1
|
Cassiani A, Furtmüller PG, Borsari M, Battistuzzi G, Hofbauer S. Insights into heme degradation and hydrogen peroxide-induced dimerization of human neuroglobin. Biosci Rep 2025; 45:1-13. [PMID: 39631057 DOI: 10.1042/bsr20241265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024] Open
Abstract
In this present study, we investigated the H2O2-induced oligomerization of wild-type human neuroglobin (hNgb) and of some selected variants (C46AC55A, Y44A, Y44F, Y44AC46AC55A, Y44AC46AC55A) to clarify how the process is affected by the Cys46/Cys55 disulfide bond and the distal H-bonding network and to figure out the molecular determinants of the H2O2-induced formation of amyloid-type structures and hNgb aggregates. It turns out that hydrogen peroxide exerts a two-fold effect on hNgb, inducing both heme breakdown and protein dimerization/polymerization. The enhanced resistance to the oxidizing effect of H2O2 of the disulfide-free variants indicates that both effects are strictly influenced by the heme accessibility for H2O2. Most importantly, the H2O2-induced neuroglobin dimerization/polymerization turns out to be triggered by tyrosyl radicals resulting from the oxidizing action of Compound I ([Por•Fe(IV) = O]+). Peptide mapping indicates that the H2O2-induced dimerization/polymerization of hNgb mainly involves Tyr44, which forms covalent bonds with all the other tyrosine residues, with a minor contribution from Tyr88. The presented findings contribute further important pieces of information in the quest of identifying all capabilities of hNgb and ultimately its physiological task.
Collapse
Affiliation(s)
- Alice Cassiani
- Department of Chemistry, Institute of Biochemistry, BOKU University, Muthgasse 18, A-1190, Vienna, Austria
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Paul G Furtmüller
- Department of Chemistry, Institute of Biochemistry, BOKU University, Muthgasse 18, A-1190, Vienna, Austria
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via Campi 103, 41125 Modena, Italy
| | - Stefan Hofbauer
- Department of Chemistry, Institute of Biochemistry, BOKU University, Muthgasse 18, A-1190, Vienna, Austria
| |
Collapse
|
2
|
Liu X, Guo P, Yu Q, Gao SQ, Yuan H, Tan X, Lin YW. Site-specific incorporation of 19F-nulcei at protein C-terminus to probe allosteric conformational transitions of metalloproteins. Commun Biol 2024; 7:1613. [PMID: 39627324 PMCID: PMC11615248 DOI: 10.1038/s42003-024-07331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Allosteric conformational change is an important paradigm in the regulation of protein function, which is typically triggered by the binding of small cofactors, metal ions or protein partners. Here, we found those conformational transitions can be effectively monitored by 19F NMR, facilitated by a site-specific 19F incorporation strategy at the protein C-terminus using asparaginyl endopeptidase (AEP). Three case studies show that C-terminal 19F-nuclei can reveal protein dynamics not only adjacent but also distal to C-terminus, including those occurring in a hemoprotein neuroglobin (Ngb), calmodulin (CaM), and a cobalt metalloregulator (CoaR) responding to both cobalt and tetrapyrrole. In Ngb, the heme orientation disorder is affected by missense mutations that perturb backbone rigidity or surface charges close to the heme axial ligands. In CaM, the C-terminal 19F-nuclei is an ideal probe for detecting the binding states of Ca2+, peptides and inhibitors. Furthermore, multiple 19F-moieties were incorporated into the two domains of CoaR, revealing the intrinsically disordered C-terminal metal binding tail might be an allosteric conformational switch to maintain cobalt homeostasis and balance corrinoid biosynthesis. This study demonstrates that the AEP-based 19F-modification strategy can be applied to various targets to study allosteric regulation, especially for those biological processes modulated by the protein C-terminus.
Collapse
Affiliation(s)
- Xichun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China.
| | - Pengfei Guo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Qiufan Yu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China.
- Key Lab of Protein Structure and Function of Universities in Hunan Province, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
3
|
Reeder BJ, Deganutti G, Ukeri J, Atanasio S, Svistunenko DA, Ronchetti C, Mobarec JC, Welbourn E, Asaju J, Vos MH, Wilson MT, Reynolds CA. The circularly permuted globin domain of androglobin exhibits atypical heme stabilization and nitric oxide interaction. Chem Sci 2024; 15:6738-6751. [PMID: 38725499 PMCID: PMC11077535 DOI: 10.1039/d4sc00953c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
In the decade since the discovery of androglobin, a multi-domain hemoglobin of metazoans associated with ciliogenesis and spermatogenesis, there has been little advance in the knowledge of the biochemical and structural properties of this unusual member of the hemoglobin superfamily. Using a method for aligning remote homologues, coupled with molecular modelling and molecular dynamics, we have identified a novel structural alignment to other hemoglobins. This has led to the first stable recombinant expression and characterization of the circularly permuted globin domain. Exceptional for eukaryotic globins is that a tyrosine takes the place of the highly conserved phenylalanine in the CD1 position, a critical point in stabilizing the heme. A disulfide bond, similar to that found in neuroglobin, forms a closed loop around the heme pocket, taking the place of androglobin's missing CD loop and further supporting the heme pocket structure. Highly unusual in the globin superfamily is that the heme iron binds nitric oxide as a five-coordinate complex similar to other heme proteins that have nitric oxide storage functions. With rapid autoxidation and high nitrite reductase activity, the globin appears to be more tailored toward nitric oxide homeostasis or buffering. The use of our multi-template profile alignment method to yield the first biochemical characterisation of the circularly permuted globin domain of androglobin expands our knowledge of the fundamental functioning of this elusive protein and provides a pathway to better define the link between the biochemical traits of androglobin with proposed physiological functions.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Giuseppe Deganutti
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
- Centre for Health and Life Sciences (CHLS) Alison Gingell Building Coventry CV1 5FB UK
| | - John Ukeri
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Silvia Atanasio
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Christopher Ronchetti
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Juan Carlos Mobarec
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
- Centre for Health and Life Sciences (CHLS) Alison Gingell Building Coventry CV1 5FB UK
| | - Elizabeth Welbourn
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Jeffrey Asaju
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Marten H Vos
- LOB, CNRS, INSERM, École Polytechnique, Institut Polytechnique de Paris 91128 Palaiseau France
| | - Michael T Wilson
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
| | - Christopher A Reynolds
- School of Life Sciences, University of Essex Wivenhoe Park Colchester Essex CO4 3SQ UK
- Centre for Health and Life Sciences (CHLS) Alison Gingell Building Coventry CV1 5FB UK
| |
Collapse
|
4
|
Williams MD, Ragireddy V, Dent MR, Tejero J. Engineering neuroglobin nitrite reductase activity based on myoglobin models. Biochem Biophys Rep 2023; 36:101560. [PMID: 37929291 PMCID: PMC10623171 DOI: 10.1016/j.bbrep.2023.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Neuroglobin is a hemoprotein expressed in several nervous system cell lineages with yet unknown physiological functions. Neuroglobin presents a very similar structure to that of the related globins hemoglobin and myoglobin, but shows an hexacoordinate heme as compared to the pentacoordinated heme of myoglobin and hemoglobin. While several reactions of neuroglobin have been characterized in vitro, the relative importance of most of those reactions in vivo is yet undefined. Neuroglobin, like other heme proteins, can reduce nitrite to nitric oxide, providing a possible route to generate nitric oxide in vivo in low oxygen conditions. The reaction kinetics are highly dependent on the nature of the distal residue, and replacement of the distal histidine His64(E7) can increase the reaction rate constants by several orders of magnitude. However, mutation of other distal pocket positions such as Phe28(B10) or Val68(E11) has more limited impact on the rates. Computational analysis using myoglobin as template, guided by the structure of dedicated nitrite reductases like cytochrome cd1 nitrite reductase, has pointed out that combined mutations of the residues B10 and CD1 could increase the nitrite reductase activity of myoglobin, by mimicking the environment of the distal heme pocket in cytochrome cd1 nitrite reductase. As neuroglobin shows high sequence and structural homology with myoglobin, we hypothesized that such mutations (F28H and F42Y in neuroglobin) could also modify the nitrite reductase activity of neuroglobin. Here we study the effect of these mutations. Unfortunately, we do not observe in any case an increase in the nitrite reduction rates. Our results provide some further indications of nitrite reductase regulation in neuroglobin and highlight the minor but critical differences between the structure of penta- and hexacoordinate globins.
