of human colorectal cancer HCT-116 cells in vitro and in vivo. EXPERIMENTAL DESIGN The growth inhibition of moscatilin was screened on several human cancer cell lines. The effect of moscatilin on tubulin was detected in vitro. Following moscatilin treatment on HCT-116 cells, c-Jun NH(2)-terminal protein kinase (JNK) and caspase activation was studied by Western blot analysis, and DNA damage was done by Comet assay. Specific JNK inhibitor SP600125 was cotreated to reverse moscatilin-induced apoptosis. Tumor growth inhibition of moscatilin was done on HCT-116 xenograft models. RESULTS Moscatilin induced a time-dependent arrest of the cell cycle at G(2)-M, with an increase of cells at sub-G(1). Moscatilin inhibited tubulin polymerization, suggesting that it might bind to tubulins. Moscatilin also induced the phosphorylation of JNK1/2. SP600125 significantly inhibited the activation of caspase-9 and caspase-3 and the subsequent moscatilin-induced apoptosis. The data suggest that JNK activation may contribute to moscatilin-mediated apoptosis signaling. A parallel experiment showed that SP600125 significantly inhibits Taxol- and vincristine-induced HCT-116 cell apoptosis. This suggests that the JNK activation may be a common mechanism for tubulin-binding agents. Moreover, moscatilin induces DNA damage, phosphorylation of H2AX and p53, and up-regulation of p21. Our HCT-116 xenograft models show the in vivo efficacy of moscatilin. CONCLUSIONS In summary, our results suggest that moscatilin induces apoptosis of colorectal HCT-116 cells via tubulin depolymerization and DNA damage stress and that this leads to the activation of JNK and mitochondria-involved intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Tzu-Hsuan Chen
- Pharmacological Institute and School of Pharmacy, College of Medicine, National Taiwan University, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Chen J, Volpi S, Aguilera G. Anti-apoptotic actions of vasopressin in H32 neurons involve MAP kinase transactivation and Bad phosphorylation. Exp Neurol 2008; 211:529-38. [PMID: 18402937 PMCID: PMC2447546 DOI: 10.1016/j.expneurol.2008.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/21/2008] [Accepted: 02/26/2008] [Indexed: 01/29/2023]
Abstract
Vasopressin (VP) secreted within the brain modulates neuronal function acting as a neurotransmitter. Based on the observation that VP prevented serum deprivation-induced cell death in the neuronal cell line, H32, which expresses endogenous V1 receptors, we tested the hypothesis that VP has anti-apoptotic properties. Flow cytometry experiments showed that 10 nM VP prevented serum deprivation-induced cell death and annexin V binding. Serum deprivation increased caspase-3 activity in a time and serum concentration dependent manner, and VP prevented these effects through interaction with receptors of V1 subtype. The signaling pathways mediating the anti-apoptotic effect of VP involve mitogen activated protein (MAP) kinase and extracellular signal-regulated kinases (ERK), Ca(2+)/calmodulin dependent kinase (CaMK) and protein kinase C (PKC). Western blot analyses revealed time-dependent decreases of Bad phosphorylation and increases in cytosolic levels of cytochrome c following serum deprivation, effects which were prevented by 10 nM VP. These data demonstrate that activation of endogenous V1 VP receptors prevents serum deprivation-induced apoptosis, through phosphorylation-inactivation of the pro-apoptotic protein, Bad, and consequent decreases in cytosolic cytochrome c and caspase-3 activation. The data suggest that VP has anti-apoptotic activity in neurons and that VP may act as a neuroprotective agent in the brain.
Collapse
Affiliation(s)
- Jun Chen
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, NIH, Bethesda MD 20892, USA
| | | | | |
Collapse
|
12
|
Calphostin C-induced apoptosis is mediated by a tissue transglutaminase-dependent mechanism involving the DLK/JNK signaling pathway. Cell Death Differ 2008; 15:1522-31. [PMID: 18497756 DOI: 10.1038/cdd.2008.77] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A role for tissue transglutaminase (TG2) and its substrate dual leucine zipper-bearing kinase (DLK), an upstream component of the c-Jun N-terminal kinase (JNK) signaling pathway, has been previously suggested in the apoptotic response induced by calphostin C. In the current study, we directly tested this hypothesis by examining via pharmacological and RNA-interference approaches whether inhibition of expression or activity of TG2, DLK and JNK in mouse NIH 3T3 fibroblasts and human MDA-MB-231 breast cancer epithelial cells affects calphostin C-induced apoptosis. Our experiments with the selective JNK inhibitor SP600125 reveal that calphostin C is capable of causing JNK activation and JNK-dependent apoptosis in both cell lines. Small interfering RNA-mediated depletion of TG2 alone strongly reduces calphostin C action on JNK activity and apoptosis. Consistent with an active role for DLK in this cascade of event, cells deficient in DLK demonstrate a substantial delay of JNK activation and poly-ADP-ribose polymerase (PARP) cleavage in response to calphostin C, whereas overexpression of a recombinant DLK resistant to silencing, but sensitive to TG2-mediated oligomerization, reverses this effect. Importantly, combined depletion of TG2 and DLK further alters calphostin C effects on JNK activity, Bax translocation, caspase-3 activation, PARP cleavage and cell viability, demonstrating an obligatory role for TG2 and DLK in calphostin C-induced apoptosis.
Collapse
|
13
|
Ohta T, Eguchi R, Suzuki A, Miyakaze S, Ayuzawa R, Kaji K. Hypoxia-induced apoptosis and tube breakdown are regulated by p38 MAPK but not by caspase cascade in an in vitro capillary model composed of human endothelial cells. J Cell Physiol 2007; 211:673-81. [PMID: 17373651 DOI: 10.1002/jcp.20975] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In order to improve medical treatment of ischemic injury such as myocardial infarction, it is important to elucidate hypoxia-induced changes to endothelial cells. An in vitro blood vessel model, in which HUVECs are stimulated to form a network of capillary-like tubes, was used to analyze hypoxia-induced morphological and biochemical changes. When exposed to hypoxia, the network of capillary tubes broke down into small clusters. This tube breakdown was accompanied by chromatin condensation and cell nuclear fragmentation, morphological markers of apoptosis, and activation of two apoptotic signals, caspase-3 and p38. We investigated what roles caspase cascade and p38 play in hypoxia-induced apoptosis and tube breakdown by using zVAD-fmk and SB203580, specific inhibitors of these two apoptotic signals, respectively. Chromatin condensation and cell nuclear fragmentation and tube breakdown were effectively inhibited by SB203580, but not by zVAD-fmk. SB203580 caused dephosphorylation of p38, which indicates that p38 was autophosphorylated. Inhibition by zVAD-fmk caused slight MW increase in p17 and emergence of p19, which indicates that the inhibitor caused partial processing of caspase-3. Inhibition of p38 suppressed activation of caspase-3 but not vice versa. In addition, these two inhibitors were shown to differentially inhibit cleavage of so-called caspase substrates. SB203580 inhibited cleavage of PARP and lamin A/C, while zVAD-fmk inhibited cleavage of lamin A/C but not that of PARP. Taken together, these results show that p38 is located upstream of caspase cascade and that, although caspase-3 is activated, a p38-regulated caspase-independent pathway is crucial for the execution of hypoxia-induced apoptosis and tube breakdown.
Collapse
Affiliation(s)
- Toshiro Ohta
- Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka-City, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Posser T, de Aguiar CBNM, Garcez RC, Rossi FM, Oliveira CS, Trentin AG, Neto VM, Leal RB. Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38MAPK and JNK1/2 but not of ERK1/2. Arch Toxicol 2007; 81:407-14. [PMID: 17333127 DOI: 10.1007/s00204-007-0177-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 01/09/2007] [Indexed: 01/05/2023]
Abstract
Pb(II) is a neurotoxic pollutant that produces permanent cognitive deficits in children. Pb(II) can modulate cell signaling pathways and cell viability in a variety of cell types. However, these actions are not well demonstrated on glial cells, which represent an important target for metals into the central nervous system. The present work was undertaken to determine the ability of Pb(II) in modulating the activity of mitogen activated protein kinases (MAPKs) in cultures of C6 rat glioma cells, a useful functional model for the study of astrocytes. Additionally, cell viability was analyzed by measurement of MTT reduction. Cells were exposed to lead acetate 0.1, 1, 10 microM for 24 and 48 h. MAPKs activation - in particular ERK1/2, p38(MAPK) and JNK1/2 - were analyzed by western blotting. Results showed that 10 microM Pb(II) treatment for 24 h caused a discrete stimulation of p38(MAPK) phosphorylation. However, 1 and 10 microM Pb(II) treatment for 48 h provoked a significant stimulation in the phosphorylation state of p38(MAPK) and JNK1/2. The phosphorylation state of ERK1/2 was not modified by any Pb(II) treatment. Moreover, data indicate that at 48 h treatment even 1 microM Pb(II) can be cytotoxic, causing impairment on cell viability. Therefore, depending on a long incubation period, a significant concomitant activation of p38(MAPK) and JNK1/2 by Pb(II) took place in parallel with the impairment of C6 glioma cells viability.
