1
|
Matsui K, Emoto M, Fukuda N, Nomiyama R, Yamada K, Tanizawa Y. SNARE-binding protein synaptosomal-associated protein of 29 kDa (SNAP29) regulates the intracellular sequestration of glucose transporter 4 (GLUT4) vesicles in adipocytes. J Diabetes Investig 2022; 14:19-27. [PMID: 36181414 PMCID: PMC9807150 DOI: 10.1111/jdi.13912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 01/07/2023] Open
Abstract
AIMS/INTRODUCTION Insulin stimulates translocation of glucose transporter 4 (GLUT4) from the perinuclear location to the plasma membrane. In the unstimulated state, intracellular vesicles containing GLUT4 are sequestered into specialized storage vesicles that have come to be known as the insulin-responsive compartment (IRC). The IRC is a functional compartment in the perinuclear region that is a target of the insulin signaling cascade, although its precise nature is unclear. Here, we report a novel molecular mechanism facilitating formation of the IRC. MATERIALS AND METHODS We determined synaptosomal-associated protein of 29 kDa (SNAP29) by mass spectrometry to be an EH domain-containing protein 1 (EHD1)-binding protein. Then, its expression was confirmed by western blotting. Subcellular localization of SNAP29 was determined by immunofluorescent microscopy. Interactions between SNAP29 and syntaxins were determined by immunoprecipitation. We measured glucose uptake and GLUT4 translocation in 3T3-L1 adipocyte expressing SNAP29 or silencing SNAP29. RESULTS We found SNAP29 to be localized in the perinuclear region and to show partial co-localization with GLUT4 under basal conditions. We also found that SNAP29 binds to syntaxin6, a Qc-SNARE, in adipocytes. In SNAP29-expressing cells, vesicles containing GLUT4 were observed to aggregate around the perinuclear region. In contrast, when SNAP29 was silenced, perinuclear GLUT4 vesicles were dispersed throughout the cytosol. Insulin-stimulated glucose uptake was inhibited in both SNAP29-expressing and SNAP29-silenced cells. CONCLUSIONS These data suggest that SNAP29 sequesters and anchors GLUT4-containing vesicles in the perinuclear region, and might have a role in the biogenesis of the perinuclear IRC.
Collapse
Affiliation(s)
- Kumiko Matsui
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Masahiro Emoto
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan,Emoto ClinicUbeJapan
| | - Naofumi Fukuda
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Ryuta Nomiyama
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Kyoko Yamada
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| | - Yukio Tanizawa
- Department of Endocrinology, Metabolism, Hematological Sciences and TherapeuticsYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
2
|
Abreu N, Acosta-Ruiz A, Xiang G, Levitz J. Mechanisms of differential desensitization of metabotropic glutamate receptors. Cell Rep 2021; 35:109050. [PMID: 33910009 PMCID: PMC9750234 DOI: 10.1016/j.celrep.2021.109050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) interact with intracellular transducers to control both signal initiation and desensitization, but the distinct mechanisms that control the regulation of different GPCR subtypes are unclear. Here we use fluorescence imaging and electrophysiology to examine the metabotropic glutamate receptor (mGluR) family. We find distinct properties across subtypes in both rapid desensitization and internalization, with striking differences between the group II mGluRs. mGluR3, but not mGluR2, undergoes glutamate-dependent rapid desensitization, internalization, trafficking, and recycling. We map differences between mGluRs to variable Ser/Thr-rich sequences in the C-terminal domain (CTD) that control interaction with both GPCR kinases and β-arrestins. Finally, we identify a cancer-associated mutation, G848E, within the mGluR3 CTD that enhances β-arrestin coupling and internalization, enabling an analysis of mGluR3 β-arrestin-coupling properties and revealing biased variants. Together, this work provides a framework for understanding the distinct regulation and functional roles of mGluR subtypes.
Collapse
Affiliation(s)
- Nohely Abreu
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Amanda Acosta-Ruiz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Guoqing Xiang
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Joshua Levitz
- Biochemistry, Cell and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Morris S, Geoghegan ND, Sadler JBA, Koester AM, Black HL, Laub M, Miller L, Heffernan L, Simpson JC, Mastick CC, Cooper J, Gadegaard N, Bryant NJ, Gould GW. Characterisation of GLUT4 trafficking in HeLa cells: comparable kinetics and orthologous trafficking mechanisms to 3T3-L1 adipocytes. PeerJ 2020; 8:e8751. [PMID: 32185116 PMCID: PMC7060922 DOI: 10.7717/peerj.8751] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Insulin-stimulated glucose transport is a characteristic property of adipocytes and muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-containing vesicles from intracellular stores to the cell surface. Fusion of these vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an attempt to overcome some of the limitations associated with both primary and cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4 (HA–GLUT4–GFP) in HeLa cells. Here we report the characterisation of this system compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of HA–GLUT4–GFP to the surface of both cell types with similar kinetics using orthologous trafficking machinery. While the magnitude of the insulin-stimulated translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a useful, experimentally tractable, human model system. Here, we exemplify their utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential novel regulators of GLUT4 trafficking in human cells.
Collapse
Affiliation(s)
- Silke Morris
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | | | - Jessica B A Sadler
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Anna M Koester
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | | | - Marco Laub
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Lucy Miller
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Linda Heffernan
- School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Jon Cooper
- School of Engineering, University of Glasgow, Glasgow, UK
| | | | - Nia J Bryant
- Department of Biology, University of York, York, UK
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
4
|
Imai J, Ohashi S, Sakai T. Endoplasmic Reticulum-Associated Degradation-Dependent Processing in Cross-Presentation and Its Potential for Dendritic Cell Vaccinations: A Review. Pharmaceutics 2020; 12:pharmaceutics12020153. [PMID: 32070016 PMCID: PMC7076524 DOI: 10.3390/pharmaceutics12020153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/14/2023] Open
Abstract
While the success of dendritic cell (DC) vaccination largely depends on cross-presentation (CP) efficiency, the precise molecular mechanism of CP is not yet characterized. Recent research revealed that endoplasmic reticulum (ER)-associated degradation (ERAD), which was first identified as part of the protein quality control system in the ER, plays a pivotal role in the processing of extracellular proteins in CP. The discovery of ERAD-dependent processing strongly suggests that the properties of extracellular antigens are one of the keys to effective DC vaccination, in addition to DC subsets and the maturation of these cells. In this review, we address recent advances in CP, focusing on the molecular mechanisms of the ERAD-dependent processing of extracellular proteins. As ERAD itself and the ERAD-dependent processing in CP share cellular machinery, enhancing the recognition of extracellular proteins, such as the ERAD substrate, by ex vivo methods may serve to improve the efficacy of DC vaccination.
Collapse
Affiliation(s)
- Jun Imai
- Correspondence: ; Tel.: +81-27-352-1180
| | | | | |
Collapse
|
5
|
Vasopressin inactivation: Role of insulin-regulated aminopeptidase. VITAMINS AND HORMONES 2019; 113:101-128. [PMID: 32138946 DOI: 10.1016/bs.vh.2019.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physiological importance of vasopressin inactivation has long been appreciated, but the mechanisms and potential pathophysiologic roles of this process remain active subjects of research. Human Placental Leucine Aminopeptidase (P-LAP, encoded by the LNPEP gene) is an important determinant of vasopressinase activity during pregnancy and is associated with gestational diabetes insipidus and preeclampsia. Insulin-Regulated Aminopeptidase (IRAP), the rodent homologue of P-LAP, is coregulated with the insulin-responsive glucose transporter, GLUT4, in adipose and muscle cells. Recently, the Tether containing a UBX domain for GLUT4 (TUG) protein was shown to mediate the coordinated regulation of water and glucose homeostasis. TUG sequesters IRAP and GLUT4 intracellularly in the absence of insulin. Insulin and other stimuli cause the proteolytic cleavage of TUG to mobilize these proteins to the cell surface, where IRAP acts to terminate the activity of circulating vasopressin. Intriguingly, genetic variation in LNPEP is associated with the vasopressin response and mortality during sepsis, and increased copeptin, a marker of vasopressin secretion, is associated with cardiovascular and metabolic disease. We propose that in the setting of insulin resistance in muscle, increased cell-surface IRAP and accelerated vasopressin degradation cause a compensatory increase in vasopressin secretion. The increased vasopressin concentrations present at the kidneys then contribute to hypertension in the metabolic syndrome. Further analyses of metabolism and of vasopressin and copeptin may yield novel insights into a unified pathophysiologic mechanism linking insulin resistance and hypertension, and potentially other components of the metabolic syndrome, in humans.
