1
|
Ochiai K, Shima H, Tamahara T, Sugie N, Funayama R, Nakayama K, Kurosaki T, Igarashi K. Accelerated plasma-cell differentiation in Bach2-deficient mouse B cells is caused by altered IRF4 functions. EMBO J 2024; 43:1947-1964. [PMID: 38605225 PMCID: PMC11099079 DOI: 10.1038/s44318-024-00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 04/13/2024] Open
Abstract
Transcription factors BACH2 and IRF4 are both essential for antibody class-switch recombination (CSR) in activated B lymphocytes, while they oppositely regulate the differentiation of plasma cells (PCs). Here, we investigated how BACH2 and IRF4 interact during CSR and plasma-cell differentiation. We found that BACH2 organizes heterochromatin formation of target gene loci in mouse splenic B cells, including targets of IRF4 activation such as Aicda, an inducer of CSR, and Prdm1, a master plasma-cell regulator. Release of these gene loci from heterochromatin in response to B-cell receptor stimulation was coupled to AKT-mTOR pathway activation. In Bach2-deficient B cells, PC genes' activation depended on IRF4 protein accumulation, without an increase in Irf4 mRNA. Mechanistically, a PU.1-IRF4 heterodimer in activated B cells promoted BACH2 function by inducing gene expression of Bach2 and Pten, a negative regulator of AKT signaling. Elevated AKT activity in Bach2-deficient B cells resulted in IRF4 protein accumulation. Thus, BACH2 and IRF4 mutually modulate the activity of each other, and BACH2 inhibits PC differentiation by both the repression of PC genes and the restriction of IRF4 protein accumulation.
Collapse
Affiliation(s)
- Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan.
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Toru Tamahara
- Division of Community Oral Health Science, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Seiryo-machi 2-1, Sendai, 980-8573, Japan
| | - Nao Sugie
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, Osaka, 565-0871, Japan
- Laboratory for Lymhocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan.
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai, 980-8575, Japan.
| |
Collapse
|
2
|
Jaeger HK, Davis DA, Nair A, Shrestha P, Stream A, Yaparla A, Yarchoan R. Mechanism and therapeutic implications of pomalidomide-induced immune surface marker upregulation in EBV-positive lymphomas. Sci Rep 2023; 13:11596. [PMID: 37463943 DOI: 10.1038/s41598-023-38156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Epstein-Barr virus (EBV) downregulates immune surface markers to avoid immune recognition. Pomalidomide (Pom) was previously shown to increase immune surface marker expression in EBV-infected tumor cells. We explored the mechanism by which Pom leads to these effects in EBV-infected cells. Pom increased B7-2/CD86 mRNA, protein, and surface expression in EBV-infected cells but this was virtually eliminated in EBV-infected cells made resistant to Pom-induced cytostatic effects. This indicates that Pom initiates the upregulation of these markers by interacting with its target, cereblon. Interestingly, Pom increased the proinflammatory cytokines IP-10 and MIP-1∝/β in EBV infected cells, supporting a possible role for the phosphoinositide 3-kinase (PI3K)/AKT pathway in Pom's effects. Idelalisib, an inhibitor of the delta subunit of PI3 Kinase, blocked AKT-Ser phosphorylation and Pom-induced B7-2 surface expression. PU.1 is a downstream target for AKT that is expressed in EBV-infected cells. Pom treatment led to an increase in PU.1 binding to the B7-2 promoter based on ChIP analysis. Thus, our data indicates Pom acts through cereblon leading to degradation of Ikaros and activation of the PI3K/AKT/PU.1 pathway resulting in upregulation of B7-2 mRNA and protein expression. The increased immune recognition in addition to the increases in proinflammatory cytokines upon Pom treatment suggests Pom may be useful in the treatment of EBV-positive lymphomas.