Collapse
Affiliation(s)
- Mark D. Williams
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Venkata Ragireddy
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Matthew R. Dent
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
5
|
Li CY, Jiang HF, Li L, Lai XJ, Liu QR, Yu SB, Yi CL, Chen XQ. Neuroglobin Facilitates Neuronal Oxygenation through Tropic Migration under Hypoxia or Anemia in Rat: How Does the Brain Breathe? Neurosci Bull 2023; 39:1481-1496. [PMID: 36884214 PMCID: PMC10533768 DOI: 10.1007/s12264-023-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2023] Open
Abstract
The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.
Collapse
Affiliation(s)
- Chun-Yang Li
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai-Feng Jiang
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Li
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Jing Lai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qian-Rong Liu
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shang-Bin Yu
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng-La Yi
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiao-Qian Chen
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Iritani Y, Ishikawa H, Mizuno M, Mizutani Y. Heme Pocket Structure and Its Functional Implications in an Ancestral Globin Protein. Biochemistry 2023; 62:2727-2737. [PMID: 37647623 DOI: 10.1021/acs.biochem.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Proteins have undergone evolutionary processes to achieve optimal stability, increased functionality, and novel functions. Comparative analysis of existent and ancestral proteins provides insights into the factors that influence protein stability and function. Ancestral sequence reconstruction allows us to deduce the amino acid sequences of ancestral proteins. Here, we present the structural and functional characteristics of an ancestral protein, AncMH, reconstructed to be the last common ancestor of hemoglobins and myoglobins. Our findings reveal that AncMH harbors heme and that the heme binds oxygen. Furthermore, we demonstrate that the ferrous heme in AncMH is pentacoordinated, similar to that of human adult hemoglobin and horse myoglobin. A detailed comparison of the heme pocket structure indicates that the heme pocket in AncMH is more similar to that of hemoglobin than that of myoglobin. However, the autoxidation of AncMH is faster than that of both hemoglobin and myoglobin. Collectively, our results suggest that ancestral proteins of hemoglobins and myoglobins evolved in steps, including the hexa- to pentacoordination transition, followed by stabilization of the oxygen-bound form.
Collapse
Affiliation(s)
- Yu Iritani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Haruto Ishikawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Di Rocco G, Bernini F, Battistuzzi G, Ranieri A, Bortolotti CA, Borsari M, Sola M. Hydrogen peroxide induces heme degradation and protein aggregation in human neuroglobin: roles of the disulfide bridge and hydrogen-bonding in the distal heme cavity. FEBS J 2023; 290:148-161. [PMID: 35866372 PMCID: PMC10087938 DOI: 10.1111/febs.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 01/14/2023]
Abstract
In the present study, human neuroglobin (hNgb) was found to undergo H2 O2 -induced breakdown of the heme center at a much slower rate than other globins, namely in the timescale of hours against minutes. We investigated how the rate of the process is affected by the Cys46/Cys55 disulfide bond and the network of non-covalent interactions in the distal heme side involving Tyr44, Lys67, the His64 heme iron axial ligand and the heme propionate-7. The rate is increased by the Tyr44 to Ala and Phe mutations; however the rate is lowered by Lys67 to Ala swapping. The absence of the disulfide bridge slows down the reaction further. Therefore, the disulfide bond-controlled accessibility of the heme site and the residues at position 44 and 67 affect the activation barrier of the reaction. Wild-type and mutated species form β-amyloid aggregates in the presence of H2 O2 producing globular structures. Furthermore, the C46A/C55A, Y44A, Y44F and Y44F/C46A/C55A variants yield potentially harmful fibrils. Finally, the nucleation and growth kinetics for the aggregation of the amyloid structures can be successfully described by the Finke-Watzky model.
Collapse
Affiliation(s)
- Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Fabrizio Bernini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | - Antonio Ranieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | | | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| | - Marco Sola
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Italy
| |
Collapse
|
8
|
Neuroglobin Is Involved in the Hypoxic Stress Response in the Brain. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8263373. [PMID: 35898686 PMCID: PMC9313969 DOI: 10.1155/2022/8263373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Neuroglobin is an oxygen-binding heme protein expressed predominantly in the brain. Despite many years of research, the exact distribution and expression of neuroglobin in the neocortical development and under mild hypoxia stress still remain unclear. Therefore, we aim to explore the expression of neuroglobin during neocortex expansion and under mild hypoxia stress in vivo. We used Kunming mice to examine the expression of Ngb protein during neocortex expansion. In addition, we analyzed the density of Ngb-positive neural stem cells using the Image-Pro PLUS (v.6) computer software program (Media Cybernetics, Inc.). Our data indicated that the density of the neuroglobin-positive neurons in mice cerebral cortex displayed a downward trend after birth compared with high expression of neuroglobin in a prenatal period. Similarly, we identified that neurons were capable of ascending neuroglobin levels in response to mild hypoxic stress compared with the no intervention group. These findings suggest that neuroglobin behaves as a compensatory protein regulating oxygen provision in the process of neocortical development or under physiological hypoxia, further contributing to the discovery of novel therapeutic methods for neurological disorders, which is clinically important.
Collapse
|
9
|
Phuphisut O, Kobpornchai P, Chusongsang P, Limpanont Y, Kanjanapruthipong T, Ampawong S, Reamtong O, Adisakwattana P. Molecular characterization and functional analysis of Schistosoma mekongi neuroglobin homolog. Acta Trop 2022; 231:106433. [PMID: 35364046 DOI: 10.1016/j.actatropica.2022.106433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 11/01/2022]
Abstract
Schistosomes are blood-dwelling parasites that are constantly exposed to high-level oxidative stress arising from parasite-intrinsic and host defense mechanisms. To survive in their hosts, schistosomes require an antioxidant system to minimize with oxidative stress. Several schistosome antioxidant enzymes have been identified and have been suggested to play indispensable antioxidant roles for the parasite. In addition to antioxidant enzymes, non-enzymatic antioxidants including small molecules, peptides, and proteins have been identified and characterized. Neuroglobin (Ngb), a nervous system-specific heme-binding protein, has been classified as a non-enzymatic antioxidant and is capable of scavenging a variety of free radical species. The antioxidant activity of Ngb has been well-studied in humans. Ngb is involved in cellular oxygen homeostasis and reactive oxygen/nitrogen scavenging in the central and peripheral nervous systems, but its functions in schistosome parasites have not yet been characterized. In this study, we aimed to characterize the molecular properties and functions of Schistosoma mekongi Ngb (SmeNgb) using bioinformatic, biochemical, and molecular biology approaches. The amino acid sequence of Ngb was highly conserved among schistosomes as well as closely related trematodes. SmeNgb was abundantly localized in the gastrodermis, vitelline, and ovary of adult female S. mekongi worms as well as in the tegument of adult male worms. Assessment of antioxidant activity demonstrated that recombinant SmeNgb had Fe2+ chelating and hydrogen peroxide scavenging activities. Intriguingly, siRNA silencing of SmeNgb gene expression resulted in tegument pathology. Understanding the properties and functions of SmNgb will help in future development of effective treatments and vaccines against S. mekongi, other schistosome parasites, and other platyhelminths.
