1
|
Schauren JDS, de Oliveira AH, Consiglio CR, Monticielo OA, Xavier RM, Nunes NS, Ellwanger JH, Chies JAB. CCR5 promoter region polymorphisms in systemic lupus erythematosus. Int J Immunogenet 2024; 51:20-31. [PMID: 37984413 DOI: 10.1111/iji.12646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
This study investigated the impacts of CCR5 promoter region polymorphisms on the development of systemic lupus erythematosus (SLE) by comparing CCR5 genotypes and haplotypes from SLE patients with ethnically matched controls. A total of 382 SLE patients (289 European-derived and 93 African-derived) and 375 controls (243 European-derived and 132 African-derived) were genotyped for the CCR2-64I G > A (rs1799864), CCR5-59353 C > T (rs1799988), CCR5-59356 C > T (rs41469351), CCR5-59402 A > G (rs1800023) and CCR5-59653 C > T (rs1800024) polymorphisms through polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Previous data from CCR5Δ32 analysis was included in the study to infer the CCR5 haplotypes and as a possible confounding factor in the binary logistic regression. European-derived patients showed a higher frequency of CCR5 wild-type genotype (conversely, a reduced frequency of Δ32 allele) and a reduced frequency of the HHG*2 haplotype compared to controls; both factors significantly affecting disease risk [p = .003 (OR 3.5, 95%CI 1.6-7.5) and 2.0% vs. 7.2% (residual p = 2.9E - 5), respectively]. Additionally, the HHA/HHB, HHC and HHG*2 haplotype frequencies differed between African-derived patients and controls [10% vs. 20.5% (residual p = .003), 29.4% vs. 17.4% (residual p = .003) and 3.9% vs. 0.8% (residual p = .023), respectively]. Considering the clinical manifestations of the disease, the CCR5Δ32 presence was confirmed as a susceptibility factor to class IV nephritis in the African-derived group and when all patients were grouped for comparison [pcorrected = .012 (OR 3.0; 95%CI 3.0-333.3) and pcorrected = .0006 (OR 6.8; 95%CI 1.9-24.8), respectively]. In conclusion, this study indicates that CCR5 promoter polymorphisms are important disease modifiers in SLE. Present data reinforces the CCR5Δ32 polymorphism as a protective factor for the development of the disease in European-derived patients and as a susceptibility factor for class IV nephritis in African-derived patients. Furthermore, we also described a reduced frequency of HHA/HHB and an increased frequency of HHC and HHG*2 haplotypes in African-derived patients, which could modify the CCR5 protein expression in specific cell subsets.
Collapse
Affiliation(s)
- Juliana da Silveira Schauren
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Amanda Henrique de Oliveira
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Rosat Consiglio
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Odirlei André Monticielo
- Division of Rheumatology, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ricardo Machado Xavier
- Division of Rheumatology, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Natália Schneider Nunes
- Postgraduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Lu T, Shi Y, Wang M, Liu W, Cao Y, Shi L, Ma Q, Liu S. CCR5 promoter polymorphisms associated with nonsmall cell lung cancer. Int J Immunogenet 2024; 51:10-19. [PMID: 37962280 DOI: 10.1111/iji.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
C-C chemokine receptor 5 (CCR5) plays a crucial role in the regulation of immune cell activation and migration as well as the progression of many cancers. We performed an in silico analysis using public data resources and found that the lung cancer patients with higher CCR5 expression had a notably better overall survival than those with lower CCR5 expression patients and CCR5 expression level is positive correlated with the infiltration of immune cells, such as B, CD8+ T and CD4+ T cells, in both lung adenocarcinoma and lung squamous cell cancer. In the present study, we investigated the association between the promoter polymorphism of CCR5 and nonsmall cell lung cancer (NSCLC). A case-control study of 449 NSCLC patients and 516 controls of Chinese Han population was conducted, along with polymorphism detection using a sequencing method. A dual-luciferase reporter assay system was used to analyse the transcriptional activity of CCR5 promoter variations. Our results showed that the frequency of rs1799987-AA was significantly higher in the NSCLC group than in the controls in recessive model (p = .007, OR = 1.66 95% confidence interval [CI]: 1.14-2.40, adjusted by sex and age); the G allele showed a significant associated with NSCLC in dominant model (p = .003, OR = 1.64, 95%CI: 1.18-2.28, adjusted by sex and age). Compared with haplotype H1 rs2227010-rs2734648-rs1799987-rs1799988-rs1800023-rs1800024: A-T-G-T-G-C, haplotype H5: A-G-G-T-G-C increased the risk of NSCLC by over 10-fold (p < .0001, OR = 16.09, 95%CI: 5.37-48.20, adjusted by sex and age) and notably depressed the transcriptional activity of the CCR5 promoter in 293T, A549, H1299 and HeLa cells. In conclusion, CCR5 promoter polymorphisms are significantly associated with NSCLC by affecting the transcriptional activity of the CCR5 promoter.
Collapse
Affiliation(s)
- Tianchang Lu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yuhan Shi
- College of Agronomy and Biotechnology of Yunnan Agricultural University, Kunming, China
| | - Minyi Wang
- School of Life Science, Yunnan University, Kunming, China
| | - Weipeng Liu
- Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yang Cao
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Shi
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Qianli Ma
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuyuan Liu
- Department of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| |
Collapse
|
3
|
Ferreira JM, dos Santos BRC, de Moura EL, dos Santos ACM, Vencioneck Dutra JC, Figueiredo EVMDS, de Lima Filho JL. Narrowing the Relationship between Human CCR5 Gene Polymorphisms and Chagas Disease: Systematic Review and Meta-Analysis. Life (Basel) 2023; 13:1677. [PMID: 37629534 PMCID: PMC10455882 DOI: 10.3390/life13081677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Our aim was to carry out a qualitative and quantitative synthesis of the influence of CCR5 genetic variants on Chagas disease (CD) through a systematic review. A total of 1197 articles were analyzed, and eleven were included in the review. A meta-analysis was conducted along with principal component analyses (PCAs). The polymorphisms found were analyzed using the SNP2TFBS tool to identify possible variants that influence the interaction with gene binding sites. Eleven studied variants were identified: rs2856758, rs2734648, rs1799987, rs1799988, rs41469351, rs1800023, rs1800024, Δ32/rs333, rs3176763, rs3087253 and rs11575815. The studies analyzed were published between 2001 and 2019, conducted in Argentina, Brazil, Spain, Colombia and Venezuela, and included Argentine, Brazilian, Colombian, Peruvian and Venezuelan patients. Eight polymorphisms were subjected to the meta-analysis, of which six were associated with the development of the cardiac form of CD: rs1799987-G/G and G/A in the dominance model and G/G in the recessiveness model; rs2856758-A/G in the codominance model; rs2734648-T/T and T/G in the dominance model; rs1799988-T/T in both the codominance and recessiveness models; rs1800023-G allele and the G/G genotype in the codominance and recessiveness models, and the G/G and G/A genotypes in the dominance model; and rs1800024-T allele. The PCA analyses were able to indicate the relationships between the alleles and the genotypes of the polymorphisms. The SNP2TFBS tool identified rs1800023 as an influencer of the Spi1 transcription factor (p < 0.05). A correlation was established between the alleles associated with the cardiac form of CD in this review, members of the C haplotype of the gene (HHC-TGTG), and the cardiac form of CD.
Collapse
Affiliation(s)
- Jean Moisés Ferreira
- Laboratório de Imunopatologia Keizo Asami—LIKA, Centro de Biocièncias, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil
- Secretaria de Estado de Educação do Espírito Santo (SEDU), Santa Lucia, Vitória 29056-085, Espírito Santo, Brazil;
| | - Barbara Rayssa Correia dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Edilson Leite de Moura
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Ana Caroline Melo dos Santos
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - Jean Carlos Vencioneck Dutra
- Secretaria de Estado de Educação do Espírito Santo (SEDU), Santa Lucia, Vitória 29056-085, Espírito Santo, Brazil;
| | - Elaine Virgínia Martins de Sousa Figueiredo
- Laboratório de Biologia Molecular e Expressão Gênica—LABMEG, Departamento de Ciências Biológicas, Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Arapiraca 57300-970, Alagoas, Brazil; (B.R.C.d.S.); (E.L.d.M.); (A.C.M.d.S.); (E.V.M.d.S.F.)
| | - José Luiz de Lima Filho
- Laboratório de Imunopatologia Keizo Asami—LIKA, Centro de Biocièncias, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
4
|
Nyiro B, Amanya SB, Bayiyana A, Wasswa F, Nabulime E, Kayongo A, Nankya I, Mboowa G, Kateete DP, Sande OJ. Reduced CCR5 expression among Uganda HIV controllers. Retrovirology 2023; 20:8. [PMID: 37231494 PMCID: PMC10210444 DOI: 10.1186/s12977-023-00626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Several mechanisms including reduced CCR5 expression, protective HLA, viral restriction factors, broadly neutralizing antibodies, and more efficient T-cell responses, have been reported to account for HIV control among HIV controllers. However, no one mechanism universally accounts for HIV control among all controllers. In this study we determined whether reduced CCR5 expression accounts for HIV control among Ugandan HIV controllers. We determined CCR5 expression among Ugandan HIV controllers compared with treated HIV non-controllers through ex-vivo characterization of CD4 + T cells isolated from archived PBMCs collected from the two distinct groups. RESULTS The percentage of CCR5 + CD4 + T cells was similar between HIV controllers and treated HIV non-controllers (ECs vs. NCs, P = 0.6010; VCs vs. NCs, P = 0.0702) but T cells from controllers had significantly reduced CCR5 expression on their cell surface (ECs vs. NCs, P = 0.0210; VCs vs. NCs, P = 0.0312). Furthermore, we identified rs1799987 SNP among a subset of HIV controllers, a mutation previously reported to reduce CCR5 expression. In stark contrast, we identified the rs41469351 SNP to be common among HIV non-controllers. This SNP has previously been shown to be associated with increased perinatal HIV transmission, vaginal shedding of HIV-infected cells and increased risk of death. CONCLUSION CCR5 has a non-redundant role in HIV control among Ugandan HIV controllers. HIV controllers maintain high CD4 + T cells despite being ART naïve partly because their CD4 + T cells have significantly reduced CCR5 densities.
Collapse
Affiliation(s)
- Brian Nyiro
- New Jersey Medical School, Rutgers University, New Jersey, USA
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Sharon Bright Amanya
- Baylor College of Medicine, Houston, TX, USA
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Alice Bayiyana
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Francis Wasswa
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Eva Nabulime
- Centre for AIDS Research Laboratory, Joint Clinical Research Centre, Wakiso, Uganda
| | - Alex Kayongo
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
- Makerere University Lung Institute, Kampala, Uganda
| | - Immaculate Nankya
- Centre for AIDS Research Laboratory, Joint Clinical Research Centre, Wakiso, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda.
| |
Collapse
|
5
|
Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. Int J Mol Sci 2023; 24:ijms24043149. [PMID: 36834561 PMCID: PMC9958859 DOI: 10.3390/ijms24043149] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Fibrosis and structural remodeling of the lung tissue can significantly impair lung function, often with fatal consequences. The etiology of pulmonary fibrosis (PF) is diverse and includes different triggers such as allergens, chemicals, radiation, and environmental particles. However, the cause of idiopathic PF (IPF), one of the most common forms of PF, remains unknown. Experimental models have been developed to study the mechanisms of PF, and the murine bleomycin (BLM) model has received the most attention. Epithelial injury, inflammation, epithelial-mesenchymal transition (EMT), myofibroblast activation, and repeated tissue injury are important initiators of fibrosis. In this review, we examined the common mechanisms of lung wound-healing responses after BLM-induced lung injury as well as the pathogenesis of the most common PF. A three-stage model of wound repair involving injury, inflammation, and repair is outlined. Dysregulation of one or more of these three phases has been reported in many cases of PF. We reviewed the literature investigating PF pathogenesis, and the role of cytokines, chemokines, growth factors, and matrix feeding in an animal model of BLM-induced PF.