Collapse
|
6
|
Dandelion Chloroform Extract Promotes Glucose Uptake via the AMPK/GLUT4 Pathway in L6 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1709587. [PMID: 30524480 PMCID: PMC6247471 DOI: 10.1155/2018/1709587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023]
Abstract
The number of patients with type 2 diabetes mellitus (T2DM) is increasing rapidly worldwide. Glucose transporter 4 (GLUT4) is one of the main proteins that transport blood glucose into the cells and is a target in the treatment of T2DM. In this study, we investigated the mechanism of action of dandelion chloroform extract (DCE) on glucose uptake in L6 cells. The glucose consumption of L6 cell culture supernatant was measured by a glucose uptake assay kit, and the dynamic changes of intracellular GLUT4 and calcium (Ca2+) levels were monitored by laser scanning confocal microscopy in L6 cell lines stably expressing IRAP-mOrange. The GLUT4 fusion with the plasma membrane (PM) was traced via myc-GLUT4-mOrange. GLUT4 expression and AMP-activated protein kinase (AMPK), protein kinase B (PKB/Akt), protein kinase C (PKC), and phosphorylation levels were determined by performing western blotting. GLUT4 mRNA expression was detected by real-time PCR. DCE up-regulated GLUT4 expression, promoted GLUT4 translocation and fusion to the membrane eventually leading to glucose uptake, and induced AMPK phosphorylation in L6 cells. The AMPK inhibitory compound C significantly inhibited DCE-induced GLUT4 expression and translocation while no inhibitory effect was observed by the phosphatidylinositol 3-kinase (PI3K) inhibitor Wortmannin and PKC inhibitor Gö6983. These data suggested that DCE promoted GLUT4 expression and transport to the membrane through the AMPK signaling pathway, thereby stimulating GLUT4 fusion with PM to enhance glucose uptake in L6 cells. DCE-induced GLUT4 translocation was also found to be Ca2+-independent. Together, these findings indicate that DCE could be a new hypoglycemic agent for the treatment of T2DM.
Collapse
|
7
|
Beg M, Abdullah N, Thowfeik FS, Altorki NK, McGraw TE. Distinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake. eLife 2017; 6. [PMID: 28589878 PMCID: PMC5462539 DOI: 10.7554/elife.26896] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023] Open
Abstract
Insulin, downstream of Akt activation, promotes glucose uptake into fat and muscle cells to lower postprandial blood glucose, an enforced change in cellular metabolism to maintain glucose homeostasis. This effect is mediated by the Glut4 glucose transporter. Growth factors also enhance glucose uptake to fuel an anabolic metabolism required for tissue growth and repair. This activity is predominantly mediated by the Glut1. Akt is activated by phosphorylation of its kinase and hydrophobic motif (HM) domains. We show that insulin-stimulated Glut4-mediated glucose uptake requires PDPK1 phosphorylation of the kinase domain but not mTORC2 phosphorylation of the HM domain. Nonetheless, an intact HM domain is required for Glut4-mediated glucose uptake. Whereas, Glut1-mediated glucose uptake also requires mTORC2 phosphorylation of the HM domain, demonstrating both phosphorylation-dependent and independent roles of the HM domain in regulating glucose uptake. Thus, mTORC2 links Akt to the distinct physiologic programs related to Glut4 and Glut1-mediated glucose uptake. DOI:http://dx.doi.org/10.7554/eLife.26896.001
Collapse
Affiliation(s)
- Muheeb Beg
- Department of Biochemistry, Weill Cornell Medicine, New York, United States
| | - Nazish Abdullah
- Department of Biochemistry, Weill Cornell Medicine, New York, United States
| | - Fathima Shazna Thowfeik
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, United States.,Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, United States
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, United States.,Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, United States
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medicine, New York, United States.,Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, United States.,Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, United States
| |
Collapse
|
8
|
Brumfield A, Chaudhary N, McGraw TE. Secretion of Adipsin as an Assay to Measure Flux from the Endoplasmic Reticulum (ER). Bio Protoc 2017; 7:e2204. [PMID: 28603753 DOI: 10.21769/bioprotoc.2204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
In this protocol we describe a quantitative biochemical assay to assess the efficiency of endoplasmic reticulum (ER) to Golgi protein transport in adipocytes (Bruno et al., 2016). The assay takes advantage of the fact that adipocytes secrete various bioactive proteins, known as adipokines. As a measure of ER to Golgi flux we determine the rate of bulk secretion of the adipokine adipsin post washout of Brefeldin A (BFA) treatment using immunoblotting. Because BFA treatment results in an accumulation of adipsin in the ER, the exit of adipsin from the ER upon BFA washout is synchronized across cells and experimental conditions. Thus, using this simple assay one can robustly determine if perturbations, such as knocking down a protein, have an effect on ER to Golgi protein transport.
Collapse
Affiliation(s)
| | | | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medicine, New York, USA.,Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, USA
| |
Collapse
|
9
|
Bruno J, Brumfield A, Chaudhary N, Iaea D, McGraw TE. SEC16A is a RAB10 effector required for insulin-stimulated GLUT4 trafficking in adipocytes. J Cell Biol 2016; 214:61-76. [PMID: 27354378 PMCID: PMC4932369 DOI: 10.1083/jcb.201509052] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Sec16A is known to be required for COPII vesicle formation from the ER. Here, Bruno et al. show that, independent of its role at the ER, Sec16A is a RAB10 effector involved in the insulin-stimulated formation of specialized transport vesicles that ferry the GLUT4 glucose transporter to the plasma membrane of adipocytes. RAB10 is a regulator of insulin-stimulated translocation of the GLUT4 glucose transporter to the plasma membrane (PM) of adipocytes, which is essential for whole-body glucose homeostasis. We establish SEC16A as a novel RAB10 effector in this process. Colocalization of SEC16A with RAB10 is augmented by insulin stimulation, and SEC16A knockdown attenuates insulin-induced GLUT4 translocation, phenocopying RAB10 knockdown. We show that SEC16A and RAB10 promote insulin-stimulated mobilization of GLUT4 from a perinuclear recycling endosome/TGN compartment. We propose RAB10–SEC16A functions to accelerate formation of the vesicles that ferry GLUT4 to the PM during insulin stimulation. Because GLUT4 continually cycles between the PM and intracellular compartments, the maintenance of elevated cell-surface GLUT4 in the presence of insulin requires accelerated biogenesis of the specialized GLUT4 transport vesicles. The function of SEC16A in GLUT4 trafficking is independent of its previously characterized activity in ER exit site formation and therefore independent of canonical COPII-coated vesicle function. However, our data support a role for SEC23A, but not the other COPII components SEC13, SEC23B, and SEC31, in the insulin stimulation of GLUT4 trafficking, suggesting that vesicles derived from subcomplexes of COPII coat proteins have a role in the specialized trafficking of GLUT4.
Collapse
Affiliation(s)
- Joanne Bruno
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065
| | | | - Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - David Iaea
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065 Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
10
|
Talantikite M, Berenguer M, Gonzalez T, Alessi MC, Poggi M, Peiretti F, Govers R. The first intracellular loop of GLUT4 contains a retention motif. J Cell Sci 2016; 129:2273-84. [DOI: 10.1242/jcs.183525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/20/2016] [Indexed: 01/02/2023] Open
Abstract
Glucose transporter GLUT4 plays a major role in glucose homeostasis and is efficiently retained intracellularly in adipocytes and myocytes. To simplify the analysis of its retention, various intracellular GLUT4 domains were fused individually to reporter molecules. Of the four short cytoplasmic loops of GLUT4, only the first nine-residue-long loop conferred intracellular retention of truncated forms of the transferrin receptor and CD4 in adipocytes. In contrast, the same loop of GLUT1 was without effect. The reporter molecules to which the first loop of GLUT4 was fused localized, unlike GLUT4, to the TGN, possibly explaining why these molecules did not respond to insulin. The retention induced by the GLUT4 loop was specific to adipocytes as it did not induce retention in preadipocytes. Of the SQWLGRKRA sequence that constitutes this loop, mutation of either the tryptophan or lysine residue abrogated reporter retention. Mutation of these residues individually into alanines in the full-length GLUT4 molecule resulted in a decreased retention for GLUT4-W105A. We conclude that the first intracellular loop of GLUT4 contains retention motif WLGRK, in which Trp105 plays a prominent role.
Collapse
Affiliation(s)
- Maya Talantikite
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
| | - Marion Berenguer
- Inserm U895, Mediterranean Research Center for Molecular Medicine (C3M), Nice, F-06204, France
| | - Teresa Gonzalez
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
| | - Marie Christine Alessi
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
| | - Marjorie Poggi
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
| | - Franck Peiretti
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
| | - Roland Govers
- Inserm U1062, INRA1260, Aix Marseille University, Faculty of Medicine, Marseille F-13385, France
- Inserm U895, Mediterranean Research Center for Molecular Medicine (C3M), Nice, F-06204, France
| |
Collapse
|
11
|
Adiko AC, Babdor J, Gutiérrez-Martínez E, Guermonprez P, Saveanu L. Intracellular Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation. Front Immunol 2015; 6:335. [PMID: 26191062 PMCID: PMC4489332 DOI: 10.3389/fimmu.2015.00335] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/15/2015] [Indexed: 01/22/2023] Open
Abstract
Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8+ T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell (DC) subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in DCs as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization.
Collapse
Affiliation(s)
- Aimé Cézaire Adiko
- INSERM U1149, Faculté Bichat Medical School, ELR8252 CNRS, Center for Research on Inflammation , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| | - Joel Babdor
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications , Paris , France ; Université Paris Descartes, Sorbonne Paris Cité , Paris , France ; Imagine Institute , Paris , France
| | - Enric Gutiérrez-Martínez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, King's College London , London , UK
| | - Pierre Guermonprez
- Laboratory of Phagocyte Immunobiology, Peter Gorer Department of Immunobiology, King's College London , London , UK
| | - Loredana Saveanu
- INSERM U1149, Faculté Bichat Medical School, ELR8252 CNRS, Center for Research on Inflammation , Paris , France ; Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
12
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
13
|
Saveanu L, van Endert P. The role of insulin-regulated aminopeptidase in MHC class I antigen presentation. Front Immunol 2012; 3:57. [PMID: 22566938 PMCID: PMC3342382 DOI: 10.3389/fimmu.2012.00057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/03/2012] [Indexed: 01/08/2023] Open
Abstract
Production of MHC-I ligands from antigenic proteins generally requires multiple proteolytic events. While the proteolytic steps required for antigen processing in the endogenous pathway are clearly established, persisting gaps of knowledge regarding putative cross-presentation compartments have made it difficult to map the precise proteolytic events required for generation of cross-presented antigens. It is only in the past decade that the importance of aminoterminal trimming as the final step in the endogenous presentation pathway has been recognized and that the corresponding enzymes have been described. This review focuses on the aminoterminal trimming of exogenous cross-presented peptides, with particular emphasis on the identification of insulin responsive aminopeptidase (IRAP) as the principal trimming aminopeptidase in endosomes and phagosomes.