Collapse
Affiliation(s)
- Hannah K Jaeger
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - David A Davis
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Ashwin Nair
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Alexandra Stream
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Amulya Yaparla
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA.
| |
Collapse
|
3
|
Chavez JS, Rabe JL, Niño KE, Wells HH, Gessner RL, Mills TS, Hernandez G, Pietras EM. PU.1 is required to restrain myelopoiesis during chronic inflammatory stress. Front Cell Dev Biol 2023; 11:1204160. [PMID: 37497478 PMCID: PMC10368259 DOI: 10.3389/fcell.2023.1204160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic inflammation is a common feature of aging and numerous diseases such as diabetes, obesity, and autoimmune syndromes and has been linked to the development of hematological malignancy. Blood-forming hematopoietic stem cells (HSC) can contribute to these diseases via the production of tissue-damaging myeloid cells and/or the acquisition of mutations in epigenetic and transcriptional regulators that initiate evolution toward leukemogenesis. We previously showed that the myeloid "master regulator" transcription factor PU.1 is robustly induced in HSC by pro-inflammatory cytokines such as interleukin (IL)-1β and limits their proliferative activity. Here, we used a PU.1-deficient mouse model to investigate the broader role of PU.1 in regulating hematopoietic activity in response to chronic inflammatory challenges. We found that PU.1 is critical in restraining inflammatory myelopoiesis via suppression of cell cycle and self-renewal gene programs in myeloid-biased multipotent progenitor (MPP) cells. Our data show that while PU.1 functions as a key driver of myeloid differentiation, it plays an equally critical role in tailoring hematopoietic responses to inflammatory stimuli while limiting expansion and self-renewal gene expression in MPPs. These data identify PU.1 as a key regulator of "emergency" myelopoiesis relevant to inflammatory disease and leukemogenesis.
Collapse
Affiliation(s)
- James S. Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer L. Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Katia E. Niño
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Harrison H. Wells
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rachel L. Gessner
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Taylor S. Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Giovanny Hernandez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eric M. Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Curtiss BM, VanCampen J, Macaraeg J, Kong GL, Taherinasab A, Tsuchiya M, Yashar WM, Tsang YH, Horton W, Coleman DJ, Estabrook J, Lusardi TA, Mills GB, Druker BJ, Maxson JE, Braun TP. PU.1 and MYC transcriptional network defines synergistic drug responses to KIT and LSD1 inhibition in acute myeloid leukemia. Leukemia 2022; 36:1781-1793. [PMID: 35590033 PMCID: PMC9256806 DOI: 10.1038/s41375-022-01594-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 01/03/2023]
Abstract
Responses to kinase-inhibitor therapy in AML are frequently short-lived due to the rapid development of resistance, limiting the clinical efficacy. Combination therapy may improve initial therapeutic responses by targeting pathways used by leukemia cells to escape monotherapy. Here we report that combined inhibition of KIT and lysine-specific demethylase 1 (LSD1) produces synergistic cell death in KIT-mutant AML cell lines and primary patient samples. This drug combination evicts both MYC and PU.1 from chromatin driving cell cycle exit. Using a live cell biosensor for AKT activity, we identify early adaptive changes in kinase signaling following KIT inhibition that are reversed with the addition of LSD1 inhibitor via modulation of the GSK3a/b axis. Multi-omic analyses, including scRNA-seq, ATAC-seq and CUT&Tag, confirm these mechanisms in primary KIT-mutant AML. Collectively, this work provides rational for a clinical trial to assess the efficacy of KIT and LSD1 inhibition in patients with KIT-mutant AML.