Collapse
|
6
|
Chang XL, Reed JS, Webb GM, Wu HL, Le J, Bateman KB, Greene JM, Pessoa C, Waytashek C, Weber WC, Hwang J, Fischer M, Moats C, Shiel O, Bochart RM, Crank H, Siess D, Giobbi T, Torgerson J, Agnor R, Gao L, Dhody K, Lalezari JP, Bandar IS, Carnate AM, Pang AS, Corley MJ, Kelly S, Pourhassan N, Smedley J, Bimber BN, Hansen SG, Ndhlovu LC, Sacha JB. Suppression of human and simian immunodeficiency virus replication with the CCR5-specific antibody Leronlimab in two species. PLoS Pathog 2022; 18:e1010396. [PMID: 35358290 PMCID: PMC8970399 DOI: 10.1371/journal.ppat.1010396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
The CCR5-specific antibody Leronlimab is being investigated as a novel immunotherapy that can suppress HIV replication with minimal side effects. Here we studied the virological and immunological consequences of Leronlimab in chronically CCR5-tropic HIV-1 infected humans (n = 5) on suppressive antiretroviral therapy (ART) and in ART-naïve acutely CCR5-tropic SHIV infected rhesus macaques (n = 4). All five human participants transitioned from daily combination ART to self-administered weekly subcutaneous (SC) injections of 350 mg or 700 mg Leronlimab and to date all participants have sustained virologic suppression for over seven years. In all participants, Leronlimab fully occupied CCR5 receptors on peripheral blood CD4+ T cells and monocytes. In ART-naïve rhesus macaques acutely infected with CCR5-tropic SHIV, weekly SC injections of 50 mg/kg Leronlimab fully suppressed plasma viremia in half of the macaques. CCR5 receptor occupancy by Leronlimab occurred concomitant with rebound of CD4+ CCR5+ T-cells in peripheral blood, and full CCR5 receptor occupancy was found in multiple anatomical compartments. Our results demonstrate that weekly, self-administered Leronlimab was safe, well-tolerated, and efficacious for long-term virologic suppression and should be included in the arsenal of safe, easily administered, longer-acting antiretroviral treatments for people living with HIV-1. Trial Registration: ClinicalTrials.gov Identifiers: NCT02175680 and NCT02355184.
Collapse
Affiliation(s)
- Xiao L. Chang
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jason S. Reed
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gabriela M. Webb
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Helen L. Wu
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jimmy Le
- Quest Clinical Research, San Francisco, California, United States of America
| | - Katherine B. Bateman
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Justin M. Greene
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Cleiton Pessoa
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Courtney Waytashek
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Whitney C. Weber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Joseph Hwang
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Miranda Fischer
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Cassandra Moats
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Oriene Shiel
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rachele M. Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Hugh Crank
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Don Siess
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Travis Giobbi
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey Torgerson
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Rebecca Agnor
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lina Gao
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kush Dhody
- Amarex Clinical Research LLC, Germantown, Maryland, United States of America
| | - Jacob P. Lalezari
- Quest Clinical Research, San Francisco, California, United States of America
| | - Ivo Sah Bandar
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Alnor M. Carnate
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Alina S. Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Scott Kelly
- CytoDyn Inc., Vancouver, Washington, United States of America
| | | | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Benjamin N. Bimber
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
7
|
Jasinska AJ, Pandrea I, Apetrei C. CCR5 as a Coreceptor for Human Immunodeficiency Virus and Simian Immunodeficiency Viruses: A Prototypic Love-Hate Affair. Front Immunol 2022; 13:835994. [PMID: 35154162 PMCID: PMC8829453 DOI: 10.3389/fimmu.2022.835994] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
CCR5, a chemokine receptor central for orchestrating lymphocyte/cell migration to the sites of inflammation and to the immunosurveillance, is involved in the pathogenesis of a wide spectrum of health conditions, including inflammatory diseases, viral infections, cancers and autoimmune diseases. CCR5 is also the primary coreceptor for the human immunodeficiency viruses (HIVs), supporting its entry into CD4+ T lymphocytes upon transmission and in the early stages of infection in humans. A natural loss-of-function mutation CCR5-Δ32, preventing the mutated protein expression on the cell surface, renders homozygous carriers of the null allele resistant to HIV-1 infection. This phenomenon was leveraged in the development of therapies and cure strategies for AIDS. Meanwhile, over 40 African nonhuman primate species are long-term hosts of simian immunodeficiency virus (SIV), an ancestral family of viruses that give rise to the pandemic CCR5 (R5)-tropic HIV-1. Many natural hosts typically do not progress to immunodeficiency upon the SIV infection. They have developed various strategies to minimize the SIV-related pathogenesis and disease progression, including an array of mechanisms employing modulation of the CCR5 receptor activity: (i) deletion mutations abrogating the CCR5 surface expression and conferring resistance to infection in null homozygotes; (ii) downregulation of CCR5 expression on CD4+ T cells, particularly memory cells and cells at the mucosal sites, preventing SIV from infecting and killing cells important for the maintenance of immune homeostasis, (iii) delayed onset of CCR5 expression on the CD4+ T cells during ontogenetic development that protects the offspring from vertical transmission of the virus. These host adaptations, aimed at lowering the availability of target CCR5+ CD4+ T cells through CCR5 downregulation, were countered by SIV, which evolved to alter the entry coreceptor usage toward infecting different CD4+ T-cell subpopulations that support viral replication yet without disruption of host immune homeostasis. These natural strategies against SIV/HIV-1 infection, involving control of CCR5 function, inspired therapeutic approaches against HIV-1 disease, employing CCR5 coreceptor blocking as well as gene editing and silencing of CCR5. Given the pleiotropic role of CCR5 in health beyond immune disease, the precision as well as costs and benefits of such interventions needs to be carefully considered.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Eye on Primates, Los Angeles, CA, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Claireaux M, Robinot R, Kervevan J, Patgaonkar M, Staropoli I, Brelot A, Nouël A, Gellenoncourt S, Tang X, Héry M, Volant S, Perthame E, Avettand-Fenoël V, Buchrieser J, Cokelaer T, Bouchier C, Ma L, Boufassa F, Hendou S, Libri V, Hasan M, Zucman D, de Truchis P, Schwartz O, Lambotte O, Chakrabarti LA. Low CCR5 expression protects HIV-specific CD4+ T cells of elite controllers from viral entry. Nat Commun 2022; 13:521. [PMID: 35082297 PMCID: PMC8792008 DOI: 10.1038/s41467-022-28130-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
HIV elite controllers maintain a population of CD4 + T cells endowed with high avidity for Gag antigens and potent effector functions. How these HIV-specific cells avoid infection and depletion upon encounter with the virus remains incompletely understood. Ex vivo characterization of single Gag-specific CD4 + T cells reveals an advanced Th1 differentiation pattern in controllers, except for the CCR5 marker, which is downregulated compared to specific cells of treated patients. Accordingly, controller specific CD4 + T cells show decreased susceptibility to CCR5-dependent HIV entry. Two controllers carried biallelic mutations impairing CCR5 surface expression, indicating that in rare cases CCR5 downregulation can have a direct genetic cause. Increased expression of β-chemokine ligands upon high-avidity antigen/TCR interactions contributes to autocrine CCR5 downregulation in controllers without CCR5 mutations. These findings suggest that genetic and functional regulation of the primary HIV coreceptor CCR5 play a key role in promoting natural HIV control.
Collapse
Affiliation(s)
- Mathieu Claireaux
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Rémy Robinot
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Jérôme Kervevan
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Mandar Patgaonkar
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Anne Brelot
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Alexandre Nouël
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Stacy Gellenoncourt
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Xian Tang
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Mélanie Héry
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université de Paris, Paris, France
| | - Emeline Perthame
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université de Paris, Paris, France
| | - Véronique Avettand-Fenoël
- AP-HP Hôpital Necker-Enfants Malades, Laboratoire de Microbiologie clinique, Paris, France.,CNRS 8104, INSERM U1016, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Julian Buchrieser
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Thomas Cokelaer
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université de Paris, Paris, France.,Biomics Platform, C2RT, Institut Pasteur, Université de Paris, Paris, France
| | - Christiane Bouchier
- Biomics Platform, C2RT, Institut Pasteur, Université de Paris, Paris, France
| | - Laurence Ma
- Biomics Platform, C2RT, Institut Pasteur, Université de Paris, Paris, France
| | - Faroudy Boufassa
- INSERM U1018, Center for Research in Epidemiology and Population Health (CESP), Le Kremlin-Bicêtre, France
| | - Samia Hendou
- INSERM U1018, Center for Research in Epidemiology and Population Health (CESP), Le Kremlin-Bicêtre, France
| | - Valentina Libri
- Cytometry and Biomarkers (CB UTechS), Translational Research Center, Institut Pasteur, Université de Paris, Paris, France
| | - Milena Hasan
- Cytometry and Biomarkers (CB UTechS), Translational Research Center, Institut Pasteur, Université de Paris, Paris, France
| | | | - Pierre de Truchis
- AP-HP, Infectious and Tropical Diseases Department, Raymond Poincaré Hospital, Garches, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France.,CNRS UMR3569, Paris, France
| | - Olivier Lambotte
- INSERM U1184, Université Paris Sud, CEA, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France.,AP-HP, Department of Internal Medicine and Clinical Immunology, University Hospital Paris Sud, Le Kremlin-Bicêtre, France
| | - Lisa A Chakrabarti
- Virus and Immunity Unit, Institut Pasteur, Université de Paris, Paris, France. .,CNRS UMR3569, Paris, France.
| |
Collapse
|
9
|
Functional Implications of Intergenic GWAS SNPs in Immune-Related LncRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1363:147-160. [DOI: 10.1007/978-3-030-92034-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Liu S, Liu N, Wang H, Zhang X, Yao Y, Zhang S, Shi L. CCR5 Promoter Polymorphisms Associated With Pulmonary Tuberculosis in a Chinese Han Population. Front Immunol 2021; 11:544548. [PMID: 33679683 PMCID: PMC7935552 DOI: 10.3389/fimmu.2020.544548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Background Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is a major public health concern. Chemokines and their receptors, such as RANTES, CXCR3, and CCR5, have been reported to play important roles in cell activation and migration in immune responses against TB infection. Methods To understand the correlations involving CCR5 gene variations, M. tuberculosis infection, and TB disease progression, a case-control study comprising 450 patients with TB and 306 healthy controls from a Chinese Han population was conducted, along with the detection of polymorphisms in the CCR5 promoter using a sequencing method. Results After adjustment for age and gender, the results of logistic analysis indicated that the frequency of rs2734648-G was significantly higher in the TB patient group (P = 0.002, OR = 1.38, 95% CI: 1.123-1.696); meanwhile, rs2734648-GG showed notable susceptibility to TB (P = 6.32E-06, OR = 2.173, 95% CI: 1.546-3.056 in a recessive model). The genotypic frequency of rs1799987 also varied between the TB and control groups (P = 0.008). In stratified analysis, rs2734648-GG significantly increased susceptibility to pulmonary TB in a recessive model (P < 0.0001, OR = 2.382, 95% CI: 1.663-3.413), and the rs2734648-G allele significantly increased susceptibility to TB recurrence in a dominant model (P = 0.0032, OR = 1.936, 95% CI: 1.221-3.068), whereas rs1799987-AA was associated with susceptibility to pulmonary TB (P = 0.0078, OR = 1.678, 95% CI: 1.141-2.495 in a recessive model) but not with extra-pulmonary TB and TB recurrence. A haplotype constructed with the major alleles of the eight SNPs in the CCR5 promoter (rs2227010-rs2856758-rs2734648-rs1799987-rs1799988-rs41469351-rs1800023-rs1800024: A-A-G-G-T-C-G-C) exhibited extraordinarily increased risk of susceptibility to TB and pulmonary TB (P = 6.33E-11, OR = 24.887, 95% CI: 6.081-101.841). Conclusion In conclusion, CCR5 promoter polymorphisms were found to be associated with pulmonary TB and TB progression in Chinese Han people.