Collapse
Affiliation(s)
- Loredana Saveanu
- Institut National de la Santé et de le Recherche Médicale Paris, France
| | | |
Collapse
|
14
|
Nazari H, Khaleghian A, Takahashi A, Harada N, Webster NJG, Nakano M, Kishi K, Ebina Y, Nakaya Y. Cortactin, an actin binding protein, regulates GLUT4 translocation via actin filament remodeling. BIOCHEMISTRY (MOSCOW) 2012; 76:1262-9. [PMID: 22117553 DOI: 10.1134/s0006297911110083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin regulates glucose uptake into fat and skeletal muscle cells by modulating the translocation of GLUT4 between the cell surface and interior. We investigated a role for cortactin, a cortical actin binding protein, in the actin filament organization and translocation of GLUT4 in Chinese hamster ovary (CHO-GLUT4myc) and L6-GLUT4myc myotube cells. Overexpression of wild-type cortactin enhanced insulin-stimulated GLUT4myc translocation but did not alter actin fiber formation. Conversely, cortactin mutants lacking the Src homology 3 (SH3) domain inhibited insulin-stimulated formation of actin stress fibers and GLUT4 translocation similar to the actin depolymerizing agent cytochalasin D. Wortmannin, genistein, and a PP1 analog completely blocked insulin-induced Akt phosphorylation, formation of actin stress fibers, and GLUT4 translocation indicating the involvement of both PI3-K/Akt and the Src family of kinases. The effect of these inhibitors was even more pronounced in the presence of overexpressed cortactin suggesting that the same pathways are involved. Knockdown of cortactin by siRNA did not inhibit insulin-induced Akt phosphorylation but completely inhibited actin stress fiber formation and glucose uptake. These results suggest that the actin binding protein cortactin is required for actin stress fiber formation in muscle cells and that this process is absolutely required for translocation of GLUT4-containing vesicles to the plasma membrane.
Collapse
Affiliation(s)
- H Nazari
- Department of Nutrition and Metabolism, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Demaegdt H, Gard P, De Backer JP, Lukaszuk A, Szemenyei E, Tóth G, Tourwé D, Vauquelin G. Binding of "AT4 receptor" ligands to insulin regulated aminopeptidase (IRAP) in intact Chinese hamster ovary cells. Mol Cell Endocrinol 2011; 339:34-44. [PMID: 21457753 DOI: 10.1016/j.mce.2011.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 01/03/2023]
Abstract
Insulin regulated aminopeptidase (IRAP) recognises "AT(4)-receptor" ligands like angiotensin IV (Ang IV) and peptidomimetics like AL-11. The metabolic stability and high affinity of [(3)H]AL-11 for catalytically active IRAP allowed its detection in Chinese hamster ovary (CHO-K1) cell membranes in the absence of chelators (Demaegdt et al., 2009). Here, we show that, contrary to [(3)H]Ang IV, [(3)H]AL-11 displays high affinity and specificity for IRAP in intact CHO-K1 cells as well. After binding to IRAP at the surface, [(3)H]AL-11 is effectively internalized by an endocytotic process. Unexpectedly, surface binding and internalization of [(3)H]AL-11 was not affected by pretreating the cells with Ang IV but declined with AL-11. In the latter case surface expression of IRAP even increased. After elimination of simpler explanations, it is proposed that metabolically stable "AT(4)-receptor" ligands undergo semi-continuous cycling between the cell surface and endosomal compartments. The in vivo efficacy of stable and unstable "AT(4)-receptor" ligands could therefore differ.
Collapse
Affiliation(s)
- Heidi Demaegdt
- Department of Molecular and Biochemical Pharmacology, Research Group of Experimental Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Foley K, Boguslavsky S, Klip A. Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 2011; 50:3048-61. [PMID: 21405107 DOI: 10.1021/bi2000356] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucose transporter 4 (GLUT4) is responsible for the uptake of glucose into muscle and adipose tissues. Under resting conditions, GLUT4 is dynamically retained through idle cycling among selective intracellular compartments, from whence it undergoes slow recycling to the plasma membrane (PM). This dynamic retention can be released by command from intracellular signals elicited by insulin and other stimuli, which result in 2-10-fold increases in the surface level of GLUT4. Insulin-derived signals promote translocation of GLUT4 to the PM from a specialized compartment termed GLUT4 storage vesicles (GSV). Much effort has been devoted to the characterization of the intracellular compartments and dynamics of GLUT4 cycling and to the signals by which GLUT4 is sorted into, and recruited from, GSV. This review summarizes our understanding of intracellular GLUT4 traffic during its internalization from the membrane, its slow, constitutive recycling, and its regulated exocytosis in response to insulin. In spite of specific differences in GLUT4 dynamic behavior in adipose and muscle cells, the generalities of its endocytic and exocytic itineraries are consistent and an array of regulatory proteins that regulate each vesicular traffic event emerges from these cell systems.
Collapse
Affiliation(s)
- Kevin Foley
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M4G 1X8, Canada
| | | | | |
Collapse
|
17
|
Abstract
Translocation of Glut4 to the plasma membrane of fat and skeletal muscle cells is mediated by specialized insulin-responsive vesicles (IRVs), whose protein composition consists primarily of glucose transporter isoform 4 (Glut4), insulin-responsive amino peptidase (IRAP), sortilin, lipoprotein receptor-related protein 1 (LRP1) and v-SNAREs. How can these proteins find each other in the cell and form functional vesicles after endocytosis from the plasma membrane? We are proposing a model according to which the IRV component proteins are internalized into sorting endosomes and are delivered to the IRV donor compartment(s), recycling endosomes and/or the trans-Golgi network (TGN), by cellugyrin-positive transport vesicles. The cytoplasmic tails of Glut4, IRAP, LRP1 and sortilin play an important targeting role in this process. Once these proteins arrive in the donor compartment, they interact with each other via their lumenal domains. This facilitates clustering of the IRV proteins into an oligomeric complex, which can then be distributed from the donor membranes to the IRV as a single entity with the help of adaptors, such as Golgi-localized, gamma-adaptin ear-containing, ARF-binding (GGA).
Collapse
Affiliation(s)
- Konstantin V Kandror
- Department of Biochemistry, Boston University School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA
| | | |
Collapse
|
18
|
Hirata Y, Hosaka T, Iwata T, Le CT, Jambaldorj B, Teshigawara K, Harada N, Sakaue H, Sakai T, Yoshimoto K, Nakaya Y. Vimentin binds IRAP and is involved in GLUT4 vesicle trafficking. Biochem Biophys Res Commun 2011; 405:96-101. [DOI: 10.1016/j.bbrc.2010.12.134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 12/31/2010] [Indexed: 01/16/2023]
|
19
|
Jordens I, Molle D, Xiong W, Keller SR, McGraw TE. Insulin-regulated aminopeptidase is a key regulator of GLUT4 trafficking by controlling the sorting of GLUT4 from endosomes to specialized insulin-regulated vesicles. Mol Biol Cell 2010; 21:2034-44. [PMID: 20410133 PMCID: PMC2883947 DOI: 10.1091/mbc.e10-02-0158] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
IRAP is a key regulator of GLUT4 trafficking by controlling sorting from endosomes to specialized insulin-regulated vesicles. Insulin stimulates glucose uptake by regulating translocation of the GLUT4 glucose transporter from intracellular compartments to the plasma membrane. In the absence of insulin GLUT4 is actively sequestered away from the general endosomes into GLUT4-specialized compartments, thereby controlling the amount of GLUT4 at the plasma membrane. Here, we investigated the role of the aminopeptidase IRAP in GLUT4 trafficking. In unstimulated IRAP knockdown adipocytes, plasma membrane GLUT4 levels are elevated because of increased exocytosis, demonstrating an essential role of IRAP in GLUT4 retention. Current evidence supports the model that AS160 RabGAP, which is required for basal GLUT4 retention, is recruited to GLUT4 compartments via an interaction with IRAP. However, here we show that AS160 recruitment to GLUT4 compartments and AS160 regulation of GLUT4 trafficking were unaffected by IRAP knockdown. These results demonstrate that AS160 is recruited to membranes by an IRAP-independent mechanism. Consistent with a role independent of AS160, we showed that IRAP functions in GLUT4 sorting from endosomes to GLUT4-specialized compartments. This is revealed by the relocalization of GLUT4 to endosomes in IRAP knockdown cells. Although IRAP knockdown has profound effects on GLUT4 traffic, GLUT4 knockdown does not affect IRAP trafficking, demonstrating that IRAP traffics independent of GLUT4. In sum, we show that IRAP is both cargo and a key regulator of the insulin-regulated pathway.
