1
|
Identification and characterization of the promoter and transcription factors regulating the expression of cerebral sodium/calcium exchanger 2 (NCX2) gene. Cell Calcium 2022; 102:102542. [DOI: 10.1016/j.ceca.2022.102542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/30/2021] [Accepted: 01/22/2022] [Indexed: 11/22/2022]
|
2
|
Wen J, Meng X, Xuan B, Zhou T, Gao H, Dong H, Wang Y. Na +/Ca 2+ Exchanger 1 in Airway Smooth Muscle of Allergic Inflammation Mouse Model. Front Pharmacol 2018; 9:1471. [PMID: 30618761 PMCID: PMC6300471 DOI: 10.3389/fphar.2018.01471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Cytosolic free Ca2+ ([Ca2+]cyt) is essential for airway contraction, secretion and remodeling. [Ca2+]cyt homeostasis is controlled by several critical molecules, one of which is the Na+/Ca2+ exchanger 1 (NCX1) in the plasma membrane. Since little is currently known about NCX1 in the airway smooth muscle and its involvement in airway diseases, the present study was designed to investigate the expression and function of NCX1 in normal airway smooth muscle and its relevance to airway inflammation. Western blot analysis, tracheal smooth muscle contraction, and [Ca2+]cyt measurements were performed in mouse tracheal smooth muscle tissues and primary airway smooth muscle cell cultures. Additional studies were performed in a mouse model of allergic airway inflammation. Our data showed that NCX1 proteins were expressed in the human bronchial smooth muscle cells (HBSMCs), murine airway and whole lung. Carbachol raised [Ca2+]cyt in mouse tracheal smooth muscle cells and induced murine tracheal contraction, all of which were significantly attenuated by KB-R7943, a selective NCX inhibitor. Removal of extracellular Na+ increased [Ca2+]cyt in HBSMCs and mouse tracheal SMCs, which was dependent on extracellular Ca2+ and sensitive to KB-R7943. TNF-α treatment of HBSMCs significantly upregulated mRNA and protein expression of NCX1 and enhanced NCX activity. Finally, KB-R7943 abolished the airway hyperresponsiveness to methacholine in an ovalbumin-induced mouse model of allergic airway inflammation. Together, these findings indicate that NCX1 in airway smooth muscle may play an important role in the development of airway hyperresponsiveness, and downregulation or inhibition of NCX1 may serve as a potential therapeutic approach for asthma.
Collapse
Affiliation(s)
- Jiexia Wen
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Xiangcai Meng
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Bin Xuan
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Tao Zhou
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Heran Gao
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Hui Dong
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| | - Yimin Wang
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China.,Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, China
| |
Collapse
|
3
|
Hernandez-Ojeda M, Ureña-Guerrero ME, Gutierrez-Barajas PE, Cardenas-Castillo JA, Camins A, Beas-Zarate C. KB-R7943 reduces 4-aminopyridine-induced epileptiform activity in adult rats after neuronal damage induced by neonatal monosodium glutamate treatment. J Biomed Sci 2017; 24:27. [PMID: 28486943 PMCID: PMC5423021 DOI: 10.1186/s12929-017-0335-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/03/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neonatal monosodium glutamate (MSG) treatment triggers excitotoxicity and induces a degenerative process that affects several brain regions in a way that could lead to epileptogenesis. Na+/Ca2+ exchangers (NCX1-3) are implicated in Ca2+ brain homeostasis; normally, they extrude Ca2+ to control cell inflammation, but after damage and in epilepsy, they introduce Ca2+ by acting in the reverse mode, amplifying the damage. Changes in NCX3 expression in the hippocampus have been reported immediately after neonatal MSG treatment. In this study, the expression level of NCX1-3 in the entorhinal cortex (EC) and hippocampus (Hp); and the effects of blockade of NCXs on the seizures induced by 4-Aminopyridine (4-AP) were analysed in adult rats after neonatal MSG treatment. KB-R7943 was applied as NCXs blocker, but is more selective to NCX3 in reverse mode. METHODS Neonatal MSG treatment was applied to newborn male rats at postnatal days (PD) 1, 3, 5, and 7 (4 g/kg of body weight, s.c.). Western blot analysis was performed on total protein extracts from the EC and Hp to estimate the expression level of NCX1-3 proteins in relative way to the expression of β-actin, as constitutive protein. Electrographic activity of the EC and Hp were acquired before and after intracerebroventricular (i.c.v.) infusion of 4-AP (3 nmol) and KB-R7943 (62.5 pmol), alone or in combination. All experiments were performed at PD60. Behavioural alterations were also recorder. RESULTS Neonatal MSG treatment significantly increased the expression of NCX3 protein in both studied regions, and NCX1 protein only in the EC. The 4-AP-induced epileptiform activity was significantly higher in MSG-treated rats than in controls, and KB-R7943 co-administered with 4-AP reduced the epileptiform activity in more prominent way in MSG-treated rats than in controls. CONCLUSIONS The long-term effects of neonatal MSG treatment include increases on functional expression of NCXs (mainly of NCX3) in the EC and Hp, which seems to contribute to improve the control that KB-R7943 exerted on the seizures induced by 4-AP in adulthood. The results obtained here suggest that the blockade of NCXs could improve seizure control after an excitotoxic process; however, this must be better studied.
Collapse
Affiliation(s)
- Mariana Hernandez-Ojeda
- Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, Zapopan, Jalisco Mexico 45221
| | - Monica E. Ureña-Guerrero
- Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, Zapopan, Jalisco Mexico 45221
| | - Paola E. Gutierrez-Barajas
- Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, Zapopan, Jalisco Mexico 45221
| | - Jazmin A. Cardenas-Castillo
- Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, Zapopan, Jalisco Mexico 45221
| | - Antoni Camins
- Unitat de Farmacologia i Farmacognòsia, Institut de Neurociencias, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carlos Beas-Zarate
- Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, Zapopan, Jalisco Mexico 45221
| |
Collapse
|
4
|
Kosiorek M, Zylinska L, Zablocki K, Pikula S. Calcineurin/NFAT signaling represses genes Vamp1 and Vamp2 via PMCA-dependent mechanism during dopamine secretion by Pheochromocytoma cells. PLoS One 2014; 9:e92176. [PMID: 24667359 PMCID: PMC3965406 DOI: 10.1371/journal.pone.0092176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasma membrane Ca(2+)-ATPases (PMCA) extrude Ca(2+) ions out of the cell and contribute to generation of calcium oscillations. Calcium signaling is crucial for transcriptional regulation of dopamine secretion by neuroendocrine PC12 cells. Low resting [Ca(2+)]c in PC12 cells is maintained mainly by two Ca(2+)-ATPases, PMCA2 and PMCA3. Recently, we found that Ca(2+) dependent phosphatase calcineurin was excessively activated under conditions of experimental downregulation of PMCA2 or PMCA3. Thus, the aim of this study was to explain if, via modulation of the Ca(2+)/calcineurin-dependent nuclear factor of activated T cells (NFAT) pathway, PMCA2 and PMCA3 affect intracellular signaling in pheochromocytoma/neuronal cells/PC12 cells. Secondly, we tested whether this might influence dopamine secretion by PC12 cells. RESULTS PMCA2- and PMCA3-deficient cells displayed profound decrease in dopamine secretion accompanied by a permanent increase in [Ca(2+)]c. Reduction in secretion might result from changes in NFAT signaling, following altered PMCA pattern. Consequently, activation of NFAT1 and NFAT3 transcription factors was observed in PMCA2- or PMCA3-deficient cells. Furthermore, chromatin immunoprecipitation assay indicated that NFATs could be involved in repression of Vamp genes encoding vesicle associated membrane proteins (VAMP). CONCLUSIONS PMCA2 and PMCA3 are crucial for dopamine secretion in PC12 cells. Reduction in PMCA2 or PMCA3 led to calcium-dependent activation of calcineurin/NFAT signaling and, in consequence, to repression of the Vamp gene and deterioration of the SNARE complex formation in PC12 cells.
Collapse
Affiliation(s)
- Michalina Kosiorek
- Department of Biochemistry, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre PAS, Warsaw, Poland
- * E-mail: (MK); (SP)
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, Lodz, Poland
| | - Krzysztof Zablocki
- Department of Biochemistry, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Slawomir Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
- * E-mail: (MK); (SP)
| |
Collapse
|
5
|
Jiang M, Yang M, Yin L, Zhang X, Shu Y. Developmental reduction of asynchronous GABA release from neocortical fast-spiking neurons. ACTA ACUST UNITED AC 2013; 25:258-70. [PMID: 23968835 DOI: 10.1093/cercor/bht236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Delayed asynchronous release (AR) evoked by bursts of presynaptic action potentials (APs) occurs in certain types of hippocampal and neocortical inhibitory interneurons. Previous studies showed that AR provides long-lasting inhibition and desynchronizes the activity in postsynaptic cells. However, whether AR undergoes developmental change remains unknown. In this study, we performed whole-cell recording from fast-spiking (FS) interneurons and pyramidal cells (PCs) in prefrontal cortical slices obtained from juvenile and adult rats. In response to AP trains in FS neurons, AR occurred at their output synapses during both age periods, including FS autapses and FS-PC synapses; however, the AR strength was significantly weaker in adults than that in juveniles. Further experiments suggested that the reduction of AR in adult animals could be attributable to the rapid clearance of residual Ca(2+) from presynaptic terminals. Together, our results revealed that the AR strength was stronger at juvenile but weaker in adult, possibly resulting from changes in presynaptic Ca(2+) dynamics. AR changes may meet the needs of the neural network to generate different types of oscillations for cortical processing at distinct behavioral states.