Collapse
Affiliation(s)
- Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Nannan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Hui Wang
- The Third People's Hospital of Kunming, Kunming, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, China
| | | | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, China
| |
Collapse
|
11
|
Mehlotra RK. Chemokine receptor gene polymorphisms and COVID-19: Could knowledge gained from HIV/AIDS be important? INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104512. [PMID: 32858232 PMCID: PMC7448762 DOI: 10.1016/j.meegid.2020.104512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Emerging results indicate that an uncontrolled host immune response, leading to a life-threatening condition called cytokine release syndrome (also termed "cytokine storm"), is the major driver of pathology in severe COVID-19. In this pandemic, considerable effort is being focused on identifying host genomic factors that increase susceptibility or resistance to the complications of COVID-19 and translating these findings to improved patient care. In this regard, the chemokine receptor-ligand nexus has been reported as potentially important in severe COVID-19 disease pathogenesis and its treatment. Valuable genomic insights into the chemokine receptor-ligand nexus have been gained from HIV infection and disease progression studies. Applying that knowledge, together with newly discovered potential host genomic factors associated with COVID-19, may lead to a more comprehensive understanding of the pathogenesis and treatment outcomes in COVID-19 patients.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH 44106, USA,Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA,Corresponding author at: Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Mehlotra RK. New Knowledge About CCR5, HIV Infection, and Disease Progression: Is "Old" Still Valuable? AIDS Res Hum Retroviruses 2020; 36:795-799. [PMID: 32615790 DOI: 10.1089/aid.2020.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
C-C chemokine receptor (CCR) 5 (CCR5) is the main HIV-1 coreceptor involved in virus entry and cell-to-cell spread during acute and chronic infections: such CCR5 and T cell tropic viruses are adapted to and replicate in CD4+ memory T cells. Polymorphisms in CCR5 regulate CCR5 expression, which, in turn, influences HIV infection acquisition and subsequent disease progression. Among these polymorphisms, a 32-bp deletion in the CCR5 open reading frame (CCR5 Δ32) and a single nucleotide polymorphism (SNP) in the promoter (-2459G/A) are the most well-characterized polymorphisms. CCR5 Δ32 provides partial to full protection against HIV infection and, therefore, serves as a basis for gene deletion studies attempting to achieve a permanent HIV cure. Recent studies have discovered that certain SNPs in the CCR region, not within CCR5, also affect CCR5 expression, HIV infection, and disease progression. Although these studies provide further valuable information regarding the role of human genetic variation in HIV/AIDS, they did not incorporate -2459G/A. In this article, the author summarizes the knowledge gained through the discovery of these new SNPs and introduces the idea that by not incorporating -2459G/A, less comprehensive conclusions may have been reached. Until a strategy that delivers a cure to the millions is found, every piece of information that may help curtail the HIV/AIDS threat to public health should be considered useful.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
13
|
Ellwanger JH, Kaminski VDL, Rodrigues AG, Kulmann-Leal B, Chies JAB. CCR5 and CCR5Δ32 in bacterial and parasitic infections: Thinking chemokine receptors outside the HIV box. Int J Immunogenet 2020; 47:261-285. [PMID: 32212259 DOI: 10.1111/iji.12485] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The CCR5 molecule was reported in 1996 as the main HIV-1 co-receptor. In that same year, the CCR5Δ32 genetic variant was described as a strong protective factor against HIV-1 infection. These findings led to extensive research regarding the CCR5, culminating in critical scientific advances, such as the development of CCR5 inhibitors for the treatment of HIV infection. Recently, the research landscape surrounding CCR5 has begun to change. Different research groups have realized that, since CCR5 has such important effects in the chemokine system, it could also affect other different physiological systems. Therefore, the effect of reduced CCR5 expression due to the presence of the CCR5Δ32 variant began to be further studied. Several studies have investigated the role of CCR5 and the impacts of CCR5Δ32 on autoimmune and inflammatory diseases, various types of cancer, and viral diseases. However, the role of CCR5 in diseases caused by bacteria and parasites is still poorly understood. Therefore, the aim of this article is to review the role of CCR5 and the effects of CCR5Δ32 on bacterial (brucellosis, osteomyelitis, pneumonia, tuberculosis and infection by Chlamydia trachomatis) and parasitic infections (toxoplasmosis, leishmaniasis, Chagas disease and schistosomiasis). Basic information about each of these infections was also addressed. The neglected role of CCR5 in fungal disease and emerging studies regarding the action of CCR5 on regulatory T cells are briefly covered in this review. Considering the "renaissance of CCR5 research," this article is useful for updating researchers who develop studies involving CCR5 and CCR5Δ32 in different infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
14
|
Mehlotra RK. Human Genetic Variation and HIV/AIDS in Papua New Guinea: Time to Connect the Dots. Curr HIV/AIDS Rep 2019; 15:431-440. [PMID: 30218255 DOI: 10.1007/s11904-018-0417-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Human genetic polymorphisms known to influence HIV acquisition and disease progression occur in Papua New Guinea (PNG). However, no genetic association study has been reported so far. In this article, we review research findings, with a view to stimulate genotype-to-phenotype research. RECENT FINDINGS PNG, a country in Oceania, has a high prevalence of HIV and many sexually transmitted infections. While limited data is available from this country regarding the distribution of human genetic polymorphisms known to influence clinical outcomes of HIV/AIDS, genetic association studies are lacking. Our studies, in the past decade, have revealed that polymorphisms in chemokine receptor-ligand (CCR2-CCR5, CXCL12), innate immune (Toll-like receptor, β-defensin), and antiretroviral drug-metabolism enzyme (CYP2B6, UGT2B7) genes are prevalent in PNG. Although our results need to be validated in further studies, it is urgent to pursue large-scale, comprehensive genetic association studies that include these as well as additional genetic polymorphisms.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Biomedical Research Building, #409A, 2109 Adelbert Rd., Cleveland, OH, 44106, USA.
| |
Collapse
|
15
|
Kulkarni S, Lied A, Kulkarni V, Rucevic M, Martin MP, Walker-Sperling V, Anderson SK, Ewy R, Singh S, Nguyen H, McLaren PJ, Viard M, Naranbhai V, Zou C, Lin Z, Gatanaga H, Oka S, Takiguchi M, Thio CL, Margolick J, Kirk GD, Goedert JJ, Hoots WK, Deeks SG, Haas DW, Michael N, Walker B, Le Gall S, Chowdhury FZ, Yu XG, Carrington M. CCR5AS lncRNA variation differentially regulates CCR5, influencing HIV disease outcome. Nat Immunol 2019; 20:824-834. [PMID: 31209403 PMCID: PMC6584055 DOI: 10.1038/s41590-019-0406-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Multiple genome-wide studies have identified associations between outcome of human immunodeficiency virus (HIV) infection and polymorphisms in and around the gene encoding the HIV co-receptor CCR5, but the functional basis for the strongest of these associations, rs1015164A/G, is unknown. We found that rs1015164 marks variation in an activating transcription factor 1 binding site that controls expression of the antisense long noncoding RNA (lncRNA) CCR5AS. Knockdown or enhancement of CCR5AS expression resulted in a corresponding change in CCR5 expression on CD4+ T cells. CCR5AS interfered with interactions between the RNA-binding protein Raly and the CCR5 3' untranslated region, protecting CCR5 messenger RNA from Raly-mediated degradation. Reduction in CCR5 expression through inhibition of CCR5AS diminished infection of CD4+ T cells with CCR5-tropic HIV in vitro. These data represent a rare determination of the functional importance of a genome-wide disease association where expression of a lncRNA affects HIV infection and disease progression.
Collapse
Affiliation(s)
- Smita Kulkarni
- Texas Biomedical Research Institute, San Antonio, TX, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
| | - Alexandra Lied
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Viraj Kulkarni
- Texas Biomedical Research Institute, San Antonio, TX, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Marijana Rucevic
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Olink Proteomic, Watertown, MA, USA
| | - Maureen P Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Victoria Walker-Sperling
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Stephen K Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rodger Ewy
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Hoang Nguyen
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Paul J McLaren
- J.C. Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vivek Naranbhai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Chengcheng Zou
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Zhansong Lin
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Chloe L Thio
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Margolick
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - James J Goedert
- Epidemiology and Biostatistics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - W Keith Hoots
- Division of Blood Diseases and Resources, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven G Deeks
- San Francisco General Hospital Medical Center, San Francisco, CA, USA
| | - David W Haas
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Nelson Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Bruce Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sylvie Le Gall
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Fatema Z Chowdhury
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Xu G Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
16
|
CCR5 Promoter Polymorphism -2459G > A: Forgotten or Ignored? Cells 2019; 8:cells8070651. [PMID: 31261839 PMCID: PMC6678430 DOI: 10.3390/cells8070651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
C-C chemokine receptor 5 (CCR5) polymorphisms, particularly a 32-base pair deletion (∆32) in the open reading frame and −2459G > A in the promoter, are well known for their associations with HIV-1 infection and/or disease progression in a variety of studies. In this era of an HIV cure, where all the emphasis is on ∆32, it seems that −2459G > A has been forgotten or ignored. There is significant importance in the incorporation of the CCR5 −2459G > A genotype information into studies evaluating new immunologic and chemotherapeutic strategies, and those designing and implementing better treatment strategies with current antiretroviral therapy, doing so would enable a better understanding of the response to the intervention, due to a mechanistic or constitutive explanation. Until we find a strategy, whether a stem-cell transplantation or CCR5 editing approach or something else, that delivers a cure to the millions, we should make use of every piece of information that may help curtail HIV/AIDS as a threat to public health.