Collapse
Affiliation(s)
- Ingrid Jordens
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
20
|
Lopez JA, Burchfield JG, Blair DH, Mele K, Ng Y, Vallotton P, James DE, Hughes WE. Identification of a distal GLUT4 trafficking event controlled by actin polymerization. Mol Biol Cell 2009; 20:3918-29. [PMID: 19605560 DOI: 10.1091/mbc.e09-03-0187] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The insulin-stimulated trafficking of GLUT4 to the plasma membrane in muscle and fat tissue constitutes a central process in blood glucose homeostasis. The tethering, docking, and fusion of GLUT4 vesicles with the plasma membrane (PM) represent the most distal steps in this pathway and have been recently shown to be key targets of insulin action. However, it remains unclear how insulin influences these processes to promote the insertion of the glucose transporter into the PM. In this study we have identified a previously uncharacterized role for cortical actin in the distal trafficking of GLUT4. Using high-frequency total internal reflection fluorescence microscopy (TIRFM) imaging, we show that insulin increases actin polymerization near the PM and that disruption of this process inhibited GLUT4 exocytosis. Using TIRFM in combination with probes that could distinguish between vesicle transport and fusion, we found that defective actin remodeling was accompanied by normal insulin-regulated accumulation of GLUT4 vesicles close to the PM, but the final exocytotic fusion step was impaired. These data clearly resolve multiple steps of the final stages of GLUT4 trafficking, demonstrating a crucial role for actin in the final stage of this process.
Collapse
Affiliation(s)
- Jamie A Lopez
- Diabetes and Obesity Research Program, The Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
De Bundel D, Smolders I, Vanderheyden P, Michotte Y. Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther 2009; 14:315-39. [PMID: 19040556 DOI: 10.1111/j.1755-5949.2008.00057.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The central angiotensin system plays a crucial role in cardiovascular regulation. More recently, angiotensin peptides have been implicated in stress, anxiety, depression, cognition, and epilepsy. Angiotensin II (Ang II) exerts its actions through AT(1) and AT(2) receptors, while most actions of its metabolite Ang IV were believed to be independent of AT(1) or AT(2) receptor activation. A specific binding site with high affinity for Ang IV was discovered and denominated "AT(4) receptor". The beneficiary effects of AT(4) ligands in animal models for cognitive impairment and epileptic seizures initiated the search for their mechanism of action. This proved to be a challenging task, and after 20 years of research, the nature of the "AT(4) receptor" remains controversial. Insulin-regulated aminopeptidase (IRAP) was first identified as the high-affinity binding site for AT(4) ligands. Recently, the hepatocyte growth factor receptor c-MET was also proposed as a receptor for AT(4) ligands. The present review focuses on the effects of Ang II and Ang IV on synaptic transmission and plasticity, learning, memory, and epileptic seizure activity. Possible interactions of Ang IV with the classical AT(1) and AT(2) receptor subtypes are evaluated, and other potential mechanisms by which AT(4) ligands may exert their effects are discussed. Identification of these mechanisms may provide a valuable target in the development in novel drugs for the treatment of cognitive disorders and epilepsy.
Collapse
Affiliation(s)
- Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|
22
|
Shi J, Huang G, Kandror KV. Self-assembly of Glut4 storage vesicles during differentiation of 3T3-L1 adipocytes. J Biol Chem 2008; 283:30311-21. [PMID: 18713752 DOI: 10.1074/jbc.m805182200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glut4 storage vesicles (GSVs) represent translocation-competent vesicular carriers in fat and skeletal muscle cells that deliver Glut4 to the plasma membrane in response to insulin stimulation. GSVs include three major cargo proteins: Glut4, insulin-responsive aminopeptidase (IRAP), and sortilin. Previous work has suggested that the lumenal interaction between Glut4 and sortilin and the cytoplasmic interaction between sortilin and GGA adaptors play an important role in recruitment of Glut4 into the GSVs. However, the mechanism of IRAP targeting to this compartment remains unknown. To address this question, we show that in differentiating adipocytes IRAP enters the GSVs from the "donor" membranes on day 3 of differentiation. Forced expression of sortilin in undifferentiated cells does not recruit IRAP into the vesicles. However, double expression of sortilin and Glut4 reconstitutes functional GSVs that incorporate endogenous IRAP. To explain this process, we show by a yeast two-hybrid system and chemical cross-linking that the lumenal domain of IRAP can interact with the lumenal loop of Glut4. IRAP without the lumenal domain is faithfully targeted to the donor membranes but has significantly lower insulin responsiveness than full-length IRAP. We suggest that lumenal interactions between Glut4 and IRAP play an important role in the assembly of the GSVs.
Collapse
Affiliation(s)
- Jun Shi
- Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
23
|
Watson RT, Hou JC, Pessin JE. Recycling of IRAP from the plasma membrane back to the insulin-responsive compartment requires the Q-SNARE syntaxin 6 but not the GGA clathrin adaptors. J Cell Sci 2008; 121:1243-51. [PMID: 18388312 DOI: 10.1242/jcs.017517] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Insulin recruits two transmembrane proteins, GLUT4 and IRAP, to the plasma membrane of muscle cells and adipocytes. The subcellular trafficking and localization of GLUT4, and to a lesser extent IRAP, have been intensely studied, yet the molecular mechanisms responsible for their insulin-responsive compartmentalization remain unknown. Herein we have investigated the endocytosis and recycling of IRAP from the cell surface back to the insulin-responsive compartment (IRC). Our results show that a key dileucine motif at position 76,77 (LL76,77), although required for the initial biosynthetic entry of IRAP into the IRC, is dispensable for entry into the IRC via the endosomal system. Indeed, we found that an AA76,77 mutant of IRAP is fully capable of undergoing endocytosis and is correctly routed back to the IRC. To verify that the AA76,77 mutant enters the bona fide IRC, we show that the internalized IRAP-AA76,77 construct is sequestered in an IRC that is insensitive to brefeldin A yet sensitive to a dominant-interfering mutant of AS160 (AS160-4P). In addition, we show that the GGA clathrin adaptors are not required for the re-entry of IRAP from the cell surface back into the IRC, whereas the Q-SNARE syntaxin 6 is required for this process.
Collapse
Affiliation(s)
- Robert T Watson
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
24
|
Fernando RN, Albiston AL, Chai SY. The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus - potential role in modulation of glucose uptake in neurones? Eur J Neurosci 2008; 28:588-98. [DOI: 10.1111/j.1460-9568.2008.06347.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Blot V, McGraw TE. Molecular mechanisms controlling GLUT4 intracellular retention. Mol Biol Cell 2008; 19:3477-87. [PMID: 18550797 PMCID: PMC2488284 DOI: 10.1091/mbc.e08-03-0236] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In basal adipocytes, glucose transporter 4 (GLUT4) is sequestered intracellularly by an insulin-reversible retention mechanism. Here, we analyze the roles of three GLUT4 trafficking motifs (FQQI, TELEY, and LL), providing molecular links between insulin signaling, cellular trafficking machinery, and the motifs in the specialized trafficking of GLUT4. Our results support a GLUT4 retention model that involves two linked intracellular cycles: one between endosomes and a retention compartment, and the other between endosomes and specialized GLUT4 transport vesicles. Targeting of GLUT4 to the former is dependent on the FQQI motif and its targeting to the latter is dependent on the TELEY motif. These two motifs act independently in retention, with the TELEY-dependent step being under the control of signaling downstream of the AS160 rab GTPase activating protein. Segregation of GLUT4 from endosomes, although positively correlated with the degree of basal retention, does not completely account for GLUT4 retention or insulin-responsiveness. Mutation of the LL motif slows return to basal intracellular retention after insulin withdrawal. Knockdown of clathrin adaptin protein complex-1 (AP-1) causes a delay in the return to intracellular retention after insulin withdrawal. The effects of mutating the LL motif and knockdown of AP-1 were not additive, establishing that AP-1 regulation of GLUT4 trafficking requires the LL motif.
Collapse
Affiliation(s)
- Vincent Blot
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
26
|
Jiang L, Fan J, Bai L, Wang Y, Chen Y, Yang L, Chen L, Xu T. Direct quantification of fusion rate reveals a distal role for AS160 in insulin-stimulated fusion of GLUT4 storage vesicles. J Biol Chem 2007; 283:8508-16. [PMID: 18063571 DOI: 10.1074/jbc.m708688200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-stimulated GLUT4 translocation to the plasma membrane constitutes a key process for blood glucose control. However, convenient and robust assays to monitor this dynamic process in real time are lacking, which hinders current progress toward elucidation of the underlying molecular events as well as screens for drugs targeting this particular pathway. Here, we have developed a novel dual colored probe to monitor the translocation process of GLUT4 based on dual color fluorescence measurement. We demonstrate that this probe is more than an order of magnitude more sensitive than the current technology for detecting fusion events from single GLUT4 storage vesicles (GSVs). A small fraction of fusion events were found to be of the "kiss-and-run" type. For the first time, we show that insulin stimulation evokes a approximately 40-fold increase in the fusion of GSVs in 3T3-L1 adipocytes, compared with basal conditions. The probe can also be used to monitor the prefusion behavior of GSVs. By quantifying both the docking and fusion rates simultaneously, we demonstrate a proportional inhibition in both docking and fusion of GSVs by a dominant negative mutant of AS160, indicating a role for AS160 in the docking of GSVs but not in the regulation of GSV fusion after docking.