Collapse
Affiliation(s)
- Man Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Mingpo Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Luping Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Xiaohui Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yousheng Shu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| |
Collapse
|
6
|
Valsecchi V, Pignataro G, Sirabella R, Matrone C, Boscia F, Scorziello A, Sisalli MJ, Esposito E, Zambrano N, Cataldi M, Di Renzo G, Annunziato L. Transcriptional regulation of ncx1 gene in the brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:137-45. [PMID: 23224876 DOI: 10.1007/978-1-4614-4756-6_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ubiquitous sodium-calcium exchanger isoform 1 (NCX1) is a -bidirectional transporter that plays a relevant role under physiological and pathophysiological conditions including brain ischemia by regulating intraneuronal Ca(2+) and Na(+) homeostasis. Although changes in ncx1 protein and transcript expression have been detected during stroke, its transcriptional regulation is still largely unexplored. Here, we reviewed our recent findings on several transcription factors including cAMP response element-binding protein (CREB), nuclear factor kappa B (NF-κB), and hypoxia-inducible factor-1 (HIF-1) in the control of the ncx1 gene expression in neuronal cells.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Department of Neuroscience, Federico II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Roome CJ, Power EM, Empson RM. Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse. J Neurophysiol 2012; 109:1669-80. [PMID: 23255722 DOI: 10.1152/jn.00854.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The sodium/calcium exchanger (NCX) is a widespread transporter that exchanges sodium and calcium ions across excitable membranes. Normally, NCX mainly operates in its "forward" mode, harnessing the electrochemical gradient of sodium ions to expel calcium. During membrane depolarization or elevated internal sodium levels, NCX can instead switch the direction of net flux to expel sodium and allow calcium entry. Such "reverse"-mode NCX operation is frequently implicated during pathological or artificially extended periods of depolarization, not during normal activity. We have used fast calcium imaging, mathematical simulation, and whole cell electrophysiology to study the role of NCX at the parallel fiber-to-Purkinje neuron synapse in the mouse cerebellum. We show that nontraditional, reverse-mode NCX activity boosts the amplitude and duration of parallel fiber calcium transients during short bursts of high-frequency action potentials typical of their behavior in vivo. Simulations, supported by experimental manipulations, showed that accumulation of intracellular sodium drove NCX into reverse mode. This mechanism fueled additional calcium influx into the parallel fibers that promoted synaptic transmission to Purkinje neurons for up to 400 ms after the burst. Thus we provide the first functional demonstration of transient and fast NCX-mediated calcium entry at a major central synapse. This unexpected contribution from reverse-mode NCX appears critical for shaping presynaptic calcium dynamics and transiently boosting synaptic transmission, and is likely to optimize the accuracy of cerebellar information transfer.
Collapse
Affiliation(s)
- Chris J Roome
- Department of Physiology, Brain Health Research Centre, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
8
|
Abstract
Intracellular calcium dynamics is critical for many functions of cerebellar granule cells (GrCs) including membrane excitability, synaptic plasticity, apoptosis, and regulation of gene transcription. Recent measurements of calcium responses in GrCs to depolarization and synaptic stimulation reveal spatial compartmentalization and heterogeneity within dendrites of these cells. However, the main determinants of local calcium dynamics in GrCs are still poorly understood. One reason is that there have been few published studies of calcium dynamics in intact GrCs in their native environment. In the absence of complete information, biophysically realistic models are useful for testing whether specific Ca(2+) handling mechanisms may account for existing experimental observations. Simulation results can be used to identify critical measurements that would discriminate between different models. In this review, we briefly describe experimental studies and phenomenological models of Ca(2+) signaling in GrC, and then discuss a particular biophysical model, with a special emphasis on an approach for obtaining information regarding the distribution of Ca(2+) handling systems under conditions of incomplete experimental data. Use of this approach suggests that Ca(2+) channels and fixed endogenous Ca(2+) buffers are highly heterogeneously distributed in GrCs. Research avenues for investigating calcium dynamics in GrCs by a combination of experimental and modeling studies are proposed.
Collapse
Affiliation(s)
- Elena È Saftenku
- Department of General Physiology of Nervous System, A. A. Bogomoletz Institute of Physiology, 4 Bogomoletz St., Kyiv 01024, Ukraine.
| |
Collapse
|
9
|
Naranjo JR, Mellström B. Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem 2012; 287:31674-80. [PMID: 22822058 DOI: 10.1074/jbc.r112.384982] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Intracellular free Ca(2+) ions regulate many cellular functions, and in turn, the cell devotes many genes/proteins to keep tight control of the level of intracellular free Ca(2+). Here, we review recent work on Ca(2+)-dependent mechanisms and effectors that regulate the transcription of genes encoding proteins involved in the maintenance of the homeostasis of Ca(2+) in the cell.
Collapse
Affiliation(s)
- Jose R Naranjo
- National Center of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC) and the Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28049 Madrid, Spain.
| | | |
Collapse
|
10
|
Rahimian R, Dehpour AR, Fakhfouri G, Khorramizadeh MR, Ghia JE, Seyedabadi M, Caldarelli A, Mousavizadeh K, Forouzandeh M, Mehr SE. Tropisetron upregulates cannabinoid CB1 receptors in cerebellar granule cells: Possible involvement of calcineurin. Brain Res 2011; 1417:1-8. [DOI: 10.1016/j.brainres.2011.08.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 01/17/2023]
|
11
|
Prasad AM, Inesi G. Regulation and rate limiting mechanisms of Ca2+ ATPase (SERCA2) expression in cardiac myocytes. Mol Cell Biochem 2011; 361:85-96. [DOI: 10.1007/s11010-011-1092-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
12
|
Brini M, Carafoli E. The plasma membrane Ca²+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004168. [PMID: 21421919 DOI: 10.1101/cshperspect.a004168] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Calcium is an ambivalent signal: it is essential for the correct functioning of cell life, but may also become dangerous to it. The plasma membrane Ca(2+) ATPase (PMCA) and the plasma membrane Na(+)/Ca(2+) exchanger (NCX) are the two mechanisms responsible for Ca(2+) extrusion. The NCX has low Ca(2+) affinity but high capacity for Ca(2+) transport, whereas the PMCA has a high Ca(2+) affinity but low transport capacity for it. Thus, traditionally, the PMCA pump has been attributed a housekeeping role in maintaining cytosolic Ca(2+), and the NCX the dynamic role of counteracting large cytosolic Ca(2+) variations (especially in excitable cells). This view of the roles of the two Ca(2+) extrusion systems has been recently revised, as the specific functional properties of the numerous PMCA isoforms and splicing variants suggests that they may have evolved to cover both the basal Ca(2+) regulation (in the 100 nM range) and the Ca(2+) transients generated by cell stimulation (in the μM range).
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biological Chemistry, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy.
| | | |
Collapse
|
13
|
Role of calcineurin signaling in membrane potential-regulated maturation of cerebellar granule cells. J Neurosci 2009; 29:2938-47. [PMID: 19261889 DOI: 10.1523/jneurosci.5932-08.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At the early postnatal period, cerebellar granule cells proliferate, differentiate, migrate, and finally form refined synaptic connections with mossy fibers. During this period, the resting membrane potential of immature granule cells is relatively depolarized, but it becomes hyperpolarized in mature cells. This investigation was conducted to examine the role of this alteration in membrane potential and its downstream signaling mechanism in development and maturation of granule cells. Experiments were designed to precisely characterize the ontogenic processes of developing granule cells by combining organotypic cerebellar cultures with the specific expression of EGFP (enhanced green fluorescent protein) in granule cells by use of DNA transfection. Multiple approaches using morphology, electrophysiology, and immunohistochemistry demonstrated that granule cells developed and matured at the physiological KCl concentration in organotypic cultures in a temporally regulated manner. We addressed how persistent membrane depolarization influences the developmental and maturation processes of granule cells by depolarizing organotypic cultures with high KCl. Depolarization preserved the developmental processes of granule cells up to the stage of formation of immature dendrites but prevented the maturation processes for synaptic formation by granule cells. Importantly, this blockade of the terminal maturation of granule cells was reversed by inactivation of calcineurin with its specific inhibitor. This investigation has demonstrated that alteration of the membrane potential and its downstream calcineurin signaling play a pivotal role in triggering the maturation program for the synaptic organization of postnatally developing granule cells.
Collapse
|
14
|
Staiano RI, Granata F, Secondo A, Petraroli A, Loffredo S, Frattini A, Annunziato L, Marone G, Triggiani M. Expression and function of Na+/Ca2+ exchangers 1 and 3 in human macrophages and monocytes. Eur J Immunol 2009; 39:1405-18. [DOI: 10.1002/eji.200838792] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Leal T, Andrieux J, Duban-Bedu B, Bouquillon S, Brevière GM, Delobel B. Array-CGH detection of a de novo 0.8Mb deletion in 19q13.32 associated with mental retardation, cardiac malformation, cleft lip and palate, hearing loss and multiple dysmorphic features. Eur J Med Genet 2008; 52:62-6. [PMID: 19022414 DOI: 10.1016/j.ejmg.2008.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 09/26/2008] [Indexed: 11/25/2022]
Abstract
We report on a 28-year old woman carrying a 0.8 Mb de novo interstitial deletion in 19q13.32 detected by high-resolution array-CGH. She has severe mental retardation, tetralogy of Fallot, cleft lip and palate, deafness, megacolon and other dysmorphic features. Only a few cases of constitutional deletions located at the long arm of chromosome 19 have been previously described and this is the first report involving 19q13.32. The deleted region encompasses 15 genes, among which 3 candidate genes for genotype-phenotype correlation could be delineated. Since SLC8A2 is broadly expressed in brain and plays a potential role during embryonic development, its haploinsufficiency could possibly be related to mental retardation; as it is also expressed in aortic and intestinal smooth muscles, SLC8A2 could be related to the aortic defect of the complex cardiac malformation and to the megacolon. SAE1, a SUMO-1 activating enzyme subunit, may be related to cleft lip and palate. KPTN coding region may be a candidate gene for hearing loss. Further experimental studies on either in vivo models or diagnostic materials are needed to elucidate the role of these potential candidate genes for the phenotypic abnormalities observed in the investigated patient.