Collapse
|
17
|
Liu S, Chen J, Yan Z, Dai S, Li C, Yao Y, Shi L. Polymorphisms in the CCR5 promoter associated with cervical intraepithelial neoplasia in a Chinese Han population. BMC Cancer 2019; 19:525. [PMID: 31151412 PMCID: PMC6544959 DOI: 10.1186/s12885-019-5738-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
Background C-C chemokine receptor 5 (CCR5) has attracted wide concern for its critical role in the progression of human immunodeficiency virus type 1 (HIV-1) infection. Several studies have demonstrated that CCR5 affects the processes of tumor cell migration, invasion, and metastasis. The aim of this study was to illustrate the association between the polymorphisms of the CCR5 promoter and the development of cervical cancer. Methods 336 women with cervical intraepithelial neoplasia (CIN), 488 women with cervical cancer (CC), and 682 healthy controls were recruited to detect polymorphisms in the CCR5 promoter using a sequencing method. Results Six loci with polymorphism were found in the CCR5 promoter; the frequencies of the minor alleles of rs1799987 was significantly higher in the CIN group than that in the control group (P = 0.007); and the genotypic frequencies of rs2734648, rs1799987, rs1799988 and rs1800023 were significantly different between the CIN group and the control group (P < 0.008). The inheritance model analysis showed that rs2734648, rs1799987, rs1799988 and rs1800023 significantly increased the susceptibility to CIN in a recessive genetic model (P < 0.008). The haplotype constructed by the major alleles of these 6 SNPs (rs2227010-rs1799987-rs1799988-rs2734648-rs1800023-rs1800024: A-G-A-C-A-T) was highly protective against CIN (OR = 0.731, 95%CI: 0.603–0.886, P = 5.68E-03). In addition, transcription prediction showed that mutation of these 6 SNPs might alternate the binding of particular transcription factors. Conclusion The CCR5 promoter polymorphisms were significantly associated with cervical intraepithelial neoplasia by altering the expression of CCR5 on the cell surface in a Chinese Han population.
Collapse
Affiliation(s)
- Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, Yunnan, China
| | - Jun Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, Yunnan, China
| | - Zhiling Yan
- The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Shuying Dai
- School of Basic Medical Science, Kunming Medical University, Kunming, 650500, China.,School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, Yunnan, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, Yunnan, China.
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, Yunnan, China.
| |
Collapse
|
18
|
Koor GW, Paximadis M, Picton ACP, Karatas F, Loubser SA, He W, Ahuja SK, Chaisson RE, Martinson N, Ebrahim O, Tiemessen CT. Cis-regulatory genetic variants in the CCR5 gene and natural HIV-1 control in black South Africans. Clin Immunol 2019; 205:16-24. [PMID: 31100442 DOI: 10.1016/j.clim.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/24/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Studies have investigated CCR5 haplotypes (HHA, HHB, HHC, HHD, HHE, HHF*1, HHF*2, HHG*1, HHG*2), defined by seven 5'UTR single nucleotide polymorphisms (SNPs), CCR2-V64I and CCR5Δ32, in HIV-1 disease. CCR5 cis-regulatory regions were sequenced, CCR2-V64I and CCR5Δ32 genotyped, and compared in HIV-1-infected black South Africans: 71 HIV-1 controllers (23 elite controllers, 37 viraemic controllers (VCs), 11 high viral load long-term non-progressors) and 74 progressors. The HHE haplotype and 3'UTR +2919 T > G SNP heterozygosity were underrepresented in total controllers and VCs vs. progressors (p = .004; p = .007 and p = .002, pbonferroni = 0.032; p = .004, respectively). Possession of the +2919 T > G SNP (dominant mode) was associated with HIV-1 progression (controllers vs. progressors: p = .001, pbonferroni = 0.016). The +2919 T > G SNP is in linkage disequilibrium (LD; r2 = 0.73) with two 5'UTR SNPs (-2459G > A and -2135 T > C; r2 = 1: 5'UTR-2SNP-hap). The 5'UTR-2SNP-hap was lower in total controllers and VCs vs. progressors (p = .003, pbonferroni = 0.048; p = .01, respectively). Results suggest -2459G > A, -2135 T > C, and + 2919 T > G as key CCR5 variants in HIV-1 control.
Collapse
Affiliation(s)
- Gemma W Koor
- Centre for HIV & STIs, National Institute for Communicable Diseases, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Paximadis
- Centre for HIV & STIs, National Institute for Communicable Diseases, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Anabela C P Picton
- Centre for HIV & STIs, National Institute for Communicable Diseases, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Fidan Karatas
- Centre for HIV & STIs, National Institute for Communicable Diseases, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shayne A Loubser
- Centre for HIV & STIs, National Institute for Communicable Diseases, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Weijing He
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, TX, United States of America; Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America; Department of Medicine, University of Texas Health Science Center, San Antonio, TX, United States of America
| | - Sunil K Ahuja
- Veterans Administration Research Center for AIDS and HIV-1 Infection, South Texas Veterans Health Care System, San Antonio, TX, United States of America; Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, United States of America; Department of Medicine, University of Texas Health Science Center, San Antonio, TX, United States of America; Department of Microbiology, University of Texas Health Science Center, San Antonio, TX, United States of America
| | - Richard E Chaisson
- Johns Hopkins University Center for AIDS Research, Baltimore, MD, United States of America
| | - Neil Martinson
- Perinatal HIV Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council Soweto Matlosana Centre for HIV/AIDS and TB Research, Johannesburg, South Africa
| | - Osman Ebrahim
- School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- Centre for HIV & STIs, National Institute for Communicable Diseases, South Africa; School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
19
|
Association study between CCR2-CCR5 genes polymorphisms and chronic Chagas heart disease in Wichi and in admixed populations from Argentina. PLoS Negl Trop Dis 2019; 13:e0007033. [PMID: 30650073 PMCID: PMC6334923 DOI: 10.1371/journal.pntd.0007033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/28/2018] [Indexed: 01/02/2023] Open
Abstract
Several studies have proposed different genetic markers of susceptibility to develop chronic Chagas cardiomyopathy (CCC). Many genes may be involved, each one making a small contribution. For this reason, an appropriate approach for this problematic is to study a large number of single nucleotide polymorphisms (SNPs) in individuals sharing a genetic background. Our aim was to analyze two CCR2 and seven CCR5 SNPs and their association to CCC in Argentina. A case-control study was carried out in 480 T. cruzi seropositive adults from Argentinean Gran Chaco endemic region (Wichi and Creole) and patients from Buenos Aires health centres. They were classified according to the Consensus on Chagas-Mazza Disease as non-demonstrated (non-DC group) or demonstrated (DC group) cardiomyopathy, i.e. asymptomatic or with CCC patients, respectively. Since, after allelic analysis, 2 out of 9 studied SNPs did not fit Hardy–Weinberg equilibrium in the unaffected non-DC group from Wichi patients, we analyzed them as a separate population. Only rs1800024T and rs41469351T in CCR5 gene showed significant differences within non-Wichi population (Creole + patients from Buenos Aires centres), being the former associated to protection, and the latter to risk of CCC. No evidence of association was observed between any of the analyzed CCR2-CCR5 gene polymorphisms and the development of CCC; however, the HHE haplotype was associated with protection in Wichi population. Our findings support the hypothesis that CCR2-CCR5 genes and their haplotypes are associated with CCC; however, depending on the population studied, different associations can be found. Therefore, the evolutionary context, in which the genes or haplotypes are associated with diseases, acquires special relevance. Chagas disease caused by the infection with the protozoan Trypanosoma cruzi is endemic in Latin America. In Argentina, it is estimated 1.5 million patients have Chagas disease and 2.2 million people in risk of T. cruzi infection. The endemic area covers the north of the country where the conditions, such as high levels of poverty and social exclusion and low population density, mostly rural, favor T. cruzi infection. Most affected people remains asymptomatic after infection for the rest of their lives, but around one third of infected people may develop clinical symptoms of visceral damage. Chronic Chagas Cardiomyopathy (CCC), the most frequent and severe consequence of the chronic infection by T. cruzi, is manifested predominately as an arrhythmogenic cardiomyopathy. The pathogenesis of CCC is not completely understood, but it is believed that the human genetic variation may be a determinant factor of disease progression. We studied in Wichi and in admixed populations from Argentina the CCR2-CCR5 genes, two CC chemokine receptors involved in the trafficking of several immune cells and in the pathogenesis of cardiovascular diseases. Our results showed that CCR2-CCR5 genes are associated with CCC and highlight the relevance of the evolutionary context in which disease-associated genes are found.
Collapse
|
20
|
Intragenus (Homo) variation in a chemokine receptor gene (CCR5). PLoS One 2018; 13:e0204989. [PMID: 30278065 PMCID: PMC6168169 DOI: 10.1371/journal.pone.0204989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have a comparatively higher rate of more polymorphisms in regulatory regions of the primate CCR5 gene, an immune system gene with both general and specific functions. This has been interpreted as allowing flexibility and diversity of gene expression in response to varying disease loads. A broad expression repertoire is useful to humans-the only globally distributed primate-due to our unique adaptive pattern that increased pathogen exposure and disease loads (e.g., sedentism, subsistence practices). The main objective of the study was to determine if the previously observed human pattern of increased variation extended to other members of our genus, Homo. The data for this study are mined from the published genomes of extinct hominins (four Neandertals and two Denisovans), an ancient human (Ust'-Ishim), and modern humans (1000 Genomes). An average of 15 polymorphisms per individual were found in human populations (with a total of 262 polymorphisms). There were 94 polymorphisms identified across extinct Homo (an average of 13 per individual) with 41 previously observed in modern humans and 53 novel polymorphisms (32 in Denisova and 21 in Neandertal). Neither the frequency nor distribution of polymorphisms across gene regions exhibit significant differences within the genus Homo. Thus, humans are not unique with regards to the increased frequency of regulatory polymorphisms and the evolution of variation patterns across CCR5 gene appears to have originated within the genus. A broader evolutionary perspective on regulatory flexibility may be that it provided an advantage during the transition to confrontational foraging (and later hunting) that altered human-environment interaction as well as during migration to Eurasia and encounters with novel pathogens.
Collapse
|
21
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
22
|
Haplotypes in CCR5-CCR2, CCL3 and CCL5 are associated with natural resistance to HIV-1 infection in a Colombian cohort. BIOMEDICA 2017; 37:267-273. [PMID: 28527291 DOI: 10.7705/biomedica.v37i3.3237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 09/13/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Variants in genes encoding for HIV-1 co-receptors and their natural ligands have been individually associated to natural resistance to HIV-1 infection. However, the simultaneous presence of these variants has been poorly studied. OBJECTIVE To evaluate the association of single and multilocus haplotypes in genes coding for the viral co-receptors CCR5 and CCR2, and their ligands CCL3 and CCL5, with resistance or susceptibility to HIV-1 infection. MATERIALS AND METHODS Nine variants in CCR5-CCR2, two SNPs in CCL3 and two in CCL5 were genotyped by PCR-RFLP in 35 seropositive (cases) and 49 HIV-1-exposed seronegative Colombian individuals (controls). Haplotypes were inferred using the Arlequin software, and their frequency in individual or combined loci was compared between cases and controls by the chi-square test. A p' value ;0.05 after Bonferroni correction was considered significant. RESULTS Homozygosis of the human haplogroup (HH) E was absent in controls and frequent in cases, showing a tendency to susceptibility. The haplotypes C-C and T-T in CCL3 were associated with susceptibility (p'=0.016) and resistance (p';0.0001) to HIV-1 infection, respectively. Finally, in multilocus analysis, the haplotype combinations formed by HHC in CCR5-CCR2, T-T in CCL3 and G-C in CCL5 were associated with resistance (p'=0.006). CONCLUSION Our results suggest that specific combinations of variants in genes from the same signaling pathway can define an HIV-1 resistant phenotype. Despite our small sample size, our statistically significant associations suggest strong effects; however, these results should be further validated in larger cohorts.