Collapse
Affiliation(s)
- Thaís Posser
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chung WH, Pak K, Lin B, Webster N, Ryan AF. A PI3K pathway mediates hair cell survival and opposes gentamicin toxicity in neonatal rat organ of Corti. J Assoc Res Otolaryngol 2006; 7:373-82. [PMID: 17053865 PMCID: PMC2504631 DOI: 10.1007/s10162-006-0050-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 07/27/2006] [Indexed: 01/13/2023] Open
Abstract
Gentamicin is well known to promote hair cell death in inner ear, but it also appears to activate opposing pathways that promote hair cell survival. In combination with others, our previous work has indicated that a K-Ras/Rac/JNK pathway is important for hair cell death and an H-Ras/Raf/MEK/Erk pathway is involved in promoting hair cell survival (Battaglia et al., Neuroscience 122(4):1025-1035, 2003). However, these data also suggested that a Ras-independent survival pathway for activation of MEK might be stimulated by gentamicin. To investigate alternatives to the Ras/Raf/MEK/Erk pathway in promoting hair cell survival, cochlear explants were exposed to gentamicin combined with several inhibitors of alternative pathways (LY294002, calphostin C, SH-6, U73122). When exposed to gentamicin with the PI3K inhibitor LY294002 (10, 50 microM), the protein kinase C (PKC) inhibitor calphostin C (50, 100 nM) or the PKB/Akt inhibitor SH-6 (5, 10 microM), hair cell damage was significantly increased compared to gentamicin alone. By Western blotting, strong PKB/Akt activation was observed in the organ of Corti following exposure to 50 microM gentamicin for 6 h. In addition, PKC activation by 12-O-tetradecanoylphorbol-13-acetate protected outer hair cells from gentamicin induced cell death. In contrast, the phospholipase C-gamma (PLCgamma) inhibitor U73122 (2, 5 microM) did not affect hair cell damage when combined with gentamicin. Also, phosphorylation of PLCgamma was not increased in the organ of Corti following gentamicin treatment, as evaluated by Western blot. The results indicate that PI3K promotes hair cell survival via its downstream targets, PKC and PKB/Akt. This suggests that both Ras-dependent and Ras-independent survival pathways are involved during gentamicin exposure. In contrast, PLCgamma activation of PKC does not appear to play a role.
Collapse
Affiliation(s)
- Won-Ho Chung
- Department of Surgery Otolaryngology, UCSD School of Medicine and VA Medical Center, 9500 Gilman Drive #0666, La Jolla, CA USA
- Department of Otolaryngology and Head & Neck Surgery, Samsung Medical Center Sungkyunkwan University School of Medicine, 50 Ilwon Dong Kangnam Ku, Seoul, 135-710 South Korea
| | - Kwang Pak
- Department of Surgery Otolaryngology, UCSD School of Medicine and VA Medical Center, 9500 Gilman Drive #0666, La Jolla, CA USA
| | - Bo Lin
- Department of Medicine, UCSD School of Medicine and VA Medical Center, 9500 Gilman Drive, La Jolla, CA 92093-0666 USA
| | - Nicholas Webster
- Department of Medicine, UCSD School of Medicine and VA Medical Center, 9500 Gilman Drive, La Jolla, CA 92093-0666 USA
| | - Allen F. Ryan
- Department of Surgery Otolaryngology, UCSD School of Medicine and VA Medical Center, 9500 Gilman Drive #0666, La Jolla, CA USA
- Department of Neurosciences, UCSD School of Medicine and VA Medical Center, 9500 Gilman Drive #0666, La Jolla, USA
| |
Collapse
|
16
|
Singh NN, Ramji DP. Transforming growth factor-beta-induced expression of the apolipoprotein E gene requires c-Jun N-terminal kinase, p38 kinase, and casein kinase 2. Arterioscler Thromb Vasc Biol 2006; 26:1323-9. [PMID: 16601234 DOI: 10.1161/01.atv.0000220383.19192.55] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The cytokine transforming growth factor-beta (TGF-beta) and apolipoprotein E (apoE) play potent antiatherogenic roles. Despite such importance, the mechanisms underlying the regulation of apoE expression by TGF-beta have not been characterized and were therefore investigated. METHODS AND RESULTS Using THP-1 cell line as a model system, with key findings confirmed in primary cultures, we show that TGF-beta induces the expression of apoE, and this is prevented by pharmacological inhibitors of c-Jun N-terminal kinase (JNK), p38 kinase, and casein kinase 2 (CK2). In support for an important role for these pathways, TGF-beta activates JNK, p38 kinase, and CK2, and dominant-negative (DN) forms of these proteins inhibit the cytokine-induced apoE expression. TGF-beta also increases the phosphorylation and expression of c-Jun, a downstream target for JNK action and a component of activator protein-1 (AP-1), and DN c-Jun inhibits the induction of apoE expression in response to the cytokine. AP-1 DNA binding was also induced by TGF-beta, and the action of p38 kinase, JNK, and CK2 converged on the activation of c-Jun/AP-1. CONCLUSIONS These studies reveal a novel role for JNK, p38 kinase, CK2, and c-Jun/AP-1 in the TGF-beta-induced expression of apoE.
Collapse
Affiliation(s)
- Nishi N Singh
- School of Biosciences, Cardiff University, United Kingdom
| | | |
Collapse
|
17
|
Biswas KK, Tancharoen S, Tancharon S, Sarker KP, Kawahara KI, Hashiguchi T, Maruyama I. Cepharanthine triggers apoptosis in a human hepatocellular carcinoma cell line (HuH-7) through the activation of JNK1/2 and the downregulation of Akt. FEBS Lett 2005; 580:703-10. [PMID: 16412424 DOI: 10.1016/j.febslet.2005.12.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/15/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Cepharanthine (CEP), a biscoclaurine alkaloid, has been reported to induce cell death, however, the molecular mechanism of this phenomenon remains unclear. We herein report that CEP induced apoptosis in HuH-7 cells through nuclear fragmentation, DNA ladder formation, cytochrome c release, caspase-3 activation and poly-(ADP-ribose)-polymerase cleavage. CEP triggered the generation of reactive oxygen intermediates, the activation of mitogen activated protein kinase (MAPK) p38, JNK1/2 and p44/42, and the downregulation of protein kinase B/Akt. Antioxidants and SP600125, an inhibitor of JNK1/2, but not inhibitors of p38 MAPK and MEK1/2, significantly prevented cell death, thus implying that reactive oxygen species and JNK1/2 play crucial roles in the CEP-induced apoptosis of HuH-7 cells.
Collapse
Affiliation(s)
- Kamal Krishna Biswas
- Department of Laboratory and Vascular Medicine, Faculty of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Atanasova G, Jans R, Zhelev N, Mitev V, Poumay Y. Effects of the cyclin-dependent kinase inhibitor CYC202 (R-roscovitine) on the physiology of cultured human keratinocytes. Biochem Pharmacol 2005; 70:824-36. [PMID: 16011834 DOI: 10.1016/j.bcp.2005.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 05/30/2005] [Accepted: 06/01/2005] [Indexed: 11/15/2022]
Abstract
CYC202 (R-roscovitine) is a potent cyclin-dependent kinase inhibitor, investigated as a potential anti-cancer agent. The knowledge of the action of this pharmacological agent on normal human cells is still limited. In this study, we have explored the effects of the cyclin-dependent kinase inhibitor CYC202 on normal human epidermal keratinocytes. The loss of cell viability induced by this compound was strongly dependent on the rate of keratinocyte proliferation. At slightly cytotoxic doses, CYC202 inhibited the proliferation of subconfluent keratinocytes in a dose-dependent manner, and at higher concentrations induction of early apoptosis was observed, evidenced by caspase-3 activation. The signal transduction pathways in subconfluent keratinocytes were altered, as CYC202 increased the phosphorylation of p38 MAP kinase. The activation of this kinase was confirmed by the increased phosphorylation of p38 MAPK substrate, the small heat shock protein HSP27. Prolonged inhibition of highly proliferative cells with CYC202 for 48 and 72 h altered the expression of epidermal differentiation markers. The use of the selective p38 kinase inhibitor PD169316 demonstrated that involucrin mRNA was upregulated by CYC202 via p38 MAPK pathway. These effects were strongly dependent on cell density and were observed only in highly proliferative keratinocytes. We concluded that CYC202 although highly potent against cancer cells inhibits also the proliferation and induces early apoptotic events in autocrine culture of normal human keratinocytes, activates p38 MAP kinase pathway and alters the expression of the epidermal differentiation markers. These results suggest that despite this potency against tumour cells, CYC202 must be used attentively in the clinical practice.