Collapse
|
10
|
Maiti BK. Cross‐talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health. Chemistry 2022; 28:e202104342. [DOI: 10.1002/chem.202104342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Biplab K Maiti
- Department of Chemistry National Institute of Technology Sikkim, Ravangla Campus Barfung Block, Ravangla Sub Division South Sikkim 737139 India
- Department of Chemistry Cluster University of Jammu Canal Road Jammu 180001
| |
Collapse
|
11
|
Kim SD, Kim M, Wu HH, Jin BK, Jeon MS, Song YS. Prunus cerasoides Extract and Its Component Compounds Upregulate Neuronal Neuroglobin Levels, Mediate Antioxidant Effects, and Ameliorate Functional Losses in the Mouse Model of Cerebral Ischemia. Antioxidants (Basel) 2021; 11:99. [PMID: 35052603 PMCID: PMC8773295 DOI: 10.3390/antiox11010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 01/03/2023] Open
Abstract
Prunus cerasoides (PC) has been reported to have antimicrobial and anti-inflammatory properties, but its potential as a neuroprotective agent in a mouse model of cerebral ischemia has not been explored. Considering neuroglobin (Ngb), an endogenous neuroprotective factor, as a novel approach to neuroprotection, in this study, Ngb promoter activity, Ngb expression changes, and antioxidant protection by PC extract (PCE) and PC component compounds (PCCs) were analyzed in oxygen-glucose deprivation (OGD)-treated neurons. In vivo analysis involved transient middle cerebral artery occlusion (tMCAO) in mice with pre- and post-treatment exposure to PCE. Following ischemic stroke induction, neurological behavior scores were obtained, and cellular function-related signals were evaluated in the ischemic infarct areas. In addition to PCE, certain component compounds from PCE also significantly increased Ngb levels and attenuated the intracellular ROS production and cytotoxicity seen with OGD in primary neurons. Administration of PCE reduced the infarct volume and improved neurological deficit scores in ischemic stroke mice compared with the vehicle treatment. Increased Ngb levels in infarct penumbra with PCE treatment were also accompanied by decreased markers of apoptosis (activated p38 and cleaved caspase-3). Our findings point to the benefits of Ngb-mediated neuroprotection via PCE and its antioxidant activity in an ischemic stroke model.
Collapse
Affiliation(s)
- So-Dam Kim
- Department of Pharmacology, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Minha Kim
- Translational Research Center, Department of Molecular Biomedicine, IRIMS and College of Medicine, Inha University, Incheon 22332, Korea; (M.K.); (M.-S.J.)
| | - Hong-Hua Wu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China;
| | - Byung Kwan Jin
- Department of Biochemistry & Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Myung-Shin Jeon
- Translational Research Center, Department of Molecular Biomedicine, IRIMS and College of Medicine, Inha University, Incheon 22332, Korea; (M.K.); (M.-S.J.)
- Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22332, Korea
| | - Yun Seon Song
- Department of Pharmacology, College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| |
Collapse
|
12
|
De Simone G, Sbardella D, Oddone F, Pesce A, Coletta M, Ascenzi P. Structural and (Pseudo-)Enzymatic Properties of Neuroglobin: Its Possible Role in Neuroprotection. Cells 2021; 10:cells10123366. [PMID: 34943874 PMCID: PMC8699588 DOI: 10.3390/cells10123366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroglobin (Ngb), the third member of the globin family, was discovered in human and murine brains in 2000. This monomeric globin is structurally similar to myoglobin (Mb) and hemoglobin (Hb) α and β subunits, but it hosts a bis-histidyl six-coordinated heme-Fe atom. Therefore, the heme-based reactivity of Ngb is modulated by the dissociation of the distal HisE7-heme-Fe bond, which reflects in turn the redox state of the cell. The high Ngb levels (~100–200 μM) present in the retinal ganglion cell layer and in the optic nerve facilitate the O2 buffer and delivery. In contrast, the very low levels of Ngb (~1 μM) in most tissues and organs support (pseudo-)enzymatic properties including NO/O2 metabolism, peroxynitrite and free radical scavenging, nitrite, hydroxylamine, hydrogen sulfide reduction, and the nitration of aromatic compounds. Here, structural and (pseudo-)enzymatic properties of Ngb, which are at the root of tissue and organ protection, are reviewed, envisaging a possible role in the protection from neuronal degeneration of the retina and the optic nerve.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
| | | | | | - Alessandra Pesce
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16100 Genova, Italy;
| | - Massimo Coletta
- IRCCS Fondazione Bietti, 00198 Roma, Italy; (D.S.); (F.O.)
- Dipartmento di Scienze Cliniche e Medicina Traslazionale, Università di Roma “Tor Vergata”, Via Montpellier 1, 00133 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, 00146 Roma, Italy;
- Accademia Nazionale dei Lincei, Via della Lungara 10, 00165 Roma, Italy
- Unità di Neuroendocrinologia, Metabolismo e Neurofarmacologia, IRCSS Fondazione Santa Lucia, 00179 Roma, Italy
- Correspondence: (M.C.); (P.A.); Tel.: +39-06-72596365 (M.C.); +39-06-57336321 (P.A.)
| |
Collapse
|
13
|
Mandani S, Rezaei B, Ensafi AA, Rezaei P. Ultrasensitive electrochemical molecularly imprinted sensor based on AuE/Ag-MOF@MC for determination of hemoglobin using response surface methodology. Anal Bioanal Chem 2021; 413:4895-4906. [PMID: 34236471 DOI: 10.1007/s00216-021-03453-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/30/2021] [Accepted: 06/02/2021] [Indexed: 10/20/2022]
Abstract
Considering the importance of determining the levels of hemoglobin (Hb) as a vital protein in red blood cells, in this work a highly sensitive electrochemical sensor was developed based on a gold electrode (AuE) modified with Ag metal-organic framework mesoporous carbon (Ag-MOF@MC) and molecularly imprinted polymers (MIPs). To that end, the MIP layer was formed on the Ag-MOF@MC by implanting Hb as the pattern molecule during the polymerization. The modified electrode was designed using electrochemical approaches including differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Using a response level experimental design method, the most important parameters affecting the reaction of the sensing system including pH, incubation time, and scanning rate were optimized. Following the same route, the Hb concentration, pH, temperature, and elution times were optimized to prepare the imprinted polymer layer on the Ag-MOF@MC surface. By exploiting DPV techniques based on the optimal parameters, the electrochemical response of the AuE/Ag-MOF@MC-MIPs for Hb determination was recorded in a wide linear dynamic range (LDR) of 0.2 pM to 1000 nM, with a limit of detection (LOD) of 0.09 pM. Moreover, the Ag-MOF@MC-MIP sensing system showed good stability, high selectivity, and acceptable reproducibility for Hb determination. The sensing system was successfully applied for Hb determination in real blood samples, and the results were compared with those of the standard methods for Hb determination. Acceptable recovery (99.0%) and RDS% (4.6%) confirmed the applicability and reliability of the designed Hb sensing system.
