1
|
Järvelä-Stölting M, Vesala L, Maasdorp MK, Ciantar J, Rämet M, Valanne S. Proteasome α6 Subunit Negatively Regulates the JAK/STAT Pathway and Blood Cell Activation in Drosophila melanogaster. Front Immunol 2021; 12:729631. [PMID: 35003057 PMCID: PMC8727353 DOI: 10.3389/fimmu.2021.729631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
JAK/STAT signaling regulates central biological functions such as development, cell differentiation and immune responses. In Drosophila, misregulated JAK/STAT signaling in blood cells (hemocytes) induces their aberrant activation. Using mass spectrometry to analyze proteins associated with a negative regulator of the JAK/STAT pathway, and by performing a genome-wide RNAi screen, we identified several components of the proteasome complex as negative regulators of JAK/STAT signaling in Drosophila. A selected proteasome component, Prosα6, was studied further. In S2 cells, Prosα6 silencing decreased the amount of the known negative regulator of the pathway, ET, leading to enhanced expression of a JAK/STAT pathway reporter gene. Silencing of Prosα6 in vivo resulted in activation of the JAK/STAT pathway, leading to the formation of lamellocytes, a specific hemocyte type indicative of hemocyte activation. This hemocyte phenotype could be partially rescued by simultaneous knockdown of either the Drosophila STAT transcription factor, or MAPKK in the JNK-pathway. Our results suggest a role for the proteasome complex components in the JAK/STAT pathway in Drosophila blood cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matthew K. Maasdorp
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Susanna Valanne
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- *Correspondence: Susanna Valanne,
| |
Collapse
|
2
|
Pasquier F, Marty C, Balligand T, Verdier F, Grosjean S, Gryshkova V, Raslova H, Constantinescu SN, Casadevall N, Vainchenker W, Bellanné-Chantelot C, Plo I. New pathogenic mechanisms induced by germline erythropoietin receptor mutations in primary erythrocytosis. Haematologica 2018; 103:575-586. [PMID: 29269524 PMCID: PMC5865417 DOI: 10.3324/haematol.2017.176370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/21/2017] [Indexed: 12/19/2022] Open
Abstract
Primary familial and congenital polycythemia is characterized by erythropoietin hypersensitivity of erythroid progenitors due to germline nonsense or frameshift mutations in the erythropoietin receptor gene. All mutations so far described lead to the truncation of the C-terminal receptor sequence that contains negative regulatory domains. Their removal is presented as sufficient to cause the erythropoietin hypersensitivity phenotype. Here we provide evidence for a new mechanism whereby the presence of novel sequences generated by frameshift mutations is required for the phenotype rather than just extensive truncation resulting from nonsense mutations. We show that the erythropoietin hypersensitivity induced by a new erythropoietin receptor mutant, p.Gln434Profs*11, could not be explained by the loss of negative signaling and of the internalization domains, but rather by the appearance of a new C-terminal tail. The latter, by increasing erythropoietin receptor dimerization, stability and cell-surface localization, causes pre-activation of erythropoietin receptor and JAK2, constitutive signaling and hypersensitivity to erythropoietin. Similar results were obtained with another mutant, p.Pro438Metfs*6, which shares the same last five amino acid residues (MDTVP) with erythropoietin receptor p.Gln434Profs*11, confirming the involvement of the new peptide sequence in the erythropoietin hypersensitivity phenotype. These results suggest a new mechanism that might be common to erythropoietin receptor frameshift mutations. In summary, we show that primary familial and congenital polycythemia is more complex than expected since distinct mechanisms are involved in the erythropoietin hypersensitivity phenotype, according to the type of erythropoietin receptor mutation.
Collapse
Affiliation(s)
- Florence Pasquier
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Service d'Hématologie, Département d'Oncologie Médicale, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Caroline Marty
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Thomas Balligand
- Ludwig Institute for Cancer Research, and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Frédérique Verdier
- Laboratoire d'Excellence GR-Ex, Paris, France
- INSERM U1016, Institut Cochin, CNRS UMR8104, Université Paris Descartes, France
| | - Sarah Grosjean
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Vitalina Gryshkova
- Ludwig Institute for Cancer Research, and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Hana Raslova
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Stefan N Constantinescu
- Ludwig Institute for Cancer Research, and Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Nicole Casadevall
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Laboratoire d'Hématologie, Hôpital Saint Antoine, Assistance Publique Hôpitaux de Paris, France
| | - William Vainchenker
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Christine Bellanné-Chantelot
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Département de Génétique, Hôpital Universitaire Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, France
| | - Isabelle Plo
- INSERM, UMR 1170, Gustave Roussy, Laboratoire d'Excellence GR-Ex, Villejuif, France
- Université Paris-Sud, UMR 1170, Gustave Roussy, Villejuif, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
3
|
Carbone CJ, Fuchs SY. Eliminative signaling by Janus kinases: role in the downregulation of associated receptors. J Cell Biochem 2014; 115:8-16. [PMID: 23959845 DOI: 10.1002/jcb.24647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 12/11/2022]
Abstract
Activation of cytokine receptor-associated Janus kinases (JAKs) mediates most, if not all, of the cellular responses to peptide hormones and cytokines. Consequently, JAKs play a paramount role in homeostasis and immunity. Members of this family of tyrosine kinases control the cytokine/hormone-induced alterations in cell gene expression program. This function is largely mediated through an ability to signal toward activation of the signal transducer and activator of transcription proteins (STAT), as well as toward some other pathways. Importantly, JAKs are also instrumental in tightly controlling the expression of associated cytokine and hormone receptors, and, accordingly, in regulating the cell sensitivity to these cytokines and hormones. This review highlights the enzymatic and non-enzymatic mechanisms of this regulation and discusses the importance of the ambidextrous nature of JAK as a key signaling node that integrates the combining functions of forward signaling and eliminative signaling. Attention to the latter aspect of JAK function may contribute to emancipating our approaches to the pharmacological modulation of JAKs.
Collapse
Affiliation(s)
- Christopher J Carbone
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | | |
Collapse
|
4
|
Li J, Wei Q, Zuo GW, Xia J, You ZM, Li CL, Chen DL. Ginsenoside Rg1 Induces Apoptosis through Inhibition of the EpoR-Mediated JAK2/STAT5 Signalling Pathway in the TF-1/Epo Human Leukemia Cell Line. Asian Pac J Cancer Prev 2014; 15:2453-9. [DOI: 10.7314/apjcp.2014.15.6.2453] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
5
|
Gross M, Ben-Califa N, McMullin MF, Percy MJ, Bento C, Cario H, Minkov M, Neumann D. Polycythaemia-inducing mutations in the erythropoietin receptor (EPOR): mechanism and function as elucidated by epidermal growth factor receptor-EPOR chimeras. Br J Haematol 2014; 165:519-28. [DOI: 10.1111/bjh.12782] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Mor Gross
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | - Nathalie Ben-Califa
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| | | | | | - Celeste Bento
- Department of Haematology; Centro Hospitalar e Universitário de Coimbra; Coimbra Portugal
| | - Holger Cario
- Department of Paediatrics and Adolescent Medicine; University Medical Centre Ulm; Ulm Germany
| | - Milen Minkov
- Department of Haematology/Oncology; St. Anna Children's Hospital; Medical University of Vienna; Vienna Austria
| | - Drorit Neumann
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel-Aviv University; Tel Aviv Israel
| |
Collapse
|
6
|
Schwartzenberg S, Ben-Shoshan J, Keren G, George J. The role of erythropoietin in myocardial protection: potential mechanisms and applications. Expert Rev Cardiovasc Ther 2014; 4:41-50. [PMID: 16375627 DOI: 10.1586/14779072.4.1.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The glycoprotein erythropoietin was originally discovered as a principal regulator that promotes the survival, proliferation and differentiation of erythroid progenitor cells. Despite potentially detrimental effects, such as increased blood pressure and hyperviscosity, recombinant human erythropoietin has been demonstrated to be a safe drug, as millions of anemia sufferers have received it over the last decade as a form of treatment. Recently, erythropoietin receptors have been discovered in a variety of tissues, including the cardiovascular system, and erythropoietin has been demonstrated to have a beneficial effect in congestive heart failure patients with anemia. The purpose of this review is to summarize the pleiotropic cardioprotective effects of erythropoietin in the cardiovascular system and to evaluate its potential role as a biomarker in these disorders.
Collapse
|
7
|
Morsy GM, El-Ala KSA, Ali AA. Studies on fate and toxicity of nanoalumina in male albino rats. Toxicol Ind Health 2013; 32:634-55. [DOI: 10.1177/0748233713504022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The work aimed to evaluate the nanoalumina toxicity on the histological architecture, some haematological and biochemical aspects in male albino rats, during acute and sublethal experiments. Rats, in acute experiments, were injected with a single-acute dose of 3.9 g or 6.4 g or 8.5 g of aluminium oxide (Al2O3) kg−1, whereas those of sublethal were injected with 1.3 g of Al2O3 kg−1 2 days−1. One-way analysis of variance indicated that injected doses and the experimental periods were significantly affected by haemoglobin (Hb) content; haematocrit value (Hct); white blood cell (WBC) count; blood platelet (Plt) count; mean corpuscular volume (MCV); mean corpuscular Hb (MCH) and MCH concentration (MCHC). In acute experiments, Hct, WBC count, MCV and Plt were significantly higher than the corresponding controls, whereas Hb, MCH and MCHC markedly decreased. In comparison with the related controls after 1, 3 and 7 days post-injection, red blood cell count, Hb, Hct, WBC count, Plt and MCV were significantly increased, but begun to decrease after 14 or/and 28 days and were associated with a marked decrease in MCH and MCHC. In serum of rats injected with acute or sublethal dose, the concentrations of total protein (TP) and total lipid (TL) were significantly lesser than the corresponding controls, whereas the levels of urea, uric acid, creatinine and the activities of aspartate aminotransferase and alanine aminotransferase were markedly increased. The injected doses were directly proportional with all the studied biochemical parameter, except the TL and TP that exhibited a negative correlation. Histologically, the highest acute and sublethal doses of nanoalumina caused hepatic irregular disarray, necrosis to the hepatic and Kupffer cells that are associated with congested blood sinusoids. The renal tissues characterized by the appearance of inter-tubular congestion that is accompanied by the dilation of the vascular glomeruli that completely occupied Bowman’s capsule and accompanied with partial disappearance of the renal tubule’s brush border. The brain showed a progressive degeneration of neurons in both the experiments.
