1
|
Bazzone A, Zerlotti R, Barthmes M, Fertig N. Functional characterization of SGLT1 using SSM-based electrophysiology: Kinetics of sugar binding and translocation. Front Physiol 2023; 14:1058583. [PMID: 36824475 PMCID: PMC9941201 DOI: 10.3389/fphys.2023.1058583] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Beside the ongoing efforts to determine structural information, detailed functional studies on transporters are essential to entirely understand the underlying transport mechanisms. We recently found that solid supported membrane-based electrophysiology (SSME) enables the measurement of both sugar binding and transport in the Na+/sugar cotransporter SGLT1 (Bazzone et al, 2022a). Here, we continued with a detailed kinetic characterization of SGLT1 using SSME, determining KM and KD app for different sugars, kobs values for sugar-induced conformational transitions and the effects of Na+, Li+, H+ and Cl- on sugar binding and transport. We found that the sugar-induced pre-steady-state (PSS) charge translocation varies with the bound ion (Na+, Li+, H+ or Cl-), but not with the sugar species, indicating that the conformational state upon sugar binding depends on the ion. Rate constants for the sugar-induced conformational transitions upon binding to the Na+-bound carrier range from 208 s-1 for D-glucose to 95 s-1 for 3-OMG. In the absence of Na+, rate constants are decreased, but all sugars bind to the empty carrier. From the steady-state transport current, we found a sequence for sugar specificity (Vmax/KM): D-glucose > MDG > D-galactose > 3-OMG > D-xylose. While KM differs 160-fold across tested substrates and plays a major role in substrate specificity, Vmax only varies by a factor of 1.9. Interestingly, D-glucose has the lowest Vmax across all tested substrates, indicating a rate limiting step in the sugar translocation pathway following the fast sugar-induced electrogenic conformational transition. SGLT1 specificity for D-glucose is achieved by optimizing two ratios: the sugar affinity of the empty carrier for D-glucose is similarly low as for all tested sugars (KD,K app = 210 mM). Affinity for D-glucose increases 14-fold (KD,Na app = 15 mM) in the presence of sodium as a result of cooperativity. Apparent affinity for D-glucose during transport increases 8-fold (KM = 1.9 mM) compared to KD,Na app due to optimized kinetics. In contrast, KM and KD app values for 3-OMG and D-xylose are of similar magnitude. Based on our findings we propose an 11-state kinetic model, introducing a random binding order and intermediate states corresponding to the electrogenic transitions detected via SSME upon substrate binding.
Collapse
Affiliation(s)
- Andre Bazzone
- Nanion Technologies GmbH, Munich, Germany,*Correspondence: Andre Bazzone,
| | - Rocco Zerlotti
- Nanion Technologies GmbH, Munich, Germany,Department of Structural Biology, Faculty of Biology and Pre-Clinics, Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
2
|
Han L, Qu Q, Aydin D, Panova O, Robertson MJ, Xu Y, Dror RO, Skiniotis G, Feng L. Structure and mechanism of the SGLT family of glucose transporters. Nature 2021; 601:274-279. [PMID: 34880492 DOI: 10.1038/s41586-021-04211-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/04/2021] [Indexed: 12/24/2022]
Abstract
Glucose is a primary energy source in living cells. The discovery in 1960s that a sodium gradient powers the active uptake of glucose in the intestine1 heralded the concept of a secondary active transporter that can catalyse the movement of a substrate against an electrochemical gradient by harnessing energy from another coupled substrate. Subsequently, coupled Na+/glucose transport was found to be mediated by sodium-glucose cotransporters2,3 (SGLTs). SGLTs are responsible for active glucose and galactose absorption in the intestine and for glucose reabsorption in the kidney4, and are targeted by multiple drugs to treat diabetes5. Several members within the SGLT family transport key metabolites other than glucose2. Here we report cryo-electron microscopy structures of the prototypic human SGLT1 and a related monocarboxylate transporter SMCT1 from the same family. The structures, together with molecular dynamics simulations and functional studies, define the architecture of SGLTs, uncover the mechanism of substrate binding and selectivity, and shed light on water permeability of SGLT1. These results provide insights into the multifaceted functions of SGLTs.
Collapse
Affiliation(s)
- Lei Han
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Shanghai Stomatological Hospital, Institutes of Biomedical Science, Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Deniz Aydin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Computer Science, Stanford University, Stanford, CA, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Computer Science, Stanford University, Stanford, CA, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Function Trumps Form in Two Sugar Symporters, LacY and vSGLT. Int J Mol Sci 2021; 22:ijms22073572. [PMID: 33808202 PMCID: PMC8037263 DOI: 10.3390/ijms22073572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022] Open
Abstract
Active transport of sugars into bacteria occurs through symporters driven by ion gradients. LacY is the most well-studied proton sugar symporter, whereas vSGLT is the most characterized sodium sugar symporter. These are members of the major facilitator (MFS) and the amino acid-Polyamine organocation (APS) transporter superfamilies. While there is no structural homology between these transporters, they operate by a similar mechanism. They are nano-machines driven by their respective ion electrochemical potential gradients across the membrane. LacY has 12 transmembrane helices (TMs) organized in two 6-TM bundles, each containing two 3-helix TM repeats. vSGLT has a core structure of 10 TM helices organized in two inverted repeats (TM 1–5 and TM 6–10). In each case, a single sugar is bound in a central cavity and sugar selectivity is determined by hydrogen- and hydrophobic- bonding with side chains in the binding site. In vSGLT, the sodium-binding site is formed through coordination with carbonyl- and hydroxyl-oxygens from neighboring side chains, whereas in LacY the proton (H3O+) site is thought to be a single glutamate residue (Glu325). The remaining challenge for both transporters is to determine how ion electrochemical potential gradients drive uphill sugar transport.
Collapse
|
4
|
Prokaryotic Solute/Sodium Symporters: Versatile Functions and Mechanisms of a Transporter Family. Int J Mol Sci 2021; 22:ijms22041880. [PMID: 33668649 PMCID: PMC7918813 DOI: 10.3390/ijms22041880] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The solute/sodium symporter family (SSS family; TC 2.A.21; SLC5) consists of integral membrane proteins that use an existing sodium gradient to drive the uphill transport of various solutes, such as sugars, amino acids, vitamins, or ions across the membrane. This large family has representatives in all three kingdoms of life. The human sodium/iodide symporter (NIS) and the sodium/glucose transporter (SGLT1) are involved in diseases such as iodide transport defect or glucose-galactose malabsorption. Moreover, the bacterial sodium/proline symporter PutP and the sodium/sialic acid symporter SiaT play important roles in bacteria–host interactions. This review focuses on the physiological significance and structural and functional features of prokaryotic members of the SSS family. Special emphasis will be given to the roles and properties of proteins containing an SSS family domain fused to domains typically found in bacterial sensor kinases.
Collapse
|
5
|
Geiger D. Plant glucose transporter structure and function. Pflugers Arch 2020; 472:1111-1128. [PMID: 32845347 PMCID: PMC8298354 DOI: 10.1007/s00424-020-02449-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/01/2022]
Abstract
The carbohydrate D-glucose is the main source of energy in living organisms. In contrast to animals, as well as most fungi, bacteria, and archaea, plants are capable to synthesize a surplus of sugars characterizing them as autothrophic organisms. Thus, plants are de facto the source of all food on earth, either directly or indirectly via feed to livestock. Glucose is stored as polymeric glucan, in animals as glycogen and in plants as starch. Despite serving a general source for metabolic energy and energy storage, glucose is the main building block for cellulose synthesis and represents the metabolic starting point of carboxylate- and amino acid synthesis. Finally yet importantly, glucose functions as signalling molecule conveying the plant metabolic status for adjustment of growth, development, and survival. Therefore, cell-to-cell and long-distance transport of photoassimilates/sugars throughout the plant body require the fine-tuned activity of sugar transporters facilitating the transport across membranes. The functional plant counterparts of the animal sodium/glucose transporters (SGLTs) are represented by the proton-coupled sugar transport proteins (STPs) of the plant monosaccharide transporter(-like) family (MST). In the framework of this special issue on “Glucose Transporters in Health and Disease,” this review gives an overview of the function and structure of plant STPs in comparison to the respective knowledge obtained with the animal Na+-coupled glucose transporters (SGLTs).
Collapse
Affiliation(s)
- Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, Biocenter, University of Wuerzburg, 97082, Wuerzburg, Germany.
| |
Collapse
|
6
|
Wiczew D, Borowska A, Szkaradek K, Biegus T, Wozniak K, Pyclik M, Sitarska M, Jaszewski L, Radosinski L, Hanus-Lorenz B, Kraszewski S. Molecular mechanism of vSGLT inhibition by gneyulin reveals antiseptic properties against multidrug-resistant gram-negative bacteria. J Mol Model 2019; 25:186. [PMID: 31187300 DOI: 10.1007/s00894-019-4073-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/22/2019] [Indexed: 01/25/2023]
Abstract
Faced with the worldwide spread of multidrug-resistant (MDR) bacterial strains, together with a lack of any appropriate treatment, urgent steps to combat infectious diseases should be taken. Usually, bacterial components are studied to understand, by analogy, the functioning of human proteins. However, molecular data from bacteria gathered over the past decades provide a sound basis for the search for novel approaches in medical care. With this current work, we want to direct attention to inhibition of the vSGLT glucose transporter from Vibrio parahaemolyticus belonging to the sodium solute symporter (SSS) family, to block sugar transport into the bacterial cell and, as a consequence, to limit its growth. Potential bacteriostatic properties can be drawn from commercially available drugs developed for human diseases. This goal can also be reached with natural components from traditional herbal medicine. The presented data from the numerical analysis of 44 known inhibitors of sodium glucose symporters shed light on potential novel approaches in fighting Gram-negative multidrug-resistant microorganisms. Graphical abstract Molecular view on vSGLT channel inhibition by gneyulin B, the compound of natural origin.