Collapse
Affiliation(s)
- Li Jiang
- Joint Laboratory of Institute of Biophysics & Huazhong University of Science and Technology, National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Involvement of insulin-regulated aminopeptidase in the effects of the renin–angiotensin fragment angiotensin IV: a review. Heart Fail Rev 2007; 13:321-37. [DOI: 10.1007/s10741-007-9062-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
|
28
|
Albiston AL, Peck GR, Yeatman HR, Fernando R, Ye S, Chai SY. Therapeutic targeting of insulin-regulated aminopeptidase: heads and tails? Pharmacol Ther 2007; 116:417-27. [PMID: 17900701 DOI: 10.1016/j.pharmthera.2007.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Insulin-regulated aminopeptidase, IRAP, is an abundant protein that was initially cloned from a rat epididymal fat pad cDNA library as a marker protein for specialized vesicles containing the insulin-responsive glucose transporter GLUT4, wherein it is thought to participate in the tethering and trafficking of GLUT4 vesicles. The same protein was independently cloned from human placental cDNA library as oxytocinase and is proposed to have a primary role in the regulation of circulating oxytocin (OXY) during the later stages of pregnancy. More recently, IRAP was identified as the specific binding site for angiotensin IV, and we propose that it mediates the memory-enhancing effects of the peptide. This protein appears to have multiple physiological roles that are tissue- and domain-specific; thus the protein can be specifically targeted for treating different clinical conditions.
Collapse
Affiliation(s)
- Anthony L Albiston
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Despite being one of the first recognized targets of insulin action, the acceleration of glucose transport into muscle and fat tissue remains one of the most enigmatic processes in the insulin action cascade. Glucose transport is accomplished by a shift in the distribution of the insulin-responsive glucose transporter GLUT4 from intracellular compartments to the plasma membrane in the presence of insulin. The complexity in deciphering the molecular blueprint of insulin regulation of glucose transport arises because it represents a convergence of two convoluted biological systems-vesicular transport and signal transduction. Whereas more than 60 molecular players have been implicated in this orchestral performance, it has been difficult to distinguish between mainly passive participants vs. those that are clearly driving the process. The maze-like nature of the endosomal system makes it almost impossible to dissect the anatomical nature of what appears to be a medley of many overlapping and rapidly changing transitions. A major limitation is technology. It is clear that further progress in teasing apart the GLUT4 code will require the development and application of novel and advanced technologies that can discriminate one molecule from another in the living cell and to superimpose this upon a system in which the molecular environment can be carefully manipulated. Many are now taking on this challenge.
Collapse
Affiliation(s)
- Mark Larance
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney 2010, Australia
| | | | | |
Collapse
|
30
|
Liu XJ, Yang C, Gupta N, Zuo J, Chang YS, Fang FD. Protein kinase C-zeta regulation of GLUT4 translocation through actin remodeling in CHO cells. J Mol Med (Berl) 2007; 85:851-61. [PMID: 17619838 DOI: 10.1007/s00109-007-0232-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/25/2007] [Accepted: 05/31/2007] [Indexed: 01/08/2023]
Abstract
Actin remodeling plays a crucial role in insulin-induced translocation of glucose transporter 4 (GLUT4) from the cytoplasm to the plasma membrane and subsequent glucose transport. Protein kinase C (PKC) zeta has been implicated in this translocation process, although the exact mechanism remains unknown. In this study, we investigated the effect of PKCzeta on actin cytoskeleton and translocation of GLUT4 in CHO-K1 cells expressing myc-tagged GLUT4. Insulin stimulated the phosphorylation of PKCzeta at Thr410 with no apparent effect on its protein expression. Moreover, insulin promoted colocalization of PKCzeta and actin that could be abolished by Latrunculin B. The overexpression of PKCzeta mimicked the insulin-induced change in actin cytoskeleton and translocation of GLUT4. These effects were also completely abrogated by Latrunculin B treatment. Using cell-permeable pseudosubstrate (PS) inhibitor of PKCzeta, the response to insulin could be alleviated. Our results strongly suggest that PKCzeta mediates the stimulatory effect of insulin on GLUT4 translocation through its interaction with actin cytoskeleton.
Collapse
Affiliation(s)
- Xiao-Jun Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|
31
|
Liao W, Nguyen MTA, Yoshizaki T, Favelyukis S, Patsouris D, Imamura T, Verma IM, Olefsky JM. Suppression of PPAR-gamma attenuates insulin-stimulated glucose uptake by affecting both GLUT1 and GLUT4 in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2007; 293:E219-27. [PMID: 17389706 DOI: 10.1152/ajpendo.00695.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a critical role in regulating insulin sensitivity and glucose homeostasis. In this study, we identified highly efficient small interfering RNA (siRNA) sequences and used lentiviral short hairpin RNA and electroporation of siRNAs to deplete PPAR-gamma from 3T3-L1 adipocytes to elucidate its role in adipogenesis and insulin signaling. We show that PPAR-gamma knockdown prevented adipocyte differentiation but was not required for maintenance of the adipocyte differentiation state after the cells had undergone adipogenesis. We further demonstrate that PPAR-gamma suppression reduced insulin-stimulated glucose uptake without affecting the early insulin signaling steps in the adipocytes. Using dual siRNA strategies, we show that this effect of PPAR-gamma deletion was mediated by both GLUT4 and GLUT1. Interestingly, PPAR-gamma-depleted cells displayed enhanced inflammatory responses to TNF-alpha stimulation, consistent with a chronic anti-inflammatory effect of endogenous PPAR-gamma. In summary, 1) PPAR-gamma is essential for the process of adipocyte differentiation but is less necessary for maintenance of the differentiated state, 2) PPAR-gamma supports normal insulin-stimulated glucose transport, and 3) endogenous PPAR-gamma may play a role in suppression of the inflammatory pathway in 3T3-L1 cells.
Collapse
Affiliation(s)
- Wei Liao
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yoshizaki T, Imamura T, Babendure JL, Lu JC, Sonoda N, Olefsky JM. Myosin 5a is an insulin-stimulated Akt2 (protein kinase Bbeta) substrate modulating GLUT4 vesicle translocation. Mol Cell Biol 2007; 27:5172-83. [PMID: 17515613 PMCID: PMC1951956 DOI: 10.1128/mcb.02298-06] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol 3-kinase activation of Akt signaling is critical to insulin-stimulated glucose transport and GLUT4 translocation. However, the downstream signaling events following Akt activation which mediate glucose transport stimulation remain relatively unknown. Here we identify an Akt consensus phosphorylation motif in the actin-based motor protein myosin 5a and show that insulin stimulation leads to phosphorylation of myosin 5a at serine 1650. This Akt-mediated phosphorylation event enhances the ability of myosin 5a to interact with the actin cytoskeleton. Small interfering RNA-induced inhibition of myosin 5a and expression of dominant-negative myosin 5a attenuate insulin-stimulated glucose transport and GLUT4 translocation. Furthermore, knockdown of Akt2 or expression of dominant-negative Akt (DN-Akt) abolished insulin-stimulated phosphorylation of myosin 5a, inhibited myosin 5a binding to actin, and blocked insulin-stimulated glucose transport. Taken together, these data indicate that myosin 5a is a newly identified direct substrate of Akt2 and, upon insulin stimulation, phosphorylated myosin 5a facilitates anterograde movement of GLUT4 vesicles along actin to the cell surface.
Collapse
Affiliation(s)
- Takeshi Yoshizaki
- Department of Medicine (0673), University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0673, USA
| | | | | | | | | | | |
Collapse
|
33
|
Sano H, Eguez L, Teruel MN, Fukuda M, Chuang TD, Chavez JA, Lienhard GE, McGraw TE. Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab 2007; 5:293-303. [PMID: 17403373 DOI: 10.1016/j.cmet.2007.03.001] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 01/22/2007] [Accepted: 03/02/2007] [Indexed: 01/27/2023]
Abstract
GLUT4 trafficking to the plasma membrane of muscle and fat cells is regulated by insulin. An important component of insulin-regulated GLUT4 distribution is the Akt substrate AS160 rab GTPase-activating protein. Here we show that Rab10 functions as a downstream target of AS160 in the insulin-signaling pathway that regulates GLUT4 translocation in adipocytes. Overexpression of a mutant of Rab10 defective for GTP hydrolysis increased GLUT4 on the surface of basal adipocytes. Rab10 knockdown resulted in an attenuation of insulin-induced GLUT4 redistribution to the plasma membrane and a concomitant 2-fold decrease in GLUT4 exocytosis rate. Re-expression of a wild-type Rab10 restored normal GLUT4 translocation. The basal increase in plasma-membrane GLUT4 due to AS160 knockdown was partially blocked by knocking down Rab10 in the same cells, further indicating that Rab10 is a target of AS160 and a positive regulator of GLUT4 trafficking to the cell surface upon insulin stimulation.