Collapse
Affiliation(s)
- Ganka Atanasova
- Department Histology-Embryology, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | | | |
Collapse
|
19
|
Allen RT, Krueger KD, Dhume A, Agrawal DK. Sustained Akt/PKB activation and transient attenuation of c-jun N-Terminal kinase in the inhibition of apoptosis by IGF-1 in vascular smooth muscle cells. Apoptosis 2005; 10:525-35. [PMID: 15909115 DOI: 10.1007/s10495-005-1882-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Characteristics of hVSMC apoptosis and its inhibition by insulin-like growth factor-1 (IGF-1) remain unclear. Also unclear is whether a balance in hVSMCs exists whereby c-Jun N-terminal stress kinases (JNK) promote apoptosis while extracellular signal-regulated (ERK1/2) MAP kinases inhibit cell death. In this study, we examined the involvement of Akt/PKB and its upstream kinase, PDK1 and whether JNK activation correlated with human and rat VSMC apoptosis induced by staurosporine and by c-myc, respectively. We observed a strong, sustained JNK activation (and c-Jun phosphorylation), which correlated with VSMC apoptosis. IGF-1 (13.3 nM), during apoptosis inhibition, transiently inhibited JNK activity at 1 h in a phosphatidylinositol 3-kinase (PI3-K)- and MEK-ERK-dependent manner, as wortmannin (100 nM) or PD98059 (30 muM) partially attenuated the IGF-1 effect. PKC down-regulation had no effect on JNK inhibition by IGF-1. While IGF-1 alone produced a strong phosphorylation of Akt/PKB in hVSMCs up to 6 h, it was notably stronger and more sustained during ratmyc and hVSMCs apoptosis inhibition. Further, whereas transient expression of phosphorylated Akt protected VSMCs from apoptosis by nearly 50%, expression of dominant interfering alleles of Akt or PDK1 strongly inhibited IGF-1-mediated VSMC survival. These results demonstrate for the first time that transient inhibition of a pro-apoptotic stimulus in VSMCs may be sufficient to inhibit a programmed cell death and that sustained anti-apoptotic signals (Akt) elicited by IGF-1 are augmented during a death stimulus. Furthermore, PI3-K and ERK-MAPK pathways may cooperate to protect VSMCs from cell death.
Collapse
Affiliation(s)
- R T Allen
- Departments of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
20
|
Kling DE, Aidlen JT, Fisher JC, Kinane TB, Donahoe PK, Schnitzer JJ. Nitrofen induces a redox-dependent apoptosis associated with increased p38 activity in P19 teratocarcinoma cells. Toxicol In Vitro 2005; 19:1-10. [PMID: 15582350 DOI: 10.1016/j.tiv.2004.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Accepted: 04/26/2004] [Indexed: 11/19/2022]
Abstract
Nitrofen is a diphenyl ether herbicide that produces a spectrum of fetal abnormalities in rodents. To characterize the molecular mechanisms of nitrofen-mediated birth defects at the cellular level, we explored its effects on undifferentiated P19 teratocarcinoma cells. Nitrofen induces a time-dependent cell death of P19 cells that is associated with increases in TUNEL-positivity and caspase-3 cleavage suggesting that nitrofen induces P19 cell apoptosis. In addition, the increase in TUNEL-positive cells was inhibited with zVAD-fmk, suggesting that nitrofen induces a caspase-dependent apoptosis. Nitrofen treatment was associated with increased p38 MAP kinase activity, though pretreatment of cells with multiple p38 inhibitors did not affect nitrofen-mediated caspase-3 cleavage, suggesting caspase-3 cleavage is p38-independent. Nitrofen induced a dose-dependent increase in reactive oxygen species (ROS), which was accompanied by a decrease in the ratio of reduced/oxidized glutathione, indicating that nitrofen alters the cellular redox state of these cells. Furthermore, pretreatment of cells with N-acetyl cysteine gave a dose- and time-dependent reduction of caspase-3 cleavage, supporting the observations that caspase-3 cleavage is cell-redox-dependent. Therefore, nitrofen induces P19 cell apoptosis that is cell-redox-dependent and is associated with increases in p38 activity and ROS and may play a role in nitrofen-mediated birth defects.
Collapse
Affiliation(s)
- D E Kling
- Pediatric Surgical Research Laboratories, Pediatric Surgical Services, The Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, WRN 1122, Boston, MA 02114-2696, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Yang G, Sun X, Wang R. Hydrogen sulfide‐induced apoptosis of human aorta smooth muscle cells via the activation of mitogen‐activated protein kinases and caspase‐3. FASEB J 2004; 18:1782-4. [PMID: 15371330 DOI: 10.1096/fj.04-2279fje] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The endogenous production of hydrogen sulfide (H2S) and its physiological functions, including membrane hyperpolarization and smooth muscle cell relaxation, position this gas well in the family of gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). In this study, we demonstrate that H2S at physiologically relevant concentrations induced apoptosis of human aorta smooth muscle cells (HASMCs). Exposure of HASMCs to H2S did not induce necrosis as verified with Trypan blue exclusion and LDH release analysis. After inhibiting endogenous H2S production, exogenous H2S induced much more significant apoptosis, which was not altered by the presence of albumin or glutathione. H2S treatment increased the activities of ERK and p38 mitogen-activated protein kinase (MAPK), but not c-Jun N-terminal kinase activity. Suppression of extracellular signal-regulated kinase (ERK) activity, but not of p38 activity, inhibited the H2S-induced apoptosis of HASMCs. The activation of ERK by H2S in HASMCs was accompanied by increased caspase-3 activity. Inhibition of caspase-3 by AC-DEVD-CHO attenuated the H2S-induced cell apoptosis. Inhibition of ERK by U0126 decreased caspase-3 activity, whereas AC-DEVD-CHO did not alter ERK activity. In conclusion, exogenous H2S induces apoptosis of HASMCs, which is significantly affected by the endogenous H2S level. Of the three investigated MAPKs, only ERK played an active role in mediating H2S-induced apoptosis of HASMCs by activating caspase-3. These findings may help reveal novel mechanisms for many diseases linked to H2S-related abnormal cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- Guangdong Yang
- Department of Physiology, College of Medicine, Cardiovascular Research Group, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
22
|
Downer EJ, Fogarty MP, Campbell VA. Tetrahydrocannabinol-induced neurotoxicity depends on CB1 receptor-mediated c-Jun N-terminal kinase activation in cultured cortical neurons. Br J Pharmacol 2004; 140:547-57. [PMID: 14522843 PMCID: PMC1574055 DOI: 10.1038/sj.bjp.0705464] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Delta9-Tetrahydrocannabinol (THC), the main psychoactive ingredient of marijuana, induces apoptosis in cultured cortical neurons. THC exerts its apoptotic effects in cortical neurons by binding to the CB1 cannabinoid receptor. The CB1 receptor has been shown to couple to the stress-activated protein kinase, c-Jun N-terminal kinase (JNK). However, the involvement of specific JNK isoforms in the neurotoxic properties of THC remains to be established. The present study involved treatment of rat cultured cortical neurons with THC (0.005-50 microM), and combinations of THC with the CB1 receptor antagonist, AM 251 (10 microM) and pertussis toxin (PTX; 200 ng ml-1). Antisense oligonucleotides (AS) were used to deplete neurons of JNK1 and JNK2 in order to elucidate their respective roles in THC signalling. Here we report that THC induces the activation of JNK via the CB1 receptor and its associated G-protein, Gi/o. Treatment of cultured cortical neurons with THC resulted in a differential timeframe of activation of the JNK1 and JNK2 isoforms. Use of specific JNK1 and JNK2 AS identified activation of caspase-3 and DNA fragmentation as downstream consequences of JNK1 and JNK2 activation. The results from this study demonstrate that activation of the CB1 receptor induces JNK and caspase-3 activation, an increase in Bax expression and DNA fragmentation. The data demonstrate that the activation of both JNK1 and JNK2 isoforms is central to the THC-induced activation of the apoptotic pathway in cortical neurons.
Collapse
Affiliation(s)
- Eric J Downer
- Department of Physiology, Trinity College, Trinity College Institute of Neuroscience, Dublin 2, Ireland
| | - Marie P Fogarty
- Department of Physiology, Trinity College, Trinity College Institute of Neuroscience, Dublin 2, Ireland
| | - Veronica A Campbell
- Department of Physiology, Trinity College, Trinity College Institute of Neuroscience, Dublin 2, Ireland
- Author for correspondence:
| |
Collapse
|
23
|
Finn GJ, Creaven BS, Egan DA. Daphnetin induced differentiation of human renal carcinoma cells and its mediation by p38 mitogen-activated protein kinase. Biochem Pharmacol 2004; 67:1779-88. [PMID: 15081877 DOI: 10.1016/j.bcp.2004.01.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 01/16/2004] [Indexed: 11/20/2022]
Abstract
Daphnetin has been shown to be a potent in vitro anti-proliferative agent to the human renal cell carcinoma (RCC) cell line, A-498. In the present study, we investigated its effects on mitogen-activated protein kinase (MAPK) signalling along with cell cycle events and cellular differentiation. Daphnetin-activated p38, however, higher concentrations were required to inhibit ERK1/ERK2. In addition, it did not activate SAPK or induce apoptosis, but instead inhibited S phase cell cycle transition of A-498 cells at low concentrations and time of exposure. In addition, a late G(1), early S phase inhibition was observed at higher concentrations and time of exposure, indicating that the mechanism of daphnetin-induced differentiation was concentration dependent. Increased expression of the epithelial differentiation markers cytokeratins 8 and 18, correlated with increasing concentrations of daphnetin, while pre-treatment with a specific p38-inhibitor, served to limit this effect. There was no evidence that P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) played a role in the anti-proliferative activity of daphnetin. Consequently, we concluded that p38 MAP kinase is intrinsically involved in mediating the effect of daphnetin in A-498 cells, suggesting that this drug may act by promotion of cellular maturation, and consequently may represent a novel low toxic approach for the treatment of poorly differentiated RCCs.