Collapse
|
23
|
Jaumdally SZ, Picton A, Tiemessen CT, Paximadis M, Jaspan HB, Gamieldien H, Masson L, Coetzee D, Williamson AL, Little F, Gumbi PP, Passmore JAS. CCR5 expression, haplotype and immune activation in protection from infection in HIV-exposed uninfected individuals in HIV-serodiscordant relationships. Immunology 2017; 151:464-473. [PMID: 28398593 DOI: 10.1111/imm.12743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/16/2017] [Accepted: 03/24/2017] [Indexed: 12/01/2022] Open
Abstract
Several host factors have been implicated in resistance to HIV infection in individuals who remain HIV-seronegative despite exposure. In a cohort of HIV-serodiscordant heterosexual couples, we investigated interactions between systemic inflammation and T-cell activation in resistance to HIV infection. Males and females in stable long-term relationships with either HIV-infected or uninfected partners were recruited, blood T-cell activation (CD38, HLA-DR, CCR5 and Ki67) and plasma cytokine concentrations were evaluated. The HIV-negative exposed individuals had significantly lower frequencies of CCR5+ CD4+ and CD8+ T cells than unexposed individuals. Mean fluorescence intensity of CCR5 expression on CD4+ T cells was significantly lower in HIV-negative exposed than unexposed individuals. Protective CCR5 haplotypes (HHA/HHF*2, HHF*2/HHF*2, HHC/HHF*2, HHA/HHA, HHA/HHC and HHA/HHD) tended to be over-represented in exposed compared with unexposed individuals (38% versus 28%, P = 0·58) whereas deleterious genotypes (HHC/HHD, HHC/HHE, HHD/HHE, HHD/HHD and HHE/HHE) were under-represented (26% versus 44%; P = 0·16). Plasma concentrations of interleukin-2 (P = 0·02), interferon-γ (P = 0·05) and granulocyte-macrophage colony-stimulating factor (P = 0·006) were lower in exposed compared with unexposed individuals. Activation marker expression and systemic cytokine concentrations were not influenced by gender. We conclude that the dominant signature of resistance to HIV infection in this cohort of exposed but uninfected individuals was lower T-cell CCR5 expression and plasma cytokine concentrations.
Collapse
Affiliation(s)
- Shameem Z Jaumdally
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - Anabela Picton
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather B Jaspan
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hoyam Gamieldien
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Lindi Masson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - David Coetzee
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Pamela P Gumbi
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa
| | - Jo-Ann S Passmore
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,NRF-DST Centre of Excellence in HIV Prevention, CAPRISA, Durban, South Africa.,National Health Laboratory Service, Cape Town, South Africa
| |
Collapse
|
24
|
CCR5 promoter activity correlates with HIV disease progression by regulating CCR5 cell surface expression and CD4 T cell apoptosis. Sci Rep 2017; 7:232. [PMID: 28331180 PMCID: PMC5427887 DOI: 10.1038/s41598-017-00192-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/14/2017] [Indexed: 11/23/2022] Open
Abstract
CCR5 is the major co-receptor for HIV and polymorphisms in the CCR5 gene as well as promoter region that alter cell surface expression have been associated with disease progression. We determined the relationship between CCR5 promoter polymorphisms and CD4 decline and other immunopathological features like immune activation and CD4+ T cell apoptosis in HIV patients. CCR5 promoter haplotype HHC was significantly associated with higher CD4 counts in patients. The relative promoter activity (RPA) of each haplotype was determined in vitro and combined promoter activity based on both alleles (CRPA) was assigned to each patients. Interestingly, CCR5 CRPA correlated inversely with CD4 counts and CD4:CD8 ratio specifically in viremic patients. In normal individuals, the CRPA correlated with the number of CCR5+ CD4+ T cells in the peripheral blood suggesting an effect on CCR5 expression. In a subset of high viremic patients harboring R5 tropic HIV, there was a strong correlation between CCR5 CRPA and both CD4 counts and CD4 T cell apoptosis. Our study demonstrates that, CCR5 promoter polymorphisms correlate with CD4 T cell loss possibly by regulating CD4 T cell apoptosis in HIV patients. Furthermore, assigning CRPAs to each patient is a new method of translating genotype to phenotype.
Collapse
|
25
|
Mehlotra RK, Hall NB, Bruse SE, John B, Zikursh MJB, Stein CM, Siba PM, Zimmerman PA. CCR2, CCR5, and CXCL12 variation and HIV/AIDS in Papua New Guinea. INFECTION GENETICS AND EVOLUTION 2015; 36:165-173. [PMID: 26397046 DOI: 10.1016/j.meegid.2015.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/28/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Polymorphisms in chemokine receptors, serving as HIV co-receptors, and their ligands are among the well-known host genetic factors associated with susceptibility to HIV infection and/or disease progression. Papua New Guinea (PNG) has one of the highest adult HIV prevalences in the Asia-Pacific region. However, information regarding the distribution of polymorphisms in chemokine receptor (CCR5, CCR2) and chemokine (CXCL12) genes in PNG is very limited. In this study, we genotyped a total of nine CCR2-CCR5 polymorphisms, including CCR2 190G >A, CCR5 -2459G >A and Δ32, and CXCL12 801G >A in PNG (n=258), North America (n=184), and five countries in West Africa (n=178). Using this data, we determined previously characterized CCR5 haplotypes. In addition, based on the previously reported associations of CCR2 190, CCR5 -2459, CCR5 open reading frame, and CXCL12 801 genotypes with HIV acquisition and/or disease progression, we calculated composite full risk scores, considering both protective as well as susceptibility effects of the CXCL12 801 AA genotype. We observed a very high frequency of the CCR5 -2459A allele (0.98) in the PNG population, which together with the absence of Δ32 resulted in a very high frequency of the HHE haplotype (0.92). These frequencies were significantly higher than in any other population (all P-values<0.001). Regardless of whether we considered the CXCL12 801 AA genotype protective or susceptible, the risk scores were significantly higher in the PNG population compared with any other population (all P-values<0.001). The results of this study provide new insights regarding CCR5 variation in the PNG population, and suggest that the collective variation in CCR2, CCR5, and CXCL12 may increase the risk of HIV/AIDS in a large majority of Papua New Guineans.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Noemi B Hall
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Shannon E Bruse
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Bangan John
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Melinda J Blood Zikursh
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Catherine M Stein
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA.,Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province, Papua New Guinea
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
26
|
Epigenetic mechanisms, T-cell activation, and CCR5 genetics interact to regulate T-cell expression of CCR5, the major HIV-1 coreceptor. Proc Natl Acad Sci U S A 2015; 112:E4762-71. [PMID: 26307764 DOI: 10.1073/pnas.1423228112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
T-cell expression levels of CC chemokine receptor 5 (CCR5) are a critical determinant of HIV/AIDS susceptibility, and manifest wide variations (i) between T-cell subsets and among individuals and (ii) in T-cell activation-induced increases in expression levels. We demonstrate that a unifying mechanism for this variation is differences in constitutive and T-cell activation-induced DNA methylation status of CCR5 cis-regulatory regions (cis-regions). Commencing at an evolutionarily conserved CpG (CpG -41), CCR5 cis-regions manifest lower vs. higher methylation in T cells with higher vs. lower CCR5 levels (memory vs. naïve T cells) and in memory T cells with higher vs. lower CCR5 levels. HIV-related and in vitro induced T-cell activation is associated with demethylation of these cis-regions. CCR5 haplotypes associated with increased vs. decreased gene/surface expression levels and HIV/AIDS susceptibility magnify vs. dampen T-cell activation-associated demethylation. Methylation status of CCR5 intron 2 explains a larger proportion of the variation in CCR5 levels than genotype or T-cell activation. The ancestral, protective CCR5-HHA haplotype bears a polymorphism at CpG -41 that is (i) specific to southern Africa, (ii) abrogates binding of the transcription factor CREB1 to this cis-region, and (iii) exhibits a trend for overrepresentation in persons with reduced susceptibility to HIV and disease progression. Genotypes lacking the CCR5-Δ32 mutation but with hypermethylated cis-regions have CCR5 levels similar to genotypes heterozygous for CCR5-Δ32. In HIV-infected individuals, CCR5 cis-regions remain demethylated, despite restoration of CD4+ counts (≥800 cells per mm(3)) with antiretroviral therapy. Thus, methylation content of CCR5 cis-regions is a central epigenetic determinant of T-cell CCR5 levels, and possibly HIV-related outcomes.
Collapse
|
27
|
Gupta A, Padh H. Analysis of CCR5 and SDF-1 genetic variants and HIV infection in Indian population. Int J Immunogenet 2015; 42:270-8. [PMID: 26096543 DOI: 10.1111/iji.12215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 12/01/2022]
Abstract
HIV-1 infection and progression exhibits interindividual variation. The polymorphism in the chemokine receptors CCR5 and CXCR4, the principal coreceptors for HIV-1 and their ligands like SDF-1 have a profound effect in altering the HIV-1 disease progression rate. A single nucleotide polymorphism designated SDF1-3'UTR-801G-A has been associated with resistance to HIV-1 infection or delayed progression to AIDS. In this study, the SDF1-3'A polymorphism, CCR5∆32 polymorphism and CCR5 promoter polymorphism at positions 58934 G/T, 59029 G/A, 59353 T/C, 59356 C/T, 59402 A/G and 59653 C/T were analysed in Indian population. The polymorphisms in HIV-1 patients and healthy individuals were evaluated by conventional PCR, RFLP-PCR and direct sequencing techniques. The CCR5∆32 mutant allele was found to be almost absent in Indian population. The analysis of the CCR5-59356C/T polymorphism revealed a trend towards an association of the C allele with an increased risk of HIV-1 infection. The frequency of allele CCR5-59356C was higher in HIV-1 patients (100%) as compared to healthy control subjects (89%, P = 0.003). The correlation of SDF1-3'A and CCR5 promoter CCR5-58934G/T, CCR5-59029G/A, CCR5-59353T/C, CCR5-59402 A/G and CCR5-59653C/T polymorphisms and protection to HIV-1 infection and progression to AIDS was found to be nonsignificant. Nine haplotypes with more than 1% frequency were detected but were not significant in their protective role against HIV. Comparative analysis with global populations showed a noteworthy difference in CCR5 and SDF-1 polymorphisms' frequency distribution, indicating the ethnic variability of Indians. Although susceptibility to infections cannot be completely dependent on one or few genetic variants, it is important to remember that SDF-1 and CCR5 variants have been correlated globally with HIV-1 infection and disease progression. In the light of that, higher frequency of SDF-1 variants in the Indian population is noteworthy.
Collapse
Affiliation(s)
- A Gupta
- Department of Cell and Molecular Biology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| | - Harish Padh
- Department of Cell and Molecular Biology, B.V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| |
Collapse
|
28
|
Association between HIV-1 tropism and CCR5 human haplotype E in a Caucasian population. J Acquir Immune Defic Syndr 2014; 66:239-44. [PMID: 24508837 DOI: 10.1097/qai.0000000000000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The influence of the diversity of CCR5 on HIV susceptibility and disease progression has been clearly demonstrated but how the variability of this gene influences the HIV tropism is poorly understood. We investigated whether CCR5 haplotypes are associated with HIV tropism in a Caucasian population. METHODS We evaluated 161 HIV-positive subjects in a cross-sectional study. CCR5 haplotypes were derived after genotyping 9 CCR2-CCR5 polymorphisms. The HIV subtype was determined by phylogenetic analysis using the maximum likelihood method and viral tropism by the genotypic tropism assay (geno2pheno). Associations between CCR5 haplotypes and viral tropism were determined using logistic regression analyses. Samples from 500 blood donors were used to evaluate the representativeness of HIV-positives in terms of CCR5 haplotype distribution. RESULTS The distribution of CCR5 haplotypes was similar in HIV-positive subjects and blood donors. The majority of viruses (93.8%) belonged to HIV-1 CRF06_cpx; 7.5% were X4, and the remaining were R5 tropic. X4 tropic viruses were over represented among people with CCR5 human haplotype E (HHE) compared with those without this haplotype (13.0% vs 1.4%; P = 0.006). People possessing CCR5 HHE had 11 times increased odds (odds ratio = 11.00; 95% confidence interval: 1.38 to 87.38) of having X4 tropic viruses than those with non-HHE. After adjusting for antiretroviral (ARV) therapy, neither the presence of HHE nor the use of ARV was associated with X4 tropic viruses. CONCLUSIONS Our results suggest that CCR5 HHE and ARV treatment might be associated with the presence of HIV-1 X4 tropic viruses.