Collapse
Affiliation(s)
- Brittany M Curtiss
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jake VanCampen
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Jommel Macaraeg
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Garth L Kong
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Akram Taherinasab
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Mitsuhiro Tsuchiya
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - William M Yashar
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Yiu H Tsang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Wesley Horton
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Daniel J Coleman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Joseph Estabrook
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Theresa A Lusardi
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Julia E Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Theodore P Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Chen KY, De Angulo A, Guo X, More A, Ochsner SA, Lopez E, Saul D, Pang W, Sun Y, McKenna NJ, Tong Q. Adipocyte-Specific Ablation of PU.1 Promotes Energy Expenditure and Ameliorates Metabolic Syndrome in Aging Mice. FRONTIERS IN AGING 2022; 2:803482. [PMID: 35822007 PMCID: PMC9261351 DOI: 10.3389/fragi.2021.803482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022]
Abstract
Objective: Although PU.1/Spi1 is known as a master regulator for macrophage development and function, we have reported previously that it is also expressed in adipocytes and is transcriptionally induced in obesity. Here, we investigated the role of adipocyte PU.1 in the development of the age-associated metabolic syndrome. Methods: We generated mice with adipocyte-specific PU.1 knockout, assessed metabolic changes in young and older adult PU.1fl/fl (control) and AdipoqCre PU.1fl/fl (aPU.1KO) mice, including body weight, body composition, energy expenditure, and glucose homeostasis. We also performed transcriptional analyses using RNA-Sequencing of adipocytes from these mice. Results: aPU.1KO mice have elevated energy expenditure at a young age and decreased adiposity and increased insulin sensitivity in later life. Corroborating these observations, transcriptional network analysis indicated the existence of validated, adipocyte PU.1-modulated regulatory hubs that direct inflammatory and thermogenic gene expression programs. Conclusion: Our data provide evidence for a previously uncharacterized role of PU.1 in the development of age-associated obesity and insulin resistance.
Collapse
Affiliation(s)
- Ke Yun Chen
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Alejandra De Angulo
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Xin Guo
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Aditya More
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Eduardo Lopez
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - David Saul
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Weijun Pang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Northwestern University of Agriculture and Forestry, Yangling, China
| | - Yuxiang Sun
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Neil J. McKenna, ; Qiang Tong,
| | - Qiang Tong
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, United States
- *Correspondence: Neil J. McKenna, ; Qiang Tong,
| |
Collapse
|
6
|
Wang L, Wang E, Prado Balcazar J, Wu Z, Xiang K, Wang Y, Huang Q, Negrete M, Chen K, Li W, Fu Y, Dohlman A, Mines R, Zhang L, Kobayashi Y, Chen T, Shi G, Shen JP, Kopetz S, Tata PR, Moreno V, Gersbach C, Crawford G, Hsu D, Huang E, Bu P, Shen X. Chromatin Remodeling of Colorectal Cancer Liver Metastasis is Mediated by an HGF-PU.1-DPP4 Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004673. [PMID: 34378358 PMCID: PMC8498885 DOI: 10.1002/advs.202004673] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Colorectal cancer (CRC) metastasizes mainly to the liver, which accounts for the majority of CRC-related deaths. Here it is shown that metastatic cells undergo specific chromatin remodeling in the liver. Hepatic growth factor (HGF) induces phosphorylation of PU.1, a pioneer factor, which in turn binds and opens chromatin regions of downstream effector genes. PU.1 increases histone acetylation at the DPP4 locus. Precise epigenetic silencing by CRISPR/dCas9KRAB or CRISPR/dCas9HDAC revealed that individual PU.1-remodeled regulatory elements collectively modulate DPP4 expression and liver metastasis growth. Genetic silencing or pharmacological inhibition of each factor along this chromatin remodeling axis strongly suppressed liver metastasis. Therefore, microenvironment-induced epimutation is an important mechanism for metastatic tumor cells to grow in their new niche. This study presents a potential strategy to target chromatin remodeling in metastatic cancer and the promise of repurposing drugs to treat metastasis.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Ergang Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | | - Zhenzhen Wu
- Key Laboratory of RNA BiologyKey Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Kun Xiang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Yi Wang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Qiang Huang
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Marcos Negrete
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Kai‐Yuan Chen
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Wei Li
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Yujie Fu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Anders Dohlman