Collapse
|
16
|
Guerini D, Coletto L, Carafoli E. Exporting calcium from cells. Cell Calcium 2008; 38:281-9. [PMID: 16102821 DOI: 10.1016/j.ceca.2005.06.032] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/11/2023]
Abstract
All eukaryotic cells import Ca2+ through a number of variously gated plasma membrane channels. Once inside cells, Ca2+ transmits information to a large number of (enzyme) targets. Eventually, it must be exported again, to prevent the overloading of the cytosol with Ca2+. Two systems export Ca2+ from cells: a high affinity, low capacity Ca2+-ATPase, and a lower affinity, but much larger capacity, Na+/Ca2+ exchanger. The ATPase (commonly called the Ca2+ pump) is the fine-tuner of cell Ca2+, as it functions well even if the concentration of the ion drops below the microM level. It is a large enzyme, with 10 transmembrane domains and a C-terminal cytosolic tail that contains regulatory sites, including a calmodulin-binding domain. Four distinct gene products plus a large number of splice variants have been described. Some are tissue specific, the isoform 2 being specifically expressed in the sensorial cells of the Corti organ in the inner-ear. Its genetic absence causes deafness in mice. Two different families of the Na+/Ca2+ exchanger exist, one of which, originally described in photoreceptors, transports K+ and Ca2+ in exchange for Na+. The exchanger is particularly active in excitable cells, e.g., heart, where the necessity cyclically arises to rapidly eject large amounts of Ca2+. In addition to heart, the exchanger is particularly important to neurons: the cleavage of the most important neuronal isoform (NCX3) by calpains activated by excitotoxic treatments generates Ca2+ overload and eventually cell death.
Collapse
|
17
|
Gomez-Villafuertes R, Mellström B, Naranjo JR. Searching for a role of NCX/NCKX exchangers in neurodegeneration. Mol Neurobiol 2008; 35:195-202. [PMID: 17917108 DOI: 10.1007/s12035-007-0007-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 11/30/1999] [Accepted: 02/02/2007] [Indexed: 01/03/2023]
Abstract
Control of intracellular calcium signaling is essential for neuronal development and function. Maintenance of Ca2+ homeostasis depends on the functioning of specific transport systems that remove calcium from the cytosol. Na+/Ca2+ exchange is the main calcium export mechanism across the plasma membrane that restores resting levels of calcium in neurons after stimulation. Two families of Na+/Ca2+ exchangers exist, one of which requires the co-transport of K+ and Ca2+ in exchange for Na+ ions. The malfunctioning of Na+/Ca2+ exchangers has been related to the development of pathological conditions in the regulation of neuronal death after hypoxia-anoxia, brain trauma, and nerve injury. In addition, the Na+/Ca2+ exchanger function has been associated with impaired Ca2+ homeostasis during aging of the brain, as well as with a role in Alzheimer's disease by regulating beta-amyloid toxicity. In this review, we summarize the current knowledge about the Na+/Ca2+ exchanger families and their implications in neurodegenerative disorders.
Collapse
|
18
|
Reverse mode Na+/Ca2+ exchangers trigger the release of Ca2+ from intracellular Ca2+ stores in cultured rat embryonic cortical neurons. Brain Res 2008; 1201:41-51. [DOI: 10.1016/j.brainres.2008.01.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 01/09/2008] [Accepted: 01/14/2008] [Indexed: 11/15/2022]
|
19
|
Bojarski C, Meloni BP, Moore SR, Majda BT, Knuckey NW. Na+/Ca2+ exchanger subtype (NCX1, NCX2, NCX3) protein expression in the rat hippocampus following 3 min and 8 min durations of global cerebral ischemia. Brain Res 2007; 1189:198-202. [PMID: 18037393 DOI: 10.1016/j.brainres.2007.10.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
There is increasing evidence that the sodium-calcium exchanger (NCX) subtypes, NCX1, NCX2 and NCX3 play an important role in intracellular calcium homeostasis/dysregulation following cerebral ischemia. In the present study we examined NCX1, NCX2 and NCX3 protein levels in the rat hippocampus at 3, 6, 12, 18, 24 and 48 h following a 3 min and 8 min duration of global cerebral ischemia. We observed that NCX1 protein levels were significantly increased by 22.3% and 20.6% at the 6 and 12 h respective time points following a 3 min duration of global ischemia, while NCX2 and NCX3 protein levels remained relatively constant. Following a 8 min duration of global ischemia, NCX1 protein levels remained relatively constant, while NCX2 protein levels were down-regulated by 6.9%, 10.8%, 14.4% and 10.3% at the 6, 18, 24 and 48 h respective time points, and NCX3 protein levels were up-regulated by 22.1% at the 18 h time point. Taken together, our results show that NCX subtype protein expression is sensitive to cerebral ischemia, and indicates that changes in NCX activity may be playing an important role in calcium maintenance and neuronal outcome following ischemia.
Collapse
Affiliation(s)
- Christina Bojarski
- Department of Neurosurgery/Sir Charles Gairdner Hospital, Centre for Neuromuscular and Neurological Disorders/The University of Western Australia and Australian Neuromuscular Research Institute, QEII Medical Centre, Western Australia, Australia
| | | | | | | | | |
Collapse
|
20
|
Abstract
Mammalian Na+/Ca2+ exchangers are members of three branches of a much larger family of transport proteins [the CaCA (Ca2+/cation antiporter) superfamily] whose main role is to provide control of Ca2+ flux across the plasma membranes or intracellular compartments. Since cytosolic levels of Ca2+ are much lower than those found extracellularly or in sequestered stores, the major function of Na+/Ca2+ exchangers is to extrude Ca2+ from the cytoplasm. The exchangers are, however, fully reversible and thus, under special conditions of subcellular localization and compartmentalized ion gradients, Na+/Ca2+ exchangers may allow Ca2+ entry and may play more specialized roles in Ca2+ movement between compartments. The NCX (Na+/Ca2+ exchanger) [SLC (solute carrier) 8] branch of Na+/Ca2+ exchangers comprises three members: NCX1 has been most extensively studied, and is broadly expressed with particular abundance in heart, brain and kidney, NCX2 is expressed in brain, and NCX3 is expressed in brain and skeletal muscle. The NCX proteins subserve a variety of roles, depending upon the site of expression. These include cardiac excitation-contraction coupling, neuronal signalling and Ca2+ reabsorption in the kidney. The NCKX (Na2+/Ca2+-K+ exchanger) (SLC24) branch of Na+/Ca2+ exchangers transport K+ and Ca2+ in exchange for Na+, and comprises five members: NCKX1 is expressed in retinal rod photoreceptors, NCKX2 is expressed in cone photoreceptors and in neurons throughout the brain, NCKX3 and NCKX4 are abundant in brain, but have a broader tissue distribution, and NCKX5 is expressed in skin, retinal epithelium and brain. The NCKX proteins probably play a particularly prominent role in regulating Ca2+ flux in environments which experience wide and frequent fluctuations in Na+ concentration. Until recently, the range of functions that NCKX proteins play was generally underappreciated. This situation is now changing rapidly as evidence emerges for roles including photoreceptor adaptation, synaptic plasticity and skin pigmentation. The CCX (Ca2+/cation exchanger) branch has only one mammalian member, NCKX6 or NCLX (Na+/Ca2+-Li+ exchanger), whose physiological function remains unclear, despite a broad pattern of expression.
Collapse
Affiliation(s)
- Jonathan Lytton
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| |
Collapse
|
21
|
Hudecova S, Kubovcakova L, Kvetnansky R, Kopacek J, Pastorekova S, Novakova M, Knezl V, Tarabova B, Lacinova L, Sulova Z, Breier A, Jurkovicova D, Krizanova O. Modulation of expression of Na+/Ca2+ exchanger in heart of rat and mouse under stress. Acta Physiol (Oxf) 2007; 190:127-36. [PMID: 17394575 DOI: 10.1111/j.1748-1716.2007.01673.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM The Na(+)/Ca(2+) exchanger (NCX) is a major Ca(2+) extrusion system in the plasma membrane of cardiomyocytes and an important component participating on the excitation-contraction coupling process in muscle cells. NCX1 isoform is the most abundant in the heart and is known to be changed after development of ischaemia or myocardial infarction. Objective of this study was to investigate the effect of stress factors (immobilization, cold and short-term hypoxia) on the expression of NCX1, in vivo, in the heart of rat and mouse. METHODS We compared gene expression and protein levels of control and stressed animals. The activity of NCX was measured by the whole cell configuration using the patch clamp. We also measured physiological parameters of the heart in physiological conditions and under ischaemia-reperfusion to compare response of control and stressed hearts. RESULTS We have found that only strong stress stimulus (hypoxia, immobilization) applied repeatedly for several days elevated the NCX1 mRNA level. Cold, which is a weaker stressor that activates mainly sympathoneural, and only marginally adrenomedullary system did not affect the gene expression of NCX1. Thus, from these results it appears that hormones produced by the adrenal medulla (mainly adrenaline) might be involved in this process. To study possible mechanism of the NCX1 regulation by stress, we focused on the possible role of the hypothalamo-pituitary-adrenocortical pathway in the activation of catecholamine synthesis in the adrenal medulla. We have already published that cortisol affects activity, but not the gene expression of NCX1. In this work, we used corticotropin-releasing hormone (CRH) knockout mice, where secretion of corticosterone and subsequently adrenaline is significantly suppressed. As no increase in NCX1 mRNA was observed in CRH knockout mice due to immobilization stress, we proposed that adrenaline (probably regulated via corticosterone) is involved in the regulation of NCX1 gene expression during stress. CONCLUSIONS The gene expression and protein levels of the NCX1 are increased by the strong stress stimuli, e.g. hypoxia, or immobilization stress. The activity of NCX1 is decreased. Based on these results, we assume that the gene expression of NCX is increased as a consequence of suppressed activity of this transport system.