Collapse
Affiliation(s)
- Gamal M Morsy
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | | | - Atef A Ali
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
D'allard D, Gay J, Descarpentries C, Frisan E, Adam K, Verdier F, Floquet C, Dubreuil P, Lacombe C, Fontenay M, Mayeux P, Kosmider O. Tyrosine kinase inhibitors induce down-regulation of c-Kit by targeting the ATP pocket. PLoS One 2013; 8:e60961. [PMID: 23637779 PMCID: PMC3634048 DOI: 10.1371/journal.pone.0060961] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/15/2013] [Indexed: 12/12/2022] Open
Abstract
The stem cell factor receptor (SCF) c-Kit plays a pivotal role in regulating cell proliferation and survival in many cell types. In particular, c-Kit is required for early amplification of erythroid progenitors, while it must disappear from cell surface for the cell entering the final steps of maturation in an erythropoietin-dependent manner. We initially observed that imatinib (IM), an inhibitor targeting the tyrosine kinase activity of c-Kit concomitantly down-regulated the expression of c-Kit and accelerated the Epo-driven differentiation of erythroblasts in the absence of SCF. We investigated the mechanism by which IM or related masitinib (MA) induce c-Kit down-regulation in the human UT-7/Epo cell line. We found that the down-regulation of c-Kit in the presence of IM or MA was inhibited by a pre-incubation with methyl-β-cyclodextrin suggesting that c-Kit was internalized in the absence of ligand. By contrast to SCF, the internalization induced by TKI was independent of the E3 ubiquitin ligase c-Cbl. Furthermore, c-Kit was degraded through lysosomal, but not proteasomal pathway. In pulse-chase experiments, IM did not modulate c-Kit synthesis or maturation. Analysis of phosphotyrosine peptides in UT-7/Epo cells treated or not with IM show that IM did not modify overall tyrosine phosphorylation in these cells. Furthermore, we showed that a T670I mutation preventing the full access of IM to the ATP binding pocket, did not allow the internalization process in the presence of IM. Altogether these data show that TKI-induced internalization of c-Kit is linked to a modification of the integrity of ATP binding pocket.
Collapse
Affiliation(s)
- Diane D'allard
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
| | - Julie Gay
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Clotilde Descarpentries
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Emilie Frisan
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Kevin Adam
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
| | - Frederique Verdier
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
| | - Célia Floquet
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
| | - Patrice Dubreuil
- INSERM, U1068, CRCM, Centre de Référence des Mastocytoses-CEREMAST; Institut Paoli-Calmettes, Marseille; Aix-Marseille Université; CNRS, UMR7258, Marseille, France
| | - Catherine Lacombe
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Broca-Cochin-Hôtel-Dieu, Service d'Hématologie Biologique, Paris, France
| | - Michaela Fontenay
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Broca-Cochin-Hôtel-Dieu, Service d'Hématologie Biologique, Paris, France
| | - Patrick Mayeux
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
- Proteomic Platform of the Paris Descartes University (3P5), Paris, France
| | - Olivier Kosmider
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Broca-Cochin-Hôtel-Dieu, Service d'Hématologie Biologique, Paris, France
- * E-mail:
| |
Collapse
|
9
|
Chong ZZ, Shang YC, Mu Y, Cui S, Yao Q, Maiese K. Targeting erythropoietin for chronic neurodegenerative diseases. Expert Opin Ther Targets 2013; 17:707-20. [PMID: 23510463 DOI: 10.1517/14728222.2013.780599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Since erythropoietin (EPO) and EPO receptor (EPOR) are expressed in the central nervous system (CNS) beyond hematopoietic system, EPO illustrates a robust biological function in maintaining neuronal survival and regulating neurogenesis and may play a crucial role in neurodegenerative diseases. AREAS COVERED EPO is capable of modulating multiple cellular signal transduction pathways to promote neuronal survival and enhance the proliferation and differentiation of neuronal progenitor cells. Initially, EPO binds to EPOR to activate the Janus-tyrosine kinase 2 (Jak2) protein followed by modulation of protein kinase B (Akt), mammalian target of rapamycin, signal transducer and activators of transcription 5, mitogen-activated protein kinases, protein tyrosine phosphatases, Wnt1 and nuclear factor κB. As a result, EPO may actively prevent the progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis and motor neuron diseases. EXPERT OPINION Novel knowledge of the cell signaling pathways regulated by EPO in the CNS will allow us to establish the foundation for the development of therapeutic strategies against neurodegenerative diseases. Further investigation of the role of EPO in neurodegenerative diseases can not only formulate EPO as a therapeutic candidate, but also further identify novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- University of Medicine and Dentistry of New Jersey, Cancer Center, New Jersey NJ 07103, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Regulation of Erythropoietin Receptor Activity in Endothelial Cells by Different Erythropoietin (EPO) Derivatives: An in Vitro Study. Int J Mol Sci 2013; 14:2258-81. [PMID: 23348925 PMCID: PMC3587987 DOI: 10.3390/ijms14022258] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 12/20/2012] [Accepted: 01/11/2013] [Indexed: 12/20/2022] Open
Abstract
In endothelial cells, erythropoietin receptors (EPORs) mediate the protective, proliferative and angiogenic effects of EPO and its analogues, which act as EPOR agonists. Because hormonal receptors undergo functional changes upon chronic exposure to agonists and because erythropoiesis-stimulating agents (ESAs) are used for the long-term treatment of anemia, it is critical to determine the mechanism by which EPOR responsiveness is regulated at the vascular level after prolonged exposure to ESAs. Here, we investigated EPOR desensitization/resensitization in human umbilical vein endothelial cells (HUVECs) upon exposure to three ESAs with different pharmacokinetic profiles, epoetin alpha (EPOα), darbepoetin alpha (DarbEPO) and continuous EPOR activator (CERA). These agonists all induced activation of the transcription factor STAT-5, which is a component of the intracellular pathway associated with EPORs. STAT-5 activation occurred with either monophasic or biphasic kinetics for EPOα/DarbEPO and CERA, respectively. ESAs, likely through activation of the STAT-5 pathway, induced endothelial cell proliferation and stimulated angiogenesis in vitro, demonstrating a functional role for epoetins on endothelial cells. All epoetins induced EPOR desensitization with more rapid kinetics for CERA compared to EPOα and DarbEPO. However, the recovery of receptor responsiveness was strictly dependent on the type of epoetin, the agonist concentration and the time of exposure to the agonist. EPOR resensitization occurred with more rapid kinetics after exposure to low epoetin concentrations for a short period of desensitization. When the highest concentration of agonists was tested, the recovery of receptor responsiveness was more rapid with CERA compared to EPOα and was completely absent with DarbEPO. Our results demonstrate that these three ESAs regulate EPOR resensitization by very different mechanisms and that both the type of molecule and the length of EPOR stimulation are factors that are critical for the control of EPOR functioning in endothelial cells. The differences observed in receptor resensitization after stimulation with the structurally different ESAs are most likely due different control mechanisms of receptor turnover at the intracellular level.
Collapse
|
11
|
|
12
|
Abstract
Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival. This became of significant concern in 2003, when some clinical trials in cancer patients reported increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since then, numerous groups have performed further research evaluating this potential mechanism with conflicting data and conclusions. Here, we review the biology of endogenous Epo and EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the expression of EpoR on normal nonhematopoietic and tumor cells.
Collapse
|
13
|
Abstract
The successful management of endocrine diseases is greatly helped by the complete understanding of the underlying pathology. The knowledge about the molecular genetics contributes immensely in the appropriate identification of the causative factors of the diseases and their subsequent management. The fields of nephrology and endocrinology are also interrelated to a large extent. Besides performing the secretory functions, the renal tissue also acts as target organ for many hormones such as antidiuretic hormone (ADH), atrial natriuretic peptides (ANP), and aldosterone. Understanding the molecular genetics of these hormones is important because the therapeutic interventions in many of these conditions is related to shared renal and endocrine functions, including the anemia of renal disease, chronic kidney disease, mineral bone disorders, and hypertension related to chronic kidney disease. Their understanding and in-depth knowledge is very essential in designing and formulating the therapeutic plans and innovating new management strategies. However, we still have to go a long way in order to completely understand the various confounding causative relationships between the pathology and disease of these reno-endocrinal manifestations.
Collapse
Affiliation(s)
- Sukhminder Jit Singh Bajwa
- Department of Anaesthesiology and Intensive Care, Gian Sagar Medical College and Hospital, Ram Nagar, Banur, Punjab, India
| | - Ishwardip Singh Kwatra
- Department of Nephrology, Gian Sagar Medical College and Hospital, Ram Nagar, Banur, Punjab, India
| |
Collapse
|
14
|
|
15
|
Cytosolic lysine residues enhance anterograde transport and activation of the erythropoietin receptor. Biochem J 2011; 435:509-18. [PMID: 21291419 DOI: 10.1042/bj20101876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lysine residues are key residues in many cellular processes, in part due to their ability to accept a wide variety of post-translational modifications. In the present study, we identify the EPO-R [EPO (erythropoietin) receptor] cytosolic lysine residues as enhancers of receptor function. EPO-R drives survival, proliferation and differentiation of erythroid progenitor cells via binding of its ligand EPO. We mutated the five EPO-R cytosolic lysine residues to arginine residues (5KR EPO-R), eliminating putative lysine-dependent modifications. Overexpressed 5KR EPO-R displayed impaired ubiquitination and improved stability compared with wt (wild-type) EPO-R. Unexpectedly, fusion proteins consisting of VSVGtsO45 (vesicular stomatitis virus glycoprotein temperature-sensitive folding mutant) with wt or 5KR EPO-R cytosolic domains demonstrated delayed glycan maturation kinetics upon substitution of the lysine residues. Moreover, VSVG-wt EPO-R, but not VSVG-5KR EPO-R, displayed endoplasmic reticulum-associated ubiquitination. Despite similar cell-surface EPO-binding levels of both receptors and the lack of EPO-induced ubiquitination by 5KR EPO-R, the lysine-less mutant produced weaker receptor activation and signalling than the wt receptor. We thus propose that EPO-R cytosolic lysine residues enhance receptor function, most probably through ubiquitination and/or other post-translational modifications.
Collapse
|
16
|
Correction of murine β-thalassemia after minimal lentiviral gene transfer and homeostatic in vivo erythroid expansion. Blood 2011; 117:5321-31. [PMID: 21436071 DOI: 10.1182/blood-2010-01-263582] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A challenge for gene therapy of genetic diseases is to maintain corrected cell populations in subjects undergoing transplantation in cases in which the corrected cells do not have intrinsic selective advantage over nontransduced cells. For inherited hematopoietic disorders, limitations include inefficient transduction of stem cell pools, the requirement for toxic myelosuppression, and a lack of optimal methods for cell selection after transduction. Here, we have designed a lentiviral vector that encodes human β-globin and a truncated erythropoietin receptor, both under erythroid-specific transcriptional control. This truncated receptor confers enhanced sensitivity to erythropoietin and a benign course in human carriers. Transplantation of marrow transduced with the vector into syngenic thalassemic mice, which have elevated plasma erythropoietin levels, resulted in long-term correction of the disease even at low ratios of transduced/untransduced cells. Amplification of the red over the white blood cell lineages was self-controlled and averaged ∼ 100-fold instead of ∼ 5-fold for β-globin expression alone. There was no detectable amplification of white blood cells or alteration of hematopoietic homeostasis. Notwithstanding legitimate safety concerns in the context of randomly integrating vectors, this approach may prove especially valuable in combination with targeted integration or in situ homologous recombination/repair and may lower the required level of pretransplantation myelosuppression.
Collapse
|
17
|
Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood 2010; 116:5357-67. [PMID: 20826723 DOI: 10.1182/blood-2010-04-281360] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Erythropoietin (Epo) is required for erythroid progenitor differentiation. Although Epo crosslinking experiments have revealed the presence of Epo receptor (EpoR)-associated proteins that could never be identified, EpoR is considered to be a paradigm for homodimeric cytokine receptors. We purified EpoR-binding partners and identified the type 2 transferrin receptor (TfR2) as a component of the EpoR complex corresponding to proteins previously detected in cross-linking experiments. TfR2 is involved in iron metabolism by regulating hepcidin production in liver cells. We show that TfR2 and EpoR are synchronously coexpressed during the differentiation of erythroid progenitors. TfR2 associates with EpoR in the endoplasmic reticulum and is required for the efficient transport of this receptor to the cell surface. Erythroid progenitors from TfR2(-/-)mice show a decreased sensitivity to Epo and increased circulating Epo levels. In human erythroid progenitors, TfR2 knockdown delays the terminal differentiation. Erythroid cells produce growth differentiation factor-15, a cytokine that suppresses hepatic hepcidin production in certain erythroid diseases such as thalassemia. We show that the production of growth differentiation factor-15 by erythroid cells is dependent on both Epo and TfR2. Taken together, our results show that TfR2 exhibits a non hepatic function as a component of the EpoR complex and is required for efficient erythropoiesis.
Collapse
|
18
|
Radhakrishnan ML, Tidor B. Cellular level models as tools for cytokine design. Biotechnol Prog 2010; 26:919-37. [PMID: 20568274 DOI: 10.1002/btpr.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell-surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short-term receptor activation and signal initiation but decrease long-term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand-receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency.
Collapse
Affiliation(s)
- Mala L Radhakrishnan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | |
Collapse
|
19
|
Ait-Oudhia S, Scherrmann JM, Krzyzanski W. Simultaneous pharmacokinetics/pharmacodynamics modeling of recombinant human erythropoietin upon multiple intravenous dosing in rats. J Pharmacol Exp Ther 2010; 334:897-910. [PMID: 20501635 DOI: 10.1124/jpet.110.167304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A pharmacokinetics (PK)/pharmacodynamics (PD) model was developed to describe the tolerance and rebound for reticulocyte (RET) and red blood cell (RBC) counts and the hemoglobin (Hb) concentrations in blood after repeated intravenous administrations of 1350 IU/kg of recombinant human erythropoietin (rHuEPO) in rats thrice weekly for 6 weeks. Drug concentrations were described by using a quasi-equilibrium model. The PD model consisted of a lifespan-based indirect response model (LIDR) with progenitor cells [burst colony-forming unit erythroblasts and colony-forming unit erythroblasts (CFUs)], normoblasts (NOR), RETs, and RBCs. Drug-receptor complex stimulatory effects on progenitor cells differentiation and RBC lifespan were expressed by using the E(max) model (S(max-epo) and SC(50-epo), E(max) and EC(50)). The Hb profile was indirectly modeled through a LIDR model for mean corpuscular hemoglobin (with a lifespan T(mch)) including a linear (S(max-mch)) drug stimulatory effect. The negative feedback from RBCs accounted for the time-dependent rHuEPO clearance decline. A simultaneous PK/PD fitting was performed by using MATLAB-based software. PK parameters such as equilibrium dissociation, erythropoietin receptor degradation, production, and internalization rate constants were 0.18 nM (fixed), 0.08 h(-1), 0.03 nM/h, and 2.51 h(-1), respectively. The elimination rate constant and central volume of distribution were 0.57 h(-1) and 40.63 ml/kg, respectively. CFU and NOR, RET, and RBC lifespans were 37.26 h, 17.25 h, and 30.15 days, respectively. S(max-epo) and SC(50-epo) were 7.3 and 0.47 10(-2) nM, respectively. E(max) was fixed to 1. EC(50) and SC(50-epo) were equal. S(max-mch) and T(mch) were 168.1 nM(-1) and 35.15 days, respectively. The proposed PK/PD model effectively described rHuEPO nonstationary PK and allowed physiological estimates of cell lifespans.
Collapse
Affiliation(s)
- Sihem Ait-Oudhia
- Faculté de Pharmacie, Neuropsychopharmacologie des Addictions, Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Paris, France
| | | | | |
Collapse
|
20
|
Zacharias R, Schmidt M, Kny J, Sifringer M, Bercker S, Bittigau P, Bührer C, Felderhoff-Müser U, Kerner T. Dose-dependent effects of erythropoietin in propofol anesthetized neonatal rats. Brain Res 2010; 1343:14-9. [PMID: 20452333 DOI: 10.1016/j.brainres.2010.04.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 04/18/2010] [Accepted: 04/30/2010] [Indexed: 02/07/2023]
Abstract
Exposure to Gamma-aminobutyric-acid (GABA)(A)-receptor agonists and N-Methyl-D-Aspartate (NMDA)-antagonists has been demonstrated to induce neurodegeneration in newborn rats. Exogenous erythropoietin (EPO) protects against NMDA antagonist-mediated neuronal death. In this study we evaluated whether EPO is also effective in limiting neurodegeneration of the GABA(A)-mimetic agent propofol in newborn rats. 6 day old rats were randomized to one of four groups and treated with intraperitoneal applications of 3 x 30 mg/kg propofol at 0, 90 and 180 min, propofol in combination with 5000 IU/kg rEPO, propofol in combination with 20,000 IU/kg rEPO or sham injections of PAD II solution as controls. After 24h, brains of the animals were histopathologically examined and a summation score of degenerated cells was calculated for every brain. Propofol increased neuronal degeneration scores from 16,090+/-4336 to 28,860+/-6569 (p<0.01). This effect was completely abolished by low-dose rEPO (14,270+/-4542, p<0.001 versus propofol only; p>0.05 versus controls). In contrast, high-dose rEPO was not protective (23 930+/-8896, p>0.05 versus propofol only). Propofol may cause neuronal death in newborn rat brains, which is prevented by low-dose rEPO but not high-dose rEPO.
Collapse
Affiliation(s)
- Robert Zacharias
- Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Virchow-Klinikum und Charité Campus Mitte, Charité Centrum 7 für Anästhesiologie, OP-Management und Intensivmedizin, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chung B, Verdier F, Matak P, Deschemin JC, Mayeux P, Vaulont S. Oncostatin M is a potent inducer of hepcidin, the iron regulatory hormone. FASEB J 2010; 24:2093-103. [PMID: 20124431 DOI: 10.1096/fj.09-152561] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Erythropoietic activity is known to affect iron homeostasis through regulation of the liver iron regulatory hormone hepcidin. To identify new factors secreted by the erythroblasts that could influence hepcidin synthesis, we set up a coculture model. HuH7 hepatoma cells cocultured with primary human erythroblasts or erythroleukemic UT7 cells presented a 20- to 35-fold increase of hepcidin gene expression. This induction was fully blunted in the presence of a neutralizing oncostatin M antibody, demonstrating that this cytokine, belonging to the IL-6 family of cytokines, was responsible for increased levels of hepcidin expression. We further demonstrated that recombinant oncostatin M induced a dramatic transcriptional increase of hepcidin in HuH7 cells through specific activation of the STAT pathway. Hepcidin induction by oncostatin M was also observed in hepatocytes in primary culture and is believed to be cell specific since no induction was found in isolated bone marrow cells, macrophagic, stromal, and lymphoma-derived cell lines, nor in erythroblasts. Finally, we show that oncostatin M administration in vivo increases hepcidin expression and leads to significantly decreased serum iron levels. This work identifies a new potent inducer of hepcidin expression in the liver and supports a role for modulators of oncostatin M signaling pathway in treating iron disorders.
Collapse
Affiliation(s)
- Bomee Chung
- Université Paris Descartes, Centre National de la Recherche Scientifique (UMR 8104), Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Sasaki Y, Kjellén E, Mineta H, Wennerberg J, Ekblad L. No direct effects of erythropoietin beta on a head and neck squamous cell carcinoma cell line which is growth stimulated in vivo. Acta Oncol 2009; 48:1062-9. [PMID: 19412811 DOI: 10.1080/02841860902913553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Erythropoiesis-stimulating agents (ESAs) are used in cancer therapy to reverse anaemia. It has been suggested that ESAs might improve treatment outcome by reducing tumour hypoxia, but ESAs might also increase tumour growth. In this work, the effect of recombinant human erythropoietin (rHuEpo) beta was investigated on a human head and neck squamous carcinoma cell (HNSCC) line in vitro. The cell line was previously growth stimulated in combination with surgery in a xenograft model and the investigation was initiated to see if rHuEpo directly affects the tumour cell line, alone or in combination with cell stress, or if the in vivo effect should be attributed to secondary effects. MATERIAL AND METHODS The cell line LU-HNSCC-7 was grown in vitro and treated with rHuEpo alone or in combination with radiation, cisplatin, hypoxia or tumour extracts. The expression of the Epo receptor (EpoR) was investigated by western blotting after one- and two-dimensional electrophoresis, RT-PCR and through analysis of the effect on EpoR signalling. RESULTS The cell line was shown not to express EpoR. Furthermore, it was only possible to detect a minor effect on cell growth (1.4 times over control, p < 0.001) under specific conditions and at supra-pharmacological concentrations of rHuEpo beta. No effect was detected on cell migration. None of the cell stressing treatments could enhance the minor growth stimulatory effect of rHuEpo beta. DISCUSSION The conclusion is that rHuEpo beta does not stimulate tumour growth of the investigated cell line through a direct interaction with tumour cells. We hypothesise that interactions with stromal cells and the stimulation of wound healing responses might, at least partly, explain the negative effects of ESA administration during cancer treatment. We propose that EpoR expression in HNSCC tumour cells might not be a good marker for prediction of ESA induced worsening of outcomes after cancer treatment.
Collapse
|
23
|
Nelson ME, Steensma DP. JAK2 V617F in myeloid disorders: What do we know now, and where are we headed? Leuk Lymphoma 2009; 47:177-94. [PMID: 16321848 DOI: 10.1080/10428190500301348] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Activating tyrosine kinase (TK) mutations disrupt cellular proliferation and survival pathways and are increasingly recognized as a fundamental cause of human cancers. Until very recently, the only TK mutations widely observed in myeloid neoplasia were the BCR/ABL1 fusions characteristic of chronic myeloid leukemia and some acute leukemias, and FLT3 activating mutations in a minority of acute myeloid leukemias. Several rare TK mutations are found in various atypical myeloproliferative disorders, but big pieces of the pathobiological puzzle were glaringly missing. In the first half of 2005, one gap was filled in: 7 studies identified the same acquired amino acid substitution (V617F) in the Janus kinase 2 (JAK2) TK in large numbers of patients with diverse clonal myeloid disorders. Most affected patients suffer from the classic BCR/ABL1-negative myeloproliferative disorders (MPD), especially polycythemia vera (74% of n = 506), but a subset of people with essential thrombocythemia (36% of n = 339) or myelofibrosis with myeloid metaplasia (44% of n = 127) bear the identical mutation, as do a few individuals with myelodysplastic syndromes or an atypical myeloid disorder (7% of n = 556). This long-sought common mutation in BCR/ABL1-negative MPD raises many provocative biological and clinical questions, and demands re-evaluation of prevailing diagnostic algorithms for erythrocytosis and thrombocytosis. JAK2 V617F may provide novel molecular targets for drug therapy, and suggests other places to seek cooperating mutations or mutations associated with similar phenotypes. The story of this exciting finding will unfold rapidly in the years ahead, and ongoing developments will be important for all hematologists to understand.
Collapse
Affiliation(s)
- Maria E Nelson
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
24
|
Erythropoietin and Its Receptor in Breast Cancer: Putting Together the Pieces of the Puzzle. Oncologist 2008; 13:761-8. [DOI: 10.1634/theoncologist.2008-0110] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
25
|
Negre O, Fusil F, Henri A, Villette JM, Leboulch P, Beuzard Y, Payen E. Activation and inhibition of the erythropoietin receptor by a membrane-anchored erythropoietin. Exp Hematol 2008; 36:412-23. [PMID: 18295963 DOI: 10.1016/j.exphem.2007.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate whether expression of a membrane-anchored form of erythropoietin (MbEpo) results in self-controlled, autocrine proliferation, and differentiation of erythroid cells. This would provide a possible approach to the selective expansion of genetically corrected erythroid cells in gene-therapy protocols. MATERIALS AND METHODS We designed retroviral vectors encoding MbEpo or secreted erythropoietin (Epo) and enhanced green fluorescent protein. Several Epo-dependent cell lines were transduced and their proliferative capacity evaluated. This approach was also assessed in human bone marrow CD34(+) cells and mouse bone marrow transplants. RESULTS Retroviral vector-mediated MbEpo expression induced autocrine proliferation of the Epo-dependent cell lines DAE7 and UT7/Epo. However, it blocked the Epo receptor (EpoR)-induced activation of granulocyte macrophage colony-stimulating factor-dependent UT7/GM cells and the erythroid differentiation of both human hematopoietic cells in vitro and of mouse bone marrow cells in transplant experiments. MbEpo was present at the surface of UT7/GM cells. It did not affect the membrane localization of the EpoR, but prevented its normal Epo-dependent phosphorylation and internalization. By contrast to these inhibitory effects, a higher rate of EpoR replenishment in UT7/GM cells before MbEpo production rendered cell proliferation independent of exogenous growth factor. CONCLUSIONS Activation of EpoR gene expression before MbEpo-induced EpoR activation is essential for activation or inhibition of growth and differentiation of Epo-dependent cell lines. It will be necessary to delay MbEpo expression in late erythroid progenitors until after EpoR gene activation, for erythroid cell expansion to be achieved in vivo.
Collapse
Affiliation(s)
- Olivier Negre
- INSERM, Laboratoire de Thérapie Génique Hématopoïétique, Paris, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Jurado García JM, Torres Sánchez E, Olmos Hidalgo D, Alba Conejo E. Erythropoietin pharmacology. Clin Transl Oncol 2008; 9:715-22. [PMID: 18055326 DOI: 10.1007/s12094-007-0128-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anaemia is a frequent complication in cancer patients and may be multifactorial in origin. Treatment with recombinant human erythropoietin (rHuEPO) is an alternative to red blood cell transfusion. The evidence from clinical trials has established that patients with chemotherapy-induced anaemia with a haemoglobin concentration below 10 g/dl benefit from epoetin therapy. The native glycoprotein hormone consists of 165 amino acids with three N-glycosylation and one O-glycosylation sites. Epoetin and darbepoetin bind to the EPO receptor to induce intracellular signalling by the same intracellular molecules as native EPO. There are some differences in the glycosylation pattern which lead to variations in the pharmacokinetics and pharmacodynamics profiles. Pharmacokinetic and therapeutic studies have examined the use of rHuEPO administered intravenously and subcutaneously and there is accumulating evidence that the latter route has several advantages in cancer patients. After subcutaneous administration, the bioavailability of epoetin is about 20-30% and has a plasma half-life of >24 h. Darbepoetin has a longer half-life after subcutaneous administration of 48 h. The general recommendations are based on evidence from trials in which epoetin was administered 150 U/kg thrice weekly. The recommended initial dose for darbepoetin alpha is 2.25 mug/kg per week. The most serious adverse effects are hypertension, bleeding and increased risk of thrombotic complications. Caution is advised when used in patients who are at high risk for thromboembolic events. In the management of anaemic cancer patients, physicians should closely follow the National Comprehensive Cancer Network (NCCN) and American Society of Clinical Oncology (ASCO)/American Society of Hematology (ASH) guidelines.
Collapse
Affiliation(s)
- J M Jurado García
- Servicio de Oncología Médica, Hospital Clínico Universitario Virgen de La Victoria, Málaga, Spain.
| | | | | | | |
Collapse
|
27
|
Ravid O, Shams I, Ben Califa N, Nevo E, Avivi A, Neumann D. An extracellular region of the erythropoietin receptor of the subterranean blind mole rat Spalax enhances receptor maturation. Proc Natl Acad Sci U S A 2007; 104:14360-5. [PMID: 17724331 PMCID: PMC1964849 DOI: 10.1073/pnas.0706777104] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythropoietic functions of erythropoietin (EPO) are mediated by its receptor (EPO-R), which is present on the cell surface of erythroid progenitors and induced by hypoxia. We focused on EPO-R from Spalax galili (sEPO-R), one of the four Israeli species of the subterranean blind mole rat, Spalax ehrenbergi superspecies, as a special natural animal model of high tolerance to hypoxia. Led by the intriguing observation that most of the mouse EPO-R (mEPO-R) is retained in the endoplasmic reticulum (ER), we hypothesized that sEPO-R is expressed at higher levels on the cell surface, thus maximizing the response to elevated EPO, which has been reported in this species. Indeed, we found increased cell-surface levels of sEPO-R as compared with mEPO-R by using flow cytometry analysis of BOSC cells transiently expressing HA-tagged EPO-Rs (full length or truncated). We then postulated that unique extracellular sEPO-R sequence features contribute to its processing and cell-surface expression. To map these domains of the sEPO-R that augment receptor maturation, we generated EPO-R derivatives in which parts of the extracellular region of mEPO-R were replaced with the corresponding fragments of sEPO-R. We found that an extracellular portion of sEPO-R, harboring the N-glycosylation site, conferred enhanced maturation and increased transport to the cell surface of the respective chimeric receptor. Taken together, we demonstrate higher surface expression of sEPO-R, attributed at least in part to increased ER exit, mediated by an extracellular region of this receptor. We speculate that these sEPO-R sequence features play a role in the adaptation of Spalax to extreme hypoxia.
Collapse
Affiliation(s)
- Orly Ravid
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
| | - Imad Shams
- Laboratory for Animal Molecular Evolution, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Nathalie Ben Califa
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
| | - Eviatar Nevo
- Laboratory for Animal Molecular Evolution, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel
- To whom correspondence may be addressed. E-mail: , , or
| | - Aaron Avivi
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
- To whom correspondence may be addressed. E-mail: , , or
| | - Drorit Neumann
- *Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel; and
- To whom correspondence may be addressed. E-mail: , , or
| |
Collapse
|
28
|
Hamadmad SN, Hohl RJ. Lovastatin suppresses erythropoietin receptor surface expression through dual inhibition of glycosylation and geranylgeranylation. Biochem Pharmacol 2007; 74:590-600. [PMID: 17586475 DOI: 10.1016/j.bcp.2007.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/19/2007] [Accepted: 04/23/2007] [Indexed: 11/17/2022]
Abstract
Erythropoietin (Epo) is a cytokine that is required for the survival of erythroid progenitors through interaction with its receptor on the surface of these cells. Recent studies showed that erythropoietin receptor (EpoR) is expressed on many cancer cells. The factors that govern EpoR expression on the cell surface are poorly understood. Using both biotinlyation and radiolabeled Epo binding experiments, we show here that Epo starvation of the Epo-dependent erythroleukemia cell line, ASE2, leads to a time-dependent increase in both forms of EpoR, the maturing 64 kDa and the mature 66 kDa proteins. Mevalonate depletion inhibits the formation of the highly glycosylated mature form of EpoR without affecting the other form. Treatment of cells with lovastatin, a selective inhibitor of the rate-limiting enzyme in the mevalonate pathway leads to inhibition of cell surface EpoR that is induced by Epo starvation. The effect of lovastatin appears to be the consequence of inhibition of two processes, glycosylation and geranylgeranylation. Adding back geranylgeranyl pyrophosphate to lovastatin-treated cells completely prevents the lovastatin effect on EpoR expression. Dolichol, the sugar carrier in N-linked glycosylation that is derived from the mevalonate pathway, partially reverses lovastatin's effect. The glycosylation inhibitor tunicamycin also partially suppresses EpoR surface expression. Inhibiting protein geranylgeranylation mimics the effect of lovastatin and inhibits EpoR surface expression in a concentration-dependent manner. Finally, lovastatin inhibits Epo's stimulatory effects on cell proliferation. These results indicate that mevalonate derivatives are required for normal EpoR expression on the cell surface through two pathways, glycosylation and geranylgeranylation.
Collapse
Affiliation(s)
- Sumaya N Hamadmad
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | | |
Collapse
|
29
|
Sasaki M, Sukegawa J, Miyosawa K, Yanagisawa T, Ohkubo S, Nakahata N. Low expression of cell-surface thromboxane A2 receptor β-isoform through the negative regulation of its membrane traffic by proteasomes. Prostaglandins Other Lipid Mediat 2007; 83:237-49. [PMID: 17499743 DOI: 10.1016/j.prostaglandins.2006.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 12/11/2006] [Accepted: 12/19/2006] [Indexed: 10/23/2022]
Abstract
Human thromboxane A(2) receptor (TP) consists of two alternatively spliced isoforms, TP alpha and TP beta, which differ in their cytoplasmic tails. To examine the functional difference between TP alpha and TP beta, we searched proteins bound to C termini of TP isoforms by a yeast two-hybrid system, and found that proteasome subunit alpha 7 and proteasome activator PA28 gamma interacted potently with the C terminus of TP beta. The binding of TP beta with alpha 7 and PA28 gamma was confirmed by co-immunoprecipitation and pull-down assays. MG-132 and lactacystin, proteasome inhibitors, increased cell-surface expression of TP beta, but not TP alpha. Scatchard analysis of [(3)H]SQ29548 binding revealed that the B(max) was higher in transiently TP alpha-expressing cells than TP alpha-expressing cells. In addition, TP-mediated phosphoinositide hydrolysis was clearly observed in TP alpha-, but not TP beta-expressing cells. These results suggest that TP beta binds to alpha 7 and PA28 gamma, and the cell-surface expression of TP beta is lower than that of TP alpha through the negative regulation of its membrane traffic by proteasomes.
Collapse
Affiliation(s)
- Masako Sasaki
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Mikati MA, El Hokayem JA, El Sabban ME. Effects of a single dose of erythropoietin on subsequent seizure susceptibility in rats exposed to acute hypoxia at P10. Epilepsia 2007; 48:175-81. [PMID: 17241225 DOI: 10.1111/j.1528-1167.2006.00900.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To determine if posthypoxia treatment with erythropoietin (EPO) has protective effects against subsequent susceptibility to seizure related neuronal injury in rat pups subjected to acute hypoxia at P10. METHODS Four groups of rats were manipulated at P10, as described below, then all received kainic acid (KA) (10 mg/kg i.p.) at P29: Hypoxia-NS-KA group (n = 11): subjected to acute hypoxia (down to 4% O2), and then immediately received saline i.p. Hypoxia-EPO-KA group (n = 10): subjected to acute hypoxia and then immediately received EPO (1,000 U/Kg i.p.). Normoxia-NS-KA group (n = 11): sham manipulated and injected with saline. Normoxia-EPO-KA group (n = 10): sham manipulated then immediately injected with EPO (1000 U/Kg i.p.). After receiving KA at P29, all rats were monitored using videotape techniques, and were sacrificed at P31. TUNEL and Hoechst stains to assess for apoptosis, and regular histology for hippocampal cell counts were performed. RESULTS Administration of the single dose of erythropoietin directly after an acute hypoxic event at P10 resulted at P29 in increased latency to forelimb clonus seizures, reduced duration of these seizures, protection against hippocampal cell loss, and decreased hippocampal apoptosis in the Hypoxia-EPO-KA group as compared to the Hypoxia-NS-KA group. CONCLUSION These data support the presence of favorable protective effects of erythropoietin against the long-term consequences of acute hypoxia in the developing brain and raise the possibility of its investigation as a potential neuroprotective agent after human neonatal hypoxic encephalopathy.
Collapse
Affiliation(s)
- Mohamad A Mikati
- Department of Pediatrics, American University of Beirut, Beirut, Lebanon.
| | | | | |
Collapse
|
31
|
Meyer L, Deau B, Forejtníková H, Duménil D, Margottin-Goguet F, Lacombe C, Mayeux P, Verdier F. beta-Trcp mediates ubiquitination and degradation of the erythropoietin receptor and controls cell proliferation. Blood 2007; 109:5215-22. [PMID: 17327410 DOI: 10.1182/blood-2006-10-055350] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of intensity and duration of erythropoietin (Epo) signaling is necessary to tightly regulate red blood cell production. We have recently shown that the ubiquitin/proteasome system plays a major role in the control of Epo-R signaling. Indeed, after Epo stimulation, Epo-R is ubiquitinated and its intracellular part is degraded by the proteasome, preventing further signal transduction. The remaining part of the receptor and associated Epo are internalized and degraded by the lysosomes. We show that beta-Trcp is responsible for Epo-R ubiquitination and degradation. After Epo stimulation, beta-Trcp binds to the Epo-R. This binding, like Epo-R ubiquitination, requires Jak2 activation. The Epo-R contains a typical DSG binding sequence for beta-Trcp that is highly conserved among species. Interestingly, this sequence is located in a region of the Epo-R that is deleted in patients with familial polycythemia. Mutation of the serine residue of this motif to alanine (Epo-RS462A) abolished beta-Trcp binding, Epo-R ubiquitination, and degradation. Epo-RS462A activation was prolonged and BaF3 cells expressing this receptor are hypersensitive to Epo, suggesting that part of the hypersensitivity to Epo in familial polycythemia could be the result of the lack of beta-Trcp recruitment to the Epo-R.
Collapse
Affiliation(s)
- Laure Meyer
- Institut Cochin, Département d'Hématologie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
In the light of the enthusiasm regarding the use of recombinant human erythropoietin (Epo) and its analogues for treatment of the anaemias of chronic renal failure and malignancies it is worth remembering that today's success has been based on a century of laborious research. The concept of the humoral regulation of haematopoiesis was first formulated in 1906. The term 'erythropoietin' for the erythropoiesis-stimulating hormone was introduced in 1948. Native human Epo was isolated in 1977 and its gene cloned in 1985. During the last 15 yr, major progress has been made in identifying the molecules controlling Epo gene expression, primarily the hypoxia-inducible transcription factors (HIF) that are regulated by specific O2 and oxoglutarate requiring Fe2+-containing dioxygenases. With respect to the action of Epo, its dimeric receptor (Epo-R) has been characterised and shown to signal through protein kinases, anti-apoptotic proteins and transcription factors. The demonstration of Epo-R in non-haematopoietic tissues indicates that Epo is a pleiotropic viability and growth factor. The neuroprotective and cardioprotective potentials of Epo are reviewed with a focus on clinical research. In addition, studies utilising the Epo derivatives with prolonged half-life, peptidic and non-peptidic Epo mimetics, orally active drugs stimulating endogenous Epo production and Epo gene transfer are reviewed.
Collapse
|
33
|
Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL, DeWald GW, Kaufmann SH. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 2006; 20:971-8. [PMID: 16598306 DOI: 10.1038/sj.leu.2404206] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins are phosphorylated and activated by Janus kinases (JAKs). Recently, several groups identified a recurrent somatic point mutation constitutively activating the hematopoietic growth factor receptor-associated JAK2 tyrosine kinase in diverse chronic myeloid disorders - most commonly classic myeloproliferative disorders (MPD), especially polycythemia vera. We hypothesized that the JAK2 V617F mutation might also be present in samples from patients with acute myeloid leukemia (AML), especially erythroleukemia (AML-M6) or megakaryoblastic leukemia (AML-M7), where it might mimic erythropoietin or thrombopoietin signaling. First, we documented STAT3 activation by immunoblotting in AML-M6 and other AML subtypes. Immunoperoxidase staining confirmed phosphorylated STAT3 in malignant myeloblasts (21% of cases, including all AML-M3 samples tested). We then analyzed genomic DNA from 162 AML, 30 B-cell lymphoma, and 10 chronic lymphocytic leukemia (CLL) samples for JAK2 mutations, and assayed a subset for SOCS1 and FLT3 mutations. Janus kinase2 V617F was present in 13/162 AML samples (8%): 10/13 transformed MPD, and three apparent de novo AML (one of 12 AML-M6, one of 24 AML-M7, and one AML-M2 - all mixed clonality). FLT3 mutations were present in 5/32 (16%), while SOCS1 mutations were totally absent. Lymphoproliferative disorder samples were both JAK2 and SOCS1 wild type. Thus, while JAK2 V617F is uncommon in de novo AML and probably does not occur in lymphoid malignancy, unexplained STAT3 activation is common in AML. Janus kinase2 extrinsic regulators and other proteins in the JAK-STAT pathway should be interrogated to explain frequent STAT activation in AML.
Collapse
Affiliation(s)
- D P Steensma
- Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaushansky K. Hematopoietic growth factors, signaling and the chronic myeloproliferative disorders. Cytokine Growth Factor Rev 2006; 17:423-30. [PMID: 17055768 PMCID: PMC1913942 DOI: 10.1016/j.cytogfr.2006.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The chronic myeloproliferative diseases (CMDs) are a group of conditions characterized by unregulated blood cell production, that due either to excessive numbers of erythrocytes, leukocytes or platelets, or their defective function cause symptoms and signs of fatigue, headache, ruddy cyanosis, hemorrhage, abdominal distension, and the complications of vascular thrombosis. In the late 19th century Vaquez provided the first description of polycythemia vera (PV) and Hueck defined idiopathic myelofibrosis (IMF). In 1920, di Guglielmo established criteria for patients with essential thrombocythemia (ET). In 1951, Dameshek argued that these disorders, along with chronic myelogenous leukemia (CML) display many similar clinical and laboratory features [Dameshek W. Some speculations on the myeloproliferative syndromes. Blood 1951;6:372-5], and grouped them. In 2002, the World Health Organization expanded the definition of CMDs to also include chronic neutrophilic leukemia (CNL), chronic eosinophilic leukemia/hypereosinophilic syndrome (CEL/HES) and systemic mast cell disorder (SMCD) [Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100:2292-302]. While the molecular pathogenesis of CML is well known [Melo JV, Deininger MW. Biology of chronic myelogenous leukemia-signaling pathways of initiation and transformation. Hematol Oncol Clin North Am 2004;18:545-68], and the causes of CEL/HES and SMCD have been identified in about half of all cases [Gotlib J, Cools J, Malone III JM, Schrier SL, Gilliland DG, Coutre SE. The FIP1L1-PDGFRalpha fusion tyrosine kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia: implications for diagnosis, classification, and management. Blood 2004; 103:2879-91; Valent P, Akin C, Sperr WR, Horny HP, Metcalfe DD. Mast cell proliferative disorders: current view on variants recognized by the World Health Organization. Hematol Oncol Clin North Am 2003; 17:1227-41], until very recently the etiologies of the three classically defined CMDs, PV, IMF and ET, were poorly understood. Each of these disorders is characterized by excessive hematopoiesis, a process usually dependent on one or more hematopoietic growth factors (HGFs). This review will focus on how our knowledge of the molecular mechanisms by which HGFs are produced, bind cell surface receptors and transduce survival and proliferative signals have provided the platform on which the multiple origins of CMDs can be understood and novel therapeutic interventions designed.
Collapse
Affiliation(s)
- Kenneth Kaushansky
- Department of Medicine, Division of Hematology/Oncology, University of California, 402 Dickinson Street, Suite 380, San Diego, CA 92103-8811, USA
| |
Collapse
|
35
|
Verdier F, Gomez S, Lacombe C, Mayeux P. Selected anti-Epo receptor antibodies predict Epo receptor expression. Blood 2006; 108:1106; author reply 1107. [PMID: 16861356 DOI: 10.1182/blood-2006-01-0034] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Abstract
Ubiquitylation of membrane proteins has gained considerable interest in recent years. It has been recognized as a signal that negatively regulates the cell surface expression of many plasma membrane proteins both in yeast and in mammalian cells. Moreover, it is also involved in endoplasmic reticulum-associated degradation of membrane proteins, and it acts as a sorting signal both in the secretory pathway and in endosomes, where it targets proteins into multivesicular bodies in the lumen of vacuoles/lysosomes. In this review we discuss the progress in understanding these processes, achieved during the past several years.
Collapse
Affiliation(s)
- Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
37
|
Gross AW, Lodish HF. Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem 2005; 281:2024-32. [PMID: 16286456 DOI: 10.1074/jbc.m510493200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) is essential for the production of mature red blood cells, and recombinant Epo is commonly used to treat anemia, but how Epo is degraded and cleared from the body is not understood. Glycosylation of Epo is required for its in vivo bioactivity, although not for in vitro receptor binding or stimulation of Epo-dependent cell lines; Epo glycosylation actually reduces the affinity of Epo for the Epo receptor (EpoR). Interestingly, a hyperglycosylated analog of Epo, called novel erythropoiesis-stimulating protein (NESP), has a lower affinity than Epo for the EpoR but has greater in vivo activity and a longer serum half-life than Epo. We hypothesize that a major mechanism for degradation of Epo in the body occurs in cells expressing the Epo receptor, through receptor-mediated endocytosis of Epo followed by degradation in lysosomes, and therefore investigated the trafficking and degradation of Epo and NESP by EpoR-expressing cells. We show that Epo and NESP are degraded only by cultured cells that express the EpoR, and their receptor binding, dissociation, and trafficking properties determine their rates of intracellular degradation. Epo binds surface EpoR faster than NESP (k(on) = 5.0 x 10(8) m(-1) min(-1) versus 1.1 x 10(8) m(-1) min(-1)) but dissociates slower (k(off) = 0.029 min(-1) versus 0.042 min(-1)). Surface-bound Epo and NESP are internalized at the same rate (k(in) = 0.06 min(-1)), and after internalization 60% of each ligand is resecreted intact and 40% degraded. Our kinetic model of Epo and NESP receptor binding, intracellular trafficking, and degradation explains why Epo is degraded faster than NESP at the cellular level.
Collapse
Affiliation(s)
- Alec W Gross
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
38
|
Ungureanu D, Silvennoinen O. SLIM trims STATs: ubiquitin E3 ligases provide insights for specificity in the regulation of cytokine signaling. Sci Signal 2005; 2005:pe49. [PMID: 16204702 DOI: 10.1126/stke.3042005pe49] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway has evolved to serve highly specialized functions in the regulation of hematopoiesis, cell metabolism, and immune responses. The duration, strength, and specificity of cytokine signaling are controlled by several mechanisms, including the ubiquitin-proteasome pathway, which modulates the turnover of cytokine receptors and activated JAKs. The specificity of the ubiquitin pathway is achieved through various E3 ligase complexes that recognize and interact with distinct target proteins, often in a phosphorylation-dependent manner. Intriguing new information about the ubiquitin pathway came with the identification of an E3 ubiquitin ligase, SLIM, that specifically interacts with activated STAT1 and STAT4 and induces their ubiquitination and degradation. These findings, together with the evidence from paramyxoviruses about the role of ubiquitination as a highly specific STAT inhibition mechanism, highlight the role of E3 ubiquitin ligases as specificity determinants in the regulation of STAT activation, and open the field for investigation of additional E3s that target other STAT proteins.
Collapse
Affiliation(s)
- Daniela Ungureanu
- Institute of Medical Technology, University of Tampere, 33014, Tampere, Finland
| | | |
Collapse
|
39
|
Lu JC, Piazza TM, Schuler LA. Proteasomes mediate prolactin-induced receptor down-regulation and fragment generation in breast cancer cells. J Biol Chem 2005; 280:33909-16. [PMID: 16103113 PMCID: PMC1976473 DOI: 10.1074/jbc.m508118200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prolactin regulates a variety of physiological processes, including mammary gland growth and differentiation, and recent findings support an important role in breast cancer development and progression. However, little is known about the trafficking of its receptor, a member of the cytokine receptor superfamily. In the present study, we examined the effect of ligand on the endogenous "long" isoform of the prolactin receptor in breast cancer cells. We found that prolactin caused rapid and prolonged down-regulation of this receptor. The prolactin-induced increase in degradation was blocked by inhibitors of both proteasomes and lysosomes. However, the ubiquitin-conjugating system was not required for internalization. Prolactin also resulted in the concomitant appearance of a cell-associated prolactin receptor fragment containing the extracellular domain. This latter process required proteasomal, but not metalloprotease, activity, distinguishing it from ectodomain "shedding" of other membrane receptors, which are secreted as binding proteins. The prolactin receptor fragment was labeled by surface biotinylation and independent of protein synthesis. Together, these data indicated that prolactin binding initiates limited proteasomal cleavage of its receptor, generating a cell-associated fragment containing the extracellular domain. Our findings described a new potential mediator of prolactin action and a novel mechanism whereby proteasomes modulate cellular processes.
Collapse
Affiliation(s)
- Juu-Chin Lu
- From the Department of Comparative Biosciences
- Endocrinology-Reproductive Physiology Program, and
| | - Timothy M. Piazza
- From the Department of Comparative Biosciences
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Wisconsin 53706
| | - Linda A. Schuler
- From the Department of Comparative Biosciences
- Endocrinology-Reproductive Physiology Program, and
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Wisconsin 53706
- To whom correspondence should be addressed: Dept. of Comparative Biosciences, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706. Tel.: 608-263-9825; Fax: 608-263-3926; E-mail:
| |
Collapse
|
40
|
Forget G, Gregory DJ, Olivier M. Proteasome-mediated Degradation of STAT1α following Infection of Macrophages with Leishmania donovani. J Biol Chem 2005; 280:30542-9. [PMID: 15983048 DOI: 10.1074/jbc.m414126200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Activation of the Janus-activated kinase 2 (JAK2)/STAT1alpha signaling pathway is repressed in Leishmania-infected macrophages. This represents an important mechanism by which this parasite subverts the microbicidal functions of the cell to promote its own survival and propagation. We recently provided evidence that the protein tyrosine phosphatase (PTP) SHP-1 was responsible for JAK2 inactivation. However, STAT1 translocation to the nucleus was not restored in the absence of SHP-1. In the present study, we have used B10R macrophages to study the mechanism by which this Leishmania-induced STAT1 inactivation occurs. STAT1alpha nuclear localization was shown to be rapidly reduced by the infection. Western blot analysis revealed that cellular STAT1alpha, but not STAT3, was degraded. Using PTP inhibitors and an immortalized bone marrow-derived macrophage cell line from SHP-1-deficient mice, we showed that STAT1 inactivation was independent of PTP activity. However, inhibition of macrophage proteasome activity significantly rescued Leishmania-induced STAT1alpha degradation. We further demonstrated that degradation was receptor-mediated and involved protein kinase C alpha. All Leishmania species tested (L. major, L. donovani, L. mexicana, L. braziliensis), but not the related parasite Trypanosoma cruzi, caused STAT1alpha degradation. Collectively, results from this study revealed a new mechanism for STAT1 regulation by a microbial pathogen, which favors its establishment and propagation within the host.
Collapse
Affiliation(s)
- Geneviève Forget
- Centre de Recherche en Infectiologie and Département de Biologie Médicale, Centre Hospitalier Universitaire de Québec, Université Laval, Québec G1V 4G2, Canada
| | | | | |
Collapse
|
41
|
Weber A, Dzietko M, Berns M, Felderhoff-Mueser U, Heinemann U, Maier RF, Obladen M, Ikonomidou C, Bührer C. Neuronal damage after moderate hypoxia and erythropoietin. Neurobiol Dis 2005; 20:594-600. [PMID: 15935685 DOI: 10.1016/j.nbd.2005.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 03/31/2005] [Accepted: 04/28/2005] [Indexed: 11/26/2022] Open
Abstract
Both mild hypoxia and exogenous erythropoietin may protect the brain against subsequent severe hypoxia, and the conditioning effect of transient hypoxia is partly mediated by hypoxia-induced endogenous erythropoietin. We now observed in several experimental models that combining transient hypoxia and exogenous erythropoietin may cause neuronal damage. High-dose erythropoietin (40 IU/ml) profoundly impeded synaptic transmission of rat hippocampal slice cultures when used in conjunction with moderate hypoxia (10% O2 for two 8-h periods). Addition of erythropoietin increased viability of cultured rat embryonic cortical neurons at 21% O2 but decreased viability under hypoxic conditions (2% O2) in a dose-dependent fashion. Death of human neuronal precursor cells challenged by oxygen and glucose deprivation was increased by erythropoietin when cells were cultured under hypoxic but not under normoxic conditions. In neonatal rats exposed to moderate hypoxia plus erythropoietin, numbers of degenerating cerebral neurons were increased, as compared to controls or rats subjected to either hypoxia or erythropoietin alone. Thus, erythropoietin may aggravate rather than ameliorate neuronal damage when administered during transient hypoxia.
Collapse
Affiliation(s)
- Astrid Weber
- Department of Neonatology, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 2005; 18:293-305. [PMID: 15831826 PMCID: PMC1082797 DOI: 10.1128/cmr.18.2.293-305.2005] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The obligate intracellular parasite Leishmania must survive the antimicrobial activities of its host cell, the macrophage, and prevent activation of an effective immune response. In order to do this, it has developed numerous highly successful strategies for manipulating activities, including antigen presentation, nitric oxide and oxygen radical generation, and cytokine production. This is generally the result of interactions between Leishmania cell surface molecules, particularly gp63 and LPG, and less well identified macrophage surface receptors, causing the distortion of specific intracellular signaling cascades. We describe some of the signaling pathways and intermediates that are repressed in infected cells, including JAK/STAT, Ca(2+)-dependent protein kinase C (PKC) isoforms, and mitogen-activated protein kinases (especially ERK1/2), and proteasome-mediated transcription factor degradation. We also discuss protein tyrosine phosphatases (particularly SHP-1), intracellular Ca2+, Ca(2+)-independent PKC, ceramide, and the suppressors of cytokine signaling family of repressors, which are all reported to be activated following infection, and the role of parasite-secreted cysteine proteases.
Collapse
Affiliation(s)
- Martin Olivier
- Centre for the Study of Host Resistance at the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | | | | |
Collapse
|
43
|
Vittori D, Pregi N, Pérez G, Garbossa G, Nesse A. The distinct erythropoietin functions that promote cell survival and proliferation are affected by aluminum exposure through mechanisms involving erythropoietin receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:29-36. [PMID: 15777837 DOI: 10.1016/j.bbamcr.2004.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Revised: 07/23/2004] [Accepted: 08/06/2004] [Indexed: 11/30/2022]
Abstract
Erythropoietin (Epo) promotes the development of erythroid progenitors by triggering intracellular signals through the binding to its specific receptor (EpoR). Previous results related to the action of aluminum (Al) on erythropoiesis let us suggest that the metal affects Epo interaction with its target cells. In order to investigate this effect on cell activation by the Epo-EpoR complex, two human cell lines with different dependence on Epo were subjected to Al exposure. In the Epo-independent K562 cells, Al inhibited Epo antiapoptotic action and triggered a simultaneous decrease in protein and mRNA EpoR levels. On the other hand, proliferation of the strongly Epo-dependent UT-7 cells was enhanced by long-term Al treatment, in agreement with the upregulation of EpoR expression during Epo starvation. Results provide some clues to the way by which Epo supports cell survival and growth, and demonstrate that not all the intracellular factors needed to guarantee the different signaling pathways of Epo-cell activation are available or activated in cells expressing EpoR. This study then suggests that at least one of the mechanisms by which Al interfere with erythropoiesis might involve EpoR modulation.
Collapse
Affiliation(s)
- Daniela Vittori
- Laboratorio de Análisis Biológicos, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Piso 4, Ciudad Universitaria, Ciudad de Buenos Aires (C1428EHA), Argentina.
| | | | | | | | | |
Collapse
|
44
|
Li F, Chong ZZ, Maiese K. Erythropoietin on a tightrope: balancing neuronal and vascular protection between intrinsic and extrinsic pathways. Neurosignals 2005; 13:265-89. [PMID: 15627815 DOI: 10.1159/000081963] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 09/16/2004] [Indexed: 01/06/2023] Open
Abstract
Enthusiasm for erythropoietin (EPO) as a broad cytoprotective agent continues to increase at an almost exponential rate. The premise that EPO was required only for erythropoiesis was eventually shed by recent work demonstrating the existence of EPO and its receptor in other organs and tissues outside of the liver and the kidney, such as the brain and heart. As a result, EPO has been identified as a possible candidate in the formulation of therapeutic strategies for both cardiac and nervous system diseases. EPO has been shown to mediate an array of vital cellular functions that involve progenitor stem cell development, cellular protection, angiogenesis, DNA repair, and cellular longevity. An important requirement to achieve the goal of preventing or even reducing cellular injury by any cytoprotective agent is the ability to uncover the cellular pathways that ultimately drive a cell to its demise. We present for consideration several critical cellular pathways modulated by EPO that involve Janus kinase 2 (Jak2), the serine-threonine kinase Akt, forkhead transcription factors, glycogen synthase kinase-3beta (GSK-3beta), cellular calcium, protein kinase C, caspases, as well as the control of inflammatory microglial activation. As we continue to gain new insight into these pathways, EPO should emerge as a critical agent for the development, maturation, and survival of cells throughout the body.