Collapse
Affiliation(s)
- Gregory J Finn
- Department of Applied Science, National Centre for Sensor Research, School of Science, Institute of Technology, Tallaght, Dublin 24, Ireland
| | | | | |
Collapse
|
24
|
Finn GJ, Creaven BS, Egan DA. Investigation of intracellular signalling events mediating the mechanism of action of 7-hydroxycoumarin and 6-nitro-7-hdroxycoumarin in human renal cells. Cancer Lett 2004; 205:69-79. [PMID: 15036663 DOI: 10.1016/j.canlet.2003.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 08/26/2003] [Accepted: 09/22/2003] [Indexed: 01/20/2023]
Abstract
Previously, 7-hydroxycoumarin (7-OHC) and 6-nitro-7-hydroxycoumarin (6-NO2-7-OHC) have been shown to be potent and selective anti-proliferative agents to the human renal cell carcinoma (RCC) cell line, A-498. Their effect on mitogen-activated protein kinases (MAPK's) was investigated. 6-NO2-7-OHC was shown to alter the phosphorylation status of ERK1/ERK2, p38 and SAPK, while 7-OHC activated ERK1/ERK2 but had no effect on p38 and SAPK. Also, 7-OHC inhibited topoisomerase II mediated relaxation of DNA, while neither compound was a substrate for P-glycoprotein (P-gp) mediated multi-drug resistance (MDR). Therefore, 6-NO2-7-OHC, rather than 7-OHC, modulated signalling events associated with cellular differentiation and apoptosis, suggesting its mechanism of action may be the promotion of cellular maturation and/or death. Consequently, 6-NO2-7-OHC may represent a novel therapeutic agent for the treatment of RCC's.
Collapse
Affiliation(s)
- Gregory J Finn
- National Centre for Sensor Research, Department of Applied Science, School of Science, Institute of Technology, Tallaght, Dublin 24, Ireland
| | | | | |
Collapse
|
25
|
Zhang L, Pelech S, Uitto VJ. Bacterial GroEL-like heat shock protein 60 protects epithelial cells from stress-induced death through activation of ERK and inhibition of caspase 3. Exp Cell Res 2004; 292:231-40. [PMID: 14720522 DOI: 10.1016/j.yexcr.2003.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial heat shock proteins (hsps) can have various effects on human cells. We investigated whether bacterial hsp60s can protect epithelial cells from cell death by affecting the mitogen-activated protein kinase (MAPK) signal pathways. Cell protection was studied by adding bacterial hsp60s to skin keratinocyte cultures (HaCaT cell line) before UV radiation. The results show that hsp60 significantly protected against UV radiation-induced cell death. Effects of UV radiation and exogenous hsp60 on phosphorylation of MAPKs and on activation of caspase 3 were examined by Western blot analysis. UV radiation strongly induced phosphorylation of p38 MAPK and formation of active caspase 3. A p38 inhibitor, SB 203580, totally blocked UV radiation-mediated activation of caspase 3. Preincubation with hsp60 strongly induced phosphorylation of ERK1/2 and inhibited UV radiation-mediated activation of caspase 3. PD 98059, a specific inhibitor of the ERK1/2 pathway, blocked this inhibitory effect of exogenous hsp60. Studies on the association between activity of MAPKs or caspase 3 and cell death showed that the ERK1/2 pathway inhibitor reversed protective effect of hsp60 while specific inhibition of p38 and caspase 3 reduced cell death. These results indicate that in HaCaT cells UV radiation mediates cell death through activation of p38 followed by caspase 3 activation. Exogenous hsp60 partially protects against UV radiation-mediated epithelial cell death through activation of ERK1/2, which inhibits caspase 3 activation.
Collapse
Affiliation(s)
- Liangxuan Zhang
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, British Columbia, Vancouver, Canada V6T 1Z3
| | | | | |
Collapse
|
26
|
Sadler KC, Yüce O, Hamaratoglu F, Vergé V, Peaucellier G, Picard A. MAP kinases regulate unfertilized egg apoptosis and fertilization suppresses death via Ca2+signaling. Mol Reprod Dev 2004; 67:366-83. [PMID: 14735498 DOI: 10.1002/mrd.20023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The default fate for eggs from many species is death by apoptosis and thus, successful fertilization depends upon suppression of the maternal death program. Little is known about the molecular triggers which activate this process or how the fertilization signal suppresses the default maternal apoptotic pathway. The MAP kinase (MAPK) family member, ERK, plays a universal and critical role in several stages of oocyte meiotic maturation, and fertilization results in ERK inactivation. In somatic cells, ERK and other MAPK family members, p38 and JNK, provide opposing signals to regulate apoptosis, however, it is not known whether MAPKs play a regulatory role in egg apoptosis, nor whether suppression of apoptosis by fertilization is mediated by MAPK activity. Here we demonstrate that MAPKs are involved in starfish egg apoptosis and we investigate the relationship between the fertilization induced signaling pathway and MAPK activation. ERK is active in post-meiotic eggs just until apoptosis onset and then p38, JNK and a third kinase are activated, and remain active through execution. Sequential activation of ERK and p38 is necessary for apoptosis, and newly synthesized proteins are required both upstream of ERK and downstream of p38 for activation of the full apoptotic program. Fertilization causes a dramatic rise in intracellular Ca2+, and we report that Ca2+ provides a necessary and sufficient pro-survival signal. The Ca2+ pathway following fertilization of both young and aged eggs causes ERK to be rapidly inactivated, but fertilization cannot rescue aged eggs from death, indicating that ERK inactivation is not sufficient to suppress apoptosis.
Collapse
Affiliation(s)
- Kirsten C Sadler
- Department of Molecular Biology and Genetics, Bosphorus University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
27
|
Sethi G, Sodhi A. Role of p38 Mitogen-activated Protein Kinase and Caspases in UV-B–induced Apoptosis of Murine Peritoneal Macrophages¶. Photochem Photobiol 2004. [DOI: 10.1562/0031-8655(2004)79<48:ropmpk>2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Sethi G, Sodhi A. Role of p38 Mitogen-activated Protein Kinase and Caspases in UV-B-induced Apoptosis of Murine Peritoneal Macrophages¶. Photochem Photobiol 2004. [DOI: 10.1111/j.1751-1097.2004.tb09856.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Zheng XL, Gui Y, Du G, Frohman MA, Peng DQ. Calphostin-C induction of vascular smooth muscle cell apoptosis proceeds through phospholipase D and microtubule inhibition. J Biol Chem 2003; 279:7112-8. [PMID: 14660552 DOI: 10.1074/jbc.m310721200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calphostin-C, a protein kinase C inhibitor, induces apoptosis of cultured vascular smooth muscle cells. However, the mechanisms are not completely defined. Because apoptosis of vascular smooth muscle cells is critical in several proliferating vascular diseases such as atherosclerosis and restenosis after angioplasty, we decided to investigate the mechanisms underlying the calphostin-C-induced apoptotic pathway. We show here that apoptosis is inhibited by the addition of exogenous phosphatidic acid, a metabolite of phospholipase D (PLD), and that calphostin-C inhibits completely the activities of both isoforms of PLD, PLD1 and PLD2. Overexpression of either PLD1 or PLD2 prevented the vascular smooth muscle cell apoptosis induced by serum withdrawal but not the calphostin-C-elicited apoptosis. These data suggest that PLDs have anti-apoptotic effects and that complete inhibition of PLD activity by calphostin-C induces smooth muscle cell apoptosis. We also report that calphostin-C induced microtubule disruption and that the addition of exogenous phosphatidic acid inhibits calphostin-C effects on microtubules, suggesting a role for PLD in stabilizing the microtubule network. Overexpressing PLD2 in Chinese hamster ovary cells phenocopies this result, providing strong support for the hypothesis. Finally, taxol, a microtubule stabilizer, not only inhibited the calphostin-C-induced microtubule disruption but also inhibited apoptosis. We therefore conclude that calphostin-C induces apoptosis of cultured vascular smooth muscle cells through inhibiting PLD activity and subsequent microtubule polymerization.
Collapse
Affiliation(s)
- Xi-Long Zheng
- Smooth Muscle Research Group, Department of Biochemistry & Molecular Biology, The University of Calgary, Calgary, Alberta T2N 4N1,Canada.
| | | | | | | | | |
Collapse
|
30
|
Finn G, Creaven B, Egan D. Modulation of mitogen-activated protein kinases by 6-nitro-7-hydroxycoumarin mediates apoptosis in renal carcinoma cells. Eur J Pharmacol 2003; 481:159-67. [PMID: 14642781 DOI: 10.1016/j.ejphar.2003.09.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
6-Nitro-7-hydroxycoumarin has previously been shown to be a selective anti-proliferative agent capable of activating p38, stress-activated protein kinase (SAPK) and mitogen-activated protein (MAP) kinase in the human renal cell carcinoma cell line, A-498. Here, the role of p38 MAP kinase was further investigated in relation to its participation in 6-nitro-7-hydroxycoumarin induced apoptosis. 6-Nitro-7-hydroxycoumarin was shown to alter cell cycle progression, leading to the appearance of a sub-G(1) peak, containing hypodiploid DNA, accompanied by increases in both poly(ADP-ribose)polymerase cleavage and decreased expression of cyclin D1. Drug treatment also lead to a rise in the expression in the cyclin-dependent kinase inhibitor, p21(WAF1/CIP1), and the appearance of inter-nucleosomal DNA cleavage and morphological changes, consistent with apoptotic cell death. Using a p38 MAP kinase inhibitor, SB203580, caused expression of p21(WAF1/CIP1) to be suppressed and both cleaved poly(ADP-ribose)polymerase and the numbers of apoptotic cells were decreased. In summary, this study shows the participation of p38 MAP kinase in 6-nitro-7-hydroxycoumarin induced apoptosis of A-498 cells and suggests that targeting of p38 may represent a novel mechanism to inhibit renal cell carcinoma and that coumarin type drugs require further investigation as potential anticancer agents directed against renal cell carcinoma.