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Robert Mines
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Liwen Zhang
- Key Laboratory of RNA BiologyKey Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yoshihiko Kobayashi
- Department of Cell BiologyRegeneration NextDuke University School of MedicineDurhamNC27710USA
| | - Tianyi Chen
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Guizhi Shi
- Laboratory Animal Research CenterInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - John Paul Shen
- Department of Gastrointestinal Medical OncologyMD AndersonDurhamNC77030USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical OncologyMD AndersonDurhamNC77030USA
| | - Purushothama Rao Tata
- Department of Cell BiologyRegeneration NextDuke University School of MedicineDurhamNC27710USA
| | - Victor Moreno
- Department of Clinical SciencesUniversity of BarcelonaBarcelona08193Spain
- Prevention and Control ProgramCatalan Institute of Oncology‐IDIBELLCIBERESPBarcelonaE08907Spain
| | - Charles Gersbach
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Gregory Crawford
- Department of PediatricsDuke University School of MedicineDurhamNC27710USA
| | - David Hsu
- Department of MedicineDuke University School of MedicineDurhamNC27710USA
| | - Emina Huang
- Department of Cancer Biology and Colorectal SurgeryLerner Research Institute, Cleveland ClinicClevelandOH44195USA
| | - Pengcheng Bu
- Key Laboratory of RNA BiologyKey Laboratory of Protein and Peptide PharmaceuticalInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Center for Excellence in BiomacromoleculesChinese Academy of SciencesBeijing100101China
| | - Xiling Shen
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
7
|
Orsini M, Morceau F, Dicato M, Diederich M. Autophagy as a pharmacological target in hematopoiesis and hematological disorders. Biochem Pharmacol 2018; 152:347-361. [PMID: 29656115 DOI: 10.1016/j.bcp.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Autophagy is involved in many cellular processes, including cell homeostasis, cell death/survival balance and differentiation. Autophagy is essential for hematopoietic stem cell survival, quiescence, activation and differentiation. The deregulation of this process is associated with numerous hematological disorders and pathologies, including cancers. Thus, the use of autophagy modulators to induce or inhibit autophagy emerges as a potential therapeutic approach for treating these diseases and could be particularly interesting for differentiation therapy of leukemia cells. This review presents therapeutic strategies and pharmacological agents in the context of hematological disorders. The pros and cons of autophagy modulators in therapy will also be discussed.
Collapse
Affiliation(s)
- Marion Orsini
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Lapko N, Zawadka M, Polosak J, Worthen GS, Danet-Desnoyers G, Puzianowska-Kuźnicka M, Laudanski K. Long-term Monocyte Dysfunction after Sepsis in Humanized Mice Is Related to Persisted Activation of Macrophage-Colony Stimulation Factor (M-CSF) and Demethylation of PU.1, and It Can Be Reversed by Blocking M-CSF In Vitro or by Transplanting Naïve Autologous Stem Cells In Vivo. Front Immunol 2017; 8:401. [PMID: 28507543 PMCID: PMC5410640 DOI: 10.3389/fimmu.2017.00401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/21/2017] [Indexed: 01/02/2023] Open
Abstract
The duration of post-sepsis long-term immune suppression is poorly understood. Here, we focused on the role of monocytes (MO) as the pivotal cells for long-term regulation of post-sepsis milieu. Lost ability of MO to adapt is seen in several acute conditions, but it is unclear for how long MO aberrancy post-sepsis can persist. Interestingly, the positive feedback loop sustaining secretion of macrophage-colony stimulation factor (M-CSF) can persist even after resolution of sepsis and significantly alters performance of MO. Here, we investigated the activation of M-CSF, and it as critical regulator of PU.1 in mice surviving 28 days after sepsis. Our primary readout was the ability of MO to differentiate into dendritic cells (DCs; MO→iDC) in vitro since this is one of the critical processes regulating a successful transition from innate to acquired immunity. We utilized a survival modification of the cecal ligation and puncture (CLP) model of sepsis in humanized mice. Animals were sacrificed 28 days after CLP (tCLP+28d). Untouched (CONTR) or sham-operated (SHAM) animals served as controls. Some animals received rescue from stem cells originally used for grafting 2 weeks after CLP. We found profound decrease of MO→iDC in the humanized mice 28 days after sepsis, demonstrated by depressed expression of CD1a, CD83, and CD209, diminished production of IL-12p70, and depressed ability to stimulate T cells in mice after CLP as compared to SHAM or CONTR. In vitro defect in MO→iDC was accompanied by in vivo decrease of BDCA-3+ endogenous circulating DC. Interestingly, post-CLP MO had persistent activation of M-CSF pathway, shown by exaggerated secretion of M-CSF, activation of PU.1, and demethylation of SPII. Neutralization of the M-CSF in vitro reversed the post-CLP MO→iDC aberration. Furthermore, transplantation of naïve, autologous stem cell-derived MO restored CLP-deteriorated ability of MO to become DC, measured as recovery of CD1a expression, enhanced production of IL-12p70, and ability of IL-4 and GM-CSF MO to stimulate allogeneic T cells. Our results suggest the role of epigenetic mediated M-CSF aberration in mediating post-sepsis immune system recovery.