Collapse
Affiliation(s)
- Sudabe Mandani
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Ali Asghar Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Parisa Rezaei
- Department of Medical Laboratory Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81745-33871, Iran
| |
Collapse
|
14
|
Kobayashi K, Kim J, Fukuda Y, Kozawa T, Inoue T. Fields, biochemistry fast autooxidation of a Bis-Histidyl-ligated globin from the anhydrobiotic tardigrade, ramazzottius varieornatus, by molecular oxygen. J Biochem 2021; 169:663-673. [PMID: 33479760 DOI: 10.1093/jb/mvab003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/27/2020] [Indexed: 01/11/2023] Open
Abstract
Tardigrades, a phylum of meiofaunal organisms, exhibit extraordinary tolerance to various environmental conditions, including extreme temperatures (-272 to 151 °C) and exposure to ionizing radiation. Proteins from anhydrobiotic tardigrades with homology to known proteins from other organisms are new potential targets for structural genomics. Recently, we reported spectroscopic and structural characterization of a hexacoordinated hemoglobin (Kumaglobin [Kgb]) found in an anhydrobiotic tardigrade. In the absence of its exogenous ligand, Kgb displays hexacoordination with distal and proximal histidines. In this work, we analyzed binding of the molecular oxygen ligand following reduction of heme in Kgb using a pulse radiolysis technique. Radiolytically generated hydrated electrons (eaq-) reduced the heme iron of Kgb within 20 µs. Subsequently, ferrous heme reacted with O2 to form a ferrous-dioxygen intermediate with a second-order rate constant of 3.0 × 106 M-1 s-1. The intermediate was rapidly (within 0.1 s) autooxidized to the ferric form. Redox potential measurements revealed an E'0 of -400 mV (vs. SHE) in the ferric/ferrous couple. Our results suggest that Kgb may serve as a physiological generator of O2·- via redox signaling and/or electron transfer.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - JeeEun Kim
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Yohta Fukuda
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| |
Collapse
|
15
|
The rise and fall of globins in the amphibia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100759. [PMID: 33202310 DOI: 10.1016/j.cbd.2020.100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022]
Abstract
The globin gene repertoire of gnathostome vertebrates is dictated by differential retention and loss of nine paralogous genes: androglobin, neuroglobin, globin X, cytoglobin, globin Y, myoglobin, globin E, and the α- and β-globins. We report the globin gene repertoire of three orders of modern amphibians: Anura, Caudata, and Gymnophiona. Combining phylogenetic and conserved synteny analysis, we show that myoglobin and globin E were lost only in the Batrachia clade, but retained in Gymnophiona. The major amphibian groups also retained different paralogous copies of globin X. None of the amphibian presented αD-globin gene. Nevertheless, two clades of β-globins are present in all amphibians, indicating that the amphibian ancestor possessed two paralogous proto β-globins. We also show that orthologs of the gene coding for the monomeric hemoglobin found in the heart of Rana catesbeiana are present in Neobatrachia and Pelobatoidea species we analyzed. We suggest that these genes might perform myoglobin- and globin E-related functions. We conclude that the repertoire of globin genes in amphibians is dictated by both retention and loss of the paralogous genes cited above and the rise of a new globin gene through co-option of an α-globin, possibly facilitated by a prior event of transposition.
Collapse
|
16
|
Thuy LTT, Hai H, Kawada N. Role of cytoglobin, a novel radical scavenger, in stellate cell activation and hepatic fibrosis. Clin Mol Hepatol 2020; 26:280-293. [PMID: 32492766 PMCID: PMC7364355 DOI: 10.3350/cmh.2020.0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022] Open
Abstract
Cytoglobin (Cygb), a stellate cell-specific globin, has recently drawn attention due to its association with liver fibrosis. In the livers of both humans and rodents, Cygb is expressed only in stellate cells and can be utilized as a marker to distinguish stellate cells from hepatic fibroblast-derived myofibroblasts. Loss of Cygb accelerates liver fibrosis and cancer development in mouse models of chronic liver injury including diethylnitrosamine-induced hepatocellular carcinoma, bile duct ligation-induced cholestasis, thioacetamide-induced hepatic fibrosis, and choline-deficient L-amino acid-defined diet-induced non-alcoholic steatohepatitis. This review focuses on the history of research into the role of reactive oxygen species and nitrogen species in liver fibrosis and discusses the current perception of Cygb as a novel radical scavenger with an emphasis on its role in hepatic stellate cell activation and fibrosis.
Collapse
Affiliation(s)
- Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hoang Hai
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
17
|
Ferrante C, Batignani G, Pontecorvo E, Montemiglio LC, Vos MH, Scopigno T. Ultrafast Dynamics and Vibrational Relaxation in Six-Coordinate Heme Proteins Revealed by Femtosecond Stimulated Raman Spectroscopy. J Am Chem Soc 2020; 142:2285-2292. [PMID: 31917551 PMCID: PMC7735705 DOI: 10.1021/jacs.9b10560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Identifying
the structural rearrangements during photoinduced reactions is a fundamental
challenge for understanding from a microscopic perspective the dynamics
underlying the functional mechanisms of heme proteins. Here, femtosecond
stimulated Raman spectroscopy is applied to follow the ultrafast evolution
of two different proteins, each bearing a six-coordinate heme with
two amino acid axial ligands. By exploiting the sensitivity of Raman
spectra to the structural configuration, we investigate the effects
of photolysis and the binding of amino acid residues in cytochrome c and neuroglobin. By comparing the system response for
different time delays and Raman pump resonances, we show how detailed
properties of atomic motions and energy redistribution can be unveiled.
In particular, we demonstrate substantially faster energy flow from
the dissociated heme to the protein moiety in cytochrome c, which we assign to the presence of covalent heme–protein
bonds.
Collapse
Affiliation(s)
- Carino Ferrante
- Center for Life Nano Science @Sapienza , Istituto Italiano di Tecnologia , Rome I-00161 , Italy
| | | | | | | | - Marten H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM , Institut Polytechnique de Paris , 91128 Palaiseau , France
| | - Tullio Scopigno
- Center for Life Nano Science @Sapienza , Istituto Italiano di Tecnologia , Rome I-00161 , Italy
| |
Collapse
|
18
|
Hidalgo-Lanussa O, Baez-Jurado E, Echeverria V, Ashraf GM, Sahebkar A, Garcia-Segura LM, Melcangi RC, Barreto GE. Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. J Neuroendocrinol 2020; 32:e12776. [PMID: 31334878 DOI: 10.1111/jne.12776] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
The high concentrations of free fatty acids as a consequence of obesity and being overweight have become risk factors for the development of different diseases, including neurodegenerative ailments. Free fatty acids are strongly related to inflammatory events, causing cellular and tissue alterations in the brain, including cell death, deficits in neurogenesis and gliogenesis, and cognitive decline. It has been reported that people with a high body mass index have a higher risk of suffering from Alzheimer's disease. Hormones such as oestradiol not only have beneficial effects on brain tissue, but also exert some adverse effects on peripheral tissues, including the ovary and breast. For this reason, some studies have evaluated the protective effect of oestrogen receptor (ER) agonists with more specific tissue activities, such as the neuroactive steroid tibolone. Activation of ERs positively affects the expression of pro-survival factors and cell signalling pathways, thus promoting cell survival. This review aims to discuss the relationship between lipotoxicity and the development of neurodegenerative diseases. We also elaborate on the cellular and molecular mechanisms involved in neuroprotection induced by oestrogens.
Collapse
Affiliation(s)
- Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
- Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
19
|
Goh K, Li H, Lam K. Effects of salt- and oxygen-coupled stimuli on the reactive behaviors of hemoglobin-loaded polymeric membranes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Julió Plana L, Nadra AD, Estrin DA, Luque FJ, Capece L. Thermal Stability of Globins: Implications of Flexibility and Heme Coordination Studied by Molecular Dynamics Simulations. J Chem Inf Model 2018; 59:441-452. [PMID: 30516994 DOI: 10.1021/acs.jcim.8b00840] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins are sensitive to temperature, and abrupt changes in the normal temperature conditions can have a profound impact on both structure and function, leading to protein unfolding. However, the adaptation of certain organisms to extreme conditions raises questions about the structural features that permit the structure and function of proteins to be preserved under these adverse conditions. To gain insight into the molecular basis of protein thermostability in the globin family, we have examined three representative examples: human neuroglobin, horse heart myoglobin, and Drosophila hemoglobin, which differ in their melting temperatures and coordination states of the heme iron in the absence of external ligands. In order to elucidate the possible mechanisms that govern the thermostability of these proteins, microsecond-scale classical molecular dynamics simulations were performed at different temperatures. Structural fluctuations and essential dynamics were analyzed, indicating that the flexibility of the CD region, which includes the two short C and D helixes and the connecting CD loop, is directly related to the thermostability. We observed that a larger inherent flexibility of the protein produces higher thermostability, probably concentrating the thermal fluctuations observed at high temperature in flexible regions, preventing unfolding. Globally, the results of this work improve our understanding of thermostability in the globin family.
Collapse
Affiliation(s)
- Laia Julió Plana
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires/Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET) , C1428EGA Buenos Aires , Argentina
| | - Alejandro D Nadra
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires/IQUIBICEN-CONICET , C1428EGA Buenos Aires , Argentina
| | - Dario A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires/Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET) , C1428EGA Buenos Aires , Argentina
| | - F Javier Luque
- Department of Nutrition, Food Sciences and Gastronomy, Faculty of Pharmacy and Food Sciences , University of Barcelona , Campus Torribera , 08921 Santa Coloma de Gramenet , Spain.,Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB) , University of Barcelona , 08028 Barcelona , Spain
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires/Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE-CONICET) , C1428EGA Buenos Aires , Argentina
| |
Collapse
|
21
|
Growth Factors and Neuroglobin in Astrocyte Protection Against Neurodegeneration and Oxidative Stress. Mol Neurobiol 2018; 56:2339-2351. [PMID: 29982985 DOI: 10.1007/s12035-018-1203-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases, such as Parkinson and Alzheimer, are among the main public health issues in the world due to their effects on life quality and high mortality rates. Although neuronal death is the main cause of disruption in the central nervous system (CNS) elicited by these pathologies, other cells such as astrocytes are also affected. There is no treatment for preventing the cellular death during neurodegenerative processes, and current drug therapy is focused on decreasing the associated motor symptoms. For these reasons, it has been necessary to seek new therapeutical procedures, including the use of growth factors to reduce α-synuclein toxicity and misfolding in order to recover neuronal cells and astrocytes. Additionally, it has been shown that some growth factors are able to reduce the overproduction of reactive oxygen species (ROS), which are associated with neuronal death through activation of antioxidative enzymes such as catalase, superoxide dismutase, glutathione peroxidase, and neuroglobin. In the present review, we discuss the use of growth factors such as PDGF-BB, VEGF, BDNF, and the antioxidative enzyme neuroglobin in the protection of astrocytes and neurons during the development of neurodegenerative diseases.
Collapse
|
22
|
Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chemical Biology of H 2S Signaling through Persulfidation. Chem Rev 2018; 118:1253-1337. [PMID: 29112440 PMCID: PMC6029264 DOI: 10.1021/acs.chemrev.7b00205] [Citation(s) in RCA: 656] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
23
|
Neuroglobin boosts axon regeneration during ischemic reperfusion via p38 binding and activation depending on oxygen signal. Cell Death Dis 2018; 9:163. [PMID: 29416029 PMCID: PMC5833339 DOI: 10.1038/s41419-017-0260-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 11/08/2022]
Abstract
Cerebral ischemia causes severe cell death or injury including axon breakdown or retraction in the brain. Axon regeneration is crucial for the functional recovery of injured neurons or brains after ischemia/reperfusion (I/R); however, this process has been proved extremely difficult in adult brains and there is still no effective therapy for it. Here we reported that neuroglobin (Ngb), a novel oxygen-binding or sensor protein existing predominantly in neurons or brains, functions as a driving factor for axon regeneration during I/R. Ngb was upregulated and accumulated in growth cones of ischemic neurons in primary cultures, rat, and human brains, correlating positively to the elevation of axon-regeneration markers GAP43, neurofilament-200, and Tau-1. Ngb overexpression promoted while Ngb knockdown suppressed axon regeneration as well as GAP43 expression in neurons during oxygen-glucose deprivation/reoxygenation (OGD/Re). By using specific pharmacological inhibitors, we identified p38 MAPK as the major downstream player of Ngb-induced axon regeneration during OGD/Re. Mechanistically, Ngb directly bound to and activated p38 in neurons upon OGD/Re. Serial truncation and point mutation of Ngb revealed that the 7-105 aa fragment of Ngb was required and the oxygen-binding site (His64) of Ngb was the major regulatory site for its p38 interaction/activation. Finally, administration of exogenous TAT-Ngb peptides significantly enhanced axon regeneration in cultured neurons upon OGD/Re. Taken together, Ngb promotes axon regeneration via O2-Ngb-p38-GAP43 signaling during I/R. This novel mechanism suggests potential therapeutic applications of Ngb for ischemic stroke and other related axonopathy.
Collapse
|
24
|
Neuroglobin overexpression plays a pivotal role in neuroprotection through mitochondrial raft-like microdomains in neuroblastoma SK-N-BE2 cells. Mol Cell Neurosci 2018; 88:167-176. [PMID: 29378245 DOI: 10.1016/j.mcn.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 01/10/2018] [Accepted: 01/21/2018] [Indexed: 11/23/2022] Open
Abstract
Since stressing conditions induce a relocalization of endogenous human neuroglobin (NGB) to mitochondria, this research is aimed to evaluate the protective role of NGB overexpression against neurotoxic stimuli, through mitochondrial lipid raft-associated complexes. To this purpose, we built a neuronal model of oxidative stress by the use of human dopaminergic neuroblastoma cells, SK-N-BE2, stably overexpressing NGB by transfection and treated with 1-methyl-4-phenylpyridinium ion (MPP+). We preliminary observed the redistribution of NGB to mitochondria following MPP+ treatment. The analysis of mitochondrial raft-like microdomains revealed that, following MPP+ treatment, NGB translocated to raft fractions (Triton X-100-insoluble), where it interacts with ganglioside GD3. Interestingly, the administration of agents capable of perturbating microdomain before MPP+ treatment, significantly affected viability in SK-N-BE2-NGB cells. The overexpression of NGB was able to abrogate the mitochondrial injuries on complex IV activity or mitochondrial morphology induced by MPP+ administration. The protective action of NGB on mitochondria only takes place if the mitochondrial lipid(s) rafts-like microdomains are intact, indeed NGB fails to protect complex IV activity when purified mitochondria were treated with the lipid rafts disruptor methyl-β-cyclodextrin. Thus, our unique in vitro model of stably transfected cells overexpressing endogenous NGB allowed us to suggest that the role in neuroprotection played by NGB is reliable only through interaction with mitochondrial lipid raft-associated complexes.
Collapse
|
25
|
Bellei M, Bortolotti CA, Di Rocco G, Borsari M, Lancellotti L, Ranieri A, Sola M, Battistuzzi G. The influence of the Cys46/Cys55 disulfide bond on the redox and spectroscopic properties of human neuroglobin. J Inorg Biochem 2018; 178:70-86. [DOI: 10.1016/j.jinorgbio.2017.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
|
26
|
Gell DA. Structure and function of haemoglobins. Blood Cells Mol Dis 2017; 70:13-42. [PMID: 29126700 DOI: 10.1016/j.bcmd.2017.10.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Haemoglobin (Hb) is widely known as the iron-containing protein in blood that is essential for O2 transport in mammals. Less widely recognised is that erythrocyte Hb belongs to a large family of Hb proteins with members distributed across all three domains of life-bacteria, archaea and eukaryotes. This review, aimed chiefly at researchers new to the field, attempts a broad overview of the diversity, and common features, in Hb structure and function. Topics include structural and functional classification of Hbs; principles of O2 binding affinity and selectivity between O2/NO/CO and other small ligands; hexacoordinate (containing bis-imidazole coordinated haem) Hbs; bacterial truncated Hbs; flavohaemoglobins; enzymatic reactions of Hbs with bioactive gases, particularly NO, and protection from nitrosative stress; and, sensor Hbs. A final section sketches the evolution of work on the structural basis for allosteric O2 binding by mammalian RBC Hb, including the development of newer kinetic models. Where possible, reference to historical works is included, in order to provide context for current advances in Hb research.