Collapse
Affiliation(s)
- S Hudecova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Annunziato L, Pignataro G, Boscia F, Sirabella R, Formisano L, Saggese M, Cuomo O, Gala R, Secondo A, Viggiano D, Molinaro P, Valsecchi V, Tortiglione A, Adornetto A, Scorziello A, Cataldi M, Di Renzo GF. ncx1, ncx2, and ncx3 gene product expression and function in neuronal anoxia and brain ischemia. Ann N Y Acad Sci 2007; 1099:413-26. [PMID: 17446481 DOI: 10.1196/annals.1387.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Over the last few years, although extensive studies have focused on the relevant function played by the sodium-calcium exchanger (NCX) during focal ischemia, a thorough understanding of its role still remains a controversial issue. We explored the consequences of the pharmacological inhibition of this antiporter with conventional pharmacological approach, with the synthetic inhibitory peptide, XIP, or with an antisense strategy on the extent of brain damage induced by the permanent occlusion of middle cerebral artery (pMCAO) in rats. Collectively, the results of these studies suggest that ncx1 and ncx3 genes could be play a major role to limit the severity of ischemic damage probably as they act to dampen [Na+]i and [Ca2+]i overload. This mechanism seems to be normally activated in the ischemic brain as we found a selective upregulation of NCX1 and NCX3 mRNA levels in regions of the brain surviving to an ischemic insult. Despite this transcript increase, NCX1, NCX2, and NCX3 proteins undergo an extensive proteolytic degradation in the ipsilateral cerebral hemisphere. All together these results suggest that a rescue program centered on an increase NCX function and expression could halt the progression of the ischemic damage. On the basis of this evidence we directed our attention to the understanding of the transductional and transcriptional pathways responsible for NCX upregulation. To this aim, we are studying whether the brain isoform of Akt, Akt1, which is a downstream effector of neurotrophic factors, such as NGF can, in addition to affecting the other prosurvival cascades, also exert its neuroprotective effect by modulating the expression and activity of ncx1, ncx2, and ncx3 gene products.
Collapse
Affiliation(s)
- L Annunziato
- Division of Pharmacology, Department of Neuroscience, School of Medicine, Federico II University of Naples, via Sergio Pansini 5, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Secondo A, Staiano RI, Scorziello A, Sirabella R, Boscia F, Adornetto A, Valsecchi V, Molinaro P, Canzoniero LMT, Di Renzo G, Annunziato L. BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: Possible relationship with mitochondrial membrane potential. Cell Calcium 2007; 42:521-35. [PMID: 17343909 DOI: 10.1016/j.ceca.2007.01.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 01/18/2007] [Accepted: 01/20/2007] [Indexed: 11/27/2022]
Abstract
The specific role played by NCX1, NCX2, and NCX3, the three isoforms of the Na+/Ca2+ exchanger (NCX), has been explored during hypoxic conditions in BHK cells stably transfected with each of these isoforms. Six major findings emerged from the present study: (1) all the three isoforms were highly expressed on the plasma membranes of BHK cells; (2) under physiological conditions, the three NCX isoforms showed similar functional activity; (3) hypoxia plus reoxygenation induced a lower increase of [Ca2+]i in BHK-NCX3-transfected cells than in BHK-NCX1- and BHK-NCX2-transfected cells; (4) NCX3-transfected cells were more resistant to chemical hypoxia plus reoxygenation than NCX1- and NCX2-transfected cells. Interestingly, such augmented resistance was eliminated by CBDMD (10 microM), an inhibitor of NCX and by the specific silencing of the NCX3 isoform; (5) chemical hypoxia plus reoxygenation produced a loss of mitochondrial membrane potential in NCX1- and NCX2-transfected cells, but not in NCX3-transfected cells; (6) the forward mode of operation in NCX3-transfected cells was not affected by ATP depletion, as it occurred in NCX1- and NCX2-transfected cells. Altogether, these results indicate that the brain specifically expressed NCX3 isoform more significantly contributes to the maintenance of [Ca2+]i homeostasis during experimental conditions mimicking ischemia, thereby preventing mitochondrial delta psi collapses and cell death.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Xiong Y, Rabchevsky AG, Hall ED. Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem 2007; 100:639-49. [PMID: 17181549 DOI: 10.1111/j.1471-4159.2006.04312.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peroxynitrite (PON, ONOO(-)), formed by nitric oxide synthase-generated nitric oxide radical ( NO) and superoxide radical (O(2) (-)), is a crucial player in post-traumatic oxidative damage. In the present study, we determined the spatial and temporal characteristics of PON-derived oxidative damage after a moderate contusion injury in rats. Our results showed that 3-nitrotyrosine (3-NT), a specific marker for PON, rapidly accumulated at early time points (1 and 3 h) and a significant increase compared with sham rats was sustained to 1 week after injury. Additionally, there was a coincident and maintained increase in the levels of protein oxidation-related protein carbonyl and lipid peroxidation-derived 4-hydroxynonenal (4-HNE). The peak increases of 3-NT and 4-HNE were observed at 24 h post-injury. In our immunohistochemical results, the co-localization of 3-NT and 4-HNE results indicates that PON is involved in lipid peroxidative as well as protein nitrative damage. One of the consequences of oxidative damage is an exacerbation of intracellular calcium overload, which activates the cysteine protease calpain leading to the degradation of several cellular targets including cytoskeletal protein (alpha-spectrin). Western blot analysis of alpha-spectrin breakdown products showed that the 145-kDa fragments of alpha-spectrin, which are specifically generated by calpain, were significantly increased as soon as 1 h following injury although the peak increase did not occur until 72 h post-injury. The later activation of calpain is most likely linked to PON-mediated secondary oxidative impairment of calcium homeostasis. Scavengers of PON, or its derived free radical species, may provide an improved antioxidant neuroprotective approach for the treatment of post-traumatic oxidative damage in the injured spinal cord.
Collapse
Affiliation(s)
- Yiqin Xiong
- Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536, USA
| | | | | |
Collapse
|
25
|
Smith AJ, Chappell AE, Buret AG, Barrett KE, Dong H. 5-Hydroxytryptamine contributes significantly to a reflex pathway by which the duodenal mucosa protects itself from gastric acid injury. FASEB J 2007; 20:2486-95. [PMID: 17142798 DOI: 10.1096/fj.06-6391com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although duodenal mucosal bicarbonate secretion (DMBS) is currently accepted as an important defense mechanism against acid-induced duodenal injury, the mechanism and the regulation of DMBS are largely unknown. 5-HT may regulate DMBS, but little is known about its physiological relevance in DMBS and the underlying mechanism(s). Thus, the aims of the present study were to demonstrate the role of 5-HT in acid-stimulated DMBS and to further elucidate the precise mechanisms involved in this process. Luminal acid stimulation significantly increased 5-HT release from the duodenal mucosa (P<0.01). SB204070, a selective 5-HT4 receptor antagonist, dose-dependently reduced luminal acid-stimulated HCO3(-) secretion of mice in vivo. In Ussing chamber studies, 5-HT-induced I(SC) and DMBS were abolished by removal of extracellular Ca2+, and significantly attenuated by pharmacological blockade of the Na+/Ca2+ exchanger (NCX), intermediate Ca2+-activated K+ channels (IK(Ca)), or cystic fibrosis transmembrane conductance regulator (CFTR). 5-HT increased cytoplasmic free calcium ([Ca2+]cyt) in SCBN cells, a duodenal epithelial cell line, and knockdown of NCX1 proteins with a specific siRNA greatly decreased this 5-HT-mediated Ca2+ signaling. Taken together, our data suggest that 5-HT plays a physiological role in acid-stimulated DMBS via a Ca2+ signaling pathway, in which the plasma membrane NCX transporter as well as IK(Ca) and CFTR channels may be involved.
Collapse
Affiliation(s)
- Anders J Smith
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0063, USA
| | | | | | | | | |
Collapse
|
26
|
The unusual history and unique properties of the calcium signal. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Kim MJ, Choi MU, Kim CW. Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell. Biomaterials 2006; 27:5502-11. [PMID: 16857255 DOI: 10.1016/j.biomaterials.2006.06.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 06/29/2006] [Indexed: 01/31/2023]
Abstract
Although it is recognized that the surface roughness of titanium (Ti) promotes the osteogenic differentiation, the related mechanisms and factors remain elusive. The purpose of this study was to explore the potential correlation among phospholipase D (PLD) activity, Ti surface roughness and subsequent osteoblast differentiation. The machined Ti disks were sandblasted with aluminum oxide particles to produce surfaces of varying roughness (n = 160). Normal or transfected MG63cells with PLD genes were cultured on roughened Ti specimens and assayed for PLD, alkaline phosphatase (ALP) and osteocalcin. The statistical significance was evaluated by analysis of variance. The activity, mRNA and protein levels of PLD significantly increased in MG63 cells with a roughness-dependent pattern (P < 0.05). The ALP activity and osteocalcin production, promoted by Ti surface roughness, were enhanced by the PLD activator and inhibited by the PLD blocker. It was also found that the PLD1 isoform responds to Ti surface roughness and regulates selectively the ALP activity. These observations strongly suggest that PLD1 mediates the cellular signaling of and modulates osteoblast differentiation induced by Ti surface roughness in MG63 osteoblast-like cell.