Collapse
Affiliation(s)
- Gregory Finn
- Department of Applied Science, National Centre for Sensor Research, School of Science, Institute of Technology, Tallaght, Dublin 24, Ireland
| | | | | |
Collapse
|
31
|
Hsieh YC, Jao HC, Yang RC, Hsu HK, Hsu C. Suppression of protein kinase Calpha triggers apoptosis through down-regulation of Bcl-xL in a rat hepatic epithelial cell line. Shock 2003; 19:582-7. [PMID: 12785016 DOI: 10.1097/01.shk.0000065705.84144.ed] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inactivation of protein kinase C (PKC)alpha plays an important role in modulating hepatic failure and/or apoptosis during sepsis. To determine whether and how PKCalpha inactivation mediates the apoptosis, PKCalpha was suppressed by antisense treatment or transiently transfection in Clone-9 rat hepatic epithelial cell line. Apoptosis was evaluated by cell survival rate, poly-adenyl ribonuclease polymerase (PARP) cleavage, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-digoxigenin nick end labeling stain. The expressions of PKCalpha and Bcl-xL were quantified by Western blot analysis after antisense treatment. In the transfection studies, cells were co-transfected with green fluorescent protein cDNA as a transfection marker. The expressions of PKCalpha and Bcl-xL were detected by immunohistochemical staining with second antibody conjugated with Texas red. Apoptosis was evaluated by tetramethyl-rhodamine labeling of DNA strand breaks and immunostaining of 85-kDa fragment of PARP. The results showed that cytosolic and membrane-associated PKCalpha were decreased by 54.5% and 41.4%, respectively, after PKCalpha antisense treatment. The apoptotic incidence and percentage of PARP cleavage were significantly increased, whereas protein expression of Bcl-xL was decreased after PKCalpha-antisense treatment. In the transfection studies, the results showed that most of the cells expressing green fluorescent protein revealed less PKCalpha and Bcl-xL protein contents and more in situ PARP cleavage and DNA strand breaks. These findings indicated that decrease of PKCalpha declines the Bcl-xL content and leads to the vulnerability of apoptosis in hepatic epithelial cells. Taken together, our data provide evidence that suppression of PKCalpha plays a critical role in triggering caspase-dependent apoptosis, which may act through modulating the Bcl-xL expression.
Collapse
Affiliation(s)
- Ya-Ching Hsieh
- Department of Physiology, Kaohsiung Medical University, Kaohsiung city, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Kobara M, Tatsumi T, Kambayashi D, Mano A, Yamanaka S, Shiraishi J, Keira N, Matoba S, Asayama J, Fushiki S, Nakagawa M. Effects of ACE inhibition on myocardial apoptosis in an ischemia-reperfusion rat heart model. J Cardiovasc Pharmacol 2003; 41:880-9. [PMID: 12775965 DOI: 10.1097/00005344-200306000-00008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myocardial ischemia-reperfusion injury involves necrosis and apoptosis. The inhibition of angiotensin-converting enzyme (ACE) has been reported to suppress infarct size. In this study, it was investigated whether an ACE inhibitor affected myocardial apoptosis and apoptosis-related proteins in rats with experimental myocardial infarction. Anesthetized Sprague-Dawley rats were divided into four groups. Group I underwent 30 minutes of left coronary artery occlusion followed by 24 hours of reperfusion (control group); Group II underwent oral administration of the ACE inhibitor quinapril (10 mg/kg/day) before coronary occlusion (quinapril group); Group III underwent administration of the bradykinin B(2)-receptor antagonist Hoe 140 (250 microg/kg/day, subcutaneously) with quinapril (quinapril + Hoe 140 group); and Group IV underwent administration of Hoe 140 alone (Hoe 140 group). After reperfusion, myocardial infarct size was determined by triphenyltetrazolium chloride staining. Myocardial apoptosis was detected immunohistologically using terminal deoxynucleotidyl transferase-mediated nick end labeling staining and DNA electrophoresis. Myocardial caspase-3 activation was analyzed by Western blot and the expressions of Bcl-xL and Bax proteins were detected immunohistochemically. Quinapril significantly reduced the ratio of myocardial infarct size in the ischemic area at risk. In addition, quinapril significantly suppressed the incidence of apoptotic myocytes around the necrotic region (from 18.9 +/- 0.8% to 8.6 +/- 1.0%; P < 0.0001), the intensity of DNA ladder formation, and the activation of caspase-3. Hoe 140 attenuated these protective effects of quinapril. In the immunohistochemical study, Bax and Bcl-xL were expressed in myocytes, and ischemia-reperfusion abolished both proteins in the center region of ischemia. The Bax staining was equally observed among all groups. However, Bcl-xL staining remained in the ischemic area widely after quinapril treatment. In addition, Hoe 140 also depleted this effect of quinapril. These results suggest that inhibition of ACE reduces myocardial infarction and apoptosis via the bradykinin B(2) receptor in part. The antiapoptotic effect of the ACE inhibitor is attributed to the changing expression of Bcl-xL.
Collapse
Affiliation(s)
- Miyuki Kobara
- Second Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sarker KP, Biswas KK, Yamakuchi M, Lee KY, Hahiguchi T, Kracht M, Kitajima I, Maruyama I. ASK1-p38 MAPK/JNK signaling cascade mediates anandamide-induced PC12 cell death. J Neurochem 2003; 85:50-61. [PMID: 12641726 DOI: 10.1046/j.1471-4159.2003.01663.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.
Collapse
Affiliation(s)
- Krishna Pada Sarker
- Department of Laboratory and Molecular Medicine, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Nicolini G, Rigolio R, Scuteri A, Miloso M, Saccomanno D, Cavaletti G, Tredici G. Effect of trans-resveratrol on signal transduction pathways involved in paclitaxel-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurochem Int 2003; 42:419-29. [PMID: 12510025 DOI: 10.1016/s0197-0186(02)00132-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
trans-Resveratrol (3,4',5-trihydroxystilbene) is able to significantly reduce paclitaxel-induced apoptosis in the human neuroblastoma (HN) SH-SY5Y cell line, acting on several cellular signaling pathways that are involved in paclitaxel-induced apoptosis. trans-Resveratrol reverses phosphorylation of Bcl-2 induced by paclitaxel and concomitantly blocks Raf-1 phosphorylation, also observed after paclitaxel exposure, thus suggesting that Bcl-2 inactivation may be dependent on the activation of the Raf/Ras cascade. trans-Resveratrol also reverses the sustained phosphorylation of JNK/SAPK, which specifically occurs after paclitaxel exposure.Overall, our observations demonstrate that (a) the toxic action of paclitaxel on neuronal-like cells is not only related to the effect of the drug on tubulin, but also to its capacity to activate several intracellular pathways leading to inactivation of Bcl-2, thus causing cells to die by apoptosis, (b) trans-resveratrol significantly reduces paclitaxel-induced apoptosis by modulating the cellular signaling pathways which commit the cell to apoptosis.
Collapse
Affiliation(s)
- G Nicolini
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Facoltá di Medicina e Chirurgia, Via Cadore 48, Università degli Studi di Milano-Bicocca, 20052 Monza, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Matassa AA, Kalkofen RL, Carpenter L, Biden TJ, Reyland ME. Inhibition of PKCalpha induces a PKCdelta-dependent apoptotic program in salivary epithelial cells. Cell Death Differ 2003; 10:269-77. [PMID: 12700627 DOI: 10.1038/sj.cdd.4401149] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have used expression of a kinase dead mutant of PKCalpha (PKCalphaKD) to explore the role of this isoform in salivary epithelial cell apoptosis. Expression of PKCalphaKD by adenovirus-mediated transduction results in a dose-dependent induction of apoptosis in salivary epithelial cells as measured by the accumulation of sub-G1 DNA, activation of caspase-3, and cleavage of PKCdelta and PKCzeta, known caspase substrates. Induction of apoptosis is accompanied by nine-fold activation of c-Jun-N-terminal kinase, and an approximately two to three-fold increase in activated mitogen-activated protein kinase (MAPK) as well as total MAPK protein. Previous studies from our laboratory have shown that PKCdelta activity is essential for the apoptotic response of salivary epithelial cells to a variety of cell toxins. To explore the contribution of PKCdelta to PKCalphaKD-induced apoptosis, salivary epithelial cells were cotransduced with PKCalphaKD and PKCdeltaKD expression vectors. Inhibition of endogenous PKCdelta blocked the ability of PKCalphaKD to induce apoptosis as indicated by cell morphology, DNA fragmentation, and caspase-3 activation, indicating that PKCdelta activity is required for the apoptotic program induced under conditions where PKCalpha is inhibited. These findings indicate that PKCalpha functions as a survival factor in salivary epithelial cells, while PKCdelta functions to regulate entry into the apoptotic pathway.