Collapse
Affiliation(s)
- Natalia Lapko
- 2nd Department of Anesthesiology and Intensive Care, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Zawadka
- Faculty of Medicine, Ivano-Frankivsk Medical Institute, Ivano-Frankivsk, Ukraine
| | - Jacek Polosak
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - George S Worthen
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, PAS, Warsaw, Poland.,Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Nawaz Z, Patil V, Paul Y, Hegde AS, Arivazhagan A, Santosh V, Somasundaram K. PI3 kinase pathway regulated miRNome in glioblastoma: identification of miR-326 as a tumour suppressor miRNA. Mol Cancer 2016; 15:74. [PMID: 27871300 PMCID: PMC5117574 DOI: 10.1186/s12943-016-0557-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/03/2016] [Indexed: 12/02/2022] Open
Abstract
Background Glioblastomas (GBM) continue to remain one of the most dreaded tumours that are highly infiltrative in nature and easily preclude comprehensive surgical resection. GBMs pose an intricate etiology as they are being associated with a plethora of genetic and epigenetic lesions. Misregulation of the PI3 kinase pathway is one of the most familiar events in GBM. While the PI3 kinase signalling regulated pathways and genes have been comprehensively studied, its impact on the miRNome is yet to be explored. The objective of this study was to elucidate the PI3 kinase pathway regulated miRNAs in GBM. Methods miRNA expression profiling was conducted to monitor the differentially regulated miRNAs upon PI3 kinase pathway abrogation. qRT-PCR was used to measure the abundance of miR-326 and its host gene encoded transcript. Proliferation assay, colony suppression assay and wound healing assay were carried out in pre-miR transfected cells to investigate its role in malignant transformation. Potential targets of miR-326 were identified by transcriptome analysis of miR-326 overexpressing cells by whole RNA sequencing and selected targets were validated. Several publically available data sets were used for various investigations described above. Results We identified several miRNA that were regulated by PI3 kinase pathway. miR-326, a GBM downregulated miRNA, was validated as one of the miRNAs whose expression was alleviated upon abrogation of the PI3 kinase pathway. Overexpression of miR-326 resulted in reduced proliferation, colony suppression and hindered the migration capacity of glioma cells. Arrestin, Beta 1 (ARRB1), the host gene of miR-326, was also downregulated in GBM and interestingly, the expression of ARRB1 was also alleviated upon inhibition of the PI3 kinase pathway, indicating similar regulation pattern. More importantly, miR-326 exhibited a significant positive correlation with ARRB1 in terms of its expression. Transcriptome analysis upon miR-326 overexpression coupled with integrative bioinformatics approach identified several putative targets of miR-326. Selected targets were validated and interestingly found to be upregulated in GBM. Conclusions Taken together, our study uncovered the PI3 kinase regulated miRNome in GBM. miR-326, a PI3 kinase pathway inhibited miRNA, was demonstrated as a tumour suppressor miRNA in GBM. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0557-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zahid Nawaz
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Yashna Paul
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Alangar S Hegde
- Department of Neurosurgery, Sri Satya Sai Institute of Higher Medical Sciences, Bangalore, 560066, India
| | - Arimappamagan Arivazhagan
- Departments of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Vani Santosh
- Departments of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
10
|
Hedl M, Yan J, Abraham C. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation. Cell Rep 2016; 16:2442-55. [PMID: 27545875 DOI: 10.1016/j.celrep.2016.07.060] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/21/2016] [Accepted: 07/22/2016] [Indexed: 12/19/2022] Open
Abstract