Collapse
Affiliation(s)
- Daniel Wiczew
- Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-370, Wroclaw, Poland
| | - Anna Borowska
- Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-370, Wroclaw, Poland
| | - Kinga Szkaradek
- Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-370, Wroclaw, Poland
| | - Tomasz Biegus
- Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-370, Wroclaw, Poland
| | - Kamil Wozniak
- Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-370, Wroclaw, Poland
| | - Marcelina Pyclik
- Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-370, Wroclaw, Poland
| | - Magdalena Sitarska
- Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-370, Wroclaw, Poland
| | - Lukasz Jaszewski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-370, Wroclaw, Poland
| | - Lukasz Radosinski
- Faculty of Chemistry, Division of Bioprocess and Biomedical Engineering, Wroclaw University of Science and Technology, Norwida 4/6, 50-370, Wroclaw, Poland
| | - Beata Hanus-Lorenz
- Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Sebastian Kraszewski
- Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
7
|
Regmi A, Boyd EF. Carbohydrate metabolic systems present on genomic islands are lost and gained in Vibrio parahaemolyticus. BMC Microbiol 2019; 19:112. [PMID: 31133029 PMCID: PMC6537148 DOI: 10.1186/s12866-019-1487-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Utilizing unique carbohydrates or utilizing them more efficiently help bacteria expand and colonize new niches. Horizontal gene transfer (HGT) of catabolic systems is a powerful mechanism by which bacteria can acquire new phenotypic traits that can increase survival and fitness in different niches. In this work, we examined carbon catabolism diversity among Vibrio parahaemolyticus, a marine species that is also an important human and fish pathogen. RESULTS Phenotypic differences in carbon utilization between Vibrio parahaemolyticus strains lead us to examine genotypic differences in this species and the family Vibrionaceae in general. Bioinformatics analysis showed that the ability to utilize D-galactose was present in all V. parahaemolyticus but at least two distinct transporters were present; a major facilitator superfamily (MFS) transporter and a sodium/galactose transporter (SGLT). Growth and genetic analyses demonstrated that SGLT was a more efficient transporter of D-galactose and was the predominant type among strains. Phylogenetic analysis showed that D-galactose gene galM was acquired multiples times within the family Vibrionaceae and was transferred between distantly related species. The ability to utilize D-gluconate was universal within the species. Deletion of eda (VP0065), which encodes aldolase, a key enzyme in the Entner-Doudoroff (ED) pathway, reached a similar biomass to wild type when grown on D-gluconate as a sole carbon source. Two additional eda genes were identified, VPA1708 (eda2) associated with a D-glucuronate cluster and VPA0083 (eda3) that clustered with an oligogalacturonide (OGA) metabolism cluster. EDA2 and EDA3 were variably distributed among the species. A metabolic island was identified that contained citrate fermentation, L-rhamnose and OGA metabolism clusters as well as a CRISPR-Cas system. Phylogenetic analysis showed that CitF and RhaA had a limited distribution among V. parahaemolyticus, and RhaA was acquired at least three times. Within V. parahaemolyticus, two different regions contained the gene for L-arabinose catabolism and most strains had the ability to catabolism this sugar. CONCLUSION Our data suggest that horizontal transfer of metabolic systems among Vibrionaceae is an important source of metabolic diversity. This work identified four EDA homologues suggesting that the ED pathway plays a significant role in metabolism. We describe previously uncharacterized metabolism islands that were hotspots for the gain and loss of functional modules likely mediated by transposons.
Collapse
Affiliation(s)
- Abish Regmi
- Department of Biological Sciences, University of Delaware, 341 Wolf Hall, Newark, DE, 19716, USA
| | - Ethna Fidelma Boyd
- Department of Biological Sciences, University of Delaware, 341 Wolf Hall, Newark, DE, 19716, USA.
| |
Collapse
|
8
|
Chan CYL, Hiong KC, Choo CYL, Boo MV, Wong WP, Chew SF, Ip YK. Increased apical sodium-dependent glucose transporter abundance in the ctenidium of the giant clam Tridacna squamosa upon illumination. ACTA ACUST UNITED AC 2019; 222:jeb.195644. [PMID: 30877228 DOI: 10.1242/jeb.195644] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/05/2019] [Indexed: 01/14/2023]
Abstract
Giant clams contain phototrophic zooxanthellae, and live in nutrient-deficient tropical waters where light is available. We obtained the complete cDNA coding sequence of a homolog of mammalian sodium/glucose cotransporter 1 (SGLT1) - SGLT1-like - from the ctenidium of the fluted giant clam, Tridacna squamosa SGLT1-like had a host origin and was expressed predominantly in the ctenidium. Molecular characterizations reveal that SGLT1-like of T. squamosa could transport urea, in addition to glucose, as other SGLT1s do. It has an apical localization in the epithelium of ctenidial filaments and water channels, and the apical anti-SGLT1-like immunofluorescence was stronger in individuals exposed to light than to darkness. Furthermore, the protein abundance of SGLT1-like increased significantly in the ctenidium of individuals exposed to light for 12 h, although the SGLT1-like transcript level remained unchanged. As expected, T. squamosa could perform light-enhanced glucose absorption, which was impeded by exogenous urea. These results denote the close relationships between light-enhanced glucose absorption and light-enhanced SGLT1-like expression in the ctenidium of T. squamosa Although glucose absorption could be trivial compared with the donation of photosynthates from zooxanthellae in symbiotic adults, SGLT1-like might be essential for the survival of aposymbiotic larvae, leading to its retention in the symbiotic stage. A priori, glucose uptake through SGLT1-like might be augmented by the surface microbiome through nutrient cycling, and the absorbed glucose could partially fulfill the metabolic needs of the ctenidial cells. Additionally, SGLT1-like could partake in urea absorption, as T. squamosa is known to conduct light-enhanced urea uptake to benefit the nitrogen-deficient zooxanthellae.
Collapse
Affiliation(s)
- Christabel Y L Chan
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Celine Y L Choo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore .,The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119227, Republic of Singapore
| |
Collapse
|
9
|
Schäfer N, Friedrich M, Jørgensen ME, Kollert S, Koepsell H, Wischmeyer E, Lesch KP, Geiger D, Döring F. Functional analysis of a triplet deletion in the gene encoding the sodium glucose transporter 3, a potential risk factor for ADHD. PLoS One 2018; 13:e0205109. [PMID: 30286162 PMCID: PMC6171906 DOI: 10.1371/journal.pone.0205109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Sodium-glucose transporters (SGLT) belong to the solute carrier 5 family, which is characterized by sodium dependent transport of sugars and other solutes. In contrast, the human SGLT3 (hSGLT3) isoform, encoded by SLC5A4, acts as a glucose sensor that does not transport sugar but induces membrane depolarization by Na+ currents upon ligand binding. Whole-exome sequencing (WES) of several extended pedigrees with high density of attention-deficit/hyperactivity disorder (ADHD) identified a triplet ATG deletion in SLC5A4 leading to a single amino acid loss (ΔM500) in the hSGLT3 protein imperfectly co-segregating with the clinical phenotype of ADHD. Since mutations in homologous domains of hSGLT1 and hSGLT2 were found to affect intestinal and renal function, respectively, we analyzed the functional properties of hSGLT3[wt] and [ΔM500] by voltage clamp and current clamp recordings from cRNA-injected Xenopus laevis oocytes. The cation conductance of hSGLT3[wt] was activated by application of glucose or the specific agonist 1-desoxynojirimycin (DNJ) as revealed by inward currents in the voltage clamp configuration and cell depolarization in the current clamp mode. Almost no currents and changes in membrane potential were observed when glucose or DNJ were applied to hSGLT3[ΔM500]-injected oocytes, demonstrating a loss of function by this amino acid deletion in hSGLT3. To monitor membrane targeting of wt and mutant hSGLT3, fusion constructs with YFP were generated, heterologously expressed in Xenopus laevis oocytes and analyzed for membrane fluorescence by confocal microscopy. In comparison to hSGLT3[wt] the fluorescent signal of mutant [ΔM500] was reduced by 43% indicating that the mutant phenotype might mainly result from inaccurate membrane targeting. As revealed by homology modeling, residue M500 is located in TM11 suggesting that in addition to the core structure (TM1-TM10) of the transporter, the surrounding TMs are equally crucial for transport/sensor function. In conclusion, our findings indicate that the deletion [ΔM500] in hSGLT3 inhibits membrane targeting and thus largely disrupts glucose-induced sodium conductance, which may, in interaction with other ADHD risk-related gene variants, influence the risk for ADHD in deletion carriers.
Collapse
Affiliation(s)
- Nadine Schäfer
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Maximilian Friedrich
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Morten Egevang Jørgensen
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Sina Kollert
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Division of Molecular Electrophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Erhard Wischmeyer
- Division of Molecular Electrophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health,University Hospital of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Dietmar Geiger
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Frank Döring
- Division of Molecular Electrophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health,University Hospital of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Ghezzi C, Loo DDF, Wright EM. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 2018; 61:2087-2097. [PMID: 30132032 PMCID: PMC6133168 DOI: 10.1007/s00125-018-4656-5] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
The concentration of glucose in plasma is held within narrow limits (4-10 mmol/l), primarily to ensure fuel supply to the brain. Kidneys play a role in glucose homeostasis in the body by ensuring that glucose is not lost in the urine. Three membrane proteins are responsible for glucose reabsorption from the glomerular filtrate in the proximal tubule: sodium-glucose cotransporters SGLT1 and SGLT2, in the apical membrane, and GLUT2, a uniporter in the basolateral membrane. 'Knockout' of these transporters in mice and men results in the excretion of filtered glucose in the urine. In humans, intravenous injection of the plant glucoside phlorizin also results in excretion of the full filtered glucose load. This outcome and the finding that, in an animal model, phlorizin reversed the symptoms of diabetes, has stimulated the development and successful introduction of SGLT2 inhibitors, gliflozins, in the treatment of type 2 diabetes mellitus. Here we summarise the current state of our knowledge about the physiology of renal glucose handling and provide background to the development of SGLT2 inhibitors for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Chiara Ghezzi
- Department of Physiology, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1751, USA
| | - Donald D F Loo
- Department of Physiology, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1751, USA
| | - Ernest M Wright
- Department of Physiology, Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1751, USA.
| |
Collapse
|
11
|
Substrate-bound outward-open structure of a Na +-coupled sialic acid symporter reveals a new Na + site. Nat Commun 2018; 9:1753. [PMID: 29717135 PMCID: PMC5931594 DOI: 10.1038/s41467-018-04045-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/28/2018] [Indexed: 01/03/2023] Open
Abstract
Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 Å resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the conserved Na2 site, while the second Na+ binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic acid transport.
Collapse
|
12
|
Paz A, Claxton DP, Kumar JP, Kazmier K, Bisignano P, Sharma S, Nolte SA, Liwag TM, Nayak V, Wright EM, Grabe M, Mchaourab HS, Abramson J. Conformational transitions of the sodium-dependent sugar transporter, vSGLT. Proc Natl Acad Sci U S A 2018; 115:E2742-E2751. [PMID: 29507231 PMCID: PMC5866573 DOI: 10.1073/pnas.1718451115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sodium-dependent transporters couple the flow of Na+ ions down their electrochemical potential gradient to the uphill transport of various ligands. Many of these transporters share a common core structure composed of a five-helix inverted repeat and deliver their cargo utilizing an alternating-access mechanism. A detailed characterization of inward-facing conformations of the Na+-dependent sugar transporter from Vibrio parahaemolyticus (vSGLT) has previously been reported, but structural details on additional conformations and on how Na+ and ligand influence the equilibrium between other states remains unknown. Here, double electron-electron resonance spectroscopy, structural modeling, and molecular dynamics are utilized to deduce ligand-dependent equilibria shifts of vSGLT in micelles. In the absence and presence of saturating amounts of Na+, vSGLT favors an inward-facing conformation. Upon binding both Na+ and sugar, the equilibrium shifts toward either an outward-facing or occluded conformation. While Na+ alone does not stabilize the outward-facing state, gating charge calculations together with a kinetic model of transport suggest that the resting negative membrane potential of the cell, absent in detergent-solubilized samples, may stabilize vSGLT in an outward-open conformation where it is poised for binding external sugars. In total, these findings provide insights into ligand-induced conformational selection and delineate the transport cycle of vSGLT.
Collapse
Affiliation(s)
- Aviv Paz
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90096
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Jay Prakash Kumar
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, 560065, Bangalore, India
- School of Life Science, The Institute of TransDisciplinary Health Sciences & Technology (TDU), 560064, Bangalore, India
| | - Kelli Kazmier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Paola Bisignano
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Shruti Sharma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | - Shannon A Nolte
- Molecular Cell and Developmental Biology Program, University of California, Los Angeles, CA 90095
| | - Terrin M Liwag
- Molecular Cell and Developmental Biology Program, University of California, Los Angeles, CA 90095
| | - Vinod Nayak
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, 560065, Bangalore, India
| | - Ernest M Wright
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90096;
| | - Michael Grabe
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158;
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232;
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90096;
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine, 560065, Bangalore, India
| |
Collapse
|
13
|
North RA, Horne CR, Davies JS, Remus DM, Muscroft-Taylor AC, Goyal P, Wahlgren WY, Ramaswamy S, Friemann R, Dobson RCJ. "Just a spoonful of sugar...": import of sialic acid across bacterial cell membranes. Biophys Rev 2017; 10:219-227. [PMID: 29222808 DOI: 10.1007/s12551-017-0343-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/13/2017] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic cell surfaces are decorated with a complex array of glycoconjugates that are usually capped with sialic acids, a large family of over 50 structurally distinct nine-carbon amino sugars, the most common member of which is N-acetylneuraminic acid. Once made available through the action of neuraminidases, bacterial pathogens and commensals utilise host-derived sialic acid by degrading it for energy or repurposing the sialic acid onto their own cell surface to camouflage the bacterium from the immune system. A functional sialic acid transporter has been shown to be essential for the uptake of sialic acid in a range of human bacterial pathogens and important for host colonisation and persistence. Here, we review the state-of-play in the field with respect to the molecular mechanisms by which these bio-nanomachines transport sialic acids across bacterial cell membranes.
Collapse
Affiliation(s)
- Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Daniela M Remus
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Andrew C Muscroft-Taylor
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand
| | - Parveen Goyal
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - S Ramaswamy
- The Institute for Stem Cell Biology and Regenerative Medicine (InStem), G.K.V.K. Post Office, Bangalore, Karnataka, 560065, India
| | - Rosmarie Friemann
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of Gothenburg, Box 462, 40530, Gothenburg, Sweden. .,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, 40530, Gothenburg, Sweden.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch, 8140, New Zealand. .,Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
14
|
Fitzgerald GA, Mulligan C, Mindell JA. A general method for determining secondary active transporter substrate stoichiometry. eLife 2017; 6. [PMID: 28121290 PMCID: PMC5305207 DOI: 10.7554/elife.21016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
The number of ions required to drive substrate transport through a secondary active transporter determines the protein’s ability to create a substrate gradient, a feature essential to its physiological function, and places fundamental constraints on the transporter’s mechanism. Stoichiometry is known for a wide array of mammalian transporters, but, due to a lack of readily available tools, not for most of the prokaryotic transporters for which high-resolution structures are available. Here, we describe a general method for using radiolabeled substrate flux assays to determine coupling stoichiometries of electrogenic secondary active transporters reconstituted in proteoliposomes by measuring transporter equilibrium potentials. We demonstrate the utility of this method by determining the coupling stoichiometry of VcINDY, a bacterial Na+-coupled succinate transporter, and further validate it by confirming the coupling stoichiometry of vSGLT, a bacterial sugar transporter. This robust thermodynamic method should be especially useful in probing the mechanisms of transporters with available structures. DOI:http://dx.doi.org/10.7554/eLife.21016.001
Collapse
Affiliation(s)
- Gabriel A Fitzgerald
- Membrane Transport Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Christopher Mulligan
- Membrane Transport Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Joseph A Mindell
- Membrane Transport Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
15
|
Bracher S, Schmidt CC, Dittmer SI, Jung H. Core Transmembrane Domain 6 Plays a Pivotal Role in the Transport Cycle of the Sodium/Proline Symporter PutP. J Biol Chem 2016; 291:26208-26215. [PMID: 27793991 DOI: 10.1074/jbc.m116.753103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Indexed: 12/21/2022] Open
Abstract
Crystal structures of transporters with a LeuT-type structural fold assign core transmembrane domain 6 (TM6') a central role in substrate binding and translocation. Here, the function of TM6' in the sodium/proline symporter PutP, a member of the solute/sodium symporter family, was investigated. A complete scan of TM6' identified eight amino acids as particularly important for PutP function. Of these residues, Tyr-248, His-253, and Arg-257 impact sodium binding, whereas Arg-257 and Ala-260 may participate in interactions leading to closure of the inner gate. Furthermore, the previous suggestion of an involvement of Trp-244, Tyr-248, and Pro-252 in proline binding is further supported. In addition, substitution of Gly-245, Gly-247, and Gly-250 affects the amount of PutP in the membrane. A Cys accessibility analysis suggests an involvement of the inner half of TM6' in the formation of a hydrophilic pathway that is open to the inside in the absence of ligands and closed in the presence of sodium and proline. In conclusion, the results demonstrate that TM6' plays a central role in substrate binding and release on the inner side of the membrane also in PutP and extend the knowledge on functionally relevant amino acids in transporters with a LeuT-type structural fold.
Collapse
Affiliation(s)
- Susanne Bracher
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| | - Claudia C Schmidt
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| | - Sophie I Dittmer
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| | - Heinrich Jung
- From the Division of Microbiology, Department of Biology 1, Ludwig Maximilians University Munich, D-82152 Martinsried, Germany
| |
Collapse
|
16
|
Borghese R, Canducci L, Musiani F, Cappelletti M, Ciurli S, Turner RJ, Zannoni D. On the role of a specific insert in acetate permeases (ActP) for tellurite uptake in bacteria: Functional and structural studies. J Inorg Biochem 2016; 163:103-109. [PMID: 27421695 DOI: 10.1016/j.jinorgbio.2016.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 11/17/2022]
Abstract
The oxyanion tellurite (TeO32-) is extremely toxic to bacterial cells. In Rhodobacter capsulatus, tellurite enters the cytosol by means of the high uptake-rate acetate permease RcActP2, encoded by one of the three actP genes present in this species (actP1, actP2 and actP3). Conversely, in Escherichia coli a low rate influx of the oxyanion is measured, which depends mainly on the phosphate transporter EcPitA, even though E. coli contains its own EcActP acetate permease. Here we report that when the actP2 gene from R. capsulatus is expressed in wild-type E. coli HB101 and in E. coli JW3460 ΔpitA mutant, the cellular intake of tellurite increases up to four times, suggesting intrinsic structural differences between EcActP and RcActP2. Indeed, a sequence analysis indicated the presence in RcActP2 of an insert of 15-16 residues, located between trans-membrane (TM) helices 6 and 7, which is absent in both EcActP and RcActP1. Based on this observation, the molecular models of homodimeric RcActP1 and RcActP2 were calculated and analyzed. In the RcActP2 model, the insert induces a perturbation in the conformation of the loop between TM helices 6 and 7, located at the RcActP2 dimerization interface. This perturbation opens a cavity on the periplasmic side that is closed, instead, in the RcActP1 model. This cavity also features an increase of the positive electric potential on the protein surface, an effect ascribed to specific residues Lys261, Lys281 and Arg560. We propose that this positively charged patch in RcActP2 is involved in recognition and translocation of the TeO32- anion, attributing to RcActP2 a greater ability as compared to RcActP1 to transport this inorganic poison inside the cells.
Collapse
Affiliation(s)
- Roberto Borghese
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Laura Canducci
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
17
|
Tamura Y, Miyagawa H, Yoshida T, Chuman H. Binding interaction of SGLT with sugar and thiosugar by the molecular dynamics simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2799-804. [PMID: 26260238 DOI: 10.1016/j.bbamem.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/23/2023]
Abstract
The human sodium-glucose co-transporter 2 (hSGLT2) is a transporter responsible for reabsorption of glucose in the proximal convoluted tubule of the kidney. hSGLT2 inhibitors, including luseogliflozin, have been developed as drugs for type 2 diabetes mellitus. Only luseogliflozin contains a thiosugar ring in its chemical structure, while other hSGLT2 inhibitors contain glucose rings. Consequently, we focused on the binding interactions of hSGLT2 with sugars and thiosugars. We first revealed that the binding affinities of thiosugars are stronger than those of sugars through molecular dynamics simulations of Vibrio parahaemolyticus, sodium-galactose co-transporter, and human hSGLT2. We then demonstrated that Na(+) dissociates from the protein to the cytoplasmic solution more slowly in the thiosugar system than in the sugar system. These differences between sugars and thiosugars are discussed on the basis of the different binding modes due to the atom at the 5-position of the sugar and thiosugar rings. Finally, as a result of Na(+) dissociation, we suggest that the dissociation of thiosugars is slower than that of sugars.
Collapse
Affiliation(s)
- Yunoshin Tamura
- Chemistry Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Hiroh Miyagawa
- Chemistry Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama-shi, Saitama 331-9530, Japan
| | - Tatsusada Yoshida
- Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Hiroshi Chuman
- Institute of Health Biosciences, The University of Tokushima Graduate School, 1-78 Shomachi, Tokushima 770-8505, Japan.
| |
Collapse
|
18
|
Bisha I, Rodriguez A, Laio A, Magistrato A. Metadynamics simulations reveal a Na+ independent exiting path of galactose for the inward-facing conformation of vSGLT. PLoS Comput Biol 2014; 10:e1004017. [PMID: 25522004 PMCID: PMC4270436 DOI: 10.1371/journal.pcbi.1004017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/31/2014] [Indexed: 11/25/2022] Open
Abstract
Sodium-Galactose Transporter (SGLT) is a secondary active symporter which accumulates sugars into cells by using the electrochemical gradient of Na+ across the membrane. Previous computational studies provided insights into the release process of the two ligands (galactose and sodium ion) into the cytoplasm from the inward-facing conformation of Vibrio parahaemolyticus sodium/galactose transporter (vSGLT). Several aspects of the transport mechanism of this symporter remain to be clarified: (i) a detailed kinetic and thermodynamic characterization of the exit path of the two ligands is still lacking; (ii) contradictory conclusions have been drawn concerning the gating role of Y263; (iii) the role of Na+ in modulating the release path of galactose is not clear. In this work, we use bias-exchange metadynamics simulations to characterize the free energy profile of the galactose and Na+ release processes toward the intracellular side. Surprisingly, we find that the exit of Na+ and galactose is non-concerted as the cooperativity between the two ligands is associated to a transition that is not rate limiting. The dissociation barriers are of the order of 11–12 kcal/mol for both the ion and the substrate, in line with kinetic information concerning this type of transporters. On the basis of these results we propose a branched six-state alternating access mechanism, which may be shared also by other members of the LeuT-fold transporters. Membrane proteins are crucial for the communication of the cell with the environment. Among these, symporters are in charge of the transport of molecules (like sugars, amino acids, osmolytes) inside the cells, exploiting the concentration gradient of an ion to perform the task. Here we investigate by atomistic simulations the transport mechanism of the Sodium-Galactose symporter. Our results allow constructing a detailed and quantitative model of the release process of the two ligands. Surprisingly, we find that the galactose is released to the cytosol independently from the ion, unambiguously indicating that the coupling in their transport mechanism is associated to the steps preceding the release process. A large family of symporters shares the same fold and potentially the same transport mechanism. As such our results are important also because they can provide insights on common mechanistic features of these transporters.
Collapse
Affiliation(s)
| | | | | | - Alessandra Magistrato
- CNR-IOM-Democritos National Simulation Center, SISSA, Trieste, Italy
- * E-mail: mailto: (AL); mailto: (AM)
| |
Collapse
|
19
|
Adelman JL, Sheng Y, Choe S, Abramson J, Wright EM, Rosenberg JM, Grabe M. Structural determinants of water permeation through the sodium-galactose transporter vSGLT. Biophys J 2014; 106:1280-9. [PMID: 24655503 PMCID: PMC3984995 DOI: 10.1016/j.bpj.2014.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 01/26/2023] Open
Abstract
Sodium-glucose transporters (SGLTs) facilitate the movement of water across the cell membrane, playing a central role in cellular homeostasis. Here, we present a detailed analysis of the mechanism of water permeation through the inward-facing state of vSGLT based on nearly 10 μs of molecular dynamics simulations. These simulations reveal the transient formation of a continuous water channel through the transporter that permits water to permeate the protein. Trajectories in which spontaneous release of galactose is observed, as well as those in which galactose remains in the binding site, show that the permeation rate, although modulated by substrate occupancy, is not tightly coupled to substrate release. Using a, to our knowledge, novel channel-detection algorithm, we identify the key residues that control water flow through the transporter and show that solvent gating is regulated by side-chain motions in a small number of residues on the extracellular face. A sequence alignment reveals the presence of two insertion sites in mammalian SGLTs that flank these outer-gate residues. We hypothesize that the absence of these sites in vSGLT may account for the high water permeability values for vSGLT determined via simulation compared to the lower experimental estimates for mammalian SGLT1.
Collapse
Affiliation(s)
- Joshua L Adelman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ying Sheng
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seungho Choe
- School of Basic Science, College of Convergence, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Korea
| | - Jeff Abramson
- Department of Physiology, University of California, Los Angeles, California
| | - Ernest M Wright
- Department of Physiology, University of California, Los Angeles, California
| | - John M Rosenberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Michael Grabe
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, California.
| |
Collapse
|
20
|
Andrianesis V, Doupis J. The role of kidney in glucose homeostasis – SGLT2 inhibitors, a new approach in diabetes treatment. Expert Rev Clin Pharmacol 2014; 6:519-39. [DOI: 10.1586/17512433.2013.827399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Whitelegge J, Halgand F, Souda P, Zabrouskov V. Top-down mass spectrometry of integral membrane proteins. Expert Rev Proteomics 2014; 3:585-96. [PMID: 17181473 DOI: 10.1586/14789450.3.6.585] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Top-down mass spectrometry focuses on intact proteins, thereby avoiding loss of information accompanying 'shotgun' protocols that reduce the proteome to a collection of peptides. A suite of liquid-chromatography technologies has been developed for purification of intact integral membrane proteins in aqueous/organic solvent mixtures compatible with biological 'soft-ionization' mass spectrometry, preserving covalent structure into the gas phase. Multiply charged protein ions are fragmented in the gas phase, using either collision-activated or electron-capture dissociation, thus yielding complex spectra of sequence-dependent product ions that collectively define the original native covalent state of an intact protein. Top down offers a more detail-orientated approach to post-transcriptional and post-translational diversity allowing an enhanced insight beyond genomic translation, which has now extended into the bilayer proteome.
Collapse
Affiliation(s)
- Julian Whitelegge
- University of California, Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles, CA 90024, USA.
| | | | | | | |
Collapse
|
22
|
Dostalova Z, Zhou X, Liu A, Zhang X, Zhang Y, Desai R, Forman SA, Miller KW. Human α1β3γ2L gamma-aminobutyric acid type A receptors: High-level production and purification in a functional state. Protein Sci 2013; 23:157-66. [PMID: 24288268 DOI: 10.1002/pro.2401] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 02/01/2023]
Abstract
Gamma-aminobutyric acid type A receptors (GABA(A)Rs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABA(A)Rs determine their function and pharmacological profile. GABAA Rs are heteropentamers of subunits, and (α1)2 (β3)2 (γ2L)1 is a common subtype. Biochemical and biophysical studies of GABA(A)Rs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high-level production of active human α1β3 GABA(A)R using tetracycline-inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline-inducible HEK293-TetR cell line expressing human (N)-FLAG-α1β3γ2L-(C)-(GGS)3 GK-1D4 GABA(A)R. These cells achieved expression levels of 70-90 pmol [(3)H]muscimol binding sites/15-cm plate at a specific activity of 15-30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [(3)H]flunitrazepam to [(3)H]muscimol binding sites and sensitivity of GABA-induced currents to benzodiazepines and zinc. The α1β3γ2L GABA(A)Rs were solubilized in dodecyl-D-maltoside, purified by anti-FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ∼ 30%. Typical purifications yielded 1.0-1.5 nmoles of [(3)H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [(3)H]muscimol binding were maintained in the purified state.
Collapse
Affiliation(s)
- Zuzana Dostalova
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, 02115
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Functional identification and characterization of sodium binding sites in Na symporters. Proc Natl Acad Sci U S A 2013; 110:E4557-66. [PMID: 24191006 DOI: 10.1073/pnas.1319218110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sodium cotransporters from several different gene families belong to the leucine transporter (LeuT) structural family. Although the identification of Na(+) in binding sites is beyond the resolution of the structures, two Na(+) binding sites (Na1 and Na2) have been proposed in LeuT. Na2 is conserved in the LeuT family but Na1 is not. A biophysical method has been used to measure sodium dissociation constants (Kd) of wild-type and mutant human sodium glucose cotransport (hSGLT1) proteins to identify the Na(+) binding sites in hSGLT1. The Na1 site is formed by residues in the sugar binding pocket, and their mutation influences sodium binding to Na1 but not to Na2. For the canonical Na2 site formed by two -OH side chains, S392 and S393, and three backbone carbonyls, mutation of S392 to cysteine increased the sodium Kd by sixfold. This was accompanied by a dramatic reduction in the apparent sugar and phlorizin affinities. We suggest that mutation of S392 in the Na2 site produces a structural rearrangement of the sugar binding pocket to disrupt both the binding of the second Na(+) and the binding of sugar. In contrast, the S393 mutations produce no significant changes in sodium, sugar, and phlorizin affinities. We conclude that the Na2 site is conserved in hSGLT1, the side chain of S392 and the backbone carbonyl of S393 are important in the first Na(+) binding, and that Na(+) binding to Na2 promotes binding to Na1 and also sugar binding.
Collapse
|
24
|
Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT. Proc Natl Acad Sci U S A 2013; 110:17296-301. [PMID: 24101465 DOI: 10.1073/pnas.1309071110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most secondary-active transporters transport their substrates using an electrochemical ion gradient. In contrast, the carnitine transporter (CaiT) is an ion-independent, l-carnitine/γ-butyrobetaine antiporter belonging to the betaine/carnitine/choline transporter family of secondary transporters. Recently determined crystal structures of CaiT from Escherichia coli and Proteus mirabilis revealed an inverted five-transmembrane-helix repeat similar to that in the amino acid/Na(+) symporter LeuT. The ion independence of CaiT makes it unique in this family. Here we show that mutations of arginine 262 (R262) make CaiT Na(+)-dependent. The transport activity of R262 mutants increased by 30-40% in the presence of a membrane potential, indicating substrate/Na(+) cotransport. Structural and biochemical characterization revealed that R262 plays a crucial role in substrate binding by stabilizing the partly unwound TM1' helix. Modeling CaiT from P. mirabilis in the outward-open and closed states on the corresponding structures of the related symporter BetP reveals alternating orientations of the buried R262 sidechain, which mimic sodium binding and unbinding in the Na(+)-coupled substrate symporters. We propose that a similar mechanism is operative in other Na(+)/H(+)-independent transporters, in which a positively charged amino acid replaces the cotransported cation. The oscillation of the R262 sidechain in CaiT indicates how a positive charge triggers the change between outward-open and inward-open conformations as a unifying critical step in LeuT-type transporters.
Collapse
|
25
|
Darrouzet E, Lindenthal S, Marcellin D, Pellequer JL, Pourcher T. The sodium/iodide symporter: state of the art of its molecular characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:244-53. [PMID: 23988430 DOI: 10.1016/j.bbamem.2013.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/05/2013] [Accepted: 08/19/2013] [Indexed: 12/30/2022]
Abstract
The sodium/iodide symporter (NIS or SLC5A5) is an intrinsic membrane protein implicated in iodide uptake into thyroid follicular cells. It plays a crucial role in iodine metabolism and thyroid regulation and its function is widely exploited in the diagnosis and treatment of benign and malignant thyroid diseases. A great effort is currently being made to develop a NIS-based gene therapy also allowing the radiotreatment of nonthyroidal tumors. NIS is also expressed in other tissues, such as salivary gland, stomach and mammary gland during lactation, where its physiological role remains unclear. The molecular identity of the thyroid iodide transporter was elucidated approximately fifteen years ago. It belongs to the superfamily of sodium/solute symporters, SSS (and to the human transporter family, SLC5), and is composed of 13 transmembrane helices and 643 amino acid residues in humans. Knowledge concerning NIS structure/function relationship has been obtained by taking advantage of the high resolution structure of one member of the SSS family, the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT), and from studies of gene mutations leading to congenital iodine transport defects (ITD). This review will summarize current knowledge regarding the molecular characterization of NIS.
Collapse
Affiliation(s)
- Elisabeth Darrouzet
- SBTN, bât 170, centre de Marcoule, BP 17171, 30207 Bagnols sur Cèze CEDEX, France; Laboratoire TIRO, Faculté de médecine, Université de Nice Sophia-Antipolis, 28 Avenue de Valombrose, 06107 Nice CEDEX, France; CAL, TIRO, F-06107 Nice, France.
| | | | | | | | | |
Collapse
|
26
|
Grünberg W, Hartmann H, Arlt S, Burfeind O, Staufenbiel R. Alkalinizing effect of NaHCO₃ with and without glucose when administered orally to euhydrated neonatal dairy calves. J Dairy Sci 2013; 96:3895-906. [PMID: 23548282 DOI: 10.3168/jds.2012-6202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 02/12/2013] [Indexed: 01/27/2023]
Abstract
The use of oral rehydration solutions (ORS) is well established as an effective treatment to correct water-, electrolyte-, and acid-base balance in diarrheic calves. The main ingredients of a commercial ORS are Na, glucose, and alkalinizing agents, such as NaHCO3. Particular importance is attributed to the combination of glucose and Na at a specific ratio to optimize intestinal sodium, and thereby water uptake, through the sodium-glucose co-transport. Enhancing intestinal Na absorption by combining glucose and Na in an ORS has the potential to improve the alkalinizing effect of an ORS according the strong ion theory. The objective of this study was to investigate the effect of glucose on the alkalinizing effect of NaHCO3 when administered orally. Nine healthy neonatal Holstein-Friesian calves underwent 3 oral treatments with 2-L solutions of NaHCO3 (150 mmol/L), glucose (300 mmol/L), and glucose + NaHCO3 (300 mmol/L + 150 mmol/L, respectively) in randomized order. Arterial and venous blood was obtained before treatment and in 30-min intervals thereafter for blood gas analysis and determination of plasma protein and electrolyte concentrations. Urine was collected volumetrically to determine urine volume, osmolality, pH, net acid excretion, and renal Na excretion after treatment. Plasma volume changes were extrapolated from plasma protein concentration changes. Treatment and time effects were tested with repeated measures ANOVA. Only subtle differences between oral administration of NaHCO3, with and without glucose, were observed for the change of the standard HCO3 concentration relative to baseline. No differences in plasma Na, plasma volume expansion, renal Na, net base excretion, urine volume, or pH could be identified between animals treated orally with NaHCO3 with and without glucose. Similarly, no differences in blood glucose concentration, plasma volume expansion, urine volume, or renal glucose excretion were observed in the 8h after treatment when comparing oral glucose treatment with and without NaHCO3. Our results indicate that combination of NaHCO3 with glucose in a hypertonic ORS only had a minor effect on the alkalinizing effect of NaHCO3, which is unlikely to be of clinical relevance. The combination of NaHCO3 and glucose neither improved Na, glucose, nor water absorption in euhydrated neonatal dairy calves, questioning the relevance of a specific ratio between Na and glucose in ORS for calves.
Collapse
Affiliation(s)
- W Grünberg
- Department of Farm Animal Health, Universiteit Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Biofilms are multicellular communities of bacteria attached to a surface and embedded in a protective matrix. In many cases, the signals that induce biofilm formation are unknown. Here, we report that biofilm formation by the marine bacterium Vibrio fischeri can be induced by the addition of arabinose to LBS (Luria-Bertani-salt), a tryptone-based medium. Growth of cells in the presence of 0.2% arabinose, but not other sugars, induced the production of a pellicle at the air/liquid interfaces of static cultures. V. fischeri failed to grow on arabinose as the sole carbon source, suggesting that pellicle production did not occur as a result of increased growth, but experiments using the acid/base indicator phenol red suggested that V. fischeri may partially metabolize arabinose. Pellicle production was independent of the syp polysaccharide locus but was altered upon disruption of the bcs cellulose locus. Through a screen for mutants defective for pellicle production, we found that loss of motility disrupted the formation of the arabinose-induced pellicle. Among the ∼20 mutants that retained motility were strains with insertions in a putative msh pilus locus and a strain with a defect in yidK, which is involved in galactose catabolism. Mutants with the msh gene disrupted grew poorly in the presence of arabinose, while the yidK mutant appeared to be "blind" to the presence of arabinose. Finally, arabinose impaired symbiotic colonization by V. fischeri. This work thus identifies a novel signal and new pathways involved in control of biofilm formation by V. fischeri.
Collapse
|
28
|
Okuda T, Osawa C, Yamada H, Hayashi K, Nishikawa S, Ushio T, Kubo Y, Satou M, Ogawa H, Haga T. Transmembrane topology and oligomeric structure of the high-affinity choline transporter. J Biol Chem 2012; 287:42826-34. [PMID: 23132865 DOI: 10.1074/jbc.m112.405027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high-affinity choline transporter CHT1 mediates choline uptake essential for acetylcholine synthesis in cholinergic nerve terminals. CHT1 belongs to the Na(+)/glucose cotransporter family (SLC5), which is postulated to have a common 13-transmembrane domain core; however, no direct experimental evidence for CHT1 transmembrane topology has yet been reported. We examined the transmembrane topology of human CHT1 using cysteine-scanning analysis. Single cysteine residues were introduced into the putative extra- and intracellular loops and probed for external accessibility for labeling with a membrane-impermeable, sulfhydryl-specific biotinylating reagent in intact cells expressing these mutants. The results provide experimental evidence for a topological model of a 13-transmembrane domain protein with an extracellular amino terminus and an intracellular carboxyl terminus. We also constructed a three-dimensional homology model of CHT1 based on the crystal structure of the bacterial Na(+)/galactose cotransporter, which supports our conclusion of CHT1 transmembrane topology. Furthermore, we examined whether CHT1 exists as a monomer or oligomer. Chemical cross-linking induces the formation of a higher molecular weight form of CHT1 on the cell surface in HEK293 cells. Two different epitope-tagged CHT1 proteins expressed in the same cells can be co-immunoprecipitated. Moreover, co-expression of an inactive mutant I89A with the wild type induces a dominant-negative effect on the overall choline uptake activity. These results indicate that CHT1 forms a homo-oligomer on the cell surface in cultured cells.
Collapse
Affiliation(s)
- Takashi Okuda
- Department of Pharmacology, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Souda P, Ryan CM, Cramer WA, Whitelegge J. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry. Methods 2011; 55:330-6. [PMID: 21982782 DOI: 10.1016/j.ymeth.2011.09.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/18/2011] [Accepted: 09/21/2011] [Indexed: 11/28/2022] Open
Abstract
Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein's native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electron-capture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation.
Collapse
Affiliation(s)
- Puneet Souda
- The Pasarow Mass Spectrometry Laboratory, NPI-Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
30
|
Abstract
There are two classes of glucose transporters involved in glucose homeostasis in the body, the facilitated transporters or uniporters (GLUTs) and the active transporters or symporters (SGLTs). The energy for active glucose transport is provided by the sodium gradient across the cell membrane, the Na(+) glucose cotransport hypothesis first proposed in 1960 by Crane. Since the cloning of SGLT1 in 1987, there have been advances in the genetics, molecular biology, biochemistry, biophysics, and structure of SGLTs. There are 12 members of the human SGLT (SLC5) gene family, including cotransporters for sugars, anions, vitamins, and short-chain fatty acids. Here we give a personal review of these advances. The SGLTs belong to a structural class of membrane proteins from unrelated gene families of antiporters and Na(+) and H(+) symporters. This class shares a common atomic architecture and a common transport mechanism. SGLTs also function as water and urea channels, glucose sensors, and coupled-water and urea transporters. We also discuss the physiology and pathophysiology of SGLTs, e.g., glucose galactose malabsorption and familial renal glycosuria, and briefly report on targeting of SGLTs for new therapies for diabetes.
Collapse
Affiliation(s)
- Ernest M Wright
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095-1751, USA.
| | | | | |
Collapse
|
31
|
Mazier S, Quick M, Shi L. Conserved tyrosine in the first transmembrane segment of solute:sodium symporters is involved in Na+-coupled substrate co-transport. J Biol Chem 2011; 286:29347-29355. [PMID: 21705334 DOI: 10.1074/jbc.m111.263327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Solute:sodium symporters (SSSs) transport vital molecules across the plasma membrane of all living organisms. vSGLT, the Na(+)/galactose transporter of Vibrio parahemeolyticus, is the only SSS for which high resolution structural information is available, revealing a LeuT-like fold and a Na(+)-binding site analogous to the Na2 site of LeuT. Whereas the core transmembrane segments (TMs) of SSSs share high structural similarity with other transporters of LeuT-like fold, TM1 does not correspond to any TM in those structural homologs and was only resolved for the backbone atoms in the initial vSGLT structure (Protein Data Bank code 3DH4). To assess the role of TM1 in Na(+)-coupled substrate symport by the SSSs, here we have studied the role of a conserved residue in TM1 by computational modeling in conjunction with radiotracer transport and binding studies. Based on our sequence alignment and much topological data for homologous PutP, the Na(+)/proline transporter, we have simulated a series of vSGLT models with shifted TM1 residue assignments. We show that in two converged vSGLT models that retained the original TM1 backbone conformation, a conserved residue, Tyr-19, is associated with the Na(+) binding interaction network. In silico and in vitro mutagenesis of homologous Tyr-14 in PutP revealed the involvement of this conserved residue in Na(+)-dependent substrate binding and transport. Thus, our combined computational and experimental data provide the first clues about the importance of a conserved residue in TM1, a unique TM in the proteins with LeuT-like fold, in the Na(+)-coupled symport mechanism of SSSs.
Collapse
Affiliation(s)
- Sonia Mazier
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065
| | - Matthias Quick
- Center for Molecular Recognition & Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, and the New York State Psychiatric Institute, Division of Molecular Therapeutics, New York, New York 10032.
| | - Lei Shi
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065; HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10065,.
| |
Collapse
|
32
|
Tyagi NK, Puntheeranurak T, Raja M, Kumar A, Wimmer B, Neundlinger I, Gruber H, Hinterdorfer P, Kinne RK. A biophysical glance at the outer surface of the membrane transporter SGLT1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1-18. [DOI: 10.1016/j.bbamem.2010.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/22/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
|
33
|
The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature 2010; 468:988-91. [PMID: 21131949 DOI: 10.1038/nature09580] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/12/2010] [Indexed: 12/13/2022]
Abstract
Membrane co-transport proteins that use a five-helix inverted repeat motif have recently emerged as one of the largest structural classes of secondary active transporters. However, despite many structural advances there is no clear evidence of how ion and substrate transport are coupled. Here we report a comprehensive study of the sodium/galactose transporter from Vibrio parahaemolyticus (vSGLT), consisting of molecular dynamics simulations, biochemical characterization and a new crystal structure of the inward-open conformation at a resolution of 2.7 Å. Our data show that sodium exit causes a reorientation of transmembrane helix 1 that opens an inner gate required for substrate exit, and also triggers minor rigid-body movements in two sets of transmembrane helical bundles. This cascade of events, initiated by sodium release, ensures proper timing of ion and substrate release. Once set in motion, these molecular changes weaken substrate binding to the transporter and allow galactose readily to enter the intracellular space. Additionally, we identify an allosteric pathway between the sodium-binding sites, the unwound portion of transmembrane helix 1 and the substrate-binding site that is essential in the coupling of co-transport.
Collapse
|
34
|
Ghosal A, Said HM. Structure-function activity of the human sodium-dependent multivitamin transporter: role of His¹¹⁵ and His²⁵⁴. Am J Physiol Cell Physiol 2010; 300:C97-104. [PMID: 20962270 DOI: 10.1152/ajpcell.00398.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intestinal absorption of biotin occurs via a Na(+)-dependent carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT; product of the Slc5a6 gene). The SMVT system is exclusively expressed at the apical membrane domain of the polarized intestinal epithelial cells. Whereas previous studies from our laboratory and others have characterized different physiological and biological aspects of SMVT, little is currently known about its structure-function activity relationship. Using site-directed mutagenesis approach, we examined the role of the positively charged histidine (His) residues of the human SMVT (hSMVT) in transporting the negatively charged biotin. Of the seven conserved (across species) His residues in the hSMVT polypeptide, only His¹¹⁵ and His²⁵⁴ were found to be important for the function of hSMVT as their mutation led to a significant reduction in carrier-mediated biotin uptake. This inhibition was mediated via a significant reduction in the maximal velocity (V(max)), but not the apparent Michaelis constant (K(m)), of the biotin uptake process and was not related to the charge of the His residue. The inhibition was also not due to changes in transcriptional or translational efficiency of the mutated hSMVT compared with wild-type carrier. However, surface biotinylation assay showed a significant reduction in the level of expression of the mutated hSMVT at the cell surface, a finding that was further confirmed by confocal imaging. Our results show important role for His¹¹⁵ and His²⁵⁴ residues in hSMVT function, which is most probably mediated via an effect on level of hSMVT expression at the cell membrane.
Collapse
Affiliation(s)
- Abhisek Ghosal
- Department of Medicine, University of California, Irvine, USA
| | | |
Collapse
|
35
|
Choe S, Rosenberg JM, Abramson J, Wright EM, Grabe M. Water permeation through the sodium-dependent galactose cotransporter vSGLT. Biophys J 2010; 99:L56-8. [PMID: 20923633 PMCID: PMC3042592 DOI: 10.1016/j.bpj.2010.08.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/25/2010] [Accepted: 08/27/2010] [Indexed: 01/16/2023] Open
Abstract
It is well accepted that cotransporters facilitate water movement by two independent mechanisms: osmotic flow through a water channel in the protein and flow driven by ion/substrate cotransport. However, the molecular mechanism of transport-linked water flow is controversial. Some researchers believe that it occurs via cotransport, in which water is pumped along with the transported cargo, while others believe that flow is osmotic in response to an increase in intracellular osmolarity. In this letter, we report the results of a 200-ns molecular dynamics simulation of the sodium-dependent galactose cotransporter vSGLT. Our simulation shows that a significant number of water molecules cross the protein through the sugar-binding site in the presence as well as the absence of galactose, and 70-80 water molecules accompany galactose as it moves from the binding site into the intracellular space. During this event, the majority of water molecules in the pathway are unable to diffuse around the galactose, resulting in water in the inner half of the transporter being pushed into the intracellular space and replaced by extracellular water. Thus, our simulation supports the notion that cotransporters act as both passive water channels and active water pumps with the transported substrate acting as a piston to rectify the motion of water.
Collapse
Affiliation(s)
- Seungho Choe
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John M. Rosenberg
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ernest M. Wright
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Michael Grabe
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Hsieh JM, Besserer GM, Madej MG, Bui HQ, Kwon S, Abramson J. Bridging the gap: a GFP-based strategy for overexpression and purification of membrane proteins with intra and extracellular C-termini. Protein Sci 2010; 19:868-80. [PMID: 20196076 DOI: 10.1002/pro.365] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Low expression and instability during isolation are major obstacles preventing adequate structure-function characterization of membrane proteins (MPs). To increase the likelihood of generating large quantities of protein, C-terminally fused green fluorescent protein (GFP) is commonly used as a reporter for monitoring expression and evaluating purification. This technique has mainly been restricted to MPs with intracellular C-termini (C(in)) due to GFP's inability to fluoresce in the Escherichia coli periplasm. With the aid of Glycophorin A, a single transmembrane spanning protein, we developed a method to convert MPs with extracellular C-termini (C(out)) to C(in) ones providing a conduit for implementing GFP reporting. We tested this method on eleven MPs with predicted C(out) topology resulting in high level expression. For nine of the eleven MPs, a stable, monodisperse protein-detergent complex was identified using an extended fluorescence-detection size exclusion chromatography procedure that monitors protein stability over time, a critical parameter affecting the success of structure-function studies. Five MPs were successfully cleaved from the GFP tag by site-specific proteolysis and purified to homogeneity. To address the challenge of inefficient proteolysis, we explored expression and purification conditions in the absence of the fusion tag. Contrary to previous studies, optimal expression conditions established with the fusion were not directly transferable for overexpression in the absence of the GFP tag. These studies establish a broadly applicable method for GFP screening of MPs with C(out) topology, yielding sufficient protein suitable for structure-function studies and are superior to expression and purification in the absence GFP fusion tagging.
Collapse
Affiliation(s)
- Jennifer M Hsieh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
37
|
Zomot E, Bahar I. The sodium/galactose symporter crystal structure is a dynamic, not so occluded state. MOLECULAR BIOSYSTEMS 2010; 6:1040-6. [PMID: 20358053 DOI: 10.1039/b927492h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The recent elucidation of the sodium/galactose symporter structure from the Vibrio parahaemolyticus bacterium, vSGLT, has revealed a similarity in the core architecture with transporters from different gene families, including the leucine transporter (LeuT). Even though several transporters sharing this core have been structurally determined over the past few years, vSGLT is the only one crystallized in the substrate-bound inward-facing conformation so far. In this study, we report the first insight into the dynamics and coordination of the galactose (Gal) and proposed Na+ ion in vSGLT using a series of molecular dynamics simulations with a total time of about 0.1 micros. Our study reveals new residues, not observed in the crystal structure, which closely interact with the Na(+) ion or the substrate for extended times, and shows that in the crystallized conformation, a Na+ ion placed at the site equivalent to Na2 in LeuT can escape into the intracellular (IC) space in the absence of external forces. We have identified the highly conserved Asp189 as a likely binding residue on the pathway of Na(+) into the IC cavity. The release of Gal, on the other hand, requires the rotation of the side chain of the inner hydrophobic gate, Tyr263, without a significant change in vSGLT backbone conformation. Our simulations further show that the crystal structure represents but one accessible binding pose of Gal and Na+ among an ensemble of microstates, and that the Gal undergoes versatile alternate interactions at the binding pocket.
Collapse
Affiliation(s)
- Elia Zomot
- Department of Computational Biology, School of Medicine, University of Pittsburgh, 3064 BST3, 3501 Fifth Ave, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
38
|
Li J, Tajkhorshid E. Ion-releasing state of a secondary membrane transporter. Biophys J 2010; 97:L29-31. [PMID: 19948113 DOI: 10.1016/j.bpj.2009.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 08/28/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of Na(+)-coupled galactose symporter (vSGLT) reports the transporter in its substrate-bound state, with a Na(+) ion modeled in a binding site corresponding to that of a homologous protein, leucine transporter (LeuT). In repeated molecular dynamics simulations, however, we find the Na(+) ion instable, invariably and spontaneously diffusing out of the transporter through a pathway lined by D189, which appears to facilitate the diffusion of the ion toward the cytoplasm. Further analysis of the trajectories and close structural examination, in particular, comparison of the Na(+)-binding sites of vSGLT and LeuT, strongly indicates that the crystal structure of vSGLT actually represents an ion-releasing state of the transporter. The observed dynamics of the Na(+) ion, in contrast to the substrate, also suggests that the cytoplasmic release of the Na(+) ion precedes that of the substrate, thus shedding light on a key step in the transport cycle of this secondary transporter.
Collapse
|
39
|
Abramson J, Wright EM. Structure and function of Na(+)-symporters with inverted repeats. Curr Opin Struct Biol 2009; 19:425-32. [PMID: 19631523 PMCID: PMC3496787 DOI: 10.1016/j.sbi.2009.06.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 11/19/2022]
Abstract
Symporters are membrane proteins that couple energy stored in electrochemical potential gradients to drive the cotransport of molecules and ions into cells. Traditionally, proteins are classified into gene families based on sequence homology and functional properties, for example the sodium glucose (SLC5 or Sodium Solute Symporter Family, SSS or SSF) and GABA (SLC6 or Neurotransmitter Sodium Symporter Family, NSS or SNF) symporter families [1-4]. Recently, it has been established that four Na(+)-symporter proteins with unrelated sequences have a common structural core containing an inverted repeat of 5 transmembrane (TM) helices [5(**)-8(**)]. Analysis of these four structures reveals that they reside in different conformations along the transport cycle providing atomic insight into the mechanism of sodium solute cotransport.
Collapse
Affiliation(s)
- Jeff Abramson
- Department of Physiology, David School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA.
| | | |
Collapse
|
40
|
Weyand S, Shimamura T, Yajima S, Suzuki S, Mirza O, Krusong K, Carpenter EP, Rutherford NG, Hadden JM, O'Reilly J, Ma P, Saidijam M, Patching SG, Hope RJ, Norbertczak HT, Roach PCJ, Iwata S, Henderson PJF, Cameron AD. Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 2008; 322:709-13. [PMID: 18927357 PMCID: PMC2885439 DOI: 10.1126/science.1164440] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nucleobase-cation-symport-1 (NCS1) transporters are essential components of salvage pathways for nucleobases and related metabolites. Here, we report the 2.85-angstrom resolution structure of the NCS1 benzyl-hydantoin transporter, Mhp1, from Microbacterium liquefaciens. Mhp1 contains 12 transmembrane helices, 10 of which are arranged in two inverted repeats of five helices. The structures of the outward-facing open and substrate-bound occluded conformations were solved, showing how the outward-facing cavity closes upon binding of substrate. Comparisons with the leucine transporter LeuT(Aa) and the galactose transporter vSGLT reveal that the outward- and inward-facing cavities are symmetrically arranged on opposite sides of the membrane. The reciprocal opening and closing of these cavities is synchronized by the inverted repeat helices 3 and 8, providing the structural basis of the alternating access model for membrane transport.
Collapse
Affiliation(s)
- Simone Weyand
- Membrane Protein Laboratory, Diamond Light Source Limited, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Faham S, Watanabe A, Besserer GM, Cascio D, Specht A, Hirayama BA, Wright EM, Abramson J. The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 2008; 321:810-4. [PMID: 18599740 PMCID: PMC3654663 DOI: 10.1126/science.1160406] [Citation(s) in RCA: 412] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane transporters that use energy stored in sodium gradients to drive nutrients into cells constitute a major class of proteins. We report the crystal structure of a member of the solute sodium symporters (SSS), the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT). The approximately 3.0 angstrom structure contains 14 transmembrane (TM) helices in an inward-facing conformation with a core structure of inverted repeats of 5 TM helices (TM2 to TM6 and TM7 to TM11). Galactose is bound in the center of the core, occluded from the outside solutions by hydrophobic residues. Surprisingly, the architecture of the core is similar to that of the leucine transporter (LeuT) from a different gene family. Modeling the outward-facing conformation based on the LeuT structure, in conjunction with biophysical data, provides insight into structural rearrangements for active transport.
Collapse
Affiliation(s)
- Salem Faham
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1751, USA
| | - Akira Watanabe
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1751, USA
| | - Gabriel Mercado Besserer
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1751, USA
| | - Duilio Cascio
- UCLA-Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Alexandre Specht
- Laboratoire de chimie bioorganique, Université Louis Pasteur / CNRS UMR 7175 LC01, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - Bruce A. Hirayama
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1751, USA
| | - Ernest M. Wright
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1751, USA
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1751, USA
| |
Collapse
|
42
|
Reig N, del Rio C, Casagrande F, Ratera M, Gelpí JL, Torrents D, Henderson PJF, Xie H, Baldwin SA, Zorzano A, Fotiadis D, Palacín M. Functional and Structural Characterization of the First Prokaryotic Member of the L-Amino Acid Transporter (LAT) Family. J Biol Chem 2007; 282:13270-81. [PMID: 17344220 DOI: 10.1074/jbc.m610695200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified YkbA from Bacillus subtilis as a novel member of the L-amino acid transporter (LAT) family of amino acid transporters. The protein is approximately 30% identical in amino acid sequence to the light subunits of human heteromeric amino acid transporters. Purified His-tagged YkbA from Escherichia coli membranes reconstituted in proteoliposomes exhibited sodium-independent, obligatory exchange activity for L-serine and L-threonine and also for aromatic amino acids, albeit with less activity. Thus, we propose that YkbA be renamed SteT (Ser/Thr exchanger transporter). Kinetic analysis supports a sequential mechanism of exchange for SteT. Freeze-fracture analysis of purified, functionally active SteT in proteoliposomes, together with blue native polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized purified SteT, suggest that the transporter exists in a monomeric form. Freeze-fracture analysis showed spherical particles with a diameter of 7.4 nm. Transmission electron microscopy revealed elliptical particles (diameters 6 x 7 nm) with a distinct central depression. To our knowledge, this is the first functional characterization of a prokaryotic member of the LAT family and the first structural data on an APC (amino acids, polyamines, and choline for organocations) transporter. SteT represents an excellent model to study the molecular architecture of the light subunits of heteromeric amino acid transporters and other APC transporters.
Collapse
Affiliation(s)
- Núria Reig
- Institute for Research in Biomedicine, Barcelona Science Park and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kumar A, Tyagi NK, Goyal P, Pandey D, Siess W, Kinne RKH. Sodium-Independent Low-Affinity d-Glucose Transport by Human Sodium/d-Glucose Cotransporter 1: Critical Role of Tryptophan 561. Biochemistry 2007; 46:2758-66. [PMID: 17288452 DOI: 10.1021/bi061696x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although there is no evidence of significant Na-independent glucose flux in tissues naturally expressing SGLT1, previous kinetic and biophysical studies suggest that sodium/d-glucose cotransporter 1 (hSGLT1) can facilitate sodium-independent d-glucose transport and may contain more than one sugar binding site. In this work, we analyze the kinetic properties and conformational states of isolated hSGLT1 reconstituted in liposomes by transport and fluorescence studies in the absence of sodium. In the transport studies with hSGLT1, significant sodium-independent phlorizin inhibitable alpha-methyl d-glucopyranoside (alpha-MDG) uptake was observed which amounted to approximately 20% of the uptake observed in the presence of a sodium gradient. The apparent affinity constant for alpha-MDG was thereby 3.4 +/- 0.5 mM, a value approximately 10-fold higher than that in the presence of sodium. In the absence of sodium, various sugars significantly decreased the intrinsic Trp fluorescence of hSGLT1 in proteoliposomes exhibiting the following sequence of affinities: alpha-MDG > d-glucose approximately d-galactose > 6-deoxy-d-glucose > 2-deoxy-d-glucose > d-allose. Furthermore, significant protection effects of d-glucose or phlorizin against potassium iodide, acrylamide, or trichloroethanol quenching were observed. To locate the Trps involved in this reaction, we generated mutants in which all Trps were sequentially substituted with Phe. None of the replacements significantly affected sodium-dependent uptake. Uptake in the absence of sodium and typical fluorescence changes depended, however, on the presence of Trp at position 561. This Trp residue is conserved in all known SGLT1 forms (except Vibrio parahaemolyticus SGLT) and all SGLT isoforms in humans (except hSGLT3). If all these data are taken into consideration, it seems that Trp-561 in hSGLT1 forms part of a low-affinity sodium-independent binding and/or translocation site for d-glucose. The rate of sodium-independent translocation via hSGLT1 seems, however, to be tightly regulated in the intact cell by yet unknown factors.
Collapse
Affiliation(s)
- Azad Kumar
- Max Planck Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Signorell GA, Kaufmann TC, Kukulski W, Engel A, Rémigy HW. Controlled 2D crystallization of membrane proteins using methyl-β-cyclodextrin. J Struct Biol 2007; 157:321-8. [PMID: 16979348 DOI: 10.1016/j.jsb.2006.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/21/2006] [Accepted: 07/22/2006] [Indexed: 11/26/2022]
Abstract
High-resolution structural data of membrane proteins can be obtained by studying 2D crystals by electron crystallography. Finding the right conditions to produce these crystals is one of the major bottlenecks encountered in 2D crystallography. Many reviews address 2D crystallization techniques in attempts to provide guidelines for crystallographers. Several techniques including new approaches to remove detergent like the biobeads technique and the development of dedicated devices have been described (dialysis and dilution machines). In addition, 2D crystallization at interfaces has been studied, the most prominent method being the 2D crystallization at the lipid monolayer. A new approach based on detergent complexation by cyclodextrins is presented in this paper. To prove the ability of cyclodextrins to remove detergent from ternary mixtures (lipid, detergent and protein) in order to get 2D crystals, this method has been tested with OmpF, a typical beta-barrel protein, and with SoPIP2;1, a typical alpha-helical protein. Experiments over different time ranges were performed to analyze the kinetic effects of detergent removal with cyclodextrins on the formation of 2D crystals. The quality of the produced crystals was assessed with negative stain electron microscopy, cryo-electron microscopy and diffraction. Both proteins yielded crystals comparable in quality to previous crystallization reports.
Collapse
Affiliation(s)
- Gian A Signorell
- M. E. Müller Institute for Microscopy at the Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Abstract
Secondary active glucose transport occurs by at least four members of the SLC5 gene family. This review considers the structure and function of two premier members, SGLT1 and SGLT2, and their role in intestinal glucose absorption and renal glucose reabsorption. Genetics disorders of SGLTs include Glucose-Galactose Malabsorption, and Familial Renal Glucosuria. SGLT1 plays a central role in Oral Rehydration Therapy used so effectively to treat secretory diarrhoea such as cholera. Increasing attention is being focused on SGLTs as drug targets for the therapy of diabetes.
Collapse
Affiliation(s)
- E M Wright
- Department of Physiology, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1751, USA.
| | | | | |
Collapse
|
46
|
Turk E, Gasymov OK, Lanza S, Horwitz J, Wright EM. A reinvestigation of the secondary structure of functionally active vSGLT, the vibrio sodium/galactose cotransporter. Biochemistry 2006; 45:1470-9. [PMID: 16445289 DOI: 10.1021/bi052160z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial Na(+)/galactose cotransporter vSGLT of Vibrio parahaemolyticus is a member of the sodium:solute symporter family (SSS). Previous studies using electron microscopy have shown that vSGLT is a monomeric protein. Computational and experimental topological analyses have consistently indicated that this protein possesses 14 transmembrane alpha-helices. Our previous study using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to quantitate secondary structure content had indicated, in contrast, an alpha-helical content of only 35%, too little to be consistent with the 14-span model [le Coutre, J., et al. (2002) Biochemistry 41, 8082-6]. ATR-FTIR had also indicated that upon binding of Na(+) and d-galactose, the alpha-helical content increased to 53%. Here we revisit the vSGLT secondary structural distribution using an alternative approach, ultraviolet circular dichroism spectropolarimetry (CD), which is highly accurate in determining the alpha-helical content of a protein in solution. CD spectra were obtained from actively functional, soluble vSGLT and, as an internal check, from a fusion protein of vSGLT and the beta-barrel green fluorescent protein (GFP). Far-UV CD of vSGLT indicates a predominating 85% alpha-helical content, and an absence of beta-strands. Far-UV CD of the vSGLT-GFP fusion corroborates this profile, indicating an equivalent alpha-helical content, and a beta-strand content consistent with the GFP contribution. No detectable substrate-induced macroscopic changes in secondary structure are apparent in the far UV. In the near UV, increases in positive CD intensity occur in a stepwise manner with added substrates, implying changing environments of aromatic amino acid residues. CD thus confirms the current 14-transmembrane span model of vSGLT and reveals distinct substrate-induced conformational changes. The high percentage of alpha-helical structure found requires, when considered in the context of membrane topology, that nearly a third of the total alpha-helical fraction lies in extramembrane domains, which distinguishes this cotransporter from the unrelated lactose and glycerol 3-phosphate transporters.
Collapse
Affiliation(s)
- Eric Turk
- Department of Physiology, David Geffen School of Medicine at UCLA, University of California, 90095-1751, USA.
| | | | | | | | | |
Collapse
|
47
|
Tyagi NK, Goyal P, Kumar A, Pandey D, Siess W, Kinne RKH. High-Yield Functional Expression of Human Sodium/d-Glucose Cotransporter1 inPichia pastorisand Characterization of Ligand-Induced Conformational Changes as Studied by Tryptophan Fluorescence†. Biochemistry 2005; 44:15514-24. [PMID: 16300400 DOI: 10.1021/bi051377q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies on the structure-function relationship of transporters require the availability of sufficient amounts of the protein in a functional state. In this paper, we report the functional expression, purification, and reconstitution of the human sodium/d-glucose cotransporter1 (hSGLT1) in Pichia pastoris and ligand-induced conformational changes of hSGLT1 in solution as studied by intrinsic tryptophan fluorescence. hSGLT1 gene containing FLAG tag at position 574 was cloned into pPICZB plasmid, and the resulting expression vector pPICZB-hSGLT1 was introduced into P. pastoris strain GS115 by electroporation. Purification of recombinant hSGLT1 by nickel-affinity chromatography yields about 3 mg of purified recombinant hSGLT1 per 1-liter of cultured Pichia cells. Purified hSGLT1 migrates on SDS-PAGE with an apparent mass of 55 kDa. Kinetic analysis of hSGLT1 in proteoliposomes revealed sodium-dependent, secondary active, phlorizin-sensitive, and stereospecific alpha-methyl-d-glucopyranoside transport, demonstrating its full catalytic activity. The position of the maximum intrinsic tryptophan fluorescence and titration with hydrophilic collisional quenchers KI, acrylamide, and trichloroethanol suggested that most of Trps in hSGLT1 in solution are in a hydrophobic environment. In the presence of sodium, sugars that have been identified earlier as substrate for the transporter increase intrinsic fluorescence in a saturable manner by a maximum of 15%. alpha-Methyl-d-glucopyranoside had the highest affinity (K(d) = 0.71 mM), followed by d-glucose, d-galactose, d-mannose, and d-allose which showed a much lower affinity. l-Glucose was without effect. d-Glucose also increased the accessibility of the Trps to hydrophilic collisional quenchers. On the contrary phlorizin, the well-established inhibitor of SGLT1, decreased intrinsic fluorescence by a maximum of 50%, and induced a blue shift of maximum (5 nm). Again, the effects were sodium-dependent and saturable and a high affinity K(d) of 5 muM was observed. In addition the surface of hSGLT1 was labeled with 1-anilinonaphthalene-8-sulfonic acid, a reporter molecule for the surface hydrophobicity. In the presence of sodium, addition of d-glucose decreased ANS fluorescence whereas phlorizin increased ANS fluorescence. Thus three conformational states of SGLT1 could be defined which differ in their packing density and hydrophobicity of their surface. They reflect properties of the empty carrier, the d-glucose loaded carrier facing the outside of membrane and the complex of the outside-orientated carrier with phlorizin.
Collapse
Affiliation(s)
- Navneet K Tyagi
- Department of Epithelial Cell Physiology, Max Planck Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Xia X, Wang G, Peng Y, Jen J. Cys351 and Cys361 of the Na+/glucose cotransporter are important for both function and cell-surface expression. Arch Biochem Biophys 2005; 438:63-9. [PMID: 15885653 DOI: 10.1016/j.abb.2005.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 11/30/2022]
Abstract
Here, we identify Cys351 and Cys361 as novel residues critical for the function and plasma membrane targeting of the Na+/glucose transporter-1 (SGLT1). HEK-293 cells expressing the C351A and C361A mutants showed no detectable Na(+)-coupled uptake for alpha-methyl glucoside (AMG). Cell-surface biotinylation and Western blot revealed that the two mutants were overexpressed in 293 cells; however, none of them exhibited normal cell-surface expression. When reconstituted in proteoliposomes, mutant SGLT1s demonstrated significantly lower affinity for AMG compared with the wild-type transporter. Incubation with the reducing agent dithiothreitol did not alter the catalytic activity of wild-type protein, but surprisingly, it nearly restored the ability of SGLT1-C351A and -C361A to bind and translocate AMG. Thus, the C351A and C361A mutations might cause a global reorganization of the disulfide bonds of SGLT1. Furthermore, we showed that a double mutation (C351A/C361A) restored the cell-surface expression of the single C-to-A mutants (C351A and C361A).
Collapse
Affiliation(s)
- Xiaobing Xia
- Beijing Institute for Infectious Diseases, Beijing 100039, China.
| | | | | | | |
Collapse
|
49
|
Wright EM, Loo DDF, Hirayama BA, Turk E. Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology (Bethesda) 2005; 19:370-6. [PMID: 15546855 DOI: 10.1152/physiol.00026.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
SLC5 is an ancient gene family with 11 members in the human genome. These membrane proteins have diverse, multiple functions ranging from actively transporting solutes, ions, and water, to channeling water and urea, to sensing glucose in cholinergic neurons. Metabolic disorders have been identified that are associated with congenital mutations in two of the human genes.
Collapse
Affiliation(s)
- Ernest M Wright
- Department of Physiology, The David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095-1751, USA.
| | | | | | | |
Collapse
|
50
|
Lanzavecchia S, Cantele F, Bellon PL, Zampighi L, Kreman M, Wright E, Zampighi GA. Conical tomography of freeze-fracture replicas: a method for the study of integral membrane proteins inserted in phospholipid bilayers. J Struct Biol 2005; 149:87-98. [PMID: 15629660 DOI: 10.1016/j.jsb.2004.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 08/31/2004] [Indexed: 11/18/2022]
Abstract
We have used conical tomography to study the structure of integral proteins in their phospholipid bilayer environments. Complete conical series were collected from replicas of the water channel aquaporin-0 (AQP0), a 6.6 nm side tetramer with a molecular weight of approximately 120 kDa that was purified and reconstituted in liposomes. The replicas were tilted at 38 degrees , 50 degrees or 55 degrees and rotated by 2.5 degrees , 4 degrees , or 5 degrees increments until completing 360 degrees turns. The elliptical paths of between 6 and 12 freeze-fracture particles aligned the images to a common coordinate system. Using the weighted back projection algorithm, small volumes of the replicas were independently reconstructed to reconstitute the field. Using the Fourier Shell Correlation computed from reconstructions of even and odd projections of the series, we estimated a resolution of 2-3 nm, a value that was close to the thickness of the replica (approximately 1.5 nm). The 3D reconstructions exhibited isotropic resolution along the x-y plane, which simplified the analysis of particles oriented randomly in the membrane plane. In contrast to reconstructions from single particles imaged using random conical tilt [J. Mol. Biol. 325 (2003) 210], the reconstructions using conical tomography allowed the size and shape of individual particles representing the AQP0 channel to be identified without averaging or imposing symmetry. In conclusion, the reconstruction of freeze-fracture replicas with electron tomography has provided a novel experimental approach for the study of integral proteins inserted in phospholipid bilayers.
Collapse
Affiliation(s)
- S Lanzavecchia
- Dipartimento di Chimica Strutturale, Università di Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|