Collapse
Affiliation(s)
- A A Matassa
- Department of Craniofacial Biology, School of Dentistry, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
36
|
Ji LL, Zhao XG, Chen L, Zhang M, Wang ZT. Pyrrolizidine alkaloid clivorine inhibits human normal liver L-02 cells growth and activates p38 mitogen-activated protein kinase in L-02 cells. Toxicon 2002; 40:1685-90. [PMID: 12457880 DOI: 10.1016/s0041-0101(02)00184-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clivorine, a pyrrolizidine alkaloid extracted from Chinese medicinal plant Ligularia hodgsonii Hook significantly inhibited human normal liver L-02 cells proliferation and decreased L-02 cells viability. The results of western blot showed that clivorine strongly evoked phosphorylation of p38 mitogen-activated protein (MAP) Kinase in L-02 cells, but had no effect on extracellular signal-related kinases MAP Kinase phosphorylation. Moreover, another pyrrolizidine alkaloid monocrotaline had no effect on phosphorylation of p38 MAP Kinase in L-02 cells. These studies document the effects of pyrrolizidine alkaloid clivorine on the MAPK cascade and on the growth of human normal liver L-02 cells for the first time, which may be a possible reason for the toxic effects observed in those plants containing pyrrolizidine alkaloids.
Collapse
Affiliation(s)
- Li-Li Ji
- Department of Pharmacognosy, China Pharmaceutical University, 1 Shen Nong Road, Nanjing 210038, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Shapiro P. Ras-MAP kinase signaling pathways and control of cell proliferation: relevance to cancer therapy. Crit Rev Clin Lab Sci 2002; 39:285-330. [PMID: 12385501 DOI: 10.1080/10408360290795538] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mitogen-activated protein (MAP) kinase pathways represent several families of signal transduction cascades that mediate information provided by extracellular stimuli. MAP kinase pathways regulate a wide range of physiological responses, including cell proliferation, apoptosis, cell differentiation, and tissue development. Constitutive activation of MAP kinase proteins in experimental models has been shown to cause cell transformation and is implicated in tumorigenesis. Of clinical importance, MAP kinase pathways are regulated by Ras G-proteins, which are found to be mutated and constitutively active in approximately 30% of all human cancers. Thus, a major goal in the treatment of cancer is the development of specific compounds that target Ras and critical downstream signaling proteins responsible for uncontrolled cell growth. A variety of biochemical, molecular, and structural approaches have been used to develop drug compounds that target signaling proteins important for MAP kinase pathway activation. These compounds have been useful tools for identifying the mechanisms of MAP kinase pathway signaling and hold promise for clinical use. This review will present an overview of the major proteins involved in Ras and MAP kinase signaling pathways and their function in regulating cell cycle events and proliferation. In addition, some of the relevant compounds that have been developed to inhibit the activities of these proteins and MAP kinase signaling are discussed.
Collapse
Affiliation(s)
- Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland-School of Pharmacy, Baltimore 21201, USA
| |
Collapse
|
38
|
Abstract
Apoptosis is a physiological form of death in which cells turn-on an intrinsic genetic program that eventually leads to their destruction in a highly regulated manner. This process renders elimination of "unwanted cells" in the body, and accounts for cellular turnover and homeostasis of tissues in multicellular organisms. Consequently, an imbalance in the apoptotic rate in a particular tissue can lead to profound effects in the whole organism. Exposure of cells to apoptotic stimuli induces a rapid loss of cell volume (apoptotic volume decrease) that plays a pivotal role in the decision of a cell to undergo apoptosis. Interestingly, the apoptotic volume decrease is driven by changes in ionic fluxes across the plasma membrane that promote a decrease in the intracellular ions that ultimately also leads to a reduction in intracellular ionic strength. Despite an intensive research effort however, the cellular and molecular mechanisms that trigger changes in cell volume during apoptosis remain poorly understood. Nevertheless, this apoptotic volume decrease has been shown to be a necessary component of the apoptotic cascade and an important point of modulation for the entire cell death process. In this review, we will focus on the importance of the apoptotic volume decrease in the context of signaling and modulation of programmed cell death.
Collapse
Affiliation(s)
- Mireia Gómez-Angelats
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
39
|
Park HJ, Kim BC, Kim SJ, Choi KS. Role of MAP kinases and their cross-talk in TGF-beta1-induced apoptosis in FaO rat hepatoma cell line. Hepatology 2002; 35:1360-71. [PMID: 12029621 DOI: 10.1053/jhep.2002.33205] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transforming growth factor (TGF) beta1 is a potent inducer of apoptosis in the liver. During TGF-beta1-induced apoptosis, 3 mitogen-activated protein (MAP) kinases (extracellular signal-regulated kinase [ERK], c-Jun N-terminal kinase [JNK], and p38 kinase) showed simultaneously sustained activation in FaO rat hepatoma cells. TGF-beta1-induced apoptosis was markedly enhanced when ERK activation was selectively inhibited by the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059. In contrast, both interfering with p38 activity by overexpression of the dominant negative (DN) MKK6 mutant and inhibition of the JNK pathway by overexpression of the DN SEK1 mutant resulted in suppression of mitochondrial cytochrome c release, abrogating TGF-beta1-induced apoptosis. In addition, antiapoptotic Bcl-2 blocked mitochondrial cytochrome c release, suppressing TGF-beta1-induced activation of JNK and p38. Inhibition of ERK activity enhanced TGF-beta1-induced p38 and JNK activation. However, inhibition of the JNK pathway suppressed p38 but induced transient ERK activation. Similarly, interfering with the p38 pathway also attenuated JNK activation but generated transient ERK activation in response to TGF-beta1. These results indicate that disrupting one MAP kinase pathway affects the TGF-beta1-induced activation of other MAP kinases, suggesting cross-talk among MAP kinase pathways. In conclusion, we propose that the balance and integration of MAP kinase signaling may regulate commitment to TGF-beta1-induced apoptosis modulating the release of cytochrome c from mitochondria.
Collapse
Affiliation(s)
- Hyun-Jin Park
- Laboratory of Endocrinology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| | | | | | | |
Collapse
|
40
|
Laprise P, Poirier EM, Vézina A, Rivard N, Vachon PH. Merosin-integrin promotion of skeletal myofiber cell survival: Differentiation state-distinct involvement of p60Fyn tyrosine kinase and p38alpha stress-activated MAP kinase. J Cell Physiol 2002; 191:69-81. [PMID: 11920683 DOI: 10.1002/jcp.10075] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Myofiber survival and suppression of anoikis depend in large part on the merosin (laminin-2/-4)-integrin alpha7beta1D cell adhesion system; however, the question remains as to the nature of the signaling molecules/pathways involved. In the present study, we investigated this question using the C2C12 cell model of myogenic differentiation and its merosin- and laminin-deficient derivatives. Herein, we report that: 1) of four members of the Src family of tyrosine kinases studied (p60Src, p53/56Lyn, p59Yes, or p60Fyn), the expression and activity of p60Fyn are found in myotubes exclusively; 2) a severe decrease of p60Fyn activity correlates with myotube apoptosis/anoikis induced by pharmocological compounds (herbimycin A or PP2) which inhibit tyrosine kinases of the Src family, by merosin deficiency and by beta1 integrin inhibition; 3) myoblast survival depends on Fak and the MEK/Erk pathway, in contrast to myotubes; 4) the PI3-K pathway is not involved in either myoblast or myotube survival; and 5) p38alpha SAPK stimulation and activity (but not that of p38beta) are required in the progression of myotube apoptosis/anoikis induced by p60Fyn inhibition, merosin deficiency or beta1 integrin-inhibition; however, p38 is not involved in myoblast apoptosis. Taken together, these results suggest that the promotion of myotube survival by the merosin-alpha7beta1D adhesion system involves p60Fyn, and that disruptions in this cell adhesion system induce myotube apoptosis/anoikis through a p38alpha SAPK-dependent pathway.
Collapse
Affiliation(s)
- Patrick Laprise
- Département d'anatomie et de biologie cellulaire, Faculté de médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | |
Collapse
|
41
|
Wong VY, Keller PM, Nuttall ME, Kikly K, DeWolf WE, Lee D, Ali SM, Nadeau DP, Grygielko ET, Laping NJ, Brooks DP. Role of caspases in human renal proximal tubular epithelial cell apoptosis. Eur J Pharmacol 2001; 433:135-40. [PMID: 11755144 DOI: 10.1016/s0014-2999(01)01517-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the present study, we have used an in vitro model of apoptosis using primary human renal proximal tubular epithelial (RPTE) cells to investigate the mechanisms involved in renal cell apoptosis. Treatment of RPTE cells with okadaic acid for 24-48 h induced apoptosis in a concentration-dependent manner. Apoptosis was accompanied by the activation of the p38 mitogen-activated protein kinase (MAPK) pathway followed by the activation of caspase-9, -3, and -7. The induction of caspase activity correlated with the proteolytic cleavage of beta-catenin, suggesting that beta-catenin is a caspase substrate. The caspase inhibitor, Z-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk), resulted in a dose-dependent inhibition of apoptosis and beta-catenin cleavage. These data suggest that okadaic acid-induced apoptosis is p38 MAPK and caspase-dependent and that proteolytic cleavage of beta-catenin by caspases is likely to be a downstream molecular event associated with the morphological and cytoskeletal changes induced during apoptosis.