Interferon regulatory factor 5 (IRF5) regulates inflammatory M1 macrophage polarization, and disease-associated IRF5 genetic variants regulate pattern-recognition-receptor (PRR)-induced cytokines. PRR-stimulated macrophages and M1 macrophages exhibit enhanced glycolysis, a central mediator of inflammation. We find that IRF5 is needed for PRR-enhanced glycolysis in human macrophages and in mice in vivo. Upon stimulation of the PRR nucleotide binding oligomerization domain containing 2 (NOD2) in human macrophages, IRF5 binds RIP2, IRAK1, and TRAF6. IRF5, in turn, is required for optimal Akt2 activation, which increases expression of glycolytic pathway genes and HIF1A as well as pro-inflammatory cytokines and M1 polarization. Furthermore, pro-inflammatory cytokines and glycolytic pathways co-regulate each other. Rs2004640/rs2280714 TT/TT IRF5 disease-risk-carrier cells demonstrate increased IRF5 expression and increased PRR-induced Akt2 activation, glycolysis, pro-inflammatory cytokines, and M1 polarization relative to GG/CC carrier macrophages. Our findings identify that IRF5 disease-associated polymorphisms regulate diverse immunological and metabolic outcomes and provide further insight into mechanisms contributing to the increasingly recognized important role for glycolysis in inflammation.
Collapse
Affiliation(s)
- Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Jie Yan
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
11
|
EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function. Proc Natl Acad Sci U S A 2015; 112:E3855-63. [PMID: 26150526 DOI: 10.1073/pnas.1510733112] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonsmall cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. About 14% of NSCLCs harbor mutations in epidermal growth factor receptor (EGFR). Despite remarkable progress in treatment with tyrosine kinase inhibitors (TKIs), only 5% of patients achieve tumor reduction >90%. The limited primary responses are attributed partly to drug resistance inherent in the tumor cells before therapy begins. Recent reports showed that activation of receptor tyrosine kinases (RTKs) is an important determinant of this innate drug resistance. In contrast, we demonstrate that EGFR inhibition promotes innate drug resistance despite blockade of RTK activity in NSCLC cells. EGFR TKIs decrease both the mitogen-activated protein kinase (MAPK) and Akt protein kinase pathways for a short time, after which the Ras/MAPK pathway becomes reactivated. Akt inhibition selectively blocks the transcriptional activation of Ets-1, which inhibits its target gene, dual specificity phosphatase 6 (DUSP6), a negative regulator specific for ERK1/2. As a result, ERK1/2 is activated. Furthermore, elevated c-Src stimulates Ras GTP-loading and activates Raf and MEK kinases. These observations suggest that not only ERK1/2 but also Akt activity is essential to maintain Ets-1 in an active state. Therefore, despite high levels of ERK1/2, Ets-1 target genes including DUSP6 and cyclins D1, D3, and E2 remain suppressed by Akt inhibition. Reduction of DUSP6 in combination with elevated c-Src renews activation of the Ras/MAPK pathway, which enhances cell survival by accelerating Bim protein turnover. Thus, EGFR TKIs evoke innate drug resistance by preventing Akt activity and inactivating Ets-1 function in NSCLC cells.
Collapse
|
12
|
Organ SL, Hai J, Radulovich N, Marshall CB, Leung L, Sasazuki T, Shirasawa S, Zhu CQ, Navab R, Ikura M, Tsao MS. p120RasGAP is a mediator of rho pathway activation and tumorigenicity in the DLD1 colorectal cancer cell line. PLoS One 2014; 9:e86103. [PMID: 24465899 PMCID: PMC3897622 DOI: 10.1371/journal.pone.0086103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/05/2013] [Indexed: 12/25/2022] Open
Abstract
KRAS is mutated in ∼40% of colorectal cancer (CRC), and there are limited effective treatments for advanced KRAS mutant CRC. Therefore, it is crucial that downstream mediators of oncogenic KRAS continue to be studied. We identified p190RhoGAP as being phosphorylated in the DLD1 CRC cell line, which expