1
|
Gao XK, Sheng ZK, Lu YH, Sun YT, Rao XS, Shi LJ, Cong XX, Chen X, Wu HB, Huang M, Zheng Q, Guo JS, Jiang LJ, Zheng LL, Zhou YT. VAPB-mediated ER-targeting stabilizes IRS-1 signalosomes to regulate insulin/IGF signaling. Cell Discov 2023; 9:83. [PMID: 37528084 PMCID: PMC10394085 DOI: 10.1038/s41421-023-00576-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 06/08/2023] [Indexed: 08/03/2023] Open
Abstract
The scaffold protein IRS-1 is an essential node in insulin/IGF signaling. It has long been recognized that the stability of IRS-1 is dependent on its endomembrane targeting. However, how IRS-1 targets the intracellular membrane, and what type of intracellular membrane is actually targeted, remains poorly understood. Here, we found that the phase separation-mediated IRS-1 puncta attached to endoplasmic reticulum (ER). VAPB, an ER-anchored protein that mediates tethers between ER and membranes of other organelles, was identified as a direct interacting partner of IRS-1. VAPB mainly binds active IRS-1 because IGF-1 enhanced the VAPB-IRS-1 association and replacing of the nine tyrosine residues of YXXM motifs disrupted the VAPB-IRS-1 association. We further delineated that the Y745 and Y746 residues in the FFAT-like motif of IRS-1 mediated the association with VAPB. Notably, VAPB targeted IRS-1 to the ER and subsequently maintained its stability. Consistently, ablation of VAPB in mice led to downregulation of IRS-1, suppression of insulin signaling, and glucose intolerance. The amyotrophic lateral sclerosis (ALS)-derived VAPB P56S mutant also impaired IRS-1 stability by interfering with the ER-tethering of IRS-1. Our findings thus revealed a previously unappreciated condensate-membrane contact (CMC), by which VAPB stabilizes the membraneless IRS-1 signalosome through targeting it to ER membrane.
Collapse
Affiliation(s)
- Xiu Kui Gao
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Zu Kang Sheng
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ye Hong Lu
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Ting Sun
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xi Sheng Rao
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lin Jing Shi
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Xia Cong
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Bo Wu
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Man Huang
- Department of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejinag, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China
| | - Qiang Zheng
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian-Sheng Guo
- Department of Pathology of Sir Run Run Shaw Hospital, Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liang Jun Jiang
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Li Ling Zheng
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Biochemistry and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejinag, China.
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China.
| | - Yi Ting Zhou
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China.
- ZJU-UoE Institute, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Sanz‐Castillo B, Hurtado B, Vara‐Ciruelos D, El Bakkali A, Hermida D, Salvador‐Barbero B, Martínez‐Alonso D, González‐Martínez J, Santiveri C, Campos‐Olivas R, Ximénez‐Embún P, Muñoz J, Álvarez‐Fernández M, Malumbres M. The MASTL/PP2A cell cycle kinase-phosphatase module restrains PI3K-Akt activity in an mTORC1-dependent manner. EMBO J 2023; 42:e110833. [PMID: 36354735 PMCID: PMC9841333 DOI: 10.15252/embj.2022110833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The AKT-mTOR pathway is a central regulator of cell growth and metabolism. Upon sustained mTOR activity, AKT activity is attenuated by a feedback loop that restrains upstream signaling. However, how cells control the signals that limit AKT activity is not fully understood. Here, we show that MASTL/Greatwall, a cell cycle kinase that supports mitosis by phosphorylating the PP2A/B55 inhibitors ENSA/ARPP19, inhibits PI3K-AKT activity by sustaining mTORC1- and S6K1-dependent phosphorylation of IRS1 and GRB10. Genetic depletion of MASTL results in an inefficient feedback loop and AKT hyperactivity. These defects are rescued by the expression of phosphomimetic ENSA/ARPP19 or inhibition of PP2A/B55 phosphatases. MASTL is directly phosphorylated by mTORC1, thereby limiting the PP2A/B55-dependent dephosphorylation of IRS1 and GRB10 downstream of mTORC1. Downregulation of MASTL results in increased glucose uptake in vitro and increased glucose tolerance in adult mice, suggesting the relevance of the MASTL-PP2A/B55 kinase-phosphatase module in controlling AKT and maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Belén Sanz‐Castillo
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Begoña Hurtado
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Diana Vara‐Ciruelos
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Aicha El Bakkali
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Dario Hermida
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Diego Martínez‐Alonso
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Clara Santiveri
- Spectroscopy and Nuclear Magnetic Resonance UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Ramón Campos‐Olivas
- Spectroscopy and Nuclear Magnetic Resonance UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | | | - Javier Muñoz
- Proteomics UnitSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - Mónica Álvarez‐Fernández
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)Instituto Universitario de Oncología del Principado de Asturias (IUOPA)OviedoSpain
| | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| |
Collapse
|
3
|
Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol 2017; 315:18-26. [DOI: 10.1016/j.cellimm.2017.03.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 02/09/2017] [Accepted: 03/05/2017] [Indexed: 12/11/2022]
|
4
|
Kusminski CM, Gallardo-Montejano VI, Wang ZV, Hegde V, Bickel PE, Dhurandhar NV, Scherer PE. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte. Mol Metab 2015; 4:653-64. [PMID: 26500839 PMCID: PMC4588421 DOI: 10.1016/j.molmet.2015.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/08/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Background/Purpose Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. Methods We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Results Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. Conclusion We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte. Inducible activation of the distal branch of the insulin pathway in adipocytes. Insulin-sparing characteristics during glucose tolerance testing. Chronic activation of the distal Ras-ERK-MAPK signaling pathway. Reduced body-weight during metabolic challenge. Preserved carbohydrate metabolism at the expense of lipid metabolism.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Violeta I Gallardo-Montejano
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhao V Wang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vijay Hegde
- Department of Infection and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikhil V Dhurandhar
- Department of Infection and Obesity Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Tan SX, Fisher-Wellman KH, Fazakerley DJ, Ng Y, Pant H, Li J, Meoli CC, Coster ACF, Stöckli J, James DE. Selective insulin resistance in adipocytes. J Biol Chem 2015; 290:11337-48. [PMID: 25720492 DOI: 10.1074/jbc.m114.623686] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 12/14/2022] Open
Abstract
Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin.
Collapse
Affiliation(s)
- Shi-Xiong Tan
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Kelsey H Fisher-Wellman
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | - Yvonne Ng
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Himani Pant
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Jia Li
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Christopher C Meoli
- From the Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales 2010, Australia, the Charles Perkins Centre, School of Molecular Biosciences and
| | - Adelle C F Coster
- the School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | - David E James
- the Charles Perkins Centre, School of Molecular Biosciences and the School of Medicine, University of Sydney, New South Wales 2006, Australia, and
| |
Collapse
|
6
|
Tessneer KL, Jackson RM, Griesel BA, Olson AL. Rab5 activity regulates GLUT4 sorting into insulin-responsive and non-insulin-responsive endosomal compartments: a potential mechanism for development of insulin resistance. Endocrinology 2014; 155:3315-28. [PMID: 24932807 PMCID: PMC4138579 DOI: 10.1210/en.2013-2148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glucose transporter isoform 4 (GLUT4) is the insulin-responsive glucose transporter mediating glucose uptake in adipose and skeletal muscle. Reduced GLUT4 translocation from intracellular storage compartments to the plasma membrane is a cause of peripheral insulin resistance. Using a chronic hyperinsulinemia (CHI)-induced cell model of insulin resistance and Rab5 mutant overexpression, we determined these manipulations altered endosomal sorting of GLUT4, thus contributing to the development of insulin resistance. We found that CHI induced insulin resistance in 3T3-L1 adipocytes by retaining GLUT4 in a Rab5-activity-dependent compartment that is unable to equilibrate with the cell surface in response to insulin. Furthermore, CHI-mediated retention of GLUT4 in this non-insulin-responsive compartment impaired filling of the transferrin receptor (TfR)-positive and TfR-negative insulin-responsive storage compartments. Our data suggest that hyperinsulinemia may inhibit GLUT4 by chronically maintaining GLUT4 in the Rab5 activity-dependent endosomal pathway and impairing formation of the TfR-negative and TfR-positive insulin-responsive GLUT4 pools. This model suggests that an early event in the development of insulin-resistant glucose transport in adipose tissue is to alter the intracellular localization of GLUT4 to a compartment that does not efficiently equilibrate with the cell surface when insulin levels are elevated for prolonged periods of time.
Collapse
Affiliation(s)
- Kandice L Tessneer
- Department of Biochemistry and Molecular Biology (K.L.T., R.M.J., B.A.G., A.L.O.), University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126; and Cardiovascular Biology Program (K.L.T.), Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | | | | | | |
Collapse
|
7
|
A semi-automated method for isolating functionally intact mitochondria from cultured cells and tissue biopsies. Anal Biochem 2013; 443:66-74. [DOI: 10.1016/j.ab.2013.08.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/31/2013] [Accepted: 08/10/2013] [Indexed: 12/21/2022]
|
8
|
Hyun S. Body size regulation and insulin-like growth factor signaling. Cell Mol Life Sci 2013; 70:2351-65. [PMID: 23508807 PMCID: PMC11113471 DOI: 10.1007/s00018-013-1313-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 02/28/2013] [Accepted: 02/28/2013] [Indexed: 12/18/2022]
Abstract
How animals achieve their specific body size is a fundamental, but still largely unresolved, biological question. Over the past decades, studies on the insect model system have provided some important insights into the process of body size determination and highlighted the importance of insulin/insulin-like growth factor signaling. Fat body, the Drosophila counterpart of liver and adipose tissue, senses nutrient availability and controls larval growth rate by modulating peripheral insulin signaling. Similarly, insulin-like growth factor I produced from liver and muscle promotes postnatal body growth in mammals. Organismal growth is tightly coupled with the process of sexual maturation wherein the sex steroid hormone attenuates body growth. This review summarizes some important findings from Drosophila and mammalian studies that shed light on the general mechanism of animal size determination.
Collapse
Affiliation(s)
- Seogang Hyun
- Department of Biological Sciences, Chung-Ang University, Seoul, 156-756, Korea.
| |
Collapse
|
9
|
The AP-1 complex regulates intracellular localization of insulin receptor substrate 1, which is required for insulin-like growth factor I-dependent cell proliferation. Mol Cell Biol 2013; 33:1991-2003. [PMID: 23478262 DOI: 10.1128/mcb.01394-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The activation of the insulin/insulin-like growth factor I (IGF-I) receptor and the subsequent tyrosine phosphorylation of insulin receptor substrates (IRSs) are key initial events in a variety of insulin/IGF bioactivities, including mitogenesis. It has been reported that IRS-1 associates with intracellular membrane compartments, and this localization is believed to be important for insulin/IGF signal transduction. However, the molecular mechanisms underlying IRS-1 localization remain unclear. Here we show that in L6 myoblasts, IRS-1 associates with μ1A of the ubiquitously expressed AP-1 complex, which packages cargo proteins into clathrin-coated vesicles derived from intracellular membranes. While wild-type IRS-1 was predominantly localized to vesicular structures, IRS-1 mutants lacking three YXXΦ motifs responsible for binding to μ1A were mislocalized to the mannose-6-phosphate receptor-positive structures, suggesting that AP-1-dependent transport to peripheral vesicles is inhibited in these mutants. Furthermore, deletion of AP-1 binding sites in IRS-1 impaired IGF-I-induced cell proliferation, accompanied by reduced tyrosine phosphorylation of IRS-1 and its association with phosphoinositide (PI) 3-kinase. These data demonstrate the importance of AP-1-dependent localization of IRS-1 in mediating IGF-I-stimulated signaling and maximum mitogenic response.
Collapse
|
10
|
Lee A, Hakuno F, Northcott P, Pessin JE, Adcock MR. Nexilin, a cardiomyopathy-associated F-actin binding protein, binds and regulates IRS1 signaling in skeletal muscle cells. PLoS One 2013; 8:e55634. [PMID: 23383252 PMCID: PMC3559603 DOI: 10.1371/journal.pone.0055634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/03/2013] [Indexed: 01/11/2023] Open
Abstract
Insulin stimulates glucose uptake through a highly organized and complex process that involves movement of the glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Previous studies in L6 skeletal muscle cells have shown that insulin-induced activation and assembly of insulin receptor substrate 1 (IRS1) and p85α the regulatory subunit of the Type 1A phosphatidylinositol-3-kinase (PI3K), within remodeled actin-rich membrane structures is critical for downstream signalling mediating the translocation of GLUT4. The mechanism for localization within actin cytoskeletal scaffolds is not known, as direct interaction of IRS1 or p85α with F-actin has not been demonstrated. Here we show that nexilin, a F-actin binding protein implicated in the pathogenesis of familial dilated cardiomyopathies, preferentially binds to IRS1 over IRS2 to influence glucose transport in skeletal muscle cells. Nexilin stably associates with IRS1 under basal conditions in L6 myotubes and this complex is disassembled by insulin. Exposure of L6 myotubes to Latrunculin B disrupts the spatial patterning of nexilin and its transient association with IRS1. Functional silencing of nexilin has no effect on insulin-stimulated IRS1 tyrosine phosphorylation, however it enhances recruitment of p85α to IRS1 resulting in increased PI-3, 4, 5-P3 formation, coincident with enhanced AKT activation and glucose uptake. By contrast, overexpression of nexilin inhibits transmission of IRS1 signals to AKT. Based on these findings we propose that nexilin may tether IRS1 to actin-rich structures under basal conditions, confining IRS1 signaling to specific subcellular locations in the cell. Insulin-elicited release of this constraint may enhance the efficiency of IRS1/PI3K interaction and PI-3, 4, 5-P3 production at localized sites. Moreover, the selective binding of nexilin to IRS1 and not IRS2 may contribute to the differential specificity of IRS isoforms in the modulation of GLUT4 trafficking in skeletal muscle cells.
Collapse
Affiliation(s)
- Andrew Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Fumihiko Hakuno
- Department of Animal Sciences and Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Paul Northcott
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey E. Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maria Rozakis Adcock
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
11
|
Li Q, Hosaka T, Harada N, Nakaya Y, Funaki M. Activation of Akt through 5-HT2A receptor ameliorates serotonin-induced degradation of insulin receptor substrate-1 in adipocytes. Mol Cell Endocrinol 2013; 365:25-35. [PMID: 22975078 DOI: 10.1016/j.mce.2012.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/27/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) was found to be elevated in the serum of diabetic patients. In this study, we investigate the mechanism of insulin desensitization caused by 5-HT. In 3T3-L1 adipocytes, 5-HT treatment induced the translocation of insulin receptor substrate-1 (IRS-1) from low density microsome (LDM), the important intracellular compartment for its functions, to cytosol, inducing IRS-1 ubiquitination and degradation. Moreover, inhibition of 5-HT-stimulated Akt activation by either ketanserin (a specific 5-HT2A receptor antagonist) or knocking-down the expression of 5-HT2A receptor promoted 5-HT-stimulated IRS-1 dissociation from 14-3-3β in LDM, leading to drastic ubiquitination. Interestingly, sarpogrelate, another antagonist of 5-HT2A receptor, protected IRS-1 from degradation through activation of Akt. This implicates the importance of Akt activation in extending IRS-1 life span through maintaining their optimal sub-location into adipocytes. Taken together, this study suggest that activation of Akt may be able to compensate the adverse effects of 5-HT by stabilizing IRS-1 in LDM.
Collapse
MESH Headings
- 14-3-3 Proteins/metabolism
- 3T3-L1 Cells
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Animals
- Cytosol/drug effects
- Cytosol/metabolism
- Insulin Receptor Substrate Proteins/metabolism
- Insulin Resistance
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Microsomes/drug effects
- Microsomes/metabolism
- Protein Stability/drug effects
- Protein Transport/drug effects
- Proteolysis/drug effects
- Proto-Oncogene Proteins c-akt/agonists
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- Receptor, Serotonin, 5-HT2A/chemistry
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Serotonin/adverse effects
- Serotonin/chemistry
- Serotonin/metabolism
- Serotonin 5-HT2 Receptor Agonists/chemistry
- Serotonin 5-HT2 Receptor Agonists/metabolism
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Serotonin 5-HT2 Receptor Antagonists/pharmacology
- Ubiquitination/drug effects
Collapse
Affiliation(s)
- Qinkai Li
- Clinical Research Center for Diabetes, Tokushima University Hospital, Kuramoto-cho, Tokushima 770-8503, Japan.
| | | | | | | | | |
Collapse
|
12
|
Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 2012; 55:2565-2582. [PMID: 22869320 PMCID: PMC4011499 DOI: 10.1007/s00125-012-2644-8] [Citation(s) in RCA: 692] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
Abstract
The insulin receptor substrate proteins IRS1 and IRS2 are key targets of the insulin receptor tyrosine kinase and are required for hormonal control of metabolism. Tissues from insulin-resistant and diabetic humans exhibit defects in IRS-dependent signalling, implicating their dysregulation in the initiation and progression of metabolic disease. However, IRS1 and IRS2 are regulated through a complex mechanism involving phosphorylation of >50 serine/threonine residues (S/T) within their long, unstructured tail regions. In cultured cells, insulin-stimulated kinases (including atypical PKC, AKT, SIK2, mTOR, S6K1, ERK1/2 and ROCK1) mediate feedback (autologous) S/T phosphorylation of IRS, with both positive and negative effects on insulin sensitivity. Additionally, insulin-independent (heterologous) kinases can phosphorylate IRS1/2 under basal conditions (AMPK, GSK3) or in response to sympathetic activation and lipid/inflammatory mediators, which are present at elevated levels in metabolic disease (GRK2, novel and conventional PKCs, JNK, IKKβ, mPLK). An emerging view is that the positive/negative regulation of IRS by autologous pathways is subverted/co-opted in disease by increased basal and other temporally inappropriate S/T phosphorylation. Compensatory hyperinsulinaemia may contribute strongly to this dysregulation. Here, we examine the links between altered patterns of IRS S/T phosphorylation and the emergence of insulin resistance and diabetes.
Collapse
Affiliation(s)
- K D Copps
- Howard Hughes Medical Institute, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, CLS 16020, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - M F White
- Howard Hughes Medical Institute, Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, CLS 16020, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Liangpunsakul S, Rahmini Y, Ross RA, Zhao Z, Xu Y, Crabb DW. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G515-23. [PMID: 22194417 PMCID: PMC3311438 DOI: 10.1152/ajpgi.00455.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/18/2011] [Indexed: 01/31/2023]
Abstract
Our previous data showed the inhibitory effect of ethanol on AMP-activated protein kinase phosphorylation, which appears to be mediated, in part, through increased levels of hepatic ceramide and activation of protein phosphatase 2A (Liangpunsakul S, Sozio MS, Shin E, Zhao Z, Xu Y, Ross RA, Zeng Y, Crabb DW. Am J Physiol Gastrointest Liver Physiol 298: G1004-G1012, 2010). The effect of ethanol on AMP-activated protein kinase phosphorylation was reversed by imipramine, suggesting that the generation of ceramide via acid sphingomyelinase (ASMase) is stimulated by ethanol. In this study, we determined the effects of imipramine on the development of hepatic steatosis, the generation of ceramide, and downstream effects of ceramide on inflammatory, insulin, and apoptotic signaling pathways, in ethanol-fed mice. The effect of ethanol and imipramine (10 μg/g body wt ip) on ceramide levels, as well as inflammatory, insulin, and apoptotic signaling pathways, was studied in C57BL/6J mice fed the Lieber-DeCarli diet. Ethanol-fed mice developed the expected steatosis, and cotreatment with imipramine for the last 2 wk of ethanol feeding resulted in improvement in hepatic steatosis. Ethanol feeding for 4 wk induced impaired glucose tolerance compared with controls, and this was modestly improved with imipramine treatment. There was a significant decrease in total ceramide concentrations in response to imipramine in ethanol-fed mice treated with and without imipramine (287 ± 11 vs. 348 ± 12 pmol/mg tissue). The magnitude and specificity of inhibition on each ceramide species differed. A significant decrease was observed for C16 (28 ± 3 vs. 33 ± 2 pmol/mg tissue) and C24 (164 ± 9 vs. 201 ± 4 pmol/mg tissue) ceramide. Ethanol feeding increased the levels of the phosphorylated forms of ERK slightly and increased phospho-p38 and phospho-JNK substantially. The levels of phospho-p38 and phospho-JNK were reduced by treatment with imipramine. The activation of ASMase and generation of ceramide in response to ethanol feeding may underlie several effects of ethanol. ASMase inhibitors may be considered as a therapeutic target for alcohol-induced hepatic steatosis and activation of stress kinases.
Collapse
Affiliation(s)
- Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 2012; 3:34. [PMID: 22649417 PMCID: PMC3355962 DOI: 10.3389/fendo.2012.00034] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of "metabolic" and "mitogenic" responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to "metabolic" and "mitogenic" responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in "metabolic" or "mitogenic" signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears to be the major determinant of whether responses to insulin and IGFs are perceived as "metabolic" or "mitogenic."
Collapse
Affiliation(s)
- Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, UK.
| |
Collapse
|
15
|
Colombatti A, Russo P, Cervi M, Bogetto L, Wassermann B, Mainiero F, Spessotto P. Differential Expression of IRS-1 and IRS-2 in Uterine Leiomyosarcomas with Distinct Oncogenic Phenotypes: Lack of Correlation with Downstream Signaling Events. Sarcoma 2011; 6:89-96. [PMID: 18521338 PMCID: PMC2395487 DOI: 10.1080/1357714021000065387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: Insulin receptor substrates (IRSs) are essential for insulin-induced mitogenic effects on several cell types but they
also are involved in cell transformation.We investigated whether the differential constitutive expression and potential distinct
downstream signaling events of IRS-1 and IRS-2 might be related to discrete tumourigenic phenotypes of three human
uterine leiomyosarcoma cell lines, one of which was specifically isolated for the present study. Methods and results: SK-UT-1B egressed effectively from a gellyfied Matrigel matrix and grew as did DMR cells in an
anchorage-independent manner in agar and induced rapidly growing tumours in nude mice. On the contrary, SK-LMS-1
cells did not emigrate from Matrigel, neither grew in agar nor were they tumourigenic. IRS-2 was highly expressed in the
more malignant cell lines, whereas IRS-1 was present only in SK-LMS-1 cells. However, upon insulin stimulation both IRS-
1 and IRS-2 were tyrosine phosphorylated with a similar kinetic in the respective cell lines; furthermore, after 1 min of
insulin stimulation PI3-kinase associated with IRSs and after 2 min Shc was phosphorylated and associated with Grb2 with
minor differences detectable among the various cell lines in the duration of phosphorylation and/or in their association irrespective
of whether IRS-1 or IRS-2 were expressed. Discussion: Our findings tend to exclude that the malignancy displayed by uterine leiomyosarcomas might be directly linked
to the activation of distinct IRS-1- or IRS-2-dependent pathways.
Collapse
Affiliation(s)
- Alfonso Colombatti
- Divisione di Oncologia Sperimentale 2 Centro di Riferimento Oncologico-IRCCS Aviano 33081 Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Bhaskaran S, Butler JA, Becerra S, Fassio V, Girotti M, Rea SL. Breaking Caenorhabditis elegans the easy way using the Balch homogenizer: an old tool for a new application. Anal Biochem 2011; 413:123-32. [PMID: 21354098 DOI: 10.1016/j.ab.2011.02.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/03/2011] [Accepted: 02/18/2011] [Indexed: 11/19/2022]
Abstract
The nematode Caenorhabditis elegans is a model organism best known for its powerful genetics. There is an increasing need in the worm community to couple genetics with biochemistry. Isolation of functionally active proteins or nucleic acids without the use of strong oxidizing denaturants or of subcellular compartments from C. elegans has, however, been challenging because of the worms' thick surrounding cuticle. The Balch homogenizer is a tool that has found much use in mammalian cell culture biology. The interchangeable single ball-bearing design of this instrument permits rapid permeabilization, or homogenization, of cells. Here we demonstrate the utility of the Balch homogenizer for studies with C. elegans. We describe procedures for the efficient breakage and homogenization of every larval stage, including dauers, and show that the Balch homogenizer can be used to extract functionally active proteins. Enzymatic assays for catalase and dihydrolipoamide dehydrogenase show that sample preparation using the Balch homogenizer equals or outperforms conventional methods employing boiling, sonication, or Dounce homogenization. We also describe phenol-free techniques for isolation of genomic DNA and RNA. Finally, we used the tool to isolate coupled mitochondria and polysomes. The reusable Balch homogenizer represents a quick and convenient solution for undertaking biochemical studies on C. elegans.
Collapse
Affiliation(s)
- Shylesh Bhaskaran
- Barshop Institute for Longevity and Aging Studies and Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78240, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sun XJ, Liu F. Phosphorylation of IRS proteins Yin-Yang regulation of insulin signaling. VITAMINS AND HORMONES 2009; 80:351-87. [PMID: 19251044 DOI: 10.1016/s0083-6729(08)00613-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Growing evidence reveals that insulin signal pathway is not static, but is rather a dynamic, flexible, and fed in by negative (Yin) and positive (Yang) regulation in response to environmental changes. Normal insulin response reflects the balance between Yin and Yang regulation acting upon insulin signaling pathway. Conceivably, imbalance between the Yin and Yang results in abnormal insulin sensitivity such as insulin resistance. IRS-proteins are insulin receptor substrates that mediate insulin signaling via multiple tyrosyl phosphorylations. However, they are also substrates for many serine/threonine kinases downstream of other signaling network and become serine phosphorylated in response to various conditions such as inflammation, stress and over nutrients. The serine phosphorylation of IRS-proteins alters the capacities of IRS-proteins to be phosphorylated on tyrosyl, therefore, able to mediate insulin signaling. The unique structure of IRS-proteins render them idea molecules to fulfill the task to sense the environmental cues and integrate them into insulin sensitivity through serine/threonine phosphorylation. This review intends to summarize the role of IRS-proteins in insulin signaling with focuses on the role of Yin and Yang regulation of insulin signaling pathway. Understanding the dynamic of these complicated regulation net work not only provide us a complete picture of what happens in the normal conditions, but also pathaphysiological conditions such as obesity and insulin resistance.
Collapse
Affiliation(s)
- Xiao Jian Sun
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
18
|
Molecular convergence of hexosamine biosynthetic pathway and ER stress leading to insulin resistance in L6 skeletal muscle cells. Mol Cell Biochem 2009; 328:217-24. [PMID: 19370316 DOI: 10.1007/s11010-009-0092-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 03/11/2009] [Indexed: 10/20/2022]
Abstract
Augmentation of hexosamine biosynthetic pathway (HBP) and endoplasmic reticulum (ER) stress were independently related to be the underlying causes of insulin resistance. We hypothesized that there might be a molecular convergence of activated HBP and ER stress pathways leading to insulin resistance. Augmentation of HBP in L6 skeletal muscle cells either by pharmacological (glucosamine) or physiological (high-glucose) means, resulted in increased protein expression of ER chaperones (viz., Grp78, Calreticulin, and Calnexin), UDP-GlcNAc levels and impaired insulin-stimulated glucose uptake. Cells silenced for O-glycosyl transferase (OGT) showed improved insulin-stimulated glucose uptake (P < 0.05) but without any effect on ER chaperone upregulation. While cells treated with either glucosamine or high-glucose exhibited increased JNK activity, silencing of OGT resulted in inhibition of JNK and normalization of glucose uptake. Our study for the first time, demonstrates a molecular convergence of O-glycosylation processes and ER stress signals at the cross-road of insulin resistance in skeletal muscle.
Collapse
|
19
|
Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 2009; 89:27-71. [PMID: 19126754 DOI: 10.1152/physrev.00014.2008] [Citation(s) in RCA: 351] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulated production of reactive oxygen species (ROS)/reactive nitrogen species (RNS) adequately balanced by antioxidant systems is a prerequisite for the participation of these active substances in physiological processes, including insulin action. Yet, increasing evidence implicates ROS and RNS as negative regulators of insulin signaling, rendering them putative mediators in the development of insulin resistance, a common endocrine abnormality that accompanies obesity and is a risk factor of type 2 diabetes. This review deals with this dual, seemingly contradictory, function of ROS and RNS in regulating insulin action: the major processes for ROS and RNS generation and detoxification are presented, and a critical review of the evidence that they participate in the positive and negative regulation of insulin action is provided. The cellular and molecular mechanisms by which ROS and RNS are thought to participate in normal insulin action and in the induction of insulin resistance are then described. Finally, we explore the potential usefulness and the challenges in modulating the oxidant-antioxidant balance as a potentially promising, but currently disappointing, means of improving insulin action in insulin resistance-associated conditions, leading causes of human morbidity and mortality of our era.
Collapse
Affiliation(s)
- Nava Bashan
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
20
|
Ordóñez P, Moreno M, Alonso A, Llaneza P, Díaz F, González C. 17beta-Estradiol and/or progesterone protect from insulin resistance in STZ-induced diabetic rats. J Steroid Biochem Mol Biol 2008; 111:287-94. [PMID: 18657616 DOI: 10.1016/j.jsbmb.2008.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 01/15/2023]
Abstract
Recent clinical and experimental evidences suggest that sex steroids protect from insulin resistance associated with diabetes. Therefore, we have assessed the influence of E2 and/or P4 on insulin sensitivity by euglicaemic-hyperinsulinaemic clamp in ovariectomized streptozotocin-induced diabetic rats, focusing on key proteins of insulin signaling in skeletal muscle. Although low plasma levels of E2 (days 6 and 11) increased Glut-4 plasma membrane content and subsequent improved insulin sensitivity, they could not fully reverse hyperglycaemia negative effects on p85alpha-IRS-1 association and IRS-1 content during 11 days. However, high plasma levels of E2 (day 16) could reverse hyperglycaemia effects not only on Glut-4 plasma membrane content but also on p85alpha-IRS-1 association and IRS-1 protein content level. In contrast, P4 treatment only improved insulin sensitivity when its plasma concentration was low (days 6 and 11) and its effects were not associated with any proteins study in this paper. The combined therapy had a synergic effect on insulin sensitivity when their plasma levels were low (day 6) or high (day 16), that could be associated with Glut-4 plasma membrane content modulation, p85alpha-IRS-1 association and IRS-1 amount. These new findings improve our understanding of biochemical basis of insulin resistance due to hyperglycaemia and could open up new possibilities of treatment in uncontrolled type 1 DM.
Collapse
Affiliation(s)
- P Ordóñez
- Department of Functional Biology, Physiology Area, University of Oviedo, C/ Julián Clavería s/n 33006, Oviedo, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Shah OJ, Hunter T. Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol 2006; 26:6425-34. [PMID: 16914728 PMCID: PMC1592824 DOI: 10.1128/mcb.01254-05] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The TSC1-TSC2/Rheb/Raptor-mTOR/S6K1 cell growth cassette has recently been shown to regulate cell autonomous insulin and insulin-like growth factor I (IGF-I) sensitivity by transducing a negative feedback signal that targets insulin receptor substrates 1 and 2 (IRS1 and -2). Using two cell culture models of the familial hamartoma syndrome, tuberous sclerosis, we show here that Raptor-mTOR and S6K1 are required for phosphorylation of IRS1 at a subset of serine residues frequently associated with insulin resistance, including S307, S312, S527, S616, and S636 (of human IRS1). Using loss- and gain-of-function S6K1 constructs, we demonstrate a requirement for the catalytic activity of S6K1 in both direct and indirect regulation of IRS1 serine phosphorylation. S6K1 phosphorylates IRS1 in vitro on multiple residues showing strong preference for RXRXXS/T over S/T,P sites. IRS1 is preferentially depleted from the high-speed pellet fraction in TSC1/2-deficient mouse embryo fibroblasts or in HEK293/293T cells overexpressing Rheb. These studies suggest that, through serine phosphorylation, Raptor-mTOR and S6K1 cell autonomously promote the depletion of IRS1 from specific intracellular pools in pathological states of insulin and IGF-I resistance and thus potentially in lesions associated with tuberous sclerosis.
Collapse
Affiliation(s)
- O Jameel Shah
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
22
|
Su X, Lodhi IJ, Saltiel AR, Stahl PD. Insulin-stimulated Interaction between Insulin Receptor Substrate 1 and p85α and Activation of Protein Kinase B/Akt Require Rab5. J Biol Chem 2006; 281:27982-90. [PMID: 16880210 DOI: 10.1074/jbc.m602873200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Binding of insulin to the insulin receptor initiates a cascade of protein phosphorylation and effector recruitment events leading to the activation of multiple distinct signaling pathways. Previous studies suggested that the diversity and specificity of insulin signal transduction are accomplished by both subcellular localization of receptor and the selective activation of downstream signaling molecules. The small GTPase Rab5 is a key regulator of endocytosis. Three Rab5 isoforms (Rab5a, -5b, and -5c) have been identified. Here we exploited the RNA interference technique to specifically knock down individual Rab5 isoforms to determine the cellular function of Rab5 in distinct insulin signaling pathways. Small interference RNA against a single Rab5 isoform had no effect on protein kinase B (PKB)/Akt or MAPK activation by insulin in NIH3T3 cells overexpressing human insulin receptor. However, simultaneous knockdown of all three Rab5 isoforms dramatically attenuated PKB/Akt activation by insulin without affecting MAPK activation. This inhibition of PKB/Akt activation was because of the impaired interaction between insulin receptor substrate 1 and the p85alpha subunit of phosphatidylinositol 3-kinase. These results indicate a requirement of Rab5 in presenting p85 to insulin receptor substrate 1. Additional evidence supporting a role for Rab5 was suggested by studies with GAPex-5, a vps9 domain containing exchange factor. Down-regulation of GAPex-5 impaired insulin-stimulated PKB/Akt activation. Collectively, this study indicates the involvement of Rab5 in insulin signaling.
Collapse
Affiliation(s)
- Xiong Su
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
23
|
Liu Z, Zhang YW, Chang YS, Fang FD. The role of cytoskeleton in glucose regulation. BIOCHEMISTRY (MOSCOW) 2006; 71:476-80. [PMID: 16732724 DOI: 10.1134/s0006297906050026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoskeleton plays an important role in glucose regulation, mainly in the following three aspects. First, cytoskeleton regulates insulin secretion by guiding intracellular transport of insulin-containing vesicles and regulating release of insulin. Second, cytoskeleton is involved in insulin action by regulating distribution of insulin receptor substrate, GLUT4 translocation, and internalization of insulin receptor. In addition, cytoskeleton directs the intracellular distribution of glucose metabolism related enzymes including glycogen synthase and many glycolysis enzymes.
Collapse
Affiliation(s)
- Zhuo Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | |
Collapse
|
24
|
Federico LM, Naples M, Taylor D, Adeli K. Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins in an animal model of insulin resistance and metabolic dyslipidemia: evidence for activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase, and sterol regulatory element-binding protein-1c in the fructose-fed hamster intestine. Diabetes 2006; 55:1316-26. [PMID: 16644688 DOI: 10.2337/db04-1084] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Postprandial dyslipidemia is recognized as an important complication of insulin-resistant states, and recent evidence implicates intestinal lipoprotein overproduction as a causative factor. The mechanisms linking intestinal lipoprotein overproduction and aberrant insulin signaling in intestinal enterocytes are currently unknown. Intestinal insulin sensitivity and lipid metabolism were studied in a fructose-fed hamster model of insulin resistance and metabolic dyslipidemia. Intestinal lipoprotein production in chow-fed hamsters was responsive to the inhibitory effects of insulin, and a decrease in circulating levels of triglyceride-rich apolipoprotein (apo)B48-containing lipoproteins occurred 60 min after insulin administration. However, fructose-fed hamster intestine was not responsive to the insulin-induced downregulation of apoB48-lipoprotein production, suggesting insulin insensitivity at the level of the intestine. Enterocytes from the fructose-fed hamster exhibited normal activity of the insulin receptor but reduced levels of insulin receptor substrate-1 phosphorylation and mass and Akt protein mass. Conversely, the protein mass of the p110 subunit of phosphatidylinositol 3-kinase, protein tyrosine phosphatase-1B, and basal levels of phosphorylated extracellular signal-related kinase (ERK) were significantly increased in the fructose-fed hamster intestine. Modulating the ERK pathway through in vivo inhibition of mitogen-activated protein/ERK kinase 1/2, the upstream activator of ERK1/2, we observed a significant decrease in intestinal apoB48 synthesis and secretion. Interestingly, enhanced basal ERK activity in the fructose-fed hamster intestine was accompanied by an increased activation of sterol regulatory element-binding protein. In summary, these data suggest that insulin insensitivity at the level of the intestine and aberrant insulin signaling are important underlying factors in intestinal overproduction of highly atherogenic apoB48-containing lipoproteins in the insulin-resistant state. Basal activation of the ERK pathway may be an important contributor to the aberrant insulin signaling and lipoprotein overproduction in this model.
Collapse
Affiliation(s)
- Lisa M Federico
- Division of Clinical Biochemistry DPLM, Hospital for Sick Children, 555 University Ave., Toronto, Ontario, Canada M5G 1X8
| | | | | | | |
Collapse
|
25
|
Nawaratne R, Gray A, Jørgensen CH, Downes CP, Siddle K, Sethi JK. Regulation of insulin receptor substrate 1 pleckstrin homology domain by protein kinase C: role of serine 24 phosphorylation. Mol Endocrinol 2006; 20:1838-52. [PMID: 16574739 PMCID: PMC4303764 DOI: 10.1210/me.2005-0536] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues is an important posttranslational modification that is linked to insulin resistance. Several phosphoserine sites on IRS1 have been identified; the majority are located proximal to the phosphotryosine-binding domain or near key receptor tyrosine kinase substrate- and/or Src-homology 2 domain-binding sites. Here we report on the characterization of a serine phosphorylation site in the N-terminal pleckstrin homology (PH) domain of IRS1. Bioinformatic tools identify serine 24 (Ser24) as a putative substrate site for the protein kinase C (PKC) family of serine kinases. We demonstrate that this site is indeed a bona fide substrate for conventional PKC. In vivo, IRS-1 is also phosphorylated on Ser24 after phorbol 12-myristate 13-acetate treatment of cells, and isoform-selective inhibitor studies suggest the involvement of PKCalpha. By comparing the pharmacological characteristics of phorbol 12-myristate 13-acetate-stimulated Ser24 phosphorylation with phosphorylation at two other sites previously linked to PKC activity (Ser307 and Ser612), we show that PKCalpha is likely to be directly involved in Ser24 phosphorylation, but indirectly involved in Ser307 and Ser612 phosphorylation. Using Ser24Asp IRS-1 mutants to mimic the phosphorylated residue, we demonstrate that the phosphorylation status of Ser24 does play an important role in regulating phosphoinositide binding to, and the intracellular localization of, the IRS1-PH domain, which can ultimately impinge on insulin-stimulated glucose uptake. Hence we provide evidence that IRS1-PH domain function is important for normal insulin signaling and is regulated by serine phosphorylation in a manner that could contribute to insulin resistance.
Collapse
Affiliation(s)
- Ranmali Nawaratne
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, UK
| | | | | | | | | | | |
Collapse
|
26
|
Tzatsos A, Kandror KV. Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation. Mol Cell Biol 2006; 26:63-76. [PMID: 16354680 PMCID: PMC1317643 DOI: 10.1128/mcb.26.1.63-76.2006] [Citation(s) in RCA: 311] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nutritional excess and/or obesity represent well-known predisposition factors for the development of non-insulin-dependent diabetes mellitus (NIDDM). However, molecular links between obesity and NIDDM are only beginning to emerge. Here, we demonstrate that nutrients suppress phosphatidylinositol 3 (PI3)-kinase/Akt signaling via Raptor-dependent mTOR (mammalian target of rapamycin)-mediated phosphorylation of insulin receptor substrate 1 (IRS-1). Raptor directly binds to and serves as a scaffold for mTOR-mediated phosphorylation of IRS-1 on Ser636/639. These serines lie close to the Y(632)MPM motif that is implicated in the binding of p85alpha/p110alpha PI3-kinase to IRS-1 upon insulin stimulation. Phosphomimicking mutations of these serines block insulin-stimulated activation of IRS-1-associated PI3-kinase. Knockdown of Raptor as well as activators of the LKB1/AMPK pathway, such as the widely used antidiabetic compound metformin, suppress IRS-1 Ser636/639 phosphorylation and reverse mTOR-mediated inhibition on PI3-kinase/Akt signaling. Thus, diabetes-related hyperglycemia hyperactivates the mTOR pathway and may lead to insulin resistance due to suppression of IRS-1-dependent PI3-kinase/Akt signaling.
Collapse
|
27
|
Wilson C, Hargreaves M, Howlett KF. Exercise does not alter subcellular localization, but increases phosphorylation of insulin-signaling proteins in human skeletal muscle. Am J Physiol Endocrinol Metab 2006; 290:E341-6. [PMID: 16188907 DOI: 10.1152/ajpendo.00314.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (approximately 67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3alpha/beta Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.
Collapse
Affiliation(s)
- Chris Wilson
- Center for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
28
|
Villar M, Serrano R, Gallardo N, Carrascosa JM, Martinez C, Andrés A. Altered subcellular distribution of IRS-1 and IRS-3 is associated with defective Akt activation and GLUT4 translocation in insulin-resistant old rat adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:197-206. [PMID: 16445997 DOI: 10.1016/j.bbamcr.2005.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 11/30/2005] [Accepted: 12/07/2005] [Indexed: 11/17/2022]
Abstract
Insulin receptor signal transduction depends on the precise intracellular localization of signalling molecules. This study examines the compartmentalization and the insulin-induced translocation and tyrosine phosphorylation of insulin receptor substrates (IRS-1 and IRS-3) in epididymal white adipose tissue from adult and insulin-resistant old rats. We found that insulin induces the translocation of IRS-1 from plasma membrane (PM) and light microsomes (LM) to cytosol, whereas IRS-3 translocates from PM to LM and cytosol upon insulin stimulation. Old rat adipocytes are characterized by higher relative levels of IRS proteins, under basal conditions, in those fractions where they are intended to translocate in response to insulin and exhibit a higher phosphotyrosine content of IRS-1 and -3 in basal conditions and a lower maximal phosphorylation in response to insulin. Furthermore, old rat adipocytes are also characterized by a reduced ability of insulin to stimulate both, Akt/PKB activity and translocation of GLUT4 to the PM. We conclude that the lower stimulation of downstream insulin signalling involved in glucose metabolism in old rat adipocytes may be explained, at least in part, by the altered subcellular distribution of IRS-1 and -3 proteins. In addition, our data suggest that the mechanism of turning on/off insulin receptor-mediated signal is impaired with aging.
Collapse
Affiliation(s)
- Margarita Villar
- Area de Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Avenida Camilo José Cela, 10 13071, Ciudad Real, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Thomas EC, Zhe Y, Molero JC, Schmitz-Peiffer C, Ramm G, James DE, Whitehead JP. The subcellular fractionation properties and function of insulin receptor substrate-1 (IRS-1) are independent of cytoskeletal integrity. Int J Biochem Cell Biol 2006; 38:1686-99. [PMID: 16702017 DOI: 10.1016/j.biocel.2006.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/15/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim(-/-) cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton.
Collapse
Affiliation(s)
- Elaine C Thomas
- Centre for Diabetes and Endocrine Research, Princess Alexandra Hospital, University of Queensland, Brisbane, Qld 4102, Australia
| | | | | | | | | | | | | |
Collapse
|
30
|
Patel N, Huang C, Klip A. Cellular location of insulin-triggered signals and implications for glucose uptake. Pflugers Arch 2005; 451:499-510. [PMID: 16284741 DOI: 10.1007/s00424-005-1475-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 06/02/2005] [Indexed: 12/29/2022]
Abstract
Insulin stimulation of glucose uptake into muscle and fat cells requires movement of GLUT4-containing vesicles from intracellular compartments to the plasma membrane. Accordingly, insulin-derived signals must arrive at and be recognized by the appropriate intracellular GLUT4 pools. We describe the insulin signals participating in GLUT4 translocation, and review evidence that they are recruited to intracellular membranes in conjunction with cytoskeletal elements. Such segregation may facilitate the encounter between signals and target vesicles. In most animal and cellular models of insulin resistance, insulin-stimulated GLUT4 translocation to the plasma membrane is reduced. Insulin resistance caused by oxidative stress does not affect early insulin signals, rather their intracellular localization is altered. In this and several other insulin-resistant states, insulin-induced actin remodelling is concomitantly diminished. We summarize evidence suggesting that spatial localization of signals is critical for efficient insulin action, and that the cytoskeleton may act as a scaffold to promote efficient translocation of GLUT4 to the cell surface.
Collapse
Affiliation(s)
- Nish Patel
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
31
|
Bloch-Damti A, Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal 2005; 7:1553-67. [PMID: 16356119 DOI: 10.1089/ars.2005.7.1553] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In diabetes (type 1 and type 2), increased flux of free fatty acids and glucose is associated with increased mitochondrial reactive oxygen species (ROS) production and, as a consequence, increased oxidative stress. ROS have been shown to activate various cellular stress-sensitive pathways, which can interfere with cellular signaling pathways. Exposure of different cell lines to micromolar concentrations of hydrogen peroxide leads to the activation of stress kinases such as c-Jun N-terminal kinase, p38, I kappaB kinase, and extracellular receptor kinase 1/2. This activation is accompanied by a down-regulation of the cellular response to insulin, leading to a reduced ability of insulin to promote glucose uptake, and glycogen and protein synthesis. The mechanisms leading to this down-regulation in oxidized cells are complicated, involving increased serine/threonine phosphorylation of insulin receptor substrate-1 (IRS1), impaired insulin-stimulated redistribution of IRS1 and phosphatidylinositol-kinase between cytosol and low-density microsomal fraction, followed by a reduced protein kinase-B phosphorylation and GLUT4 translocation to the plasma membrane. In addition, prolonged exposure to ROS affects transcription of glucose transporters: whereas the level of GLUT1 is increased, GLUT4 level is reduced. As can be expected, administration of antioxidants such as lipoic acid in oxidized cells, in animal models of diabetes, and in type 2 diabetes shows improved insulin sensitivity. Thus, oxidative stress is presently accepted as a likely causative factor in the development of insulin resistance.
Collapse
Affiliation(s)
- Asnat Bloch-Damti
- Department of Clinical Biochemistry, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
32
|
Zhang Q, Carter EA, Ma BY, White M, Fischman AJ, Tompkins RG. Molecular mechanism(s) of burn-induced insulin resistance in murine skeletal muscle: role of IRS phosphorylation. Life Sci 2005; 77:3068-77. [PMID: 15982669 DOI: 10.1016/j.lfs.2005.02.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 02/24/2005] [Indexed: 11/24/2022]
Abstract
Hyperglycemia, glucose intolerance and elevated insulin levels frequently occur in burned patients; however, the mechanism(s) for this insulin resistance has not been fully elucidated. One possible mechanism could involve alterations in the phosphorylation of serine 307 of the insulin receptor substrate-1 (IRS-1) via activation of stress kinase enzymes, including SAPK/JNK. In the present study we examined the time course of the effect of burn injury to mice on: levels of IRS-1 protein, phosphorylation of serine 307 of IRS-1, SAPK/JNK kinase levels and activity and Akt kinase activity in hind limb skeletal muscle. Burn injury produced a reduction in hind limb muscle mass 24 h after injury, and, which persisted for 168 h. At 24 h after injury, there was a dramatic ( approximately 9-fold) increase in phosphorylation of IRS-1 serine 307 followed by a more moderate elevation thereafter. Total IRS-1 protein was slightly elevated at 24 h after injury and decreased to levels below sham treated animals at the later times. Burn injury did not appear to change total SAPK/JNK protein content, however, enzyme activity was increased for 7 days after injury. Akt kinase activity was decreased in skeletal muscle following burn injury; providing a biochemical basis for burn-induced insulin resistance. These findings are consistent with the hypothesis that burn-induced insulin resistance may be related, at least in part, to alterations in the phosphorylation of key proteins in the insulin signaling cascade, including IRS-1, and that changes in stress kinases, such as SAPK/JNK produced by burn injury, may be responsible for these changes in phosphorylation.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Surgery, Massachusetts General Hospital and Shriners Hospital for Children, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
33
|
Sadagurski M, Weingarten G, Rhodes CJ, White MF, Wertheimer E. Insulin Receptor Substrate 2 Plays Diverse Cell-specific Roles in the Regulation of Glucose Transport. J Biol Chem 2005; 280:14536-44. [PMID: 15705592 DOI: 10.1074/jbc.m410227200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin receptor substrate 2 (IRS-2) protein is one of the major insulin-signaling substrates. In the present study, we investigated the role of IRS-2 in skin epidermal keratinocytes and dermal fibroblasts. Although skin is not a classical insulin target tissue, we have previously demonstrated that insulin, via the insulin receptor, is essential for normal skin cell physiology. To identify the role of IRS-2 in skin cells, we studied cells isolated from IRS-2 knock-out (KO) mice. Whereas proliferation and differentiation were not affected in the IRS-2 KO cells, a striking effect was observed on glucose transport. In IRS-2 KO keratinocytes, the lack of IRS-2 resulted in a dramatic increase in basal and insulin-stimulated glucose transport. The increase in glucose transport was associated with an increase in total phosphatidylinositol (PI) 3-kinase and Akt activation. In contrast, fibroblasts lacking IRS-2 exhibited a significant decrease in basal and insulin-induced glucose transport. We identified the point of divergence, leading to these differences between keratinocytes and fibroblasts, at the IRS-PI 3-kinase association step. In epidermal keratinocytes, PI 3-kinase is associated with and activated by only the IRS-1 protein. On the other hand, in dermal fibroblasts, PI 3-kinase is exclusively associated with and activated by the IRS-2 protein. These observations suggest that IRS-2 functions as a negative or positive regulator of glucose transport in a cell-specific manner. Our results also show that IRS-2 function depends on its cell-specific association with PI 3-kinase.
Collapse
Affiliation(s)
- Marianna Sadagurski
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
34
|
Tremblay F, Gagnon A, Veilleux A, Sorisky A, Marette A. Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes. Endocrinology 2005; 146:1328-37. [PMID: 15576463 DOI: 10.1210/en.2004-0777] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mammalian target of rapamycin (mTOR) pathway has recently emerged as a chronic modulator of insulin-mediated glucose metabolism. In this study, we evaluated the involvement of this pathway in the acute regulation of insulin action in both 3T3-L1 and human adipocytes. Insulin rapidly (t(1/2) = 5 min) stimulated the mTOR pathway, as reflected by a 10-fold stimulation of 70-kDa ribosomal S6 kinase 1 (S6K1) activity in 3T3-L1 adipocytes. Inhibition of mTOR/S6K1 by rapamycin increased insulin-stimulated glucose transport by as much as 45% in 3T3-L1 adipocytes. Activation of mTOR/S6K1 by insulin was associated with a rapamycin-sensitive increase in Ser636/639 phosphorylation of insulin receptor substrate (IRS)-1 but, surprisingly, did not result in impaired IRS-1-associated phosphatidylinositol (PI) 3-kinase activity. However, insulin-induced activation of Akt was increased by rapamycin. Insulin also activated S6K1 and increased phosphorylation of IRS-1 on Ser636/639 in human adipocytes. As in murine cells, rapamycin treatment of human adipocytes inhibited S6K1, blunted Ser636/639 phosphorylation of IRS-1, leading to increased Akt activation and glucose uptake by insulin. Further studies in 3T3-L1 adipocytes revealed that rapamycin prevented the relocalization of IRS-1 from the low-density membranes to the cytosol in response to insulin. Furthermore, inhibition of mTOR markedly potentiated the ability of insulin to increase PI 3,4,5-triphosphate levels concomitantly with an increased phosphorylation of Akt at the plasma membrane, low-density membranes, and cytosol. However, neither GLUT4 nor GLUT1 translocation induced by insulin were increased by rapamycin treatment. Taken together, these results indicate that the mTOR pathway is an important modulator of the signals involved in the acute regulation of insulin-stimulated glucose transport in 3T3-L1 and human adipocytes.
Collapse
Affiliation(s)
- Frédéric Tremblay
- Department of Anatomy and Physiology and Lipid Research Unit, Laval University Hospital Research Center, 2705 Laurier Boulevard, Ste-Foy, Québec, Canada G1V 4G2
| | | | | | | | | |
Collapse
|
35
|
Ewart MA, Clarke M, Kane S, Chamberlain LH, Gould GW. Evidence for a Role of the Exocyst in Insulin-stimulated Glut4 Trafficking in 3T3-L1 Adipocytes. J Biol Chem 2005; 280:3812-6. [PMID: 15550383 DOI: 10.1074/jbc.m409928200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin stimulates glucose transport in adipocytes and muscle by inducing the redistribution of Glut4 from intracellular locations to the plasma membrane. The fusion of Glut4-containing vesicles at the plasma membrane is known to involve the target SNAREs syntaxin 4 and SNAP-23 and the vesicle SNARE VAMP2. Little is known about the initial docking of Glut4 vesicles with the plasma membrane. A recent report has implicated Exo70, a component of the mammalian exocyst complex, in the initial interaction of Glut4 vesicles with the adipocyte plasma membrane. Here, we have examined the role of two other exocyst components, rsec6 and rsec8. We show that insulin promotes a redistribution of rsec6 and rsec8 to the plasma membrane and to cytoskeletal fractions within 3T3-L1 adipocytes but does not modulate levels of these proteins co-localized with Glut4. We further show that adenoviral-mediated overexpression of either rsec6 or rsec8 increases the magnitude of insulin-stimulated glucose transport in 3T3-L1 adipocytes. By contrast, overexpression of rsec6 or rsec8 did not increase the extent of the secretion of adipsin or ACRP30 from adipocytes and had no discernible effect on transferrin receptor traffic. Collectively, our data support a role for the exocyst in insulin-stimulated glucose transport and suggest a model by which insulin-dependent relocation of the exocyst to the plasma membrane may contribute to the specificity of Glut4 vesicle docking and fusion with the adipocyte plasma membrane.
Collapse
Affiliation(s)
- Marie-Ann Ewart
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Davidson Building, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Liu YF, Herschkovitz A, Boura-Halfon S, Ronen D, Paz K, Leroith D, Zick Y. Serine phosphorylation proximal to its phosphotyrosine binding domain inhibits insulin receptor substrate 1 function and promotes insulin resistance. Mol Cell Biol 2004; 24:9668-81. [PMID: 15485932 PMCID: PMC522236 DOI: 10.1128/mcb.24.21.9668-9681.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ser/Thr phosphorylation of insulin receptor substrate (IRS) proteins negatively modulates insulin signaling. Therefore, the identification of serine sites whose phosphorylation inhibit IRS protein functions is of physiological importance. Here we mutated seven Ser sites located proximal to the phosphotyrosine binding domain of insulin receptor substrate 1 (IRS-1) (S265, S302, S325, S336, S358, S407, and S408) into Ala. When overexpressed in rat hepatoma Fao or CHO cells, the mutated IRS-1 protein in which the seven Ser sites were mutated to Ala (IRS-1(7A)), unlike wild-type IRS-1 (IRS-1(WT)), maintained its Tyr-phosphorylated active conformation after prolonged insulin treatment or when the cells were challenged with inducers of insulin resistance prior to acute insulin treatment. This was due to the ability of IRS-1(7A) to remain complexed with the insulin receptor (IR), unlike IRS-1(WT), which underwent Ser phosphorylation, resulting in its dissociation from IR. Studies of truncated forms of IRS-1 revealed that the region between amino acids 365 to 430 is a main insulin-stimulated Ser phosphorylation domain. Indeed, IRS-1 mutated only at S408, which undergoes phosphorylation in vivo, partially maintained the properties of IRS-1(7A) and conferred protection against selected inducers of insulin resistance. These findings suggest that S408 and additional Ser sites among the seven mutated Ser sites are targets for IRS-1 kinases that play a key negative regulatory role in IRS-1 function and insulin action. These sites presumably serve as points of convergence, where physiological feedback control mechanisms, which are triggered by insulin-stimulated IRS kinases, overlap with IRS kinases triggered by inducers of insulin resistance to terminate insulin signaling.
Collapse
Affiliation(s)
- Yan-Fang Liu
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
37
|
Minamitani T, Ariga H, Matsumoto KI. Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen. Exp Cell Res 2004; 297:49-60. [PMID: 15194424 DOI: 10.1016/j.yexcr.2004.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/01/2004] [Indexed: 11/29/2022]
Abstract
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX-null fibroblasts exhibit decreased cell-matrix and cell-cell adhesion. In this study, we used a differential display technique to determine the genes involved in this process. Differential display analysis of wild-type and TNX-null fibroblasts revealed that mRNA expression level of type VI collagen alpha3 is predominantly decreased in TNX-null fibroblasts. Expression levels of mRNAs of other subunits of type VI collagen, alpha2 and alpha3 chains, were also remarkably decreased in TNX-null fibroblasts. The protein level of alpha3 chain of type VI collagen was also reduced in TNX-null fibroblasts. However, the organization of type VI collagen in the extracellular matrix of TNX-null fibroblasts was similar to that of wild-type fibroblasts. Transient expression of TNX in Balb3T3 cells caused an increase in the level of mRNA of type VI collagen compared with that in vector control and increased the promoter activity of type VI collagen alpha1 subunit gene. In addition, the expression levels of type I collagen and other collagen fibril-associated molecules such as type XII and type XIV collagens, decorin, lumican and fibromodulin in wild-type and TNX-null fibroblasts were compared. It was found that the mRNA expression levels of type I collagen and collagen fibril-associated molecules other than decorin were decreased and that the expression level of decorin was increased in TNX-null fibroblasts. The results suggest the possibility that TNX mediates not only cell-cell and cell-matrix interactions but also fibrillogenesis via collagen fibril-associated molecules.
Collapse
Affiliation(s)
- Takeharu Minamitani
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
38
|
Brozinick JT, Hawkins ED, Strawbridge AB, Elmendorf JS. Disruption of cortical actin in skeletal muscle demonstrates an essential role of the cytoskeleton in glucose transporter 4 translocation in insulin-sensitive tissues. J Biol Chem 2004; 279:40699-706. [PMID: 15247264 PMCID: PMC2409066 DOI: 10.1074/jbc.m402697200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cell culture work suggests that signaling to polymerize cortical filamentous actin (F-actin) represents a required pathway for the optimal redistribution of the insulin-responsive glucose transporter, GLUT4, to the plasma membrane. Recent in vitro study further suggests that the actin-regulatory neural Wiskott-Aldrich syndrome protein (N-WASP) mediates the effect of insulin on the actin filament network. Here we tested whether similar cytoskeletal mechanics are essential for insulin-regulated glucose transport in isolated rat epitrochlearis skeletal muscle. Microscopic analysis revealed that cortical F-actin is markedly diminished in muscle exposed to latrunculin B. Depolymerization of cortical F-actin with latrunculin B caused a time- and concentration-dependent decline in 2-deoxyglucose transport. The loss of cortical F-actin and glucose transport was paralleled by a decline in insulin-stimulated GLUT4 translocation, as assessed by photolabeling of cell surface GLUT4 with Bio-LC-ATB-BMPA. Although latrunculin B impaired insulin-stimulated GLUT4 translocation and glucose transport, activation of phosphatidylinositol 3-kinase and Akt by insulin was not rendered ineffective. In contrast, the ability of insulin to elicit the cortical F-actin localization of N-WASP was abrogated. These data provide the first evidence that actin cytoskeletal mechanics are an essential feature of the glucose transport process in intact skeletal muscle. Furthermore, these findings support a distal actin-based role for N-WASP in insulin action in vivo.
Collapse
|
39
|
Carlson CJ, White MF, Rondinone CM. Mammalian target of rapamycin regulates IRS-1 serine 307 phosphorylation. Biochem Biophys Res Commun 2004; 316:533-9. [PMID: 15020250 DOI: 10.1016/j.bbrc.2004.02.082] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Indexed: 01/08/2023]
Abstract
Insulin signaling can be negatively regulated by phosphorylation of serine 307 of the insulin receptor substrate (IRS)-1. Rapamycin, an inhibitor of the kinase mTOR, can prevent serine 307 phosphorylation and the development of insulin resistance. We further investigated the role of mTOR in regulating serine 307 phosphorylation, demonstrating that serine 307 phosphorylation in response to insulin, anisomycin, or tumor necrosis factor was quantitatively and temporally associated with activation of mTOR and could be inhibited by rapamycin. Amino acid stimulation activated mTOR and resulted in IRS-1 serine 307 phosphorylation without activating PKB or JNK. Okadaic acid, an inhibitor of the phosphatase PP2A, activated mTOR and stimulated the phosphorylation of serine 307 in a rapamycin-sensitive manner, indicating serine 307 phosphorylation requires mTOR activity but not PP2A, suggesting that mTOR itself may be responsible for phosphorylating serine 307. Finally, we demonstrated that serine 307 phosphorylated IRS-1 is detected primarily in the cytosolic fraction.
Collapse
Affiliation(s)
- Christian J Carlson
- Insulin signaling, Metabolic Diseases Division, Global Pharmaceutical Research Division, Abbott Laboratories, Abbott Park, IL 60064, USA
| | | | | |
Collapse
|
40
|
Greene MW, Morrice N, Garofalo RS, Roth RA. Modulation of human insulin receptor substrate-1 tyrosine phosphorylation by protein kinase Cdelta. Biochem J 2004; 378:105-16. [PMID: 14583092 PMCID: PMC1223928 DOI: 10.1042/bj20031493] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 10/28/2003] [Accepted: 10/29/2003] [Indexed: 12/31/2022]
Abstract
Non-esterified fatty acid (free fatty acid)-induced activation of the novel PKC (protein kinase C) isoenzymes PKCdelta and PKCtheta correlates with insulin resistance, including decreased insulin-stimulated IRS-1 (insulin receptor substrate-1) tyrosine phosphorylation and phosphoinositide 3-kinase activation, although the mechanism(s) for this resistance is not known. In the present study, we have explored the possibility of a novel PKC, PKCdelta, to modulate directly the ability of the insulin receptor kinase to tyrosine-phosphorylate IRS-1. We have found that expression of either constitutively active PKCdelta or wild-type PKCdelta followed by phorbol ester activation both inhibit insulin-stimulated IRS-1 tyrosine phosphorylation in vivo. Activated PKCdelta was also found to inhibit the IRS-1 tyrosine phosphorylation in vitro by purified insulin receptor using recombinant full-length human IRS-1 and a partial IRS-1-glutathione S-transferase-fusion protein as substrates. This inhibition in vitro was not observed with a non-IRS-1 substrate, indicating that it was not the result of a general decrease in the intrinsic kinase activity of the receptor. Consistent with the hypothesis that PKCdelta acts directly on IRS-1, we show that IRS-1 can be phosphorylated by PKCdelta on at least 18 sites. The importance of three of the PKCdelta phosphorylation sites in IRS-1 was shown in vitro by a 75-80% decrease in the incorporation of phosphate into an IRS-1 triple mutant in which Ser-307, Ser-323 and Ser-574 were replaced by Ala. More importantly, the mutation of these three sites completely abrogated the inhibitory effect of PKCdelta on IRS-1 tyrosine phosphorylation in vitro. These results indicate that PKCdelta modulates the ability of the insulin receptor to tyrosine-phosphorylate IRS-1 by direct phosphorylation of the IRS-1 molecule.
Collapse
Affiliation(s)
- Michael W Greene
- Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
41
|
Patel N, Rudich A, Khayat ZA, Garg R, Klip A. Intracellular segregation of phosphatidylinositol-3,4,5-trisphosphate by insulin-dependent actin remodeling in L6 skeletal muscle cells. Mol Cell Biol 2003; 23:4611-26. [PMID: 12808101 PMCID: PMC164845 DOI: 10.1128/mcb.23.13.4611-4626.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular pool to the cell surface through a mechanism that is dependent on phosphatidylinositol (PI) 3-kinase (PI3-K) and cortical actin remodeling. Here we test the hypothesis that insulin-dependent actin filament remodeling determines the location of insulin signaling molecules. It has been shown previously that insulin treatment of L6 myotubes leads to a rapid rearrangement of actin filaments into submembrane structures where the p85 regulatory subunit of PI3-K and organelles containing GLUT4, VAMP2, and the insulin-regulated aminopeptidase (IRAP) colocalize. We now report that insulin receptor substrate-1 and the p110alpha catalytic subunit of PI3-K (but not p110beta) also colocalize with the actin structures. Akt-1 was also found in the remodeled actin structures, unlike another PI3-K effector, atypical protein kinase C lambda. Transiently transfected green fluorescent protein (GFP)-tagged pleckstrin homology (PH) domains of general receptor for phosphoinositides-1 (GRP1) or Akt (ligands of phosphatidylinositol-3,4,5-trisphosphate [PI-3,4,5-P(3)]) migrated to the periphery of the live cells; in fixed cells, they were detected in the insulin-induced actin structures. These results suggest that PI-3,4,5-P(3) is generated on membranes located within the actin mesh. Actin remodeling and GLUT4 externalization were blocked in cells highly expressing GFP-PH-GRP1, suggesting that PI-3,4,5-P(3) is required for both phenomena. We propose that PI-3,4,5-P(3) leads to actin remodeling, which in turn segregates p85alpha and p110alpha, thus localizing PI-3,4,5-P(3) production on membranes trapped by the actin mesh. Insulin-stimulated actin remodeling may spatially coordinate the localized generation of PI-3,4,5-P(3) and recruitment of Akt, ultimately leading to GLUT4 insertion at the plasma membrane.
Collapse
Affiliation(s)
- Nish Patel
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
42
|
Murata H, Hresko RC, Mueckler M. Reconstitution of phosphoinositide 3-kinase-dependent insulin signaling in a cell-free system. J Biol Chem 2003; 278:21607-14. [PMID: 12682058 DOI: 10.1074/jbc.m302934200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early insulin signaling events were examined in a novel cell-free assay utilizing subcellular fractions derived from 3T3-L1 adipocytes. The following cellular processes were observed in vitro in a manner dependent on insulin, time of incubation, and exogenous ATP: 1) autophosphorylation and activation of the insulin receptor; 2) tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1); 3) association of tyrosine-phosphorylated IRS-1 with phosphoinositide 3-kinase; 4) activation of the kinase Akt via its phosphorylation on Thr-308 and Ser-473; and 5) phosphorylation of glycogen synthase kinase-3 by activated Akt. The activation of Akt in vitro was abolished in the presence of the phosphoinositide 3-kinase inhibitor, wortmannin, thus recapitulating the most notable regulatory feature of Akt observed in vivo. Evidence is presented indicating that the critical spatial compartmentalization of signaling molecules necessary for efficient signal transduction is likely to be preserved in the cell-free system. Additionally, data are provided demonstrating that full Akt activation in this system is dependent on plasma membrane-associated IRS-1, cannot be mediated by robust cytosol-specific tyrosine phosphorylation of IRS-1, and occurs in the complete absence of detectable IRS-2 phosphorylation in the cytosol and plasma membrane.
Collapse
Affiliation(s)
- Haruhiko Murata
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
43
|
Potashnik R, Bloch-Damti A, Bashan N, Rudich A. IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Diabetologia 2003; 46:639-48. [PMID: 12750770 DOI: 10.1007/s00125-003-1097-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Revised: 12/20/2002] [Indexed: 11/30/2022]
Abstract
AIM/HYPOTHESIS Oxidative stress was shown to selectively induce impaired metabolic response to insulin, raising the possible involvement of alterations in Insulin-Receptor-Substrate (IRS) proteins. This study was conducted to assess whether oxidative stress induced IRS protein degradation and enhanced serine phosphorylation, and to assess their functional importance. METHODS 3T3-L1 adipocytes and rat hepatoma cells (FAO) were exposed to micro-molar H(2)O(2) by adding glucose oxidase to the culture medium, and IRS1 content, its serine phosphorylation and downstream metabolic insulin effects were measured. RESULTS Cells exposed to oxidative stress exhibited decreased IRS1 (but not IRS2) content, and increased serine phosphorylation of both proteins. Total protein ubiquitination was increased in oxidized cells, but not in cells exposed to prolonged insulin treatment. Yet, lactacystin and MG132, two unrelated proteasome inhibitors, prevented IRS1 degradation induced by prolonged insulin but not by oxidative stress. The PI 3-kinase inhibitor LY294002 and the mTOR inhibitor rapamycin, but not the MEK1 inhibitor PD98059, could prevent IRS1 changes in oxidized cells. Rapamycin, which protected against IRS1 degradation and serine phosphorylation was not associated with improved response to acute insulin stimulation. Moreover, the antioxidant alpha lipoic acid, while protecting against oxidative stress-induced insulin resistance in 3T3-L1 adipocytes, could not prevent IRS1 degradation and serine phosphorylation. CONCLUSION/INTERPRETATION Oxidative stress induces serine phosphorylation of IRS1 and increases its degradation by a proteasome-independent pathway; yet, these changes do not correlate with the induction of impaired metabolic response to insulin.
Collapse
Affiliation(s)
- R Potashnik
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
44
|
Brozinick JT, Roberts BR, Dohm GL. Defective signaling through Akt-2 and -3 but not Akt-1 in insulin-resistant human skeletal muscle: potential role in insulin resistance. Diabetes 2003; 52:935-41. [PMID: 12663464 DOI: 10.2337/diabetes.52.4.935] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent evidence has shown that activation of phosphatidyinositol-3-kinase (PI3K) and Akt, necessary for insulin stimulation of glucose transport, is impaired in insulin resistance. It is unknown, however, which Akt isoform shows impaired activation in insulin resistance. Additionally, related growth factors (epidermal or platelet-derived vascular) also stimulate PI3K, but it is unknown whether production of 3,4,5 phosphatidyinositol is sufficient to stimulate glucose transport in insulin-resistant muscle. Moreover, these studies were performed in rodents, and little data exists from humans. Hence, we investigated the stimulation of PI3K and Akt-1, -2, and -3 by insulin and epidermal growth factors (EGFs) in skeletal muscles from lean and obese insulin-resistant humans. Insulin activated all Akt isoforms in lean muscles, whereas only Akt-1 was activated in obese muscles. Insulin receptor substrate (IRS)-1 was associated with PI3K activity, which is necessary for Akt activation by insulin, and was reduced in obese muscles, and this was accompanied by decreased IRS-1 expression. In contrast, insulin- or EGF-stimulated phosphotyrosine-associated PI3K activity was not different between lean and obese muscles. These results show that a defect in the ability of insulin to activate Akt-2 and -3 may explain the impaired insulin-stimulated glucose transport in insulin resistance. Additionally, these data also show that different upstream or downstream signals may regulate the activity of the various Akt isoforms.
Collapse
Affiliation(s)
- Joseph T Brozinick
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA.
| | | | | |
Collapse
|
45
|
Borge PD, Wolf BA. Insulin receptor substrate 1 regulation of sarco-endoplasmic reticulum calcium ATPase 3 in insulin-secreting beta-cells. J Biol Chem 2003; 278:11359-68. [PMID: 12524443 DOI: 10.1074/jbc.m209521200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously characterized an insulin receptor substrate 1 (IRS-1)-overexpressing beta-cell line. These beta-cells demonstrated elevated fractional insulin secretion and elevated cytosolic Ca(2+) levels compared with wild-type and vector controls. This effect of IRS-1 may be mediated via an interaction with the sarco-endoplasmic reticulum calcium ATPase (SERCA). Here we demonstrate that IRS-1 and IRS-2 localize to an endoplasmic reticulum (ER)-enriched fraction in beta-cells using subcellular fractionation. We also observe co-localization of both IRS-1 and IRS-2 with ER marker proteins using immunofluorescent confocal microscopy. Furthermore, immuno-electron microscopy studies confirm that IRS-1 and SERCA3b localize to vesicles derived from the ER. In Chinese hamster ovary-T (CHO-T) cells transiently transfected with SERCA3b alone or together with IRS-1, SERCA3b co-immunoprecipitates with IRS-1. This interaction is enhanced with insulin treatment. SERCA3b also co-immunoprecipitates with IRS-1 in wild-type and IRS-1-overexpressing beta-cell lines. Ca(2+) uptake in ER-enriched fractions prepared from wild-type and IRS-1-overexpressing cell lines shows no significant difference, indicating that the previously observed decrease in Ca(2+) uptake by IRS-1-overexpressing cells is not the result of a defect in SERCA. Treatment of wild-type beta-cells with thapsigargin, an inhibitor of SERCA, resulted in an increase in glucose-stimulated fractional insulin secretion similar to that observed in IRS-1-overexpressing cells. The colocalization of IRS proteins and SERCA in the ER of beta-cells increases the likelihood that these proteins can interact with one another. Co-immunoprecipitation of IRS-1 and SERCA in CHO-T cells and beta-cells confirms that these proteins do indeed interact directly. Pharmacological inhibition of SERCA in beta-cells results in enhanced secretion of insulin. Taken together, our data suggest that interaction between IRS proteins and SERCA is an important regulatory step in insulin secretion.