Collapse
|
29
|
Machuca MA, Suárez EU, Echeverría LE, Martín J, González CI. SNP/haplotype associations of CCR2 and CCR5 genes with severity of chagasic cardiomyopathy. Hum Immunol 2014; 75:1210-5. [DOI: 10.1016/j.humimm.2014.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 10/24/2022]
|
30
|
Host genetic factors associated with symptomatic primary HIV infection and disease progression among Argentinean seroconverters. PLoS One 2014; 9:e113146. [PMID: 25406087 PMCID: PMC4236131 DOI: 10.1371/journal.pone.0113146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/20/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Variants in HIV-coreceptor C-C chemokine receptor type 5 (CCR5) and Human leukocyte antigen (HLA) genes are the most important host genetic factors associated with HIV infection and disease progression. Our aim was to analyze the association of these genetic factors in the presence of clinical symptoms during Primary HIV Infection (PHI) and disease progression within the first year. METHODS Seventy subjects diagnosed during PHI were studied (55 symptomatic and 15 asymptomatic). Viral load (VL) and CD4 T-cell count were evaluated. HIV progression was defined by presence of B or C events and/or CD4 T-cell counts <350 cell/mm3. CCR5 haplotypes were characterized by polymerase chain reaction and SDM-PCR-RFLP. HLA-I characterization was performed by Sequencing. RESULTS Symptoms during PHI were significantly associated with lower frequency of CCR5-CF1 (1.8% vs. 26.7%, p = 0.006). Rapid progression was significantly associated with higher frequency of CCR5-CF2 (16.7% vs. 0%, p = 0.024) and HLA-A*11 (16.7% vs. 1.2%, p = 0.003) and lower frequency of HLA-C*3 (2.8% vs. 17.5%, p = 0.035). Higher baseline VL was significantly associated with presence of HLA-A*11, HLA-A*24, and absence of HLA-A*31 and HLA-B*57. Higher 6-month VL was significantly associated with presence of CCR5-HHE, HLA-A*24, HLA-B*53, and absence of HLA-A*31 and CCR5-CF1. Lower baseline CD4 T-cell count was significantly associated with presence of HLA-A*24/*33, HLA-B*53, CCR5-CF2 and absence of HLA-A*01/*23 and CCR5-HHA. Lower 6-month CD4 T-cell count was associated with presence of HLA-A*24 and HLA-B*53, and absence of HLA-A*01 and HLA-B*07/*39. Moreover, lower 12-month CD4 T-cell count was significantly associated with presence of HLA-A*33, HLA-B*14, HLA-C*08, CCR5-CF2, and absence of HLA-B*07 and HLA-C*07. CONCLUSION Several host factors were significantly associated with disease progression in PHI subjects. Most results agree with previous studies performed in other groups. However, some genetic factor associations are being described for the first time, highlighting the importance of genetic studies at a local level.
Collapse
|
31
|
Oliveira AP, Bernardo CR, Camargo AV, Villafanha DF, Cavasini CE, Brandão de Mattos CC, de Godoy MF, Bestetti RB, de Mattos LC. CCR5 chemokine receptor gene variants in chronic Chagas' disease. Int J Cardiol 2014; 176:520-2. [DOI: 10.1016/j.ijcard.2014.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/05/2014] [Indexed: 11/28/2022]
|
32
|
Mboowa G. Genetics of Sub-Saharan African Human Population: Implications for HIV/AIDS, Tuberculosis, and Malaria. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:108291. [PMID: 25202468 PMCID: PMC4151494 DOI: 10.1155/2014/108291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/09/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022]
Abstract
Sub-Saharan Africa has continued leading in prevalence and incidence of major infectious disease killers such as HIV/AIDS, tuberculosis, and malaria. Epidemiological triad of infectious diseases includes susceptible host, pathogen, and environment. It is imperative that all aspects of vertices of the infectious disease triad are analysed to better understand why this is so. Studies done to address this intriguing reality though have mainly addressed pathogen and environmental components of the triad. Africa is the most genetically diverse region of the world as well as being the origin of modern humans. Malaria is relatively an ancient infection in this region as compared to TB and HIV/AIDS; from the evolutionary perspective, we would draw lessons that this ancestrally unique population now under three important infectious diseases both ancient and exotic will be skewed into increased genetic diversity; moreover, other evolutionary forces are also still at play. Host genetic diversity resulting from many years of malaria infection has been well documented in this population; we are yet to account for genetic diversity from the trio of these infections. Effect of host genetics on treatment outcome has been documented. Host genetics of sub-Saharan African population and its implication to infectious diseases are an important aspect that this review seeks to address.
Collapse
Affiliation(s)
- Gerald Mboowa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- School of Allied Health Sciences, International Health Sciences University, P.O. Box 7782, Kampala, Uganda
| |
Collapse
|
33
|
Targeting CCR5 for anti-HIV research. Eur J Clin Microbiol Infect Dis 2014; 33:1881-7. [PMID: 25027072 DOI: 10.1007/s10096-014-2173-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Highly active antiretroviral therapy (HAART) is the only approach for human immunodeficiency virus (HIV) infection treatment at present. Although HAART is effective in controlling the progression of infection, it is impossible to eradicate the virus from patients. The patients have to live with the virus. Alternative ways for the cure of HIV infection have been investigated. As the major co-receptor for HIV-1 infection, C-C motif chemokine receptor 5 (CCR5) is naturally an ideal target for anti-HIV research. The first CCR5 antagonist, maraviroc, has been approved for the treatment of HIV infection. Several other CCR5 antagonists are in clinical trials. CCR5 delta32 is a natural genotype, conferring resistance to CCR5 using HIV-1 strains. Gene therapy research targeting this mutant has been conducted for HIV infection treatment. A Berlin patient has been cured of HIV infection by the transplantation of stem cells from a CCR5 delta32 genotype donor. The infusion of an engineered zinc finger nuclease (ZFN)-modified autologous cluster of differentiation 4 (CD4) T cells has been proved to be a promising direction recently. In this study, the anti-HIV research targeting CCR5 is summarized, including CCR5 antagonist development, stem cell transplantation, and gene therapy.
Collapse
|
34
|
Al-Mahruqi SH, Zadjali F, Beja-Pereira A, Koh CY, Balkhair A, Al-Jabri AA. Genetic diversity and prevalence of CCR2-CCR5 gene polymorphisms in the Omani population. Genet Mol Biol 2014; 37:7-14. [PMID: 24688285 PMCID: PMC3958329 DOI: 10.1590/s1415-47572014000100004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/11/2013] [Indexed: 11/22/2022] Open
Abstract
Polymorphisms in the regulatory region of the CCR5 gene affect protein expression and modulate the progress of HIV-1 disease. Because of this prominent role, variations in this gene have been under differential pressure and their frequencies vary among human populations. The CCR2V64I mutation is tightly linked to certain polymorphisms in the CCR5 gene. The current Omani population is genetically diverse, a reflection of their history as traders who ruled extensive regions around the Indian Ocean. In this study, we examined the CCR2-CCR5 haplotypes in Omanis and compared the patterns of genetic diversity with those of other populations. Blood samples were collected from 115 Omani adults and genomic DNA was screened to identify the polymorphic sites in the CCR5 gene and the CCR2V64I mutation. Four minor alleles were common: CCR5-2554T and CCR5-2086G showed frequencies of 49% and 46%, respectively, whereas CCR5-2459A and CCR5-2135C both had a frequency of 36%. These alleles showed moderate levels of heterozygosity, indicating that they were under balancing selection. However, the well-known allele CCR5Δ32 was relatively rare. Eleven haplotypes were identified, four of which were common: HHC (46%), HHE (20%), HHA (14%) and HHF*2 (12%).
Collapse
Affiliation(s)
- Samira H Al-Mahruqi
- Division of Immunology, Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Fahad Zadjali
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Albano Beja-Pereira
- Center for Research in Biodiversity and Genetic Resources & Department of Biology, Faculty of Sciences, Universidade do Porto, Portugal
| | - Crystal Y Koh
- Division of Immunology, Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Abdullah Balkhair
- Infectious Diseases Unit, Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ali A Al-Jabri
- Division of Immunology, Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
35
|
Carpenter D, Taype C, Goulding J, Levin M, Eley B, Anderson S, Shaw MA, Armour JAL. CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis. BMC MEDICAL GENETICS 2014; 15:5. [PMID: 24405814 PMCID: PMC3897992 DOI: 10.1186/1471-2350-15-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/19/2013] [Indexed: 11/10/2022]
Abstract
Background Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB. Methods and results Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0–6 copies per diploid genome (pdg) in Peru, between 0–12 pdg in !Xhosa samples and between 0–10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48). Conclusions The case–control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations.
Collapse
Affiliation(s)
- Danielle Carpenter
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zapata W, Aguilar-Jiménez W, Pineda-Trujillo N, Rojas W, Estrada H, Rugeles MT. Influence of CCR5 and CCR2 genetic variants in the resistance/susceptibility to HIV in serodiscordant couples from Colombia. AIDS Res Hum Retroviruses 2013; 29:1594-603. [PMID: 24098976 DOI: 10.1089/aid.2012.0299] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The main genetic factor related to HIV-1 resistance is the CCR5-Δ32 mutation; however, the homozygous genotype is uncommon. The CCR5-Δ32 mutation along with single nucleotide polymorphisms (SNPs) in the CCR5 promoter and the CCR2-V64I mutation have been included in seven human haplogroups (HH) previously associated with resistance/susceptibility to HIV-1 infection and different rates of AIDS progression. Here, we determined the association of the CCR5 promoter SNPs, the CCR5-Δ32 mutation, CCR2-V64I SNP, and HH frequencies with resistance/susceptibility to HIV-1 infection in a cohort of HIV-1-serodiscordant couples from Colombia. Seventy HIV-1-exposed, but seronegative (HESN) individuals, 57 seropositives (SP), and 112 healthy controls (HC) were included. The CCR5-Δ32 mutation and CCR2-V64I SNP were identified by PCR, and the CCR5 promoter SNPs were evaluated by sequencing. None of the individuals exhibited a homozygous Δ32 genotype; the CCR2-I allele was more frequent in HESN (34%) than HC (23%) (p=0.039, OR=1.672). The frequency of the 29G allele was higher in SP than HC (p=0.003, OR=3). HHF2 showed a higher frequency in HC (19%) than SP (9%) (p=0.027), while HHG1 was more frequent in SP (11.1%) than in HC (4.2%) (p=0.019). The AGACCAC-CCR2-I-CCR5 wild-type haplotype showed a higher frequency in SP (14.2%) than in HC (3.7%) (p=0.001). In conclusion, the CCR5-Δ32 allele is not responsible for HIV-1 resistance in this HESN group; however, the CCR2-I allele could be protective, while the 29G allele might increase the likelihood of acquiring HIV-1 infection. HHG1 and the AGACCAC-CCR2-I-CCR5 wild-type haplotype might promote HIV-1 infection while HHF2 might be related to resistance. However, additional studies are required to evaluate the implications of these findings.