Collapse
Affiliation(s)
- David A Gell
- School of Medicine, University of Tasmania, TAS 7000, Australia.
| |
Collapse
|
27
|
Alekseeva OS, Grigor’ev IP, Korzhevskii DE. Neuroglobin, an oxygen-binding protein in the mammalian nervous system (localization and putative functions). J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s0022093017040019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Zanetti Polzi L, Battistuzzi G, Borsari M, Pignataro M, Paltrinieri L, Daidone I, Bortolotti CA. Computational investigation of the electron transfer complex between neuroglobin and cytochrome c. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1377342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Laura Zanetti Polzi
- Department of Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Gianantonio Battistuzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Borsari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Pignataro
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Licia Paltrinieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Daidone
- Department of Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy
| | | |
Collapse
|
29
|
Takahashi N, Onozuka W, Watanabe S, Wakasugi K. Chimeric ZHHH neuroglobin acts as a cell membrane-penetrating inducer of neurite outgrowth. FEBS Open Bio 2017; 7:1338-1349. [PMID: 28904863 PMCID: PMC5586349 DOI: 10.1002/2211-5463.12271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/01/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Neuroglobin (Ngb) is a heme protein expressed in the vertebrate brain. We previously engineered a chimeric Ngb protein, in which module M1 of human Ngb is replaced by that of zebrafish Ngb, and showed that the chimeric ZHHH Ngb has a cell membrane-penetrating activity similar to that of zebrafish Ngb and also rescues cells from death caused by hypoxia/reoxygenation as does human Ngb. Recently, it was reported that overexpression of mammalian Ngb in neuronal cells induces neurite outgrowth. In this study, we performed neurite outgrowth assays of chimeric Ngb using rat pheochromocytoma PC12 cells. Addition of chimeric Ngb, but not human or zebrafish Ngb, exogenously to the cell medium induces neurite outgrowth. On the other hand, the K7A/K9Q chimeric Ngb double mutant, which cannot translocate into cells, did not induce neurite outgrowth, suggesting that the cell membrane-penetrating activity of the chimeric Ngb is crucial for its neurite outgrowth-promoting activity. We also prepared several site-directed chimeric Ngb mutants and demonstrated that residues crucial for neurite outgrowth-inducing activity of the chimeric Ngb are not exactly the same as those for its neuroprotective activity.
Collapse
Affiliation(s)
- Nozomu Takahashi
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| | - Wataru Onozuka
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| | - Seiji Watanabe
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan.,Present address: Department of Neuroscience and Pathobiology Research Institute of Environmental Medicine Nagoya University Nagoya Aichi Japan
| | - Keisuke Wakasugi
- Department of Life Sciences Graduate School of Arts and Sciences The University of Tokyo Japan
| |
Collapse
|
30
|
Fiocchetti M, Cipolletti M, Brandi V, Polticelli F, Ascenzi P. Neuroglobin and friends. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/05/2017] [Accepted: 06/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
| | | | | | - Fabio Polticelli
- Dipartimento di Scienze; Università Roma Tre; Rome Italy
- Istituto Nazionale di Fisica Nucleare; Sezione dell'Università Roma Tre; Rome Italy
| | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica; Università Roma Tre; Rome Italy
| |
Collapse
|
31
|
Reeder BJ. Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease. Antioxid Redox Signal 2017; 26:763-776. [PMID: 27637274 DOI: 10.1089/ars.2016.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer's. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. CRITICAL ISSUES Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. FUTURE DIRECTIONS Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted. Antioxid. Redox Signal. 26, 763-776.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex , Essex, United Kingdom
| |
Collapse
|
32
|
Computational evidence support the hypothesis of neuroglobin also acting as an electron transfer species. J Biol Inorg Chem 2017; 22:615-623. [DOI: 10.1007/s00775-017-1455-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/28/2017] [Indexed: 12/31/2022]
|
33
|
Calvo-Begueria L, Cuypers B, Van Doorslaer S, Abbruzzetti S, Bruno S, Berghmans H, Dewilde S, Ramos J, Viappiani C, Becana M. Characterization of the Heme Pocket Structure and Ligand Binding Kinetics of Non-symbiotic Hemoglobins from the Model Legume Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2017; 8:407. [PMID: 28421084 PMCID: PMC5378813 DOI: 10.3389/fpls.2017.00407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/09/2017] [Indexed: 05/04/2023]
Abstract
Plant hemoglobins (Hbs) are found in nodules of legumes and actinorhizal plants but also in non-symbiotic organs of monocots and dicots. Non-symbiotic Hbs (nsHbs) have been classified into two phylogenetic groups. Class 1 nsHbs show an extremely high O2 affinity and are induced by hypoxia and nitric oxide (NO), whereas class 2 nsHbs have moderate O2 affinity and are induced by cold and cytokinins. The functions of nsHbs are still unclear, but some of them rely on the capacity of hemes to bind diatomic ligands and catalyze the NO dioxygenase (NOD) reaction (oxyferrous Hb + NO → ferric Hb + nitrate). Moreover, NO may nitrosylate Cys residues of proteins. It is therefore important to determine the ligand binding properties of the hemes and the role of Cys residues. Here, we have addressed these issues with the two class 1 nsHbs (LjGlb1-1 and LjGlb1-2) and the single class 2 nsHb (LjGlb2) of Lotus japonicus, which is a model legume used to facilitate the transfer of genetic and biochemical information into crops. We have employed carbon monoxide (CO) as a model ligand and resonance Raman, laser flash photolysis, and stopped-flow spectroscopies to unveil major differences in the heme environments and ligand binding kinetics of the three proteins, which suggest non-redundant functions. In the deoxyferrous state, LjGlb1-1 is partially hexacoordinate, whereas LjGlb1-2 shows complete hexacoordination (behaving like class 2 nsHbs) and LjGlb2 is mostly pentacoordinate (unlike other class 2 nsHbs). LjGlb1-1 binds CO very strongly by stabilizing it through hydrogen bonding, but LjGlb1-2 and LjGlb2 show lower CO stabilization. The changes in CO stabilization would explain the different affinities of the three proteins for gaseous ligands. These affinities are determined by the dissociation rates and follow the order LjGlb1-1 > LjGlb1-2 > LjGlb2. Mutations LjGlb1-1 C78S and LjGlb1-2 C79S caused important alterations in protein dynamics and stability, indicating a structural role of those Cys residues, whereas mutation LjGlb1-1 C8S had a smaller effect. The three proteins and their mutant derivatives exhibited similarly high rates of NO consumption, which were due to NOD activity of the hemes and not to nitrosylation of Cys residues.