Collapse
Affiliation(s)
- Hiroyuki Sano
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shi J, Kandror KV. The luminal Vps10p domain of sortilin plays the predominant role in targeting to insulin-responsive Glut4-containing vesicles. J Biol Chem 2007; 282:9008-16. [PMID: 17220298 DOI: 10.1074/jbc.m608971200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In fat and skeletal muscle cells, insulin-responsive vesicles, or IRVs, deliver glucose transporter Glut4 and several associated proteins to the plasma membrane in response to hormonal stimulation. Although the protein composition of the IRVs is well studied, the mechanism of their formation is unknown. It is believed, however, that the cytoplasmic tails of the IRV component proteins carry targeting information to this compartment. To test this hypothesis, we have studied targeting of sortilin, one of the major IRV constituents. We have found that the reporter protein consisting of the cytoplasmic tail of sortilin and EGFP is co-localized with ectopically expressed Glut4 in the perinuclear compartment of undifferentiated 3T3-L1 cells that do not form insulin-responsive vesicles. Upon cell differentiation, this reporter protein does not enter the IRVs; moreover, it loses its perinuclear localization and becomes randomly distributed throughout the whole intracellular space. In contrast, the tagged luminal Vps10p domain of sortilin demonstrates partial co-localization with Glut4 in both undifferentiated and differentiated cells and is targeted to the IRVs upon cell differentiation. Using chemical cross-linking and the yeast two-hybrid system, we show that sortilin interacts with Glut4 and IRAP in the vesicular lumen. Our results suggest that luminal interactions between component proteins play an important role in the process of IRV biogenesis.
Collapse
Affiliation(s)
- Jun Shi
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | |
Collapse
|
35
|
Blot V, McGraw TE. GLUT4 is internalized by a cholesterol-dependent nystatin-sensitive mechanism inhibited by insulin. EMBO J 2006; 25:5648-58. [PMID: 17139247 PMCID: PMC1698906 DOI: 10.1038/sj.emboj.7601462] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 10/31/2006] [Indexed: 01/01/2023] Open
Abstract
Insulin slows GLUT4 internalization by an unknown mechanism. Here we show that in unstimulated adipocytes, GLUT4 is internalized by two mechanisms. Approximately 80% of GLUT4 is internalized by a mechanism that is sensitive to the cholesterol-aggregating drug nystatin, and is independent of AP-2 clathrin adaptor and two putative GLUT4 endocytic motifs. The remaining GLUT4 is internalized by an AP-2-dependent, nystatin-resistant pathway that requires the FQQI GLUT4 motif. Insulin inhibits GLUT4 uptake by the nystatin-sensitive pathway and, consequently, GLUT4 is internalized by the AP-2-dependent pathway in stimulated adipocytes. The phenylalanine-based FQQI GLUT4 motif promotes AP-2-dependent internalization less rapidly than a tyrosine-based motif, the classic form of aromatic-based motifs. Thus, both a change in the predominant endocytosis pathway and the specific use of a suboptimal internalization motif contribute to the slowing of GLUT4 internalization in insulin-stimulated adipocytes. Insulin also inhibits the uptake of cholera-toxin B, indicating that insulin broadly regulates cholesterol-dependent uptake mechanisms rather than specially targeting GLUT4. Our work thus identifies cholesterol-dependent uptake as a novel target of insulin action in adipocytes.
Collapse
Affiliation(s)
- Vincent Blot
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY, USA
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA. Tel.: +1 212 747 4982; Fax: +1 212 747 8875; E-mail:
| |
Collapse
|
36
|
Hou JC, Suzuki N, Pessin JE, Watson RT. A Specific Dileucine Motif Is Required for the GGA-dependent Entry of Newly Synthesized Insulin-responsive Aminopeptidase into the Insulin-responsive Compartment. J Biol Chem 2006; 281:33457-66. [PMID: 16945927 DOI: 10.1074/jbc.m601583200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In muscle and adipose cells, the insulin-responsive aminopeptidase (IRAP) is localized to intracellular storage sites and undergoes insulin-dependent redistribution to the cell surface. Following expression, the newly synthesized IRAP protein traffics to the perinuclear insulin-sensitive compartment and acquires insulin sensitivity 6-9 h following biosynthesis. Knockdown of GGA1 by RNA interference prevented IRAP from entering, but not exiting, the insulin-responsive compartment. Mutation of the dileucine motif at positions 76 and 77 (EGFP-IRAP/AA(76,77)), but not the dileucine motif at positions 53 and 54, resulted in the rapid default of the reporter to the cell surface beginning at 3 h following biosynthesis. Alanine substitution of 9 residues amino- or carboxyl-terminal to LL(76,77) did not perturb basal intracellular sequestration or abrogate insulin-stimulated IRAP translocation. Moreover, a dominant interfering GGA mutant (VHS-GAT) potently inhibited insulin-stimulated translocation of EGFP-IRAP/WT but did not block the constitutive exocytotic trafficking of EGFP-IRAP/AA(76,77). In addition, the EGFP-IRAP/WT and EGFP-IRAP/AA(76,77) constructs occupied morphologically distinct tubulovesicular compartments in the perinuclear region. Taken together, these data indicate that LL(76,77) functions during the GGA-dependent sorting of newly made IRAP into the insulin-responsive storage compartment.
Collapse
Affiliation(s)
- June Chunqiu Hou
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
37
|
Eyster CA, Duggins QS, Gorbsky GJ, Olson AL. Microtubule network is required for insulin signaling through activation of Akt/protein kinase B: evidence that insulin stimulates vesicle docking/fusion but not intracellular mobility. J Biol Chem 2006; 281:39719-27. [PMID: 17068336 DOI: 10.1074/jbc.m607101200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The microtubule network has been shown to be required for insulin-dependent GLUT4 redistribution; however, the precise molecular function has not been elucidated. In this article, we used fluorescence recovery after photobleaching (FRAP) to evaluate the role of microtubules in intracellular GLUT4 vesicle mobility. A comparison of the rate of fluorescence recovery (t((1/2))), and the maximum fluorescence recovered (F(max)) was made between basal and insulin-treated cells with or without nocodazole treatment to disrupt microtubules. We found that intracellular mobility of fluorescently tagged GLUT4 (HA-GLUT4-GFP) was high in basal cells. Mobility was not increased by insulin treatment. Basal mobility was dependent upon an intact microtubule network. Using a constitutively active Akt to signal GLUT4 redistribution, we found that microtubule-based GLUT4 vesicle mobility was not obligatory for GLUT4 plasma membrane insertion. Our findings suggest that microtubules organize the insulin-signaling complex and provide a surface for basal mobility of GLUT4 vesicles. Our data do not support an obligatory requirement for long range microtubule-based movement of GLUT4 vesicles for insulin-mediated GLUT4 redistribution to the cell surface. Taken together, these findings suggest a model in which insulin signaling targets membrane docking and/or fusion rather than GLUT4 trafficking to the cell surface.
Collapse
Affiliation(s)
- Craig A Eyster
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
38
|
Williams D, Hicks SW, Machamer CE, Pessin JE. Golgin-160 is required for the Golgi membrane sorting of the insulin-responsive glucose transporter GLUT4 in adipocytes. Mol Biol Cell 2006; 17:5346-55. [PMID: 17050738 PMCID: PMC1679696 DOI: 10.1091/mbc.e06-05-0386] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The peripheral Golgi protein golgin-160 is induced during 3T3L1 adipogenesis and is primarily localized to the Golgi cisternae distinct from the trans-Golgi network (TGN) in a general distribution similar to p115. Small interfering RNA (siRNA)-mediated reduction in golgin-160 protein resulted in an increase accumulation of the insulin-responsive amino peptidase (IRAP) and the insulin-regulated glucose transporter (GLUT4) at the plasma membrane concomitant with enhanced glucose uptake in the basal state. The redistribution of GLUT4 was rescued by expression of a siRNA-resistant golgin-160 cDNA. The basal state accumulation of plasma membrane GLUT4 occurred due to an increased rate of exocytosis without any significant effect on the rate of endocytosis. This GLUT4 trafficking to the plasma membrane in the absence of golgin-160 was independent of TGN/Golgi sorting, because it was no longer inhibited by the expression of a dominant-interfering Golgi-localized, gamma-ear-containing ARF-binding protein mutant and displayed reduced binding to the lectin wheat germ agglutinin. Moreover, expression of the amino terminal head domain (amino acids 1-393) had no significant effect on the distribution or insulin-regulated trafficking of GLUT4 or IRAP. In contrast, expression of carboxyl alpha helical region (393-1498) inhibited insulin-stimulated GLUT4 and IRAP translocation, but it had no effect on the sorting of constitutive membrane trafficking proteins, the transferrin receptor, or vesicular stomatitis virus G protein. Together, these data demonstrate that golgin-160 plays an important role in directing insulin-regulated trafficking proteins toward the insulin-responsive compartment in adipocytes.
Collapse
Affiliation(s)
- Dumaine Williams
- *Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Stuart W. Hicks
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536; and
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Carolyn E. Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jeffrey E. Pessin
- *Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
39
|
Peck GR, Ye S, Pham V, Fernando RN, Macaulay SL, Chai SY, Albiston AL. Interaction of the Akt Substrate, AS160, with the Glucose Transporter 4 Vesicle Marker Protein, Insulin-Regulated Aminopeptidase. Mol Endocrinol 2006; 20:2576-83. [PMID: 16762977 DOI: 10.1210/me.2005-0476] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractInsulin-regulated aminopeptidase (IRAP), a marker of glucose transporter 4 (GLUT4) storage vesicles (GSVs), is the only protein known to traffic with GLUT4. In the basal state, GSVs are sequestered from the constitutively recycling endosomal system to an insulin-responsive, intracellular pool. Insulin induces a rapid translocation of GSVs to the cell surface from this pool, resulting in the incorporation of IRAP and GLUT4 into the plasma membrane. We sought to identify proteins that interact with IRAP to further understand this GSV trafficking process. This study describes our identification of a novel interaction between the amino terminus of IRAP and the Akt substrate, AS160 (Akt substrate of 160 kDa). The validity of this interaction was confirmed by coimmunoprecipitation of both overexpressed and endogenous proteins. Moreover, confocal microscopy demonstrated colocalization of these proteins. In addition, we demonstrate that the IRAP-binding domain of AS160 falls within its second phosphotyrosine-binding domain and the interaction is not regulated by AS160 phosphorylation. We hypothesize that AS160 is localized to GLUT4-containing vesicles via its interaction with IRAP where it inhibits the activity of Rab substrates in its vicinity, effectively tethering the vesicles intracellularly.