Collapse
Affiliation(s)
- Wildeman Zapata
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Winston Rojas
- Genética Molecular (GENMOL), Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | - María T. Rugeles
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
37
|
Al-Mahruqi SH, Zadjali F, Koh CY, Balkhair A, Said EA, Al-Balushi MS, Hasson SS, Al-Jabri AA. New genetic variants in the CCR5 gene and the distribution of known polymorphisms in Omani population. Int J Immunogenet 2013; 41:20-8. [DOI: 10.1111/iji.12081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/12/2013] [Accepted: 07/15/2013] [Indexed: 12/17/2022]
Affiliation(s)
- S. H. Al-Mahruqi
- Division of Immunology; Department of Microbiology and Immunology; College of Medicine and Health Sciences; Sultan Qaboos University; Muscat Oman
| | - F. Zadjali
- Department of Biochemistry; College of Medicine and Health Sciences; Sultan Qaboos University; Muscat Oman
| | - C. Y. Koh
- Division of Immunology; Department of Microbiology and Immunology; College of Medicine and Health Sciences; Sultan Qaboos University; Muscat Oman
| | - A. Balkhair
- Infectious Diseases Unit; Department of Medicine; Sultan Qaboos University Hospital; Muscat Oman
| | - E. A. Said
- Division of Immunology; Department of Microbiology and Immunology; College of Medicine and Health Sciences; Sultan Qaboos University; Muscat Oman
| | - M. S. Al-Balushi
- Division of Immunology; Department of Microbiology and Immunology; College of Medicine and Health Sciences; Sultan Qaboos University; Muscat Oman
| | - S. S. Hasson
- Division of Immunology; Department of Microbiology and Immunology; College of Medicine and Health Sciences; Sultan Qaboos University; Muscat Oman
| | - A. A. Al-Jabri
- Division of Immunology; Department of Microbiology and Immunology; College of Medicine and Health Sciences; Sultan Qaboos University; Muscat Oman
| |
Collapse
|
38
|
Huik K, Avi R, Carrillo A, Harper N, Pauskar M, Sadam M, Karki T, Krispin T, Kongo UK, Jermilova T, Rüütel K, Talu A, Abel-Ollo K, Uusküla A, Ahuja SK, He W, Lutsar I. CCR5 haplotypes influence HCV serostatus in Caucasian intravenous drug users. PLoS One 2013; 8:e70561. [PMID: 23936229 PMCID: PMC3723663 DOI: 10.1371/journal.pone.0070561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 06/23/2013] [Indexed: 01/28/2023] Open
Abstract
Background Up to 90% HIV-1 positive intravenous drug users (IDUs) are co-infected with HCV. Although best recognized for its function as a major co-receptor for cell entry of HIV, CC chemokine receptor 5 (CCR5) has also been implicated in the pathogenesis of HCV infection. Here, we investigated whether CCR5 haplotypes influence HIV-1 and HCV seropositivity among 373 Caucasian IDUs from Estonia. Methods Of these IDUs, 56% and 44% were HIV and HCV seropositive, respectively, and 47% were coinfected. 500 blood donors seronegative for HIV and HCV were also evaluated. CCR5 haplotypes (HHA to HHG*2) were derived after genotyping nine CCR2–CCR5 polymorphisms. The association between CCR5 haplotypes with HIV and/or HCV seropositivity was determined using logistic regression analysis. Co-variates included in the models were length of intravenous drug use, HBV serostatus and copy number of CCL3L1, the gene encoding the most potent HIV-suppressive chemokine and ligand for CCR5. Results Compared to IDUs seronegative for both HCV and HIV (HCV−/HIV-), IDUs who were HCV+/HIV- and HCV+/HIV+were 92% and 82%, respectively, less likely to possess the CCR5-HHG*1 haplotype, after controlling for co-variates (Padjusted = 1.89×10−4 and 0.003, respectively). This association was mostly due to subjects bearing the CCR5 HHE and HHG*1 haplotype pairs. Approximately 25% and<10% of HCV−/HIV- IDUs and HCV−/HIV- blood donors, respectively, possessed the HHE/HHG*1 genotype. Conclusions Our findings suggest that HHG*1-bearing CCR5 genotypes influence HCV seropositivity in a group of Caucasian IDUs.
Collapse
MESH Headings
- Adult
- Chemokines, CC/blood
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Coinfection
- Estonia/epidemiology
- Female
- Gene Expression
- HIV Seropositivity/epidemiology
- HIV Seropositivity/ethnology
- HIV Seropositivity/genetics
- HIV Seropositivity/virology
- HIV-1/isolation & purification
- Haplotypes
- Hepacivirus/isolation & purification
- Hepatitis C, Chronic/ethnology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/virology
- Humans
- Male
- Prevalence
- Receptors, CCR5/blood
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Substance Abuse, Intravenous/ethnology
- Substance Abuse, Intravenous/genetics
- Substance Abuse, Intravenous/immunology
- Substance Abuse, Intravenous/virology
- White People
Collapse
Affiliation(s)
- Kristi Huik
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Radko Avi
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Andrew Carrillo
- Veterans Administration Research Center for AIDS and HIV-1 Infection, and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Departments of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Nathan Harper
- Veterans Administration Research Center for AIDS and HIV-1 Infection, and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Departments of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Merit Pauskar
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Maarja Sadam
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Tõnis Karki
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Tõnu Krispin
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Ulvi-Kaire Kongo
- Immunoheamatology Reference Laboratory, North Estonia Medical Centre Foundation, Tallinn, Estonia
| | | | - Kristi Rüütel
- National Institute for Health Development, Tallinn, Estonia
| | - Ave Talu
- National Institute for Health Development, Tallinn, Estonia
| | | | - Anneli Uusküla
- Department of Public Health, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Sunil K. Ahuja
- Veterans Administration Research Center for AIDS and HIV-1 Infection, and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Departments of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Weijing He
- Veterans Administration Research Center for AIDS and HIV-1 Infection, and Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
- Departments of Medicine, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail: (WH); (IL)
| | - Irja Lutsar
- Department of Microbiology, Faculty of Medicine, University of Tartu, Tartu, Estonia
- * E-mail: (WH); (IL)
| |
Collapse
|
39
|
Mukai H, Wada Y, Watanabe Y. The synthesis of 64Cu-chelated porphyrin photosensitizers and their tumor-targeting peptide conjugates for the evaluation of target cell uptake and PET image-based pharmacokinetics of targeted photodynamic therapy agents. Ann Nucl Med 2013; 27:625-39. [DOI: 10.1007/s12149-013-0728-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
|
40
|
Genetic and Epigenetic Regulation of CCR5 Transcription. BIOLOGY 2012; 1:869-79. [PMID: 24832521 PMCID: PMC4009821 DOI: 10.3390/biology1030869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 12/21/2022]
Abstract
The chemokine receptor CCR5 regulates trafficking of immune cells of the lymphoid and the myeloid lineage (such as monocytes, macrophages and immature dendritic cells) and microglia. Because of this, there is an increasing recognition of the important role of CCR5 in the pathology of (neuro-) inflammatory diseases such as atherosclerosis and multiple sclerosis. Expression of CCR5 is under the control of a complexly organized promoter region upstream of the gene. The transcription factor cAMP-responsive element binding protein 1 (CREB-1) transactivates the CCR5 P1 promoter. The cell-specific expression of CCR5 however is realized by using various epigenetic marks providing a multivalent chromatin state particularly in monocytes. Here we discuss the transcriptional regulation of CCR5 with a focus on the epigenetic peculiarities of CCR5 transcription.
Collapse
|
41
|
Lu J, Sheng A, Wang Y, Zhang L, Wu J, Song M, He Y, Yu X, Zhao F, Liu Y, Shao S, Lan J, Wu H, Wang W. The genetic associations and epistatic effects of the CCR5 promoter and CCR2-V64I polymorphisms on susceptibility to HIV-1 infection in a Northern Han Chinese population. Genet Test Mol Biomarkers 2012; 16:1369-75. [PMID: 23057571 DOI: 10.1089/gtmb.2012.0235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The outcome of human immunodeficiency virus (HIV)-1 infection and course to AIDS are variable among individuals. Both chemokine receptor 5 (CCR5) and CCR2 gene polymorphisms play essential roles in the susceptibility of HIV-1 infection. To investigate the main and epistatic effects of the CCR5 promoter and CCR2-V64I polymorphisms on HIV-1 infection in the Northern Han Chinese, subjects of 91 HIV-1-infected patients and 91 health controls were recruited. Single-nucleotide polymorphisms (SNPs) in the CCR5 promoter region and CCR2-V64I variants were genotyped. In the single-locus analysis, CCR5 58755-G and CCR5 59653-T alleles were significantly associated with HIV-1 infection (odds ratio [OR]=0.529, 95% confidence interval [CI]: 0.295-0.948; OR=1.710, 95% CI: 1.039-2.814). After adjustment with age and gender, subjects with the CCR5 59653-CT genotype showed the increased risk of HIV-1 infection compared with those with the wild-type CC genotype (adjusted OR=2.502; 95% CI: 1.332-4.698). No positive association was observed in other SNPs. Haplotype-based association analysis revealed that the haplotype TATGC was associated with the susceptibility to HIV-1 infection (p=0.003). Besides, we found the significant epistatic effects between the CCR5 58755-A/G and CCR5 59029-A/G polymorphisms associated with the lower risk of HIV-1 infection. In addition, we also identified the best three-factor interaction model, including the CCR5 58755-A/G, 59029-A/G, and CCR2-V64I polymorphisms, indicating that there were also strong gene-gene interactions between the CCR5 promoter and CCR2 polymorphisms on the susceptibility of HIV-1 infection. These findings contribute to understanding the genetic mechanism for the susceptibility of HIV-1 infection in Northern Han Chinese.
Collapse
Affiliation(s)
- Jiapeng Lu
- School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Richardson MW, Jadlowsky J, Didigu CA, Doms RW, Riley JL. Kruppel-like factor 2 modulates CCR5 expression and susceptibility to HIV-1 infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:3815-21. [PMID: 22988032 DOI: 10.4049/jimmunol.1201431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CCR5, a cell surface molecule critical for the transmission and spread of HIV-1, is dynamically regulated during T cell activation and differentiation. The molecular mechanism linking T cell activation to modulation of CCR5 expression remains undefined. Kruppel-like factor 2 (KLF2) is a transcription factor that promotes quiescence, survival, and in part by modulating chemokine receptor levels, induces homing to secondary lymphoid organs. Given the relationship between T cell activation and chemokine receptor expression, we tested whether the abundance of KLF2 after T cell activation regulates CCR5 expression and, thus, susceptibility of a T cell to CCR5-dependent HIV-1 strains (R5). We observed a strong correlation between T cell activation, expression of KLF2 and CCR5, and susceptibility to infection. To directly measure how KLF2 affects CCR5 regulation, we introduced small interfering RNA targeting KLF2 expression and demonstrated that reduced KLF2 expression also resulted in less CCR5. Chromatin immunoprecipitation assays identified KLF2 bound to the CCR5 promoter in resting but not CD3/28 activated T cells, suggesting that KLF2 directly regulates CCR5 expression. Introduction of KLF2 under control of a heterologous promoter could restore CCR5 expression and R5 susceptibility to CD3/28 costimulated T cells and some transformed cell lines. Thus, KLF2 is a host factor that modulates CCR5 expression in CD4 T cells and influences susceptibility to R5 infection.