Collapse
Affiliation(s)
- V Y Wong
- Department of Renal Pharmacology, GlaxoSmithKline, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kolonics A, Jánossy J, Brózik A, Gáti R, Schaefer A, Magócsi M. Activation of Raf/ERK1/2 MAP kinase pathway is involved in GM-CSF-induced proliferation and survival but not in erythropoietin-induced differentiation of TF-1 cells. Cell Signal 2001; 13:743-54. [PMID: 11602185 DOI: 10.1016/s0898-6568(01)00201-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The involvement of MAPK pathways in differentiation, proliferation and survival was investigated by comparing Epo and GM-CSF signalling in human factor-dependent myeloerythroid TF-1 cells with abnormal Epo-R. GM-CSF withdrawal induced cell-cycle arrest and apoptosis accompanied by increased caspase-3 activity, DNA degradation and reduced expression of the antiapoptotic Bcl-2 and Bcl-xl proteins. Readministration of GM-CSF but not Epo reversed these processes and induced proliferation. The GM-CSF promoted cell survival and proliferation correlated with MEK-1 dependent ERK1/2, Elk-1 and CREB phosphorylation and Egr-1, c-Fos expression as well as with increased STAT-5, AP-1, c-Myb and NF-kappaB DNA-binding. In contrast, Epo failed to activate the Raf-1/ERK1/2 MAPK pathway or to induce Egr-1 and/or c-Fos expression, while it induced erythroid differentiation in GM-CSF-deprived cells. In addition, the Epo-induced haemoglobin production was inhibited in the presence of GM-CSF. These results demonstrate that the activation of MAPK cascade is not necessary for Epo-induced haemoglobin production in TF-1 cells and suggest a negative cross-talk between the signalling of GM-CSF-stimulated cell proliferation and Epo-induced erythroid differentiation.
Collapse
Affiliation(s)
- A Kolonics
- Department of Cell Metabolism, National Institute of Haematology and Immunology, Daróczi út 24, H-1113 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
43
|
Tani E, Kitagawa H, Ikemoto H, Matsumoto T. Proteasome inhibitors induce Fas-mediated apoptosis by c-Myc accumulation and subsequent induction of FasL message in human glioma cells. FEBS Lett 2001; 504:53-8. [PMID: 11522296 DOI: 10.1016/s0014-5793(01)02770-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteasome inhibitors were shown previously to induce mitochondria-independent and caspase-3-dependent apoptosis in human glioma cell lines by unknown mechanisms. Here, we showed that treatment with proteasome inhibitors, lactacystin or acetyl-leucinyl-leucinyl-norleucinal, led to elevation of the steady-state c-Myc protein but not c-myc mRNA, suggesting the accumulation of c-Myc protein by proteasome inhibitors. In addition, the marked association of c-Myc protein with ubiquitin by treatment with proteasome inhibitors indicated the involvement of proteasome in c-Myc proteolysis and the stabilization of c-Myc protein by proteasome inhibitors in vivo. The expression of Fas (also termed CD95 or APO-1) mRNA, if analyzed by reverse transcriptase polymerase chain reaction assay, was found to occur constitutively, and increased slightly by the treatment with proteasome inhibitors. In contrast, the expression of Fas ligand (FasL) mRNA was markedly induced temporarily before the activation of caspase-3 by the treatment. Agonistic anti-Fas antibody (CH11) induced apoptotic cell death, suggesting the presence of a functional Fas receptor. In addition, proteasome inhibitor-induced apoptosis was prevented by the addition of antagonistic anti-FasL antibody (4A5) or z-IETD.fmk, a potent inhibitor of caspase-8, indicating the involvement of the Fas receptor-ligand apoptotic signaling system in proteasome inhibitor-mediated apoptosis. Thus, it is suggested that proteasome inhibitors cause the accumulation of c-Myc protein which induces transiently FasL message to stimulate the Fas receptor-ligand apoptotic signaling pathway.
Collapse
Affiliation(s)
- E Tani
- Molecular Research Laboratory, Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, 663-8501, Hyogo, Japan.
| | | | | | | |
Collapse
|
44
|
Haÿ E, Lemonnier J, Fromigué O, Marie PJ. Bone morphogenetic protein-2 promotes osteoblast apoptosis through a Smad-independent, protein kinase C-dependent signaling pathway. J Biol Chem 2001; 276:29028-36. [PMID: 11395480 DOI: 10.1074/jbc.m011265200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta (TGF-beta) family, regulates osteoblast differentiation and bone formation. Here we show a novel function of BMP-2 in human osteoblasts and identify a signaling pathway involved in this function. BMP-2 promotes apoptosis in primary human calvaria osteoblasts and in immortalized human neonatal calvaria osteoblasts, as shown by terminal deoxynucleotidyl transferase-mediated nick end labeling analysis. In contrast, TGF-beta 2 inhibits apoptosis in human osteoblasts. Studies of the mechanisms of action showed that BMP-2 increases the Bax/Bcl-2 ratio, whereas TG beta-2 has a negative effect. Moreover, BMP-2 increases the release of mitochondrial cytochrome c to the cytosol. Consistent with these results, BMP-2 increases caspase-9 and caspase-3, -6, and -7 activity, and an anti-caspase-9 agent suppresses BMP-2-induced apoptosis. Overexpression of dominant-negative Smad1 effectively blocks BMP-2-induced expression of the osteoblast transcription factor Runx2 but not the activation of caspases or apoptosis induced by BMP-2, indicating that the Smad1 signaling pathway is not involved in the BMP-2-induced apoptosis. The proapoptotic effect of BMP-2 is PKC-dependent, because BMP-2 increases PKC activity, and the selective PKC inhibitor calphostin C blocks the BMP-2-induced increased Bax/Bcl-2, caspase activity, and apoptosis. In contrast, the cAMP-dependent protein kinase A inhibitor H89, the p38 MAPK inhibitor SB203580, and the MEK inhibitor PD-98059 have no effect. The results show that BMP-2 uses a Smad-independent, PKC-dependent pathway to promote apoptosis via a Bax/Bcl-2 and cytochrome c-caspase-9-caspase-3, -6, -7 cascade in human osteoblasts.
Collapse
Affiliation(s)
- E Haÿ
- Laboratory of Osteoblast Biology and Pathology, INSERM U 349, Affiliated CNRS, Lariboisière Hospital, 75475 Cedex 10 Paris, France
| | | | | | | |
Collapse
|
45
|
Marangolo M, McGee MM, Tipton KF, Williams DC, Zisterer DM. Oxidative stress induces apoptosis in C6 glioma cells: involvement of mitogen-activated protein kinases and nuclear factor kappa B. Neurotox Res 2001; 3:397-409. [PMID: 14715469 DOI: 10.1007/bf03033200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excessive oxidative stress has been implicated in the induction of cell death in a variety of neurodegenerative diseases. In the present study, hydrogen peroxide (H2O2)-induced cell death in rat C6 glioma cells was used as a model system for studying the molecular events associated with oxidative stress-induced cell death in glial cells. We demonstrate that exposure of C6 glioma cells to H2O2 results in apoptotic cell death in a concentration-dependent manner, and caused activation of a member of the caspase-3-like family of proteases resulting in cleavage of the DNA repair enzyme poly(ADP-ribose)polymerase, PARP. Furthermore, H2O2 induced a transient activation of the transcription factor, nuclear factor kappa B (NF(Kappa)B). Pre-treatment of cells with the antioxidant N-acetylcysteine, (NAC), prevented both the activation of NF(Kappa)B and the induction of apoptosis by H2O2, suggesting a possible role for this transcription factor in oxidant-induced apoptosis in glial cells. Exposure of the cells to H2O2 led to transient activation of both c-Jun N-terminal kinase (JNK) and p38 kinase but has no effect on extracellular regulated kinase (ERK) activity. Inhibition of p38 by SB203580 did not protect the cells against H2O2-induced apoptosis suggesting that activation of p38 is not essential for H2O2-mediated cell death in C6 glioma cells.