Collapse
Affiliation(s)
- Grantley R Peck
- Department of Medicine, Howard Florey Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Gonzalez E, McGraw TE. Insulin signaling diverges into Akt-dependent and -independent signals to regulate the recruitment/docking and the fusion of GLUT4 vesicles to the plasma membrane. Mol Biol Cell 2006; 17:4484-93. [PMID: 16914513 PMCID: PMC1635362 DOI: 10.1091/mbc.e06-07-0585] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insulin modulates glucose disposal in muscle and adipose tissue by regulating the cellular redistribution of the GLUT4 glucose transporter. Protein kinase Akt/PKB is a central mediator of insulin-regulated translocation of GLUT4; however, the GLUT4 trafficking step(s) regulated by Akt is not known. Here, we use acute pharmacological Akt inhibition to show that Akt is required for insulin-stimulated exocytosis of GLUT4 to the plasma membrane. Our data also suggest that the AS160 Rab GAP is not the only Akt target required for insulin-stimulated GLUT4 translocation. Using a total internal reflection microscopy assay, we show that Akt activity is specifically required for an insulin-mediated prefusion step involving the recruitment and/or docking of GLUT4 vesicles to within 250 nm of the plasma membrane. Moreover, the insulin-stimulated fusion of GLUT4 vesicles with the plasma membrane can occur independently of Akt activity, although based on inhibition by wortmannin, it is dependent on phosphatidylinositol 3' kinase activity. Hence, to achieve full redistribution of GLUT4 into the plasma membrane, insulin signaling bifurcates to independently regulate both fusion and a prefusion step(s).
Collapse
Affiliation(s)
- Eva Gonzalez
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021
| |
Collapse
|
41
|
Martin OJ, Lee A, McGraw TE. GLUT4 Distribution between the Plasma Membrane and the Intracellular Compartments Is Maintained by an Insulin-modulated Bipartite Dynamic Mechanism. J Biol Chem 2006; 281:484-90. [PMID: 16269413 DOI: 10.1074/jbc.m505944200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The GLUT4 glucose transporter is predominantly retained inside basal fat and muscle cells, and it is rapidly recruited to the plasma membrane with insulin stimulation. There is controversy regarding the mechanism of basal GLUT4 retention. One model is that GLUT4 retention is dynamic, based on slow exocytosis and rapid internalization of the entire pool of GLUT4 (Karylowski, O., Zeigerer, A., Cohen, A., and McGraw, T. E. (2004) Mol. Biol. Cell 15, 870-882). In this model, insulin increases GLUT4 in the plasma membrane by modulating GLUT4 exocytosis and endocytosis. The second model is that GLUT4 retention is static, with approximately 90% of GLUT4 stored in compartments that are not in equilibrium with the cell surface in basal conditions (Govers, R., Coster, A. C., and James, D. E. (2004) Mol. Cell Biol. 24, 6456-6466). In this model, insulin increases GLUT4 in the plasma membrane by releasing it from the static storage compartment. Here we show that under all experimental conditions examined, basal GLUT4 retention is by a bipartite dynamic mechanism involving slow efflux and rapid internalization. To establish that the dynamic model developed in studies of the extreme conditions of >100 nm insulin and no insulin also describes GLUT4 behavior at more physiological insulin concentrations, we characterized GLUT4 trafficking in 0.5 nm insulin. This submaximal insulin concentration promotes an intermediate effect on both GLUT4 exocytosis and endocytosis, resulting in an intermediate degree of redistribution to the plasma membrane. These data establish that changes in the steady-state surface/total distributions of GLUT4 are the result of gradated, insulin-induced changes in GLUT4 exocytosis and endocytosis rates.
Collapse
Affiliation(s)
- Ola J Martin
- Department of Biochemistry, Weill Cornell Medical College, New York, New York 10013, USA
| | | | | |
Collapse
|
42
|
Liu G, Hou JC, Watson RT, Pessin JE. Initial entry of IRAP into the insulin-responsive storage compartment occurs prior to basal or insulin-stimulated plasma membrane recycling. Am J Physiol Endocrinol Metab 2005; 289:E746-52. [PMID: 15928022 DOI: 10.1152/ajpendo.00175.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the acquisition of insulin sensitivity after the initial biosynthesis of the insulin-responsive aminopeptidase (IRAP), 3T3-L1 adipocytes were transfected with an enhanced green fluorescent protein-IRAP (EGFP-IRAP) fusion protein. In the absence of insulin, IRAP was rapidly localized (1-3 h) to secretory membranes and retained in these intracellular membrane compartments with little accumulation at the plasma membrane. However, insulin was unable to induce translocation to the plasma membrane until 6-9 h after biosynthesis. This was in marked contrast to another type II membrane protein (syntaxin 3) that rapidly defaulted to the plasma membrane 3 h after expression. In parallel with the time-dependent acquisition of insulin responsiveness, the newly synthesized IRAP protein converted from a brefeldin A-sensitive to a brefeldin A-insensitive state. The initial trafficking of IRAP to the insulin-responsive compartment was independent of plasma membrane endocytosis, as expression of a dominant-interfering dynamin mutant (Dyn/K44A) inhibited transferrin receptor endocytosis but had no effect on the insulin-stimulated translocation of the newly synthesized IRAP protein.
Collapse
Affiliation(s)
- Gang Liu
- Dept. of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
43
|
Eguez L, Lee A, Chavez JA, Miinea CP, Kane S, Lienhard GE, McGraw TE. Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab 2005; 2:263-72. [PMID: 16213228 DOI: 10.1016/j.cmet.2005.09.005] [Citation(s) in RCA: 250] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/25/2005] [Accepted: 09/22/2005] [Indexed: 12/15/2022]
Abstract
Insulin controls glucose flux into muscle and fat by regulating the trafficking of GLUT4 between the interior and surface of cells. Here, we show that the AS160 Rab GTPase activating protein (GAP) is a negative regulator of basal GLUT4 exocytosis. AS160 knockdown resulted in a partial redistribution of GLUT4 from intracellular compartments to the plasma membrane, a concomitant increase in basal glucose uptake, and a 3-fold increase in basal GLUT4 exocytosis. Reexpression of wild-type AS160 restored normal GLUT4 behavior to the knockdown adipocytes, whereas reexpression of a GAP domain mutant did not revert the phenotype, providing the first direct evidence that AS160 GAP activity is required for basal GLUT4 retention. AS160 is the first protein identified that is specially required for basal GLUT4 retention. Our findings that AS160 knockdown only partially releases basal GLUT4 retention provides evidence that insulin signals to GLUT4 exocytosis by both AS160-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Lorena Eguez
- Department of Biochemistry, Weill-Cornell Medical School, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Holton KL, Loder MK, Melikian HE. Nonclassical, distinct endocytic signals dictate constitutive and PKC-regulated neurotransmitter transporter internalization. Nat Neurosci 2005; 8:881-8. [PMID: 15924135 PMCID: PMC2597780 DOI: 10.1038/nn1478] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 05/13/2005] [Indexed: 11/09/2022]
Abstract
Neurotransmitter transporters are critical for synaptic neurotransmitter inactivation. Transporter inhibitors markedly increase the duration and magnitude of synaptic transmission, underscoring the importance of transporter activity in neurotransmission. Recent studies indicate that membrane trafficking dynamically governs neuronal transporter cell-surface presentation in a protein kinase C-regulated manner, suggesting that transporter trafficking profoundly affects synaptic signaling. However, the molecular architecture coupling neurotransmitter transporters to the endocytic machinery is not defined. Here, we identify nonclassical, distinct endocytic signals in the dopamine transporter (DAT) that are necessary and sufficient to drive constitutive and protein kinase C-regulated DAT internalization. The DAT internalization signal is conserved across SLC6 neurotransmitter carriers and is functional in the homologous norepinephrine transporter, suggesting that this region is likely to be the endocytic signal for all SLC6 neurotransmitter transporters. The DAT endocytic signal does not conform to classic internalization motifs, suggesting that SLC6 neurotransmitter transporters may have evolved unique endocytic mechanisms.
Collapse
Affiliation(s)
- Katherine L Holton
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, Massachusetts 01604, USA
| | | | | |
Collapse
|
45
|
Nguyen MTA, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, Zalevsky J, Dahiyat BI, Chi NW, Olefsky JM. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 2005; 280:35361-71. [PMID: 16085647 DOI: 10.1074/jbc.m504611200] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lipid infusion and high fat feeding are established causes of systemic and adipose tissue insulin resistance. In this study, we treated 3T3-L1 adipocytes with a mixture of free fatty acids (FFAs) to investigate the molecular mechanisms underlying fat-induced insulin resistance. FFA treatment impaired insulin receptor-mediated signal transduction and decreased insulin-stimulated GLUT4 translocation and glucose transport. FFAs activated the stress/inflammatory kinases c-Jun N-terminal kinase (JNK) and IKKbeta, and the suppressor of cytokine signaling protein 3, increased secretion of the inflammatory cytokine tumor necrosis factor (TNF)-alpha, and decreased secretion of adiponectin into the medium. RNA interference-mediated down-regulation of JNK blocked JNK activation and prevented most of the FFA-induced defects in insulin action. Blockade of TNF-alpha signaling with neutralizing antibodies to TNF-alpha or its receptors or with a dominant negative TNF-alpha peptide had a partial effect to inhibit FFA-induced cellular insulin resistance. We found that JNK activation by FFAs was not inhibited by blocking TNF-alpha signaling, whereas the FFA-induced increase in TNF-alpha secretion was inhibited by RNA interference-mediated JNK knockdown. Together, these results indicate that 1) JNK can be activated by FFAs through TNF-alpha-independent mechanisms, 2) activated JNK is a major contributor to FFA-induced cellular insulin resistance, and 3) TNF-alpha is an autocrine/paracrine downstream effector of activated JNK that can also mediate insulin resistance.