Collapse
Affiliation(s)
- Prabhakar D Borge
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
46
|
Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA. Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J Biol Chem 2003; 278:8199-211. [PMID: 12510059 DOI: 10.1074/jbc.m209153200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ser/Thr phosphorylation of insulin receptor substrate-1 (IRS-1) is a negative regulator of insulin signaling. One potential mechanism for this is that Ser/Thr phosphorylation decreases the ability of IRS-1 to be tyrosine-phosphorylated by the insulin receptor. An additional mechanism for modulating insulin signaling is via the down-regulation of IRS-1 protein levels. Insulin-induced degradation of IRS-1 has been well documented, both in cells as well as in patients with diabetes. Ser/Thr phosphorylation of IRS-1 correlates with IRS-1 degradation, yet the details of how this occurs are still unknown. In the present study we have examined the potential role of different signaling cascades in the insulin-induced degradation of IRS-1. First, we found that inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin block the degradation. Second, knockout cells lacking one of the key effectors of this cascade, the phosphoinositide-dependent kinase-1, were found to be deficient in the insulin-stimulated degradation of IRS-1. Conversely, overexpression of this enzyme potentiated insulin-stimulated IRS-1 degradation. Third, concurrent with the decrease in IRS-1 degradation, the inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin also blocked the insulin-stimulated increase in Ser(312) phosphorylation. Most important, an IRS-1 mutant in which Ser(312) was changed to alanine was found to be resistant to insulin-stimulated IRS-1 degradation. Finally, an inhibitor of c-Jun N-terminal kinase, SP600125, at 10 microm did not block IRS-1 degradation and IRS-1 Ser(312) phosphorylation yet completely blocked insulin-stimulated c-Jun phosphorylation. Further, insulin-stimulated c-Jun phosphorylation was not blocked by inhibitors of the phosphatidylinositol 3-kinase and mammalian target of rapamycin, indicating that c-Jun N-terminal kinase is unlikely to be the kinase phosphorylating IRS-1 Ser(312) in response to insulin. In summary, our results indicate that the insulin-stimulated degradation of IRS-1 via the phosphatidylinositol 3-kinase pathway is in part dependent upon the Ser(312) phosphorylation of IRS-1.
Collapse
Affiliation(s)
- Michael W Greene
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305, USA
| | | | | | | | | |
Collapse
|
47
|
Farhang-Fallah J, Randhawa VK, Nimnual A, Klip A, Bar-Sagi D, Rozakis-Adcock M. The pleckstrin homology (PH) domain-interacting protein couples the insulin receptor substrate 1 PH domain to insulin signaling pathways leading to mitogenesis and GLUT4 translocation. Mol Cell Biol 2002; 22:7325-36. [PMID: 12242307 PMCID: PMC139823 DOI: 10.1128/mcb.22.20.7325-7336.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Receptor-mediated tyrosine phosphorylation of the insulin receptor substrate 1 (IRS-1) is required for the propagation of many of insulin's biological effects. The amino-terminal pleckstrin homology (PH) domain of IRS-1 plays a pivotal role in promoting insulin receptor (IR)-IRS-1 protein interactions. We have recently reported the isolation of a PH domain-interacting protein, PHIP, which selectively binds to the IRS-1 PH domain and is stably associated with IRS-1 in mammalian cells. Here we demonstrate that overexpression of PHIP in fibroblasts enhances insulin-induced transcriptional responses in a mitogen-activated protein kinase-dependent manner. In contrast, a dominant-negative mutant of PHIP (DN-PHIP) was shown to specifically block transcriptional and mitogenic signals elicited by insulin and not serum. In order to examine whether PHIP/IRS-1 complexes participate in the signal transduction pathway linking the IR to GLUT4 traffic in muscle cells, L6 myoblasts stably expressing a myc-tagged GLUT4 construct (L6GLUT4myc) were transfected with either wild-type or dominant-interfering forms of PHIP. Whereas insulin-dependent GLUT4myc membrane translocation was not affected by overexpression of PHIP, DN-PHIP caused a nearly complete inhibition of GLUT4 translocation, in a manner identical to that observed with a dominant-negative mutant of the p85 subunit of phosphatidylinositol 3-kinase (Deltap85). Furthermore, DN-PHIP markedly inhibited insulin-stimulated actin cytoskeletal reorganization, a process required for the productive incorporation of GLUT4 vesicles at the cell surface in L6 cells. Our results are consistent with the hypothesis that PHIP represents a physiological protein ligand of the IRS-1 PH domain, which plays an important role in insulin receptor-mediated mitogenic and metabolic signal transduction.
Collapse
Affiliation(s)
- Janet Farhang-Fallah
- Department of Biology. Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Hartley D, Cooper GM. Role of mTOR in the degradation of IRS-1: regulation of PP2A activity. J Cell Biochem 2002; 85:304-14. [PMID: 11948686 DOI: 10.1002/jcb.10135] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have investigated the role of PI 3-kinase and mTOR in the degradation of IRS-1 induced by insulin. Inhibition of mTOR with rapamycin resulted in approximately 50% inhibition of the insulin-induced degradation of IRS-1. In contrast, inhibition of PI-3 kinase, an upstream activator of mTOR, leads to a complete block of the insulin-induced degradation. Inhibition of either PI-3 kinase or mTOR prevented the mobility shift in IRS-1 in response to insulin, a shift that is caused by Ser/Thr phosphorylation. These results indicate that insulin stimulates PI 3-kinase-mediated degradation of IRS-1 via both mTOR-dependent and -independent pathways. Platelet-derived growth factor (PDGF) stimulation leads to a lower level of degradation, but significant phosphorylation of IRS-1. Both the degradation and phosphorylation of IRS-1 in response to PDGF are completely inhibited by rapamycin, suggesting that PDGF stimulates IRS-1 degradation principally via the mTOR-dependent pathway. Inhibition of the serine/threonine phosphatase PP2A with okadaic acid also induced the phosphorylation and degradation of IRS-1. IRS-1 phosphorylation and degradation in response to okadaic acid were not inhibited by rapamycin, suggesting that the action of mTOR in the degradation of IRS-1 results from inhibition of PP2A. Consistent with this, treatment of cells with rapamycin stimulated PP2A activity. While the role of mTOR in the phosphorylation of IRS-1 appears to proceed primarily through the regulation of PP2A, we also provide evidence that the regulation of p70S6 kinase phosphorylation requires the direct activity of mTOR.
Collapse
Affiliation(s)
- David Hartley
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
49
|
Qiao LY, Zhande R, Jetton TL, Zhou G, Sun XJ. In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J Biol Chem 2002; 277:26530-9. [PMID: 12006586 DOI: 10.1074/jbc.m201494200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin resistance is a key pathophysiologic feature of obesity and type 2 diabetes and is associated with other human diseases, including atherosclerosis, hypertension, hyperlipidemia, and polycystic ovarian disease. Yet, the specific cellular defects that cause insulin resistance are not precisely known. Insulin receptor substrate (IRS) proteins are important signaling molecules that mediate insulin action in insulin-sensitive cells. Recently, serine phosphorylation of IRS proteins has been implicated in attenuating insulin signaling and is thought to be a potential mechanism for insulin resistance. However, in vivo increased serine phosphorylation of IRS proteins in insulin-resistant animal models has not been reported before. In the present study, we have confirmed previous findings in both JCR:LA-cp and Zucker fatty rats, two genetically unrelated insulin-resistant rodent models, that an enhanced serine kinase activity in liver is associated with insulin resistance. The enhanced serine kinase specifically phosphorylates the conserved Ser(789) residue in IRS-1, which is in a sequence motif separate from the ones for MAPK, c-Jun N-terminal kinase, glycogen-synthase kinase 3 (GSK-3), Akt, phosphatidylinositol 3'-kinase, or casein kinase. It is similar to the phosphorylation motif for AMP-activated protein kinase, but the serine kinase in the insulin-resistant animals was shown not to be an AMP-activated protein kinase, suggesting a potential novel serine kinase. Using a specific antibody against Ser(P)(789) peptide of IRS-1, we then demonstrated for the first time a striking increase of Ser(789)-phosphorylated IRS-1 in livers of insulin-resistant rodent models, indicating enhanced serine kinase activity in vivo. Taken together, these data strongly suggest that unknown serine kinase activity and Ser(789) phosphorylation of IRS-1 may play an important role in attenuating insulin signaling in insulin-resistant animal models.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Endocrinology Division, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
50
|
Huang C, Somwar R, Patel N, Niu W, Török D, Klip A. Sustained exposure of L6 myotubes to high glucose and insulin decreases insulin-stimulated GLUT4 translocation but upregulates GLUT4 activity. Diabetes 2002; 51:2090-8. [PMID: 12086937 DOI: 10.2337/diabetes.51.7.2090] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hyperglycemia and hyperinsulinemia are cardinal features of acquired insulin resistance. In adipose cell cultures, high glucose and insulin cause insulin resistance of glucose uptake, but because of altered GLUT4 expression and contribution of GLUT1 to glucose uptake, the basis of insulin resistance could not be ascertained. Here we show that GLUT4 determines glucose uptake in L6 myotubes stably overexpressing myc-tagged GLUT4. Preincubation for 24 h with high glucose and insulin (high Glc/Ins) reduced insulin-stimulated GLUT4 translocation by 50%, without affecting GLUT4 expression. Insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation, phosphatidylinositol 3-kinase activation, and Akt phosphorylation also diminished, as did insulin-mediated glucose uptake. However, basal glucose uptake rose by 40% without any gain in surface GLUT4. High Glc/Ins elevated basal p38 mitogen-activated protein kinase (MAPK) phosphorylation and activity, and a short inhibition of p38 MAPK with SB202190 corrected the rise in basal glucose uptake, suggesting that p38 MAPK activity contributes to this rise. We propose that in a cellular model of skeletal muscle, chronic exposure to high Glc/Ins reduced the acute, insulin-elicited GLUT4 translocation. In addition, basal state GLUT4 activity was augmented to partially compensate for the translocation defect, resulting in a more robust glucose uptake than what would be predicted from the amount of cell surface GLUT4 alone.
Collapse
Affiliation(s)
- Carol Huang
- Programme in Cell Biology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|