Collapse
Affiliation(s)
- Max W Richardson
- Department of Microbiology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
43
|
Han SW, Sa KH, Kim SI, Lee SI, Park YW, Lee SS, Yoo WH, Soe JS, Nam EJ, Lee J, Park JY, Kang YM. CCR5 gene polymorphism is a genetic risk factor for radiographic severity of rheumatoid arthritis. ACTA ACUST UNITED AC 2012; 80:416-23. [PMID: 22924548 DOI: 10.1111/j.1399-0039.2012.01955.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/11/2012] [Accepted: 08/06/2012] [Indexed: 11/29/2022]
Abstract
The chemokine receptor [C-C chemokine receptor 5 (CCR5)] is expressed on diverse immune effecter cells and has been implicated in the pathogenesis of rheumatoid arthritis (RA). This study sought to determine whether single-nucleotide polymorphisms (SNPs) in the CCR5 gene and their haplotypes were associated with susceptibility to and severity of RA. Three hundred fifty-seven patients with RA and 383 healthy unrelated controls were recruited. Using a pyrosequencing assay, we examined four polymorphisms -1118 CTAT(ins) (/del) (rs10577983), 303 A>G (rs1799987), 927 C>T (rs1800024), and 4838 G>T (rs1800874) of the CCR5 gene, which were distributed over the promoter region as well as the 5' and 3' untranslated regions. No significant difference in the genotype, allele, and haplotype frequencies of the four selected SNPs was observed between RA patients and controls. CCR5 polymorphisms of -1118 CTAT(del) (P = 0.012; corrected P = 0.048) and 303 A>G (P = 0.012; corrected P = 0.048) showed a significant association with radiographic severity in a recessive model, and, as a result of multivariate logistic regression analysis, were found to be an independent predictor of radiographic severity. When we separated the erosion score from the total Sharp score, the statistical significance of CCR5 polymorphisms showed an increase; -1118 CTAT(ins) (/del) (P = 0.007; corrected P = 0.028) and 303 A>G (P = 0.007; corrected P = 0.028). Neither SNPs nor haplotypes of the CCR5 gene showed a significant association with joint space narrowing score. These results indicate that genetic polymorphisms of CCR5 are an independent risk factor for radiographic severity denoted by modified Sharp score, particularly joint erosion in RA.
Collapse
Affiliation(s)
- S W Han
- Department of Internal Medicine, Daegu Fatima hospital, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Picton ACP, Paximadis M, Tiemessen CT. CCR5 promoter haplotypes differentially influence CCR5 expression on natural killer and T cell subsets in ethnically divergent HIV-1 uninfected South African populations. Immunogenetics 2012; 64:795-806. [DOI: 10.1007/s00251-012-0642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/29/2012] [Indexed: 11/25/2022]
|
45
|
Flórez O, Martín J, González CI. Genetic variants in the chemokines and chemokine receptors in Chagas disease. Hum Immunol 2012; 73:852-8. [PMID: 22537745 DOI: 10.1016/j.humimm.2012.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 04/15/2012] [Accepted: 04/16/2012] [Indexed: 01/30/2023]
Abstract
Clinical symptoms of Chagas' disease occur in 30% of the individuals infected with Trypanosoma cruzi and are characterised by heart inflammation and dysfunction. Chemokines and chemokine receptors control the migration of leukocytes during the inflammatory process and are involved in the modulation of Th1 or Th2 responses. To determine their influence, we investigated the possible role of CCL5/RANTES and CXCL8/IL8 chemokines, and CCR2 and CCR5 chemokines receptors cluster gene polymorphisms with the development of chagasic cardiomyopathy. Our study included 260 Chagas seropositive individuals (asymptomatic, n=130; cardiomyopathic, n=130) from an endemic area of Colombia. Genotyping was performed by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and TaqMan SNP genotyping assay. We found statistically significant differences in the distribution of the CCR5 human haplogroup (HH)-A (p=0.027; OR=3.78, 95% CI=1.04-13.72). Moreover, we found that the CCR5-2733 G and CCR5-2554 T alleles are associated, respectively, with a reduced risk of susceptibility and severity to develop chagasic cardiomyopathy. No other associations were found to be significant for the other polymorphisms analysed in the CCR5, CCR2, CCL5/RANTES and CXCL8/IL8 genes. Our data suggest that the analysed chemokines and chemokine receptor genetic variants have a weak but important association with the development of chagasic cardiomyopathy in the population under study.
Collapse
Affiliation(s)
- Oscar Flórez
- Grupo de Inmunología y Epidemiología Molecular, GIEM, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | | |
Collapse
|
46
|
Ishida Y, Kimura A, Kuninaka Y, Inui M, Matsushima K, Mukaida N, Kondo T. Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing. J Clin Invest 2012; 122:711-21. [PMID: 22214846 DOI: 10.1172/jci43027] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/16/2011] [Indexed: 12/28/2022] Open
Abstract
BM-derived endothelial progenitor cells (EPCs) are critical and essential for neovascularization in tissue repair and tumorigenesis. EPCs migrate from BM to tissues via the bloodstream, but specific chemotactic cues have not been identified. Here we show in mice that the absence of CCR5 reduced vascular EPC accumulation and neovascularization, but not macrophage recruitment, and eventually delayed healing in wounded skin. When transferred into Ccr5-/- mice, Ccr5+/+ BM cells, but not Ccr5-/- cells, accumulated in the wound site, were incorporated into the vasculature, and restored normal neovascularization. Consistent with these observations, CCL5 induced in vitro EPC migration in a CCR5-dependent manner. Moreover, expression of VEGF and TGF-β was substantially diminished at wound sites in Ccr5-/- mice, which suggests that EPCs are important not only as the progenitors of endothelial cells, but also as the source of growth factors during tissue repair. Taken together, these data identify the CCL5/CCR5 interaction as what we believe to be a novel molecular target for modulation of neovascularization and eventual tissue repair.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Bigham AW, Buckingham KJ, Husain S, Emond MJ, Bofferding KM, Gildersleeve H, Rutherford A, Astakhova NM, Perelygin AA, Busch MP, Murray KO, Sejvar JJ, Green S, Kriesel J, Brinton MA, Bamshad M. Host genetic risk factors for West Nile virus infection and disease progression. PLoS One 2011; 6:e24745. [PMID: 21935451 PMCID: PMC3174177 DOI: 10.1371/journal.pone.0024745] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/16/2011] [Indexed: 11/19/2022] Open
Abstract
West Nile virus (WNV), a category B pathogen endemic in parts of Africa, Asia and Europe, emerged in North America in 1999, and spread rapidly across the continental U.S. Outcomes of infection with WNV range from asymptomatic to severe neuroinvasive disease manifested as encephalitis, paralysis, and/or death. Neuroinvasive WNV disease occurs in less than one percent of cases, and although host genetic factors are thought to influence risk for symptomatic disease, the identity of these factors remains largely unknown. We tested 360 common haplotype tagging and/or functional SNPs in 86 genes that encode key regulators of immune function in 753 individuals infected with WNV including: 422 symptomatic WNV cases and 331 cases with asymptomatic infections. After applying a Bonferroni correction for multiple tests and controlling for population stratification, SNPs in IRF3 (OR 0.54, p = 0.035) and MX1, (OR 0.19, p = 0.014) were associated with symptomatic WNV infection and a single SNP in OAS1 (OR 9.79, p = 0.003) was associated with increased risk for West Nile encephalitis and paralysis (WNE/P). Together, these results suggest that genetic variation in the interferon response pathway is associated with both risk for symptomatic WNV infection and WNV disease progression.
Collapse
Affiliation(s)
- Abigail W. Bigham
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- * E-mail: (AWB); (MB)
| | - Kati J. Buckingham
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Sofia Husain
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Kathryn M. Bofferding
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Heidi Gildersleeve
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Ann Rutherford
- Department of Internal Medicine, Division of Infectious Diseases, University of Utah, Salt Lake City, Utah, United States of America
| | - Natalia M. Astakhova
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Andrey A. Perelygin
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Michael P. Busch
- Blood Systems, San Francisco, California, United States of America
| | - Kristy O. Murray
- School of Public Health, University of Texas Health Sciences Center at Houston, Houston, Texas, United States of America
| | - James J. Sejvar
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Sharone Green
- Department of Medicine, Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - John Kriesel
- Department of Internal Medicine, Division of Infectious Diseases, University of Utah, Salt Lake City, Utah, United States of America
| | - Margo A. Brinton
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Michael Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- * E-mail: (AWB); (MB)
| |
Collapse
|
49
|
Darc M, Hait SH, Soares EA, Cicala C, Seuanez HN, Machado ES, Arthos JA, Soares MA. Polymorphisms in the α4 integrin of neotropical primates: insights for binding of natural ligands and HIV-1 gp120 to the human α4β7. PLoS One 2011; 6:e24461. [PMID: 21912696 PMCID: PMC3166318 DOI: 10.1371/journal.pone.0024461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/10/2011] [Indexed: 11/30/2022] Open
Abstract
The α4 integrin subunit associates with β7 and β1 and plays important roles in immune function and cell trafficking. The gut-homing receptor α4β7 has been recently described as a new receptor for HIV. Here, we describe polymorphisms of ITGA4 gene in New World primates (NWP), and tested their impact on the binding to monoclonal antibodies, natural ligands (MAdCAM and VCAM), and several gp120 HIV-1 envelope proteins. Genomic DNA of NWP specimens comprising all genera of the group had their exons 5 and 6 (encoding the region of binding to the ligands studied) analyzed. The polymorphisms found were introduced into an ITGA4 cDNA clone encoding the human α4 subunit. Mutant α4 proteins were co-expressed with β7 and were tested for binding of mAbs, MAdCAM, VCAM and gp120 of HIV-1, which was compared to the wild-type (human) α4. Mutant α4 proteins harboring the K201E/I/N substitution had reduced binding of all ligands tested, including HIV-1 gp120 envelopes. The mAbs found with reduced biding included one from which a clinically-approved drug for the treatment of neurological disorders has been derived. α4 polymorphisms in other primate species may influence outcomes in the development and treatment of infectious and autoimmune diseases in humans and in non-human primates.
Collapse
Affiliation(s)
- Mirela Darc
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Sabrina H. Hait
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Claudia Cicala
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hector N. Seuanez
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Elizabeth S. Machado
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - James A. Arthos
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcelo A. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
50
|
[Genetic susceptibility to infections]. Internist (Berl) 2011; 52:1053-4, 1056-8, 1060. [PMID: 21842176 DOI: 10.1007/s00108-011-2858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Infectious diseases are among the leading causes of morbidity and mortality worldwide. The spectrum of clinical manifestations of infections is highly variable, ranging from asymptomatic infection or mild illness to rapid progression of disease and death. Twin studies first showed an inheritable component of many infections and epidemiological and genetic studies revealed definite gene loci and polymorphisms for most of the clinically relevant infectious diseases. Reliable genetic markers which represent susceptibility or resistance to infections, prognosis of disease and response to treatment are necessary to define risk populations and to plan therapy regimens. Genetic research can also help in identifying target structures for novel therapy strategies and anitimicrobial agents. In this article the genetic background of important infections is reviewed and examples of successful exploitation of genetic findings and translation into practical medicine are given.
Collapse
|