Collapse
Affiliation(s)
- M T Audrey Nguyen
- Division of Endocrinology-Metabolism, University of California, San Diego, La Jolla, California 92093-0673, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tsujimoto M, Hattori A. The oxytocinase subfamily of M1 aminopeptidases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:9-18. [PMID: 16054015 DOI: 10.1016/j.bbapap.2004.09.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 09/03/2004] [Accepted: 09/06/2004] [Indexed: 11/26/2022]
Abstract
The placental leucine aminopeptidase (P-LAP), adipocyte-derived leucine aminopeptidase (A-LAP) and leukocyte-derived aminopeptidase (L-RAP) belong to one distinct group of the M1 family of amimopeptidases, which we term the "Oxytocinase subfamily". They share HEXXH(X)18E Zn-binding and GAMEN motifs essential for the enzymatic activities. Intracellular localization is the characteristic feature of the subfamily members. While P-LAP is translocated from intracellular vesicles to plasma membrane in a stimulus-dependent manner, both A-LAP and L-RAP are retained in the endoplasmic reticulum. They contain sequences necessary for the specific localization in the cell. It is getting evident that the subfamily members play important roles in the maintenance of homeostasis including maintenance of normal pregnancy, memory retention, blood pressure regulation and antigen presentation. In this review, current situation of this newly identified subfamily is summarized.
Collapse
Affiliation(s)
- Masafumi Tsujimoto
- Laboratory of Cellular Biochemistry, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | |
Collapse
|
47
|
Hosaka T, Brooks CC, Presman E, Kim SK, Zhang Z, Breen M, Gross DN, Sztul E, Pilch PF. p115 Interacts with the GLUT4 vesicle protein, IRAP, and plays a critical role in insulin-stimulated GLUT4 translocation. Mol Biol Cell 2005; 16:2882-90. [PMID: 15800058 PMCID: PMC1142432 DOI: 10.1091/mbc.e05-01-0072] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Insulin-regulated aminopeptidase (IRAP) is an abundant cargo protein of Glut4 storage vesicles (GSVs) that traffics to and from the plasma membrane in response to insulin. We used the amino terminus cytoplasmic domain of IRAP, residues 1-109, as an affinity reagent to identify cytosolic proteins that might be involved in GSV trafficking. In this way, we identified p115, a peripheral membrane protein known to be involved in membrane trafficking. In murine adipocytes, we determined that p115 was localized to the perinuclear region by immunofluorescence and throughout the cell by fractionation. By immunofluorescence, p115 partially colocalizes with GLUT4 and IRAP in the perinuclear region of cultured fat cells. The amino terminus of p115 binds to IRAP and overexpression of a N-terminal construct results in its colocalization with GLUT4 throughout the cell. Insulin-stimulated GLUT4 translocation is completely inhibited under these conditions. Overexpression of p115 C-terminus has no significant effect on GLUT4 distribution and translocation. Finally, expression of the p115 N-terminus construct has no effect on the distribution and trafficking of GLUT1. These data suggest that p115 has an important and specific role in insulin-stimulated Glut4 translocation, probably by way of tethering insulin-sensitive Glut4 vesicles at an as yet unknown intracellular site.
Collapse
Affiliation(s)
- Toshio Hosaka
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Keller SR. Role of the insulin-regulated aminopeptidase IRAP in insulin action and diabetes. Biol Pharm Bull 2005; 27:761-4. [PMID: 15187412 DOI: 10.1248/bpb.27.761] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin-regulated aminopeptidase (IRAP) is a member of the family of zinc-dependent membrane aminopeptidases. It is the homolog of the human placental leucine aminopeptidase (P-LAP). IRAP is expressed in different cell types but has been best characterized in two major insulin target cells, muscle and fat. In these cells IRAP localizes to intracellular membrane compartments under basal conditions. In response to insulin IRAP redistributes to the cell surface. IRAP shares this behavior with the insulin-responsive glucose transporter GLUT4. It is established that insulin's dramatic effect on glucose disposal is mediated through its action on GLUT4. The role IRAP plays in insulin action is unknown. IRAP cleaves several peptide hormones in vitro. In insulin-treated cells, concomitant with the appearance of IRAP at the cell surface, aminopeptidase activity toward extracellular substrates increases. Thus, insulin, by bringing IRAP to the cell surface, could increase the processing of extracellular peptide hormones and thereby change their activities. Investigations are underway to determine the in vivo substrates for IRAP and to measure the effect of insulin on the cleavage of identified substrates. In individuals with type 2 diabetes the insulin-stimulated translocation of IRAP to the cell surface of muscle and fat cells is impaired. This defect may lead to decreased cleavage and consequently increased action of peptide hormones that are substrates for IRAP. Impaired IRAP action may thus play a role in the development of complications in type 2 diabetes. The findings of decreased expression of GLUT4 and increased heart size in mice in which IRAP was deleted support this hypothesis.
Collapse
Affiliation(s)
- Susanna Renata Keller
- University of Virginia, Department of Internal Medicine-Division of Endocrinology, Charlottesville, 22908, USA.
| |
Collapse
|
49
|
Zeigerer A, McBrayer MK, McGraw TE. Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160. Mol Biol Cell 2004; 15:4406-15. [PMID: 15254270 PMCID: PMC519136 DOI: 10.1091/mbc.e04-04-0333] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insulin maintains whole body blood glucose homeostasis, in part, by regulating the amount of the GLUT4 glucose transporter on the cell surface of fat and muscle cells. Insulin induces the redistribution of GLUT4 from intracellular compartments to the plasma membrane, by stimulating a large increase in exocytosis and a smaller inhibition of endocytosis. A considerable amount is known about the molecular events of insulin signaling and the complex itinerary of GLUT4 trafficking, but less is known about how insulin signaling is transmitted to GLUT4 trafficking. Here, we show that the AS160 RabGAP, a substrate of Akt, is required for insulin stimulation of GLUT4 exocytosis. A dominant-inhibitory mutant of AS160 blocks insulin stimulation of exocytosis at a step before the fusion of GLUT4-containing vesicles with the plasma membrane. This mutant, however, does not block insulin-induced inhibition of GLUT4 endocytosis. These data support a model in which insulin signaling to the exocytosis machinery (AS160 dependent) is distinct from its signaling to the internalization machinery (AS160 independent).
Collapse
Affiliation(s)
- Anja Zeigerer
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
50
|
Abel ED, Graveleau C, Betuing S, Pham M, Reay PA, Kandror V, Kupriyanova T, Xu Z, Kandror KV. Regulation of insulin-responsive aminopeptidase expression and targeting in the insulin-responsive vesicle compartment of glucose transporter isoform 4-deficient cardiomyocytes. Mol Endocrinol 2004; 18:2491-501. [PMID: 15231875 DOI: 10.1210/me.2004-0175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In adipocytes and cardiac or skeletal muscle, glucose transporter isoform 4 (GLUT4) is targeted to insulin-responsive intracellular membrane vesicles (IRVs) that contain several membrane proteins, including insulin-responsive aminopeptidase (IRAP) that completely colocalizes with GLUT4 in basal and insulin-treated cells. Cardiac GLUT4 content is reduced by 65-85% in IRAP knockout mice, suggesting that IRAP may regulate the targeting or degradation of GLUT4. To determine whether GLUT4 is required for maintenance of IRAP content within IRVs, we studied the expression and cellular localization of IRAP and other GLUT4 vesicle-associated proteins, in hearts of mice with cardiac-specific deletion of GLUT4 (G4H-/-). In G4H-/- hearts, IRAP content was reduced by 60%, but the expression of other vesicle-associated proteins, namely cellugyrin, IGF-II/mannose-6-phosphate, and transferrin receptors, secretory carrier-associated membrane proteins and vesicle-associated membrane protein were unchanged. Using sucrose gradient centrifugation and cell surface biotinylation, we found that IRAP content in 50-80S vesicles where GLUT4 vesicles normally sediment was markedly depleted in G4H-/- hearts, and the remaining IRAP was found in the heavy membrane fraction. Although insulin caused a discernible increase in cell surface IRAP content of G4H-/- cardiomyocytes, cell surface IRAP remained 70% lower than insulin-stimulated controls. Immunoabsorption of intracellular vesicles with anticellugyrin antibodies revealed that IRAP content was reduced by 70% in both cellugyrin-positive and cellugyrin-negative vesicles. Endosomal recycling, as measured by transferrin receptor recycling was normal. Thus, GLUT4 and IRAP content of early endosome-derived sorting vesicles and of IRVs are coordinately regulated, and both proteins are required for maintenance of key constituents of these compartments in cardiac muscle cells in vivo.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes, Program in Human Molecular Biology and Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|