Collapse
Affiliation(s)
- Laura Calvo-Begueria
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Bert Cuypers
- Department of Physics, University of AntwerpAntwerp, Belgium
| | | | - Stefania Abbruzzetti
- Dipartimento di Bioscienze, Università degli Studi di ParmaParma, Italy
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle RicerchePisa, Italy
| | - Stefano Bruno
- Dipartimento di Farmacia, Università degli Studi di ParmaParma, Italy
| | - Herald Berghmans
- Department of Biomedical Sciences, University of AntwerpAntwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of AntwerpAntwerp, Belgium
| | - Javier Ramos
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Cristiano Viappiani
- NEST, Istituto Nanoscienze, Consiglio Nazionale delle RicerchePisa, Italy
- Dipartimento di Fisica e Scienze della Terra, Università degli Studi di ParmaParma, Italy
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| |
Collapse
|
34
|
Ruetz M, Kumutima J, Lewis BE, Filipovic MR, Lehnert N, Stemmler TL, Banerjee R. A distal ligand mutes the interaction of hydrogen sulfide with human neuroglobin. J Biol Chem 2017; 292:6512-6528. [PMID: 28246171 DOI: 10.1074/jbc.m116.770370] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide is a critical signaling molecule, but high concentrations cause cellular toxicity. A four-enzyme pathway in the mitochondrion detoxifies H2S by converting it to thiosulfate and sulfate. Recent studies have shown that globins like hemoglobin and myoglobin can also oxidize H2S to thiosulfate and hydropolysulfides. Neuroglobin, a globin enriched in the brain, was reported to bind H2S tightly and was postulated to play a role in modulating neuronal sensitivity to H2S in conditions such as stroke. However, the H2S reactivity of the coordinately saturated heme in neuroglobin is expected a priori to be substantially lower than that of the 5-coordinate hemes present in myoglobin and hemoglobin. To resolve this discrepancy, we explored the role of the distal histidine residue in muting the reactivity of human neuroglobin toward H2S. Ferric neuroglobin is slowly reduced by H2S and catalyzes its inefficient oxidative conversion to thiosulfate. Mutation of the distal His64 residue to alanine promotes rapid binding of H2S and its efficient conversion to oxidized products. X-ray absorption, EPR, and resonance Raman spectroscopy highlight the chemically different reaction options influenced by the distal histidine ligand. This study provides mechanistic insights into how the distal heme ligand in neuroglobin caps its reactivity toward H2S and identifies by cryo-mass spectrometry a range of sulfide oxidation products with 2-6 catenated sulfur atoms with or without oxygen insertion, which accumulate in the absence of the His64 ligand.
Collapse
Affiliation(s)
| | - Jacques Kumutima
- the Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Brianne E Lewis
- the Department of Pharmaceutical Science, Wayne State University, Detroit, Michigan 48201-2417
| | - Milos R Filipovic
- the University of Bordeaux, IBGC, UMR 5090, F33077 Bordeaux, France, and.,CNRS, Institute of Biochemistry and Cellular Genetics, UMR 5095, F33077 Bordeaux, France
| | - Nicolai Lehnert
- the Departments of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Timothy L Stemmler
- the Department of Pharmaceutical Science, Wayne State University, Detroit, Michigan 48201-2417
| | | |
Collapse
|
35
|
Preimesberger MR, Majumdar A, Lecomte JTJ. Dynamics of Lysine as a Heme Axial Ligand: NMR Analysis of the Chlamydomonas reinhardtii Hemoglobin THB1. Biochemistry 2017; 56:551-569. [DOI: 10.1021/acs.biochem.6b00926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew R. Preimesberger
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular
NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Juliette T. J. Lecomte
- T.
C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
36
|
Ascenzi P, di Masi A, Leboffe L, Fiocchetti M, Nuzzo MT, Brunori M, Marino M. Neuroglobin: From structure to function in health and disease. Mol Aspects Med 2016; 52:1-48. [DOI: 10.1016/j.mam.2016.10.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 01/01/2023]
|
37
|
Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 2016; 433:35-46. [PMID: 27250720 DOI: 10.1016/j.mce.2016.05.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/29/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
Tibolone, a synthetic steroid used for the prevention of osteoporosis and the treatment of climacteric symptoms in post-menopausal women, may exert tissue selective estrogenic actions acting on estrogen receptors (ERs). We previously showed that tibolone protects human T98G astroglial cells against glucose deprivation (GD). In this study we have explored whether the protective effect of tibolone on these cells is mediated by ERs. Experimental studies showed that both ERα and ERβ were involved in the protection by tibolone on GD cells, being ERβ preferentially involved on these actions over ERα. Tibolone increased viability of GD cells by a mechanism fully blocked by an ERβ antagonist and partially blocked by an ERα antagonist. Furthermore, ERβ inhibition prevented the effect of tibolone on nuclear fragmentation, ROS and mitochondrial membrane potential in GD cells. The protective effect of tibolone was mediated by neuroglobin. Tibolone upregulated neuroglobin in T98G cells and primary mouse astrocytes by a mechanism involving ERβ and neuroglobin silencing prevented the protective action of tibolone on GD cells. In summary, tibolone protects T98G cells by a mechanism involving ERβ and the upregulation of neuroglobin.
Collapse
Affiliation(s)
- Marco Avila-Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia; Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad del Tolima, Ibagué, Colombia
| | | | - Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Eliana Baez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, D.C., Colombia; Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile; Universidad Científica del Sur, Lima, Peru.
| |
Collapse
|
38
|
Abstract
If life without heme-Fe were at all possible, it would definitely be different. Indeed this complex and versatile iron-porphyrin macrocycle upon binding to different “globins” yields hemeproteins crucial to sustain a variety of vital functions, generally classified, for convenience, in a limited number of functional families. Over-and-above the array of functions briefly outlined below, the spectacular progress in molecular genetics seen over the last 30 years led to the discovery of many hitherto unknown novel hemeproteins in prokaryotes and eukaryotes. Here, we highlight a few basic aspects of the chemistry of the hemeprotein universe, in particular those that are relevant to the control of heme-Fe reactivity and specialization, as sculpted by a variety of interactions with the protein moiety.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche “Alessandro Rossi Fanelli” and Istituto Pasteur — Fondazione Cenci, Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
39
|
Identification of residues crucial for the interaction between human neuroglobin and the α-subunit of heterotrimeric Gi protein. Sci Rep 2016; 6:24948. [PMID: 27109834 PMCID: PMC4842972 DOI: 10.1038/srep24948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/08/2016] [Indexed: 11/08/2022] Open
Abstract
Mammalian neuroglobin (Ngb) protects neuronal cells under conditions of oxidative stress. We previously showed that human Ngb acts as a guanine nucleotide dissociation inhibitor (GDI) for the α-subunits of heterotrimeric Gi/o proteins and inhibits the decrease in cAMP concentration, leading to protection against cell death. In the present study, we used an eukaryotic expression vector driving high-level expression of human wild-type Ngb or Ngb mutants that either exhibit or lack GDI activities in human cells. We demonstrate that the GDI activity of human Ngb is tightly correlated with its neuroprotective activity. We further demonstrate that Glu53, Glu60, and Glu118 of human Ngb are crucial for both the neuroprotective activity and interaction with Gαi1. Moreover, we show that Lys46, Lys70, Arg208, Lys209, and Lys210 residues of Gαi1 are important for binding to human Ngb. We propose a molecular docking model of the complex between human Ngb and Gαi1.
Collapse
|
40
|
Interaction of apoNeuroglobin with heme–Aβ complexes relevant to Alzheimer’s disease. J Biol Inorg Chem 2015; 20:563-74. [DOI: 10.1007/s00775-015-1241-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/13/2015] [Indexed: 01/09/2023]
|
41
|
Engineered chimeras reveal the structural basis of hexacoordination in globins: A case study of neuroglobin and myoglobin. Biochim Biophys Acta Gen Subj 2015; 1850:169-77. [DOI: 10.1016/j.bbagen.2014.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/12/2014] [Accepted: 10/06/2014] [Indexed: 11/18/2022]
|
42
|
Distal-proximal crosstalk in the heme binding pocket of the NO sensor DNR. Biometals 2014; 27:763-73. [PMID: 25007853 DOI: 10.1007/s10534-014-9770-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/25/2014] [Indexed: 01/10/2023]
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa the denitrification process is triggered by nitric oxide (NO) and plays a crucial role for the survival in chronic infection sites as a microaerobic-anaerobic biofilm. This respiratory pathway is transcriptionally induced by DNR, an heme-based gas sensor which positively responds to NO. Molecular details of the NO sensing mechanism employed by DNR are now emerging: we recently reported an in vitro study which dissected, for the first time, the heme-iron environment and identified one of the heme axial ligand (i.e. His187), found to be crucial to respond to NO. Nevertheless, the identification of the second heme axial ligand has been unsuccessful, given that a peculiar phenomenon of ligand switching around the heme-iron presumably occurs in DNR. The unusual heme binding properties of DNR could be due to the remarkable flexibility in solution of DNR itself, which, in turns, is crucial for the sensing activity; protein flexibility and dynamics indeed represent a common strategy employed by heme-based redox sensors, which present features deeply different from those of "canonical" hemeproteins. The capability of DNR to deeply rearrange around the heme-iron as been here demonstrated by means of spectroscopic characterization of the H167A/H187A DNR double mutant, which shows unusual kinetics of binding of NO and CO. Moreover, we show that the alteration (such as histidines mutations) of the distal side of the heme pocket is perceived by the proximal one, possibly via the DNR protein chain.