Collapse
Affiliation(s)
- Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Mich. 48201, USA
| | | | | |
Collapse
|
45
|
Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, Ponting I. Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 2005; 32:1146-55. [PMID: 15588939 DOI: 10.1016/j.exphem.2004.08.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/06/2004] [Accepted: 08/19/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Darbepoetin alfa, a novel erythropoiesis-stimulating protein, is a glycosylation analog of recombinant human erythropoietin (rHuEPO) with two additional N-linked carbohydrates. Used to treat anemia of cancer, chemotherapy, and kidney disease, it has a three-fold longer serum half-life and increased in vivo activity, but decreased receptor-binding activity. Glycosylation analogs with altered N-linked carbohydrate content were compared with rHuEPO to elucidate the relationship between carbohydrate content and activity. METHODS EPO glycosylation analogs and rHuEPO were expressed and, in some cases, purified from Chinese hamster ovary cells and carbohydrate characterized by Western blotting. Assays were performed to compare in vitro receptor binding and in vivo activity of rHuEPO, darbepoetin alfa, and analogs. RESULTS Reduced receptor binding of darbepoetin alfa could be accounted for entirely by increased sialic acid content and not by carbohydrate-related stearic hindrance or by amino acid differences. Shapes of dose-response curves, maximal responses in proliferation and colony assays, and magnitude and duration of downstream signaling events were comparable in vitro for rHuEPO and darbepoetin alfa. The in vivo response correlated with the number of N-linked carbohydrates. The number of carbohydrates was a more significant determinant for in vivo activity than position. The differences in in vivo erythropoietic activity among glycosylation analogs were more evident with increased time following administration in exhypoxic polycythemic mice. CONCLUSION Carbohydrate increases persistence of EPO, resulting in a prolonged and increased biological response in vivo, and overcoming reduced receptor-binding activity.
Collapse
|
46
|
Walrafen P, Verdier F, Kadri Z, Chrétien S, Lacombe C, Mayeux P. Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 2005; 105:600-8. [PMID: 15358619 DOI: 10.1182/blood-2004-03-1216] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractActivation of the erythropoietin receptor (EpoR) after Epo binding is very transient because of the rapid activation of strong down-regulation mechanisms that quickly decrease Epo sensitivity of the cells. Among these down-regulation mechanisms, receptor internalization and degradation are probably the most efficient. Here, we show that the Epo receptor was rapidly ubiquitinated after ligand stimulation and that the C-terminal part of the Epo receptor was degraded by the proteasomes. Both ubiquitination and receptor degradation by the proteasomes occurred at the cell surface and required Janus kinase 2 (Jak2) activation. Moreover, Epo-EpoR complexes were rapidly internalized and targeted to the lysosomes for degradation. Neither Jak2 nor proteasome activities were required for internalization. In contrast, Jak2 activation was necessary for lysosome targeting of the Epo-EpoR complexes. Blocking Jak2 with the tyrphostin AG490 led to some recycling of internalized Epo-Epo receptor complexes to the cell surface. Thus, activated Epo receptors appear to be quickly degraded after ubiquitination by 2 proteolytic systems that proceed successively: the proteasomes remove part of the intracellular domain at the cell surface, and the lysosomes degrade the remaining part of the receptor-hormone complex. The efficiency of these processes probably explains the short duration of intracellular signaling activated by Epo.
Collapse
Affiliation(s)
- Pierre Walrafen
- Département d'Hématologie, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U567, Paris, France
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Discovery that the hormone erythropoietin (EPO) and its receptor play a significant biological role in tissues outside of the hematopoietic system has fueled significant interest in EPO as a novel cytoprotective agent in both neuronal and vascular systems. Erythropoietin is now considered to have applicability in a variety of disorders that include cerebral ischemia, myocardial infarction, and chronic congestive heart failure. Erythropoietin modulates a broad array of cellular processes that include progenitor stem cell development, cellular integrity, and angiogenesis. As a result, cellular protection by EPO is robust and EPO inhibits the apoptotic mechanisms of injury, including the preservation of cellular membrane asymmetry to prevent inflammation. As the investigation into clinical applications for EPO that maximize efficacy and minimize toxicity progresses, a deeper appreciation for the novel roles that EPO plays in the brain and heart and throughout the entire body should be acquired.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Department of Neurology, Wayne State University School of Medicine, Detroit, Mich 48201, USA.
| | | | | |
Collapse
|
48
|
Cario H. Childhood polycythemias/erythrocytoses: classification, diagnosis, clinical presentation, and treatment. Ann Hematol 2004; 84:137-45. [PMID: 15599750 DOI: 10.1007/s00277-004-0985-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 11/05/2004] [Indexed: 11/29/2022]
Abstract
Polycythemias or erythrocytoses in childhood and adolescence are very rare. Systematic data on the clinical presentation and laboratory evaluations as well as on treatment regimens are sparse. The diagnostic program in absolute erythrocytosis includes extensive clinical, hematological, biochemical, and molecular biological examinations which should be applied following a stepwise algorithm. Absolute erythrocytoses are usually subdivided into primary and secondary forms. Primary erythrocytosis is a condition in which the erythropoietic compartment is expanding independently of extrinsic influences or by responding inadequately to them. Primary erythrocytoses include primary familial and congenital polycythemia (PFCP) due to mutations of the erythropoietin (Epo) receptor gene and the myeloproliferative disorder polycythemia vera. Secondary erythrocytoses are driven by hormonal factors (predominantly by Epo) extrinsic to the erythroid compartment. The increased Epo secretion may represent either a physiologic response to tissue hypoxia, an abnormal autonomous Epo production, or a dysregulation of the oxygen-dependent Epo synthesis. Congenital secondary erythrocytoses are caused, e.g., by hemoglobin variants with increased oxygen affinity, by 2,3-bisphosphoglycerate deficiency, or by mutations in the von Hippel-Lindau gene associated with a disturbed oxygen-dependent regulation of Epo synthesis.
Collapse
Affiliation(s)
- H Cario
- Department of Pediatrics, University Hospital Ulm, Prittwitzstrasse 43, 89075 Ulm, Germany.
| |
Collapse
|
49
|
Golab J, Bauer TM, Daniel V, Naujokat C. Role of the ubiquitin-proteasome pathway in the diagnosis of human diseases. Clin Chim Acta 2004; 340:27-40. [PMID: 14734194 DOI: 10.1016/j.cccn.2003.10.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome pathway constitutes the major system for nuclear and extralysosomal cytosolic protein degradation in eukaryotic cells. A plethora of cell proteins implicated in the maintenance and regulation of essential cellular processes undergoes processing and functional modification by proteolytic degradation via the ubiquitin-proteasome pathway. Deregulations of the pathway have been shown to contribute to the pathogenesis of several human diseases, such as cancer, neurodegenerative, autoimmune, genetic and metabolic disorders, most of them exhibiting abnormal accumulation and altered composition of components of the pathway that is suitable for diagnostic proceedings. While the ubiquitin-proteasome pathway is currently exploited to develop novel therapeutic strategies, it is less regarded as a diagnostic area. Future research should lead to an improved understanding of the pathophysiology of the ubiquitin-proteasome pathway with the aim of allowing the development of subtle diagnostic strategies.
Collapse
Affiliation(s)
- Jakub Golab
- Department of Immunology, Center of Biostructure Research, The Medical University of Warsaw, Warsaw, Poland
| | | | | | | |
Collapse
|
50
|
Jelkmann W, Wagner K. Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Ann Hematol 2004; 83:673-86. [PMID: 15322761 DOI: 10.1007/s00277-004-0911-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 06/17/2004] [Indexed: 02/07/2023]
Abstract
The primary function of the glycoprotein hormone erythropoietin (Epo) is to promote red cell production by inhibiting apoptosis of erythrocytic progenitors in hemopoietic tissues. However, functional Epo receptors (Epo-R) have recently been demonstrated in various nonhemopoietic tissues indicating that Epo is a more pleiotropic viability and growth factor. Herein, in vitro and in vivo effects of Epo in the brain and the cardiovascular system are reviewed. In addition, the therapeutic impact of Epo in oncology is considered, including the question of whether Epo might promote tumor growth. Convincing evidence is available that Epo acts as a neurotrophic and neuroprotective factor in the brain. Epo prevents neuronal cells from hypoxia-induced and glutamate-induced cell death. Epo-R is expressed by neurons and glia cells in specific regions of the brain. Epo supports the survival of neurons in the ischemic brain. The neuroprotective potential of Epo has already been confirmed in a clinical trial on patients with acute stroke. With respect to the vasculature, Epo acts on both endothelial and smooth muscle cells. Epo promotes angiogenesis and stimulates the production of endothelin and other vasoactive mediators. In addition, Epo-R is expressed by cardiomyocytes. The role of Epo as a myocardial protectant is at the focus of present research. Epo therapy in tumor patients is practiced primarily to maintain the hemoglobin concentration above the transfusion trigger and to reduce fatigue. In addition, increased tumor oxygenation may improve the efficacy of chemotherapy and radiotherapy. However, tumor cells often express Epo-R. Therefore, careful studies are required to fully exclude that recombinant human Epo (rHuEpo) promotes tumor growth.
Collapse
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.
| | | |
Collapse
|