Collapse
Affiliation(s)
- Myung-Joo Kim
- Department of Prosthodontics and Dental Research Institute, Colleage of Dentistry, Seoul National University, Chongro-gu, Seoul 110-749, South Korea
| | | | | |
Collapse
|
28
|
Pulina MV, Rizzuto R, Brini M, Carafoli E. Inhibitory interaction of the plasma membrane Na+/Ca2+ exchangers with the 14-3-3 proteins. J Biol Chem 2006; 281:19645-54. [PMID: 16679322 DOI: 10.1074/jbc.m602033200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three Na+/Ca2+ exchanger isoforms, NCX1, NCX2, and NCX3, contain a large cytoplasmic loop that is responsible for the regulation of activity. We have used 347 residues of the loop of NCX2 as the bait in a yeast two-hybrid approach to identify proteins that could interact with the exchanger and regulate its activity. Screening of a human brain cDNA library identified the epsilon and zeta isoforms of the 14-3-3 protein family as interacting partners of the exchanger. The interaction was confirmed by immunoprecipitation and in vitro binding experiments. The effect of the interaction on the homeostasis of Ca2+ was investigated by co-expressing NCX2 and 14-3-3epsilon in HeLa cells together with the recombinant Ca2+ probe aequorin; the ability of cells expressing both NCX2 and 14-3-3epsilon to dispose of a Ca2+ transient induced by an InsP3-producing agonist was substantially decreased, indicating a reduction of NCX2 activity. The 14-3-3epsilon protein also inhibited the NCX1 and NCX3 isoforms. In vitro binding experiments revealed that all three NCX isoforms interacted with multiple 14-3-3 isoforms. 14-3-3 was bound by both phosphorylated and nonphosphorylated NCX, but the phosphorylated form had much higher binding affinity.
Collapse
Affiliation(s)
- Maria V Pulina
- Venetian Institute of Molecular Medicine, and Department of Biochemistry, University of Padova, 35100 Padova, Italy
| | | | | | | |
Collapse
|
29
|
Dong H, Jiang Y, Triggle CR, Li X, Lytton J. Novel role for K+-dependent Na+/Ca2+ exchangers in regulation of cytoplasmic free Ca2+ and contractility in arterial smooth muscle. Am J Physiol Heart Circ Physiol 2006; 291:H1226-35. [PMID: 16617138 DOI: 10.1152/ajpheart.00196.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in vascular smooth muscle. The purpose of the present study was to identify the expression and function of NCKX in arteries. mRNA encoding NCKX3 and NCKX4 was demonstrated by RT-PCR and Northern blot in both rat mesenteric and aortic smooth muscle. NCXK3 and NCKX4 proteins were also demonstrated by immunoblot and immunofluorescence. After voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Na+ pump were pharmacologically blocked, when the extracellular Na+ was replaced with Li+ (0 Na+) to induce reverse mode (Ca2+ entry) activity of Na+/Ca2+ exchangers, a large increase in [Ca2+]cyt signal was observed in primary cultured aortic smooth muscle cells. About one-half of this [Ca2+]cyt signal depended on the extracellular K+. In addition, after the activity of NCX was inhibited by KB-R7943, Na+ replacement-induced Ca2+ entry was absolutely dependent on extracellular K+. In arterial rings denuded of endothelium, a significant fraction of the phenylephrine-induced and nifedipine-resistant aortic or mesenteric contraction could be prevented by removal of extracellular K+. Taken together, these data provide strong evidence for the expression of NCKX proteins in the vascular smooth muscle and their novel role in mediating agonist-stimulated [Ca2+]cyt and thereby vascular tone.
Collapse
Affiliation(s)
- Hui Dong
- Division of Gastroenterology, Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093-0063, USA.
| | | | | | | | | |
Collapse
|
30
|
Boscia F, Gala R, Pignataro G, de Bartolomeis A, Cicale M, Ambesi-Impiombato A, Di Renzo G, Annunziato L. Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J Cereb Blood Flow Metab 2006; 26:502-17. [PMID: 16107787 DOI: 10.1038/sj.jcbfm.9600207] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dysregulation of sodium [Na+]i and calcium [Ca2+]i homeostasis plays a pivotal role in the pathophysiology of cerebral ischemia. Three gene products of the sodium-calcium exchanger family NCX1, NCX2, and NCX3 couple, in a bidirectional way, the movement of these ions across the cell membrane during cerebral ischemia. Each isoform displays a selective distribution in the rat brain. To determine whether NCX gene expression can be regulated after cerebral ischemia, we used NCX isoform-specific antisense radiolabeled probes to analyze, by radioactive in situ hybridization histochemistry, the pattern of NCX1, NCX2, and NCX3 transcripts in the ischemic core, periinfarct area, as well as in nonischemic brain regions, after 6 and 24 h of permanent middle cerebral artery occlusion (pMCAO) in rats. We found that in the focal region, comprising divisions of the prefrontal, somatosensory, and insular cortices, all three NCX transcripts were downregulated. In the periinfarct area, comprising part of the motor cortex and the lateral compartments of the caudate-putamen, NCX2 messenger ribonucleic acid (mRNA) was downregulated, whereas NCX3 mRNA was significantly upregulated. In remote nonischemic brain regions such as the prelimbic and infralimbic cortices, and tenia tecta, both NCX1 and NCX3 transcripts were upregulated, whereas in the medial caudate-putamen only NCX3 transcripts increased. In all these intact regions, NCX2 signal strongly decreased. These results indicate that NCX gene expression is regulated after pMCAO in a differential manner, depending on the exchanger isoform and region involved in the insult. These data may provide a better understanding of each NCX subtype's pathophysiologic role and may allow researchers to design appropriate pharmacological strategies to treat brain ischemia.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Gomez-Villafuertes R, Torres B, Barrio J, Savignac M, Gabellini N, Rizzato F, Pintado B, Gutierrez-Adan A, Mellström B, Carafoli E, Naranjo JR. Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons. J Neurosci 2006; 25:10822-30. [PMID: 16306395 PMCID: PMC6725879 DOI: 10.1523/jneurosci.3912-05.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Na+/Ca2+ exchangers NCX1, NCX2, and NCX3 are vital for the control of cellular Ca2+ homeostasis. Here, we show that a doublet of downstream regulatory element sites in the promoter of the NCX3 gene mediates transcriptional repression of NCX3 by the Ca2+-modulated transcriptional repressor downstream regulatory element antagonist modulator (DREAM). Overexpression of a DREAM EF-hand mutant insensitive to Ca2+ (EFmDREAM) in hippocampus and cerebellum of transgenic mice significantly reduced NCX3 mRNA and protein levels without modifying NCX1 and NCX2 expression. Cerebellar granules from EFmDREAM transgenic mice showed increased levels of cytosolic Ca2+ and were more vulnerable to increased Ca2+ influx after partial opening of voltage-gated plasma membrane Ca2+ channels induced by increasing K+ in the culture medium but survived better in the conditions of reduced Ca2+ influx prevailing in low extracellular K+. Overexpression of NCX3 in EFmDREAM transgenic granules using a lentiviral vector restored the normal survival response to high K+ observed in wild-type granules. Thus, the downregulation of the regulator of Ca2+ homeostasis NCX3 by Ca2+-regulated DREAM is a striking example of the autoregulatory property of the Ca2+ signal in neurons.
Collapse
Affiliation(s)
- Rosa Gomez-Villafuertes
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
KIEDROWSKI LECH, CZYŻ ANETA. Mitochondria Buffer Sodium-Dependent Ca2+ Influx in Cultured Cerebellar Granule Cells. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2002.tb04769.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Lee WJ, Roberts-Thomson SJ, Monteith GR. Plasma membrane calcium-ATPase 2 and 4 in human breast cancer cell lines. Biochem Biophys Res Commun 2005; 337:779-83. [PMID: 16216224 DOI: 10.1016/j.bbrc.2005.09.119] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/20/2005] [Indexed: 11/18/2022]
Abstract
There is evidence to suggest that plasma membrane Ca2+-ATPase (PMCA) isoforms are important mediators of mammary gland physiology. PMCA2 in particular is upregulated extensively during lactation. Expression of other isoforms such as PMCA4 may influence mammary gland epithelial cell proliferation and aberrant regulation of PMCA isoform expression may lead or contribute to mammary gland pathophysiology in the form of breast cancers. To explore whether PMCA2 and PMCA4 expression may be deregulated in breast cancer, we compared mRNA expression of these PMCA isoforms in tumorigenic and non-tumorigenic human breast epithelial cell lines using real time RT-PCR. PMCA2 mRNA has a higher level of expression in some breast cancer cell lines and is overexpressed more than 100-fold in ZR-75-1 cells, compared to non-tumorigenic 184B5 cells. Although differences in PMCA4 mRNA levels were observed between breast cell lines, they were not of the magnitude observed for PMCA2. We conclude that PMCA2 mRNA can be highly overexpressed in some breast cancer cells. The significance of PMCA2 overexpression on tumorigenicity and its possible correlation with other properties such as invasiveness requires further study.
Collapse
Affiliation(s)
- Won Jae Lee
- The School of Pharmacy, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
34
|
Kramer D, Caruso A, Nicoletti F, Genazzani AA. Somatostatin and the somatostatin receptor 2 are reciprocally controlled by calcineurin during cerebellar granule cell maturation. J Neurochem 2005; 94:1374-83. [PMID: 16000155 DOI: 10.1111/j.1471-4159.2005.03285.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activity-dependent Ca2+ influx into neurones and the subsequent changes in gene expression are thought to be important in shaping neuronal development. In this study, we investigated whether an important mediator of neuronal migration, somatostatin (Srif), alongside its receptors, is controlled in this manner in cerebellar granule cells. We show that Ca2+ influx increases the expression of somatostatin mRNA (srif), while somatostatin receptor 2 (sst2) mRNA expression is decreased. Both genes appear to be regulated independently of each other and in a calcineurin-dependent manner that does not depend on either the ERK1/2 MAP kinase or the cAMP/CREB pathway. Nonetheless, a second pathway is required to induce changes in srif and sst2 expression, since constitutively active calcineurin alone is not sufficient to induce these changes. Furthermore, calcineurin activation reciprocally regulates the expression of brain-derived neurotrophic factor, bdnf, and its receptor trkb, which have also been shown to play a role in neuronal migration. Finally, calcineurin appears to control the expression of the neuronal marker transient axonal glycoprotein 1, tag-1, thereby strongly suggesting that calcineurin activation in vivo occurs during the late stages of neuronal migration, possibly during synaptogenesis with mossy fibres. We therefore propose that calcineurin might play an important role as a switch between transcriptional programs during neuronal development.
Collapse
Affiliation(s)
- Dana Kramer
- Department of Pharmacology, Cambridge University, UK
| | | | | | | |
Collapse
|
35
|
Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 2005; 120:275-85. [PMID: 15680332 DOI: 10.1016/j.cell.2004.11.049] [Citation(s) in RCA: 413] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 06/03/2004] [Accepted: 11/24/2004] [Indexed: 01/11/2023]
Abstract
In brain ischemia, gating of postsynaptic glutamate receptors and other membrane channels triggers intracellular Ca2+ overload and cell death. In excitotoxic settings, the initial Ca2+ influx through glutamate receptors is followed by a second uncontrolled Ca2+ increase that leads to neuronal demise. Here we report that the major plasma membrane Ca2+ extruding system, the Na+/Ca2+ exchanger (NCX), is cleaved during brain ischemia and in neurons undergoing excitotoxicity. Inhibition of Ca2+-activated proteases (calpains) by overexpressing their endogenous inhibitor protein, calpastatin or the expression of an NCX isoform not cleaved by calpains, prevented Ca2+ overload and rescued neurons from excitotoxic death. Conversely, down-regulation of NCX by siRNA compromised neuronal Ca2+ handling, transforming the Ca2+ transient elicited by non-excitotoxic glutamate concentrations into a lethal Ca2+overload. Thus, proteolytic inactivation of NCX-driven neuronal Ca2+ extrusion is responsible for the delayed excitotoxic Ca2+ deregulation and neuronal death.
Collapse
Affiliation(s)
- Daniele Bano
- MRC Toxicology Unit, University of Leicester, Hodgkin Building, Lancaster Road LE1 9HN, Leicester, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dong H, Sellers ZM, Smith A, Chow JYC, Barrett KE. Na(+)/Ca(2+) exchange regulates Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion in mice. Am J Physiol Gastrointest Liver Physiol 2005; 288:G457-65. [PMID: 15499079 DOI: 10.1152/ajpgi.00381.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Stimulation of muscarinic receptors in duodenal mucosa raises intracellular Ca(2+), which regulates ion transport, including HCO(3)(-) secretion. However, the underlying Ca(2+) handling mechanisms are poorly understood. The aim of the present study was to determine whether Na(+)/Ca(2+) exchanger (NCX) plays a role in the regulation of duodenal mucosal ion transport and HCO(3)(-) secretion by controlling Ca(2+) homeostasis. Mouse duodenal mucosa was mounted in Ussing chambers. Net ion transport was assessed as short-circuit current (I(sc)), and HCO(3)(-) secretion was determined by pH-stat. Expression of NCX in duodenal mucosae was analyzed by Western blot, and cytosolic Ca(2+) in duodenocytes was measured by fura 2. Carbachol (100 muM) increased I(sc) in a biphasic manner: an initial transient peak within 2 min and a later sustained plateau starting at 10 min. Carbachol-induced HCO(3)(-) secretion peaked at 10 min. 2-Aminoethoxydiphenylborate (2-APB, 100 muM) or LiCl (30 mM) significantly reduced the initial peak in I(sc) by 51 or 47%, respectively, and abolished the plateau phase of I(sc) without affecting HCO(3)(-) secretion induced by carbachol. Ryanodine (100 muM), caffeine (10 mM), and nifedipine (10 muM) had no effect on either response to carbachol. In contrast, nickel (5 mM) and KB-R7943 (10-30 muM) significantly inhibited carbachol-induced increases in duodenal mucosal I(sc) and HCO(3)(-) secretion. Western blot analysis showed expression of NCX1 proteins in duodenal mucosae, and functional NCX in duodenocytes was demonstrated in Ca(2+) imaging experiments where Na(+) depletion elicited Ca(2+) entry via the reversed mode of NCX. These results indicate that NCX contributes to the regulation of Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(-) secretion that results from stimulation of muscarinic receptors.
Collapse
Affiliation(s)
- Hui Dong
- Division of Gastroenterology, Department of Medicine, UCSD Medical Center 8414, 200 West Arbor Drive, San Diego, CA 92103, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Calcium is the most universal carrier of signals to cells. Chosen by evolution because of its peculiar flexibility as a ligand, it now regulates all important aspects of cell activity, beginning with the creation of new life at fertilization and ending with the dramatic event of apoptotic suicide at the end of the life cycle. The process of signal transduction by Ca2+ displays a number of properties that make it unique among all other carriers of signals: for instance, the ability to perform both a first messenger and a second messenger function, or the frequent activation of autoregulatory mechanisms. The aspect that distinguishes the Ca2+ signaling function most dramatically is ambivalence. Cells have an absolute dependence on the messenger function of Ca2+ in order to function properly and must control its homeostasis with precision to maintain its free concentration in their interior at the appropriate low level. Catastrophy, however, invariably follows whenever protracted failures of the control mechanisms lead to sustained Ca2+ overload.
Collapse
Affiliation(s)
- Ernesto Carafoli
- Venetian Institute of Molecular Medicine, Department of Biochemistry, University of Padova, Italy.
| |
Collapse
|
38
|
Romero JR, Rivera A, Lança V, Bicho MDP, Conlin PR, Ricupero DA. Na+/Ca2+ exchanger activity modulates connective tissue growth factor mRNA expression in transforming growth factor beta1- and Des-Arg10-kallidin-stimulated myofibroblasts. J Biol Chem 2005; 280:14378-84. [PMID: 15703175 DOI: 10.1074/jbc.m410052200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor (TGF)-beta and des-Arg(10)-kallidin stimulate the expression of connective tissue growth factor (CTGF), a matrix signaling molecule that is frequently overexpressed in fibrotic disorders. Because the early signal transduction events regulating CTGF expression are unclear, we investigated the role of Ca(2+) homeostasis in CTGF mRNA expression in TGF-beta1- and des-Arg(10)-kallidin-stimulated human lung myofibroblasts. Activation of the kinin B1 receptor with des-Arg(10)-kallidin stimulated a rise in cytosolic Ca(2+) that was extracellular Na(+)-dependent and extracellular Ca(2+)-dependent. The des-Arg(10)-kallidin-stimulated increase of cytosolic Ca(2+) was blocked by KB-R7943, a specific inhibitor of Ca(2+) entry mode operation of the plasma membrane Na(+)/Ca(2+) exchanger. TGF-beta1 similarly stimulated a KB-R7943-sensitive increase of cytosolic Ca(2+) with kinetics distinct from the des-Arg(10)-kallidin-stimulated Ca(2+) response. We also found that KB-R7943 or 2',4'-dichlorobenzamil, an amiloride analog that inhibits the Na(+)/Ca(2+) exchanger activity, blocked the TGF-beta1- and des-Arg(10)-kallidin-stimulated increases of CTGF mRNA. Pretreatment with KB-R7943 also reduced the basal and TGF-beta1-stimulated levels of alpha1(I) collagen and alpha smooth muscle actin mRNAs. These data suggest that, in addition to regulating ion homeostasis, Na(+)/Ca(2+) exchanger acts as a signal transducer regulating CTGF, alpha1(I) collagen, and alpha smooth muscle actin expression. Consistent with a more widespread role for Na(+)/Ca(2+) exchanger in fibrogenesis, we also observed that KB-R7943 likewise blocked TGF-beta1-stimulated levels of CTGF mRNA in human microvascular endothelial and human osteoblast-like cells. We conclude that Ca(2+) entry mode operation of the Na(+)/Ca(2+) exchanger is required for des-Arg(10)-kallidin- and TGF-beta1-stimulated fibrogenesis and participates in the maintenance of the myofibroblast phenotype.
Collapse
Affiliation(s)
- José R Romero
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Gabellini N. Transcriptional regulation by cAMP and Ca2+ links the Na+/Ca2+ exchanger 3 to memory and sensory pathways. Mol Neurobiol 2004; 30:91-116. [PMID: 15247490 DOI: 10.1385/mn:30:1:091] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The signaling cascades triggered by neurotrophins such as BDNF and by several neurotransmitters and hormones lead to the rapid induction of gene transcription by increasing the intracellular concentration of cAMP and Ca2+. This review examines the mechanisms by which these second messengers control transcriptional initiation at CRE promoters via transcription factor CREB, as well as at DRE sites via transcriptional repressor DREAM. The regulation of the SLC8A3 gene encoding the Na+/Ca2+ exchanger 3 (NCX3) is taken as an example to illustrate both mechanisms since it includes a CRE site in the promoter and several DRE sites in the exon 1 sequence. The upregulation of the NCX3 by Ca2+ signals may be specifically required to establish the Ca2+ balance that regulates several physiological and pathological processes in neurons. The regulatory features and the expression pattern of SLC8A3 gene suggest that NCX3 activity could be crucial in neuronal functions such as memory formation and sensory processing.
Collapse
Affiliation(s)
- Nadia Gabellini
- Department of Biological Chemistry, University of Padova, Padova, Italy.
| |
Collapse
|
40
|
Kiedrowski L, Czyz A, Baranauskas G, Li XF, Lytton J. Differential contribution of plasmalemmal Na/Ca exchange isoforms to sodium-dependent calcium influx and NMDA excitotoxicity in depolarized neurons. J Neurochem 2004; 90:117-28. [PMID: 15198672 DOI: 10.1111/j.1471-4159.2004.02462.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of Na(+),K(+)-ATPase during NMDA applications greatly increased NMDA-induced excitotoxicity in primary cultures of forebrain neurons (FNs), but not in cerebellar granule cells (CGCs). Because Na(+),K(+)-ATPase inhibition promotes reversal of plasmalemmal Na(+)/Ca(2+) exchangers, we compared the activities of reversed K(+)-independent (NCX) and K(+)-dependent (NCKX) Na(+)/Ca(2+) exchangers in these cultures. To this end, we measured gramicidin-induced and Na(+)-dependent elevation in cytosolic [Ca(2+)] ([Ca(2+)](c)) that represents Ca(2+) influx via reversed NCX and NCKX; NCX activity was dissected out by removing external K(+). The [Ca(2+)](c) elevations mediated by NCX alone, and NCX plus NCKX combined, were 17 and 6 times more rapid in FNs than in CGCs, respectively. Northern blot analysis showed that FNs preferentially express NCX1 whereas CGCs expressed NCX3. Differences in expression of other isoforms (NCX2, NCKX2, NCKX3 and NCKX4) were less pronounced. We tested whether the NCX or NCKX family of exchangers contributes most to the toxic NMDA-induced Ca(2+) influx in depolarized neurons. We found that in FNs, inhibition of NCX alone was sufficient to significantly limit NMDA excitotoxicity, whereas in CGCs, inhibition of both NCX and NCKX was required. The data suggest that the high activity of NCX isoforms expressed in FNs, possibly NCX1, sensitizes these neurons to NMDA excitotoxicity.
Collapse
Affiliation(s)
- Lech Kiedrowski
- The Psychiatric Institute, Department of Psychiatry, The University of Illinois at Chicago, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
The molecular mechanisms of learning and memory, and the underlying bidirectional changes in synaptic plasticity that sustain them largely implicate protein kinases and phosphatases. Specifically, Ca(2+)-dependent kinases and phosphatases actively control neuronal processing by forming a tightly regulated balance in which they oppose each other. In this balance, calcineurin (PP2B) is a critical protein phosphatase whose main function is to negatively modulate learning, memory, and plasticity. It acts by dephosphorylating numerous substrates in different neuronal compartments. This review outlines some of CN neuronal targets and their implication in synaptic functions, and describes the role of CN in the acquisition, storage, retrieval, and extinction of memory, as well as in bidirectional plasticity.
Collapse
Affiliation(s)
- Isabelle M Mansuy
- Department of Biology, Swiss Federal Institute of Technology, ETH Hönggerberg HPM D24, CH-8093, Zurich, Switzerland
| |
Collapse
|
42
|
Abstract
From the most basic of nervous systems to the intricate circuits found within the human brain, a fundamental requirement of neuronal function is that it be malleable, altering its output based upon experience. A host of cellular proteins are recruited for this purpose, which themselves are regulated by protein phosphorylation. Over the past several decades, research has demonstrated that the Ca(2+) and calmodulin-dependent protein phosphatase calcineurin (protein phosphatase 2B) is a critical regulator of a diverse array of proteins, leading to both short- and long-term effects on neuronal excitability and function. This review describes many of the influences of calcineurin on a variety of proteins, including ion channels, neurotransmitter receptors, enzymes, and transcription factors. Intriguingly, due to the bi-directional influences of Ca(2+) and calmodulin on calcineurin activity, the strength and duration of particular stimulations may cause apparently antagonistic functions of calcineurin to work in concert.
Collapse
Affiliation(s)
- Rachel D Groth
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
43
|
Rosker C, Graziani A, Lukas M, Eder P, Zhu MX, Romanin C, Groschner K. Ca(2+) signaling by TRPC3 involves Na(+) entry and local coupling to the Na(+)/Ca(2+) exchanger. J Biol Chem 2004; 279:13696-704. [PMID: 14736881 DOI: 10.1074/jbc.m308108200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPC3 has been suggested as a key component of phospholipase C-dependent Ca(2+) signaling. Here we investigated the role of TRPC3-mediated Na(+) entry as a determinant of plasmalemmal Na(+)/Ca(2+) exchange. Ca(2+) signals generated by TRPC3 overexpression in HEK293 cells were found to be dependent on extracellular Na(+), in that carbachol-stimulated Ca(2+) entry into TRPC3 expressing cells was significantly suppressed when extracellular Na(+) was reduced to 5 mm. Moreover, KB-R9743 (5 microm) an inhibitor of the Na(+)/Ca(2+) exchanger (NCX) strongly suppressed TRPC3-mediated Ca(2+) entry but not TRPC3-mediated Na(+) currents. NCX1 immunoreactivity was detectable in HEK293 as well as in TRPC3-overexpressing HEK293 cells, and reduction of extracellular Na(+) after Na(+) loading with monensin resulted in significant rises in intracellular free Ca(2+) (Ca(2+)(i)) of HEK293 cells. Similar rises in Ca(2+)(i) were recorded in TRPC3-overexpressing cells upon the reduction of extracellular Na(+) subsequent to stimulation with carbachol. These increases in Ca(2+)(i) were associated with outward membrane currents at positive potentials and inhibited by KB-R7943 (5 microm), chelation of extracellular Ca(2+), or dominant negative suppression of TRPC3 channel function. This suggests that Ca(2+) entry into TRPC3-expressing cells involves reversed mode Na(+)/Ca(2+) exchange. Cell fractionation experiments demonstrated co-localization of TRPC3 and NCX1 in low density membrane fractions, and co-immunoprecipitation experiments provided evidence for association of TRPC3 and NCX1. Glutathione S-transferase pull-down experiments revealed that NCX1 interacts with the cytosolic C terminus of TRPC3. We suggest functional and physical interaction of nonselective TRPC cation channels with NCX proteins as a novel principle of TRPC-mediated Ca(2+) signaling.
Collapse
Affiliation(s)
- Christian Rosker
- Department of Pharmacology and Toxicology, Karl-Franzens-University Graz, A-8010 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
44
|
Czyz A, Kiedrowski L. Inhibition of plasmalemmal Na(+)/Ca(2+) exchange by mitochondrial Na(+)/Ca(2+) exchange inhibitor 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157) in cerebellar granule cells. Biochem Pharmacol 2003; 66:2409-11. [PMID: 14637198 DOI: 10.1016/j.bcp.2003.08.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the heart, 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP-37157) inhibits mitochondrial but not sarcolemmal Na(+)/Ca(2+) exchange. Therefore, CGP-37157 is often used as an experimental tool to study the role of mitochondrial Na(+)/Ca(2+) exchange in Ca(2+) homeostasis in various cells, including neurons. However, neurons express several K(+)-dependent (NCKX) and/or K(+)-independent (NCX) isoforms of plasmalemmal Na(+)/Ca(2+) exchange not expressed in the sarcolemma. Because it has never been determined whether CGP-37157 inhibits plasmalemmal NCKX and/or NCX isoforms in neurons, we tested this possibility. As an index of NCKX and/or NCX activity, we studied Na-dependent and gramicidin-induced 45Ca(2+) accumulation in the presence and absence of K(+), respectively. In primary cultures of cerebellar granule cells, CGP-37157 with IC(50) of 13 microM inhibited over 70% of plasmalemmal NCX activity (P<0.01) but not NCKX activity. Our data suggest that the effects of CGP-37157 on neuronal Ca(2+) homeostasis include inhibition of certain plasmalemmal NCX isoform(s). Because cerebellar granule cells robustly express NCX3 transcripts, which are not expressed in the heart, it appears that this isoform may be CGP-37157 sensitive.
Collapse
Affiliation(s)
- Aneta Czyz
- Department of Psychiatry, The Psychiatric Institute, The University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | | |
Collapse
|
45
|
De Palma M, Venneri MA, Naldini L. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 2003; 14:1193-206. [PMID: 12908970 DOI: 10.1089/104303403322168028] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Tumor angiogenesis is a rate-limiting factor for tumor growth, and the endothelial cells of tumor vessels display specific features that can be exploited for the selective delivery of cancer therapeutics. To specifically target exogenous genes to angiogenic tumor vessels, we generated a panel of vesicular stomatitis virus-pseudotyped lentiviral vectors (LVs) engineered for endothelial cell (EC)-specific expression. We cloned a wide repertoire of transcription regulatory sequences from genes preferentially expressed in ECs (Tie1, Tie2, Flk-1, VE-Cad, and ICAM-2) into self-inactivating LVs to drive expression of the marker gene encoding green fluorescent protein (GFP) or of the conditionally toxic gene encoding nitroreductase, and compared them with the ubiquitously expressing phosphoglycerate kinase (PGK) and cytomegalovirus (CMV) promoters. We evaluated the efficiency and specificity of vector expression in vitro in a panel of human primary cultures, including ECs, fibroblasts, neurons, lymphocytes, and hematopoietic progenitors, and in tumor cell lines. We found that vectors containing promoter and enhancer sequences from the Tie2 gene achieved remarkable specificity of expression in ECs in vitro and in vivo. On intravenous delivery into tumor-bearing mice, the Tie2 vector targeted expression to the ECs of tumor vessels. In contrast, LVs carrying the PGK or CMV promoter gave widespread GFP marking in ECs and non-ECs of tumors and other organs. The previously reported upregulation of the Tie2 gene in ECs activated for angiogenesis may explain the remarkable selectivity of expression of the Tie2 vector in ECs of tumor vessels. The new vector provides the means for selective delivery of gene therapy to tumor sites in vivo.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Endothelium/metabolism
- Genetic Vectors/administration & dosage
- Humans
- Injections, Intravenous
- Lentivirus/genetics
- Mice
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Neoplasm Proteins/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/therapy
- Proto-Oncogene Proteins
- Receptor, TIE-2
- Regulatory Sequences, Nucleic Acid
- Swine
- Transcription, Genetic
- Transduction, Genetic
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vesicular stomatitis Indiana virus/genetics
Collapse
Affiliation(s)
- Michele De Palma
- Laboratory for Gene Transfer and Therapy, IRCC, Institute for Cancer Research and Treatment, University of Turin Medical School, 10060 Candiolo (Turin), Italy
| | | | | |
Collapse
|
46
|
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4:517-29. [PMID: 12838335 DOI: 10.1038/nrm1155] [Citation(s) in RCA: 3996] [Impact Index Per Article: 181.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ is a highly versatile intracellular signal that operates over a wide temporal range to regulate many different cellular processes. An extensive Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics. Rapid highly localized Ca2+ spikes regulate fast responses, whereas slower responses are controlled by repetitive global Ca2+ transients or intracellular Ca2+ waves. Ca2+ has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease.
Collapse
Affiliation(s)
- Michael J Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
| | | | | |
Collapse
|
47
|
Papa M, Canitano A, Boscia F, Castaldo P, Sellitti S, Porzig H, Taglialatela M, Annunziato L. Differential expression of the Na+-Ca2+ exchanger transcripts and proteins in rat brain regions. J Comp Neurol 2003; 461:31-48. [PMID: 12722103 DOI: 10.1002/cne.10665] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the central nervous system (CNS), the Na(+)-Ca(2+) exchanger plays a fundamental role in controlling the changes in the intracellular concentrations of Na(+) and Ca(2+) ions. These cations are known to regulate neurotransmitter release, cell migration and differentiation, gene expression, and neurodegenerative processes. In the present study, nonradioactive in situ hybridization and light immunohistochemistry were carried out to map the regional and cellular distribution for both transcripts and proteins encoded by the three known Na(+)-Ca(2+) exchanger genes NCX1, NCX2, and NCX3. NCX1 transcripts were particularly expressed in layers III-V of the motor cortex, in the thalamus, in CA3 and the dentate gyrus of the hippocampus, in several hypothalamic nuclei, and in the cerebellum. NCX2 transcripts were strongly expressed in all hippocampal subregions, in the striatum, and in the paraventricular thalamic nucleus. NCX3 mRNAs were mainly detected in the hippocampus, in the thalamus, in the amygdala, and in the cerebellum. Immunohistochemical analysis revealed that NCX1 protein was mainly expressed in the supragranular layers of the cerebral cortex, in the hippocampus, in the hypothalamus, in the substantia nigra and ventral tegmental area, and in the granular layer of the cerebellum. The NCX2 protein was predominantly expressed in the hippocampus, in the striatum, in the thalamus, and in the hypothalamus. The NCX3 protein was particularly found in the CA3 subregion, and in the oriens, radiatum, and lacunoso-moleculare layers of the hippocampus, in the ventral striatum, and in the cerebellar molecular layer. Collectively, these results suggest that the different Na(+)-Ca(2+) exchanger isoforms appear to be selectively expressed in several CNS regions where they might underlie different functional roles.
Collapse
Affiliation(s)
- Michele Papa
- Departments of Neuroscience and Anatomy, School of Medicine, University of Naples Federico II and 2nd University of Naples, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kramer D, Fresu L, Ashby DS, Freeman TC, Genazzani AA. Calcineurin controls the expression of numerous genes in cerebellar granule cells. Mol Cell Neurosci 2003; 23:325-30. [PMID: 12812763 DOI: 10.1016/s1044-7431(03)00057-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Ca(2+)/calmodulin-dependent phosphatase calcineurin plays a crucial role in gene expression in different cell types such as T-lymphocytes, cardiac myocytes, and smooth muscle cells. A possible role for calcineurin in gene expression was recently found in neurons, where calcineurin regulates the expression of several genes involved in Ca(2+) homeostasis. To detect additional genes regulated in a calcineurin-dependent way in neurons we analysed gene expression profiles of cerebellar granule cells cultured in depolarising conditions in the presence or absence of the calcineurin inhibitory agents FK506 and CsA. Using oligonucleotide arrays we identified 34 genes that are differentially expressed between the samples and confirmed the calcineurin-dependent regulation of some of these genes by RT-PCR. Therefore, our results, which are likely not to be comprehensive, suggest that calcineurin plays a fundamental role in neuronal gene expression by either activating or repressing the expression of genes such as receptors, transcription factors, and signalling molecules.
Collapse
Affiliation(s)
- Dana Kramer
- Department of Pharmacology, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | | | | | | |
Collapse
|
49
|
Biswas G, Anandatheerthavarada HK, Zaidi M, Avadhani NG. Mitochondria to nucleus stress signaling: a distinctive mechanism of NFkappaB/Rel activation through calcineurin-mediated inactivation of IkappaBbeta. J Cell Biol 2003; 161:507-19. [PMID: 12732617 PMCID: PMC2172940 DOI: 10.1083/jcb.200211104] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial genetic and metabolic stress causes activation of calcineurin (Cn), NFAT, ATF2, and NFkappaB/Rel factors, which collectively alter the expression of an array of nuclear genes. We demonstrate here that mitochondrial stress-induced activation of NFkappaB/Rel factors involves inactivation of IkappaBbeta through Cn-mediated dephosphorylation. Phosphorylated IkappaBbeta is a substrate for Cn phosphatase, which was inhibited by FK506 and RII peptide. Chemical cross-linking and coimmunoprecipitation show that NFkappaB/Rel factor-bound IkappaBbeta forms a ternary complex with Cn under in vitro and in vivo conditions that was sensitive to FK506. Results show that phosphorylation at S313 and S315 from the COOH-terminal PEST domain of IkappaBbeta is critical for binding to Cn. Mutations at S313/S315 of IkappaBbeta abolished Cn binding, inhibited Cn-mediated increase of Rel proteins in the nucleus, and had a dominant-negative effect on the mitochondrial stress-induced expression of RyR1 and cathepsin L genes. Our results show the distinctive nature of mitochondrial stress-induced NFkappaB/Rel activation, which is independent of IKKalpha and IKKbeta kinases and affects gene target(s) that are different from cytokine and TNFalpha-induced stress signaling. The results provide new insights into the role of Cn as a critical link between Ca2+ signaling and NFkappaB/Rel activation.
Collapse
Affiliation(s)
- Gopa Biswas
- Dept. of Animal Biology, Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
50
|
Gabellini N, Bortoluzzi S, Danieli GA, Carafoli E. Control of the Na+/Ca2+ exchanger 3 promoter by cyclic adenosine monophosphate and Ca2+ in differentiating neurons. J Neurochem 2003; 84:282-93. [PMID: 12558991 DOI: 10.1046/j.1471-4159.2003.01511.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human gene for member 3 of solute carrier family 8 (SLC8A3), encoding the Na+/Ca2+ exchanger isoform 3 (NCX3), was identified on chromosome 14q24.2. The minimal promoter region was predicted 250 bp upstream of exon 1. This was confirmed by luciferase reporter assays of pGL3-promoter constructs in transfected SH-SY5Y cells. The promoter activity was monitored during the differentiation of this cell line elicited by the sequential treatment with retinoic acid and brain-derived neurotrophic factor (BDNF). The activity was induced by cyclic AMP (cAMP) via the CRE (cAMP response element) and was stimulated by retinoic acid. The increase of intracellular Ca2+ induced by the partial depolarization of the plasma membrane with KCl down-regulated both the basal and the cAMP-stimulated transcription. The down-regulation of the latter may be mediated by the phosphorylation of the CRE-binding protein by a calmodulin-dependent kinase (CaMKII). The exposure of cells to BDNF after treatment with retinoic acid rapidly induced promoter activity during the initial five hours and phosphorylation of CRE-binding protein during the first two hours. The promoter activity was further enhanced by cAMP, but became insensitive to Ca2+. In BDNF-stimulated cells cAMP elevation caused the preferential phosphorylation of ATF1 instead of that of CRE-binding protein.
Collapse
Affiliation(s)
- Nadia Gabellini
- Department of Biological Chemistry, University of Padova, Italy.
| | | | | | | |
Collapse
|