Collapse
Affiliation(s)
- M Marangolo
- Department of Biochemistry, Trinity College Dublin, Ireland
| | | | | | | | | |
Collapse
|
46
|
Akhand AA, Hossain K, Mitsui H, Kato M, Miyata T, Inagi R, Du J, Takeda K, Kawamoto Y, Suzuki H, Kurokawa K, Nakashima I. Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radic Biol Med 2001; 31:20-30. [PMID: 11425486 DOI: 10.1016/s0891-5849(01)00550-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Carbonyl compounds with diverse carbon skeletons may be differentially related to the pathogenesis of vascular diseases. In this study, we compared intracellular signals delivered into cultured human umbilical vein endothelial cells (HUVECs) by glyoxal (GO) and methylglyoxal (MGO), which differ only by a methyl group. Depending on their concentrations, GO and MGO promoted phosphorylations of ERK1 and ERK2, which were blocked by the protein-tyrosine kinase (PTK) inhibitors herbimycin A and staurosporine, thereby being PTK-dependent. GO and MGO also induced phosphorylations of JNK, p38 MAPK, and c-Jun, either PTK-dependently (GO) or -independently (MGO). Next, we found that MGO, but not GO, induced degradation of poly(ADP-ribose) polymerase (PARP) as the intracellular substrate of caspase-3. Curcumin and SB203580, which inhibit JNK and p38 MAPK signaling pathways, but not herbimycin A/staurosporine, prevented the MGO-induced PARP degradation. We then found that MGO, but not GO, reduced the intracellular glutathione level, and that cysteine, but not cystine, inhibited the MGO-mediated activation of ERK, JNK, p38 MAPK, or c-Jun more extensively than did lysine or arginine. In addition, all the signals triggered by GO and MGO were blocked by amino guanidine (AG), which traps carbonyls. These results demonstrated that GO and MGO triggered two distinct signal cascades, one for PTK-dependent control of ERK and another for PTK-independent redox-linked activation of JNK/p38 MAPK and caspases in HUVECs, depending on the structure of the carbon skeleton of the chemicals.
Collapse
Affiliation(s)
- A A Akhand
- Department of Immunology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Apoptotic signalling cascade in photosensitized human epidermal carcinoma A431 cells: involvement of singlet oxygen, c-Jun N-terminal kinase, caspase-3 and p21-activated kinase 2. Biochem J 2001. [PMID: 10998365 DOI: 10.1042/bj3510221] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Photodynamic treatment (PDT) elicits diverse cellular responses and can also cause apoptosis. In the present study the cascade of signalling events involved in PDT-induced apoptosis was investigated using Rose Bengal (RB) as the photosensitizer, and human epidermal carcinoma A431 cells as the cell model. We show that a 36-kDa kinase detected by an in-gel kinase assay is markedly activated during PDT-triggered apoptosis. Immunoblot analysis revealed that this 36-kDa kinase represents the C-terminal catalytic fragment of p21-activated kinase (PAK)2. Generation of this active fragment of PAK2 is mediated by the caspase family of proteases, which are activated by PDT. The specific caspase inhibitors (acetyl-Asp-Glu-Val-Asp-aldehyde and acetyl-Tyr-Val-Ala-Asp-chloromethylketone) block the PDT-induced caspase-3 activation and subsequent PAK2 cleavage/activation, indicating a major role for the caspase family proteases in PDT-induced apoptosis. Both PDT-induced caspase-3 activation and PAK2 cleavage/activation can be inhibited by the singlet oxygen scavengers, L-histidine and alpha-tocopherol, but not the hydroxyl radical scavenger, mannitol, demonstrating that singlet oxygen is an immediate early-apoptotic signal generated by PDT. In addition, PDT can induce a two-stage activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) in A431 cells; the early-stage JNK activation is singlet oxygen-dependent, whereas the late-stage JNK activation is mediated by the singlet oxygen-triggered caspase activation. Experiments using anti-sense oligonucleotides against JNK1 and PAK2 further show that during PDT-induced apoptosis the early-stage JNK activation is required for caspase activation, and that the late-stage JNK activation is regulated by the caspase-mediated cleavage/activation of PAK2. Collectively, a model for the PDT-triggered apoptotic signalling cascade with RB is proposed, which involves singlet oxygen, JNK, caspase-3 and PAK2, sequentially.
Collapse
|
48
|
Zachos G, Koffa M, Preston CM, Clements JB, Conner J. Herpes simplex virus type 1 blocks the apoptotic host cell defense mechanisms that target Bcl-2 and manipulates activation of p38 mitogen-activated protein kinase to improve viral replication. J Virol 2001; 75:2710-28. [PMID: 11222695 PMCID: PMC115896 DOI: 10.1128/jvi.75.6.2710-2728.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type (wt) herpes simplex virus type 1 (HSV-1) suppresses cell death. We investigated the apoptotic pathways triggered during infection with mutant viruses tsk and 27lacZ (which lack functional ICP4 and ICP27 viral proteins, respectively) and examined the mechanisms used by wt HSV-1 to protect against programmed cell death induced by the DNA-damaging compound cisplatin. In our studies, we used BHK and HeLa cells, with similar results. We suggest that a decrease in the levels of Bcl-2 protein is a key event during apoptosis induced by the mutant viruses and that Bcl-2 levels are targeted by (i) a decrease of bcl-2 RNA, (ii) caspase-related proteolysis, and (iii) p38 mitogen-activated protein kinase (p38MAPK)-dependent destabilization of Bcl-2 protein. We show that wt HSV-1, but not the mutant viruses, maintains bcl-2 RNA and protein levels during infection and protects from the cisplatin-induced decrease in bcl-2 RNA; our data suggest that both ICP27 and ICP4 are required for this function. Additionally, wt HSV-1 evades but does not actively block activation of caspases. Although wt HSV-1 induces p38MAPK activation during infection, it prevents p38MAPK-dependent destabilization of Bcl-2 and exploits p38MAPK stimulation to enhance transcription of specific viral gene promoters to increase viral yields.
Collapse
Affiliation(s)
- G Zachos
- Institute of Virology, University of Glasgow, Glasgow G11 5JR, United Kingdom
| | | | | | | | | |
Collapse
|
49
|
Reyland ME, Barzen KA, Anderson SM, Quissell DO, Matassa AA. Activation of PKC is sufficient to induce an apoptotic program in salivary gland acinar cells. Cell Death Differ 2000; 7:1200-9. [PMID: 11175257 DOI: 10.1038/sj.cdd.4400744] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Accumulating evidence suggests that specific isoforms of PKC may function to promote apoptosis. We show here that activation of the conventional and novel isoforms of PKC with 12-O-tetradecanoyl phorbol-13- ester (TPA) induces apoptosis in salivary acinar cells as indicated by DNA fragmentation and activation of caspase-3. TPA-induced DNA fragmentation, caspase-3 activation, and morphologic indicators of apoptosis, can be enhanced by pretreatment of cells with the calpain inhibitor, calpeptin, prior to the addition of TPA. Analysis of PKC isoform expression by immunoblot shows that TPA-induced downregulation of PKC alpha and PKC delta is delayed in cells pre-treated with calpeptin, and that this correlates with an increase of these isoforms in the membrane fraction of cells. TPA-induced apoptosis is accompanied by biphasic activation of the c-jun-N-terminal kinase (JNK) pathway and inactivation of the extracellular regulated kinase (ERK) pathway. Expression of constitutively activated PKC alpha or PKC delta, but not kinase negative mutants of these isoforms, or constitutively activated PKC epsilon, induces apoptosis in salivary acinar cells, suggesting a role for these isoforms in TPA-induced apoptosis. These studies demonstrate that activation of PKC is sufficient for initiation of an apoptotic program in salivary acinar cells. Cell Death and Differentiation (2000) 7, 1200 - 1209.
Collapse
Affiliation(s)
- M E Reyland
- Department of Basic Science and Oral Research, School of Dentistry, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, Colorado, CO 80262, USA.
| | | | | | | | | |
Collapse
|
50
|
Masuda Y, Nakaya M, Aiuchi T, Hashimoto S, Nakajo S, Nakaya K. The mechanism of geranylgeraniol-induced apoptosis involves activation, by a caspase-3-like protease, of a c-jun N-terminal kinase signaling cascade and differs from mechanisms of apoptosis induced by conventional chemotherapeutic drugs. Leuk Res 2000; 24:937-50. [PMID: 11086177 DOI: 10.1016/s0145-2126(00)00066-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, we investigated the effects of geranylgeraniol (GGO), a potent inducer of apoptosis in various lines of human tumor cells, on signal transduction cascades involved in apoptosis in human leukemia cells. GGO strongly induced the activation of c-Jun N-terminal kinase (JNK/SAPK) within 2 h in U937 and K562 cells, while neither ERK nor p38 was activated to any considerable extent during GGO-induced apoptosis. Transient expression of a constitutively active mutant form of mitogen-activated protein kinase kinase 1 (MEKK1), deltaMEKK1, or of deltaMEKK1-green fluorescent protein (GFP) in K562 cells activated JNK, but not a caspase-3-like protease, and was insufficient to induce cell death but rendered cells susceptible to GGO-induced cell death. Stable expressions of deltaMEKK1-GFP in U937 cells gave similar results. In contrast to VP-16-induced apoptosis, GGO-induced activation of JNK was almost completely inhibited by benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD) and by benzyloxycarbonyl-Asp-CH2OC[O]-2,6,-dichlorobenzene (Z-Asp), indicating that the JNK-activation step is located downstream of the caspase signaling pathway in GGO-induced apoptosis. Moreover, apoptosis induced by GGO was significantly inhibited in two lines of cells with a dominant-negative deletion mutation in c-Jun, indicating a requirement for JNK signaling. In addition, unlike the effects on other inducers of apoptosis, the activation of JNK and of the caspase-3-like protease by GGO was significantly delayed by 12-O-tetradecanoylphorbol-13-acetate (TPA), suggesting that the site of inhibition by TPA might be located upstream of the protease and JNK in the GGO-induced apoptotic signaling pathway.
Collapse
Affiliation(s)
- Y Masuda
- Laboratory of Biological Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|