Collapse
|
43
|
Van Doorslaer S, Trandafir F, Harmer JR, Moens L, Dewilde S. EPR analysis of cyanide complexes of wild-type human neuroglobin and mutants in comparison to horse heart myoglobin. Biophys Chem 2014; 190-191:8-16. [DOI: 10.1016/j.bpc.2014.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 02/05/2023]
|
44
|
Ascenzi P, Gustincich S, Marino M. Mammalian nerve globins in search of functions. IUBMB Life 2014; 66:268-76. [DOI: 10.1002/iub.1267] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/02/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy; University Roma Tre; Roma Italy
| | | | - Maria Marino
- Department of Science; University Roma Tre; Roma Italy
| |
Collapse
|
45
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
46
|
Di Pietro V, Lazzarino G, Amorini AM, Tavazzi B, D'Urso S, Longo S, Vagnozzi R, Signoretti S, Clementi E, Giardina B, Lazzarino G, Belli A. Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. Free Radic Biol Med 2014; 69:258-64. [PMID: 24491879 DOI: 10.1016/j.freeradbiomed.2014.01.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/07/2014] [Accepted: 01/24/2014] [Indexed: 11/29/2022]
Abstract
Neuroglobin is a neuron-specific hexacoordinated globin capable of binding various ligands, including O2, NO, and CO, the biological function of which is still uncertain. Various studies seem to indicate that neuroglobin is a neuroprotective agent when overexpressed, acting as a potent inhibitor of oxidative and nitrosative stress. In this study, we evaluated the pathophysiological response of the neuroglobin gene and protein expression in the cerebral tissue of rats sustaining traumatic brain injury of differing severity, while simultaneously measuring the oxidant/antioxidant balance. Two levels of trauma (mild and severe) were induced in anesthetized animals using the weight-drop model of diffuse axonal injury. Rats were then sacrificed at 6, 12, 24, 48, and 120 h after traumatic brain injury, and the gene and protein expression of neuroglobin and the concentrations of malondialdehyde (as a parameter representative of reactive oxygen species-mediated damage), nitrite + nitrate (indicative of NO metabolism), ascorbate, and glutathione (GSH) were determined in the brain tissue. Results indicated that mild traumatic brain injury, although causing a reversible increase in oxidative/nitrosative stress (increase in malondialdehyde and nitrite + nitrate) and an imbalance in antioxidants (decrease in ascorbate and GSH), did not induce any change in neuroglobin. Conversely, severe traumatic brain injury caused an over nine- and a fivefold increase in neuroglobin gene and protein expression, respectively, as well as a remarkable increase in oxidative/nitrosative stress and depletion of antioxidants. The results of this study, showing a lack of effect in mild traumatic brain injury as well as asynchronous time course changes in neuroglobin expression, oxidative/nitrosative stress, and antioxidants in severe traumatic brain injury, do not seem to support the role of neuroglobin as an endogenous neuroprotective antioxidant agent, at least under pathophysiological conditions.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | - Angela Maria Amorini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | - Serafina D'Urso
- Department of Biology, Geology, and Environmental Sciences, Division of Biochemistry and Molecular Biology, University of Catania, 95125 Catania, Italy
| | - Salvatore Longo
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | - Roberto Vagnozzi
- Department of Biomedicine and Prevention, Section of Neurosurgery, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Signoretti
- Division of Neurosurgery, Department of Neurosciences, Head and Neck Surgery, S. Camillo Hospital, Rome, Italy
| | - Elisabetta Clementi
- CNR Institute of "Chimica del riconoscimento molecolare," Catholic University of Rome, Rome, Italy
| | - Bruno Giardina
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biology, Geology, and Environmental Sciences, Division of Biochemistry and Molecular Biology, University of Catania, 95125 Catania, Italy.
| | - Antonio Belli
- Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
47
|
Roy J, Sen Santara S, Bose M, Mukherjee S, Saha R, Adak S. The ferrous–dioxy complex of Leishmania major globin coupled heme containing adenylate cyclase: The role of proximal histidine on its stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:615-22. [DOI: 10.1016/j.bbapap.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/16/2022]
|
48
|
Wang R, Halper-Stromberg E, Szymanski-Pierce M, Bassett SS, Avramopoulos D. Genetic determinants of neuroglobin transcription. Neurogenetics 2013; 15:65-75. [PMID: 24362753 DOI: 10.1007/s10048-013-0388-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/06/2013] [Indexed: 11/29/2022]
Abstract
Neuroglobin (NGB) is a neuron-specific vertebrate globin shown to protect against hypoxia, ischemia, oxidative stress and the toxic effects of Amyloid-beta. Following on our and others' results highlighting the importance of NGB expression in disease, we searched for genetic determinants of its expression. We found that a microRNA expressed with the NGB transcript shows significant target enrichments in the angiogenesis pathway and the Alzheimer disease/presenilin pathway. Using reporter constructs we identified potential promoter/enhancer elements between the transcription start site and 1,142 bp upstream. Using 184 post-mortem temporal lobe samples we replicated the reported negative effect of age, and after genotyping tagging SNPs we found one (rs981471) showing a significant correlation with the gene's expression and another (rs8014408) showing an interaction with age, the rare C allele being correlated with higher expression and faster decline. The two SNPs are towards the 3' end of NGB within the same LD block, 52 Kb apart and modestly correlated (r (2) = 0.5). Next generation sequencing of the same 184 temporal lobe samples and 79 confirmed AD patients across the entire gene region (including >12 Kb on the 3' and 5' flank) revealed limited coding variation, suggesting purifying selection of NGB, but did not identify regulatory or disease associated rare variants. A dinucleotide repeat in intron 1 with extensive evidence of functionality showed interesting but inconclusive results, as it was not amenable to further molecular analysis.
Collapse
Affiliation(s)
- R Wang
- Department of Psychiatry, Johns Hopkins University, School of Medicine, 733 North Broadway, MRB-507, Baltimore, MD, 21205, USA
| | | | | | | | | |
Collapse
|
49
|
Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:875-87. [PMID: 24118423 DOI: 10.1111/tpj.12340] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/09/2013] [Accepted: 09/27/2013] [Indexed: 05/09/2023]
Abstract
The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O(2) and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and 'truncated' (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O(2) affinity of Glb1-1 (50 pm) was the highest known for any Hb, and the protein may function as an O(2) scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response.
Collapse
Affiliation(s)
- Martha Sainz
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Li L, Liu QR, Xiong XX, Liu JM, Lai XJ, Cheng C, Pan F, Chen Y, Yu SB, Yu ACH, Chen XQ. Neuroglobin Promotes Neurite Outgrowth via Differential Binding to PTEN and Akt. Mol Neurobiol 2013; 49:149-62. [DOI: 10.1007/s12035-013-8506-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/03/2013] [Indexed: 12/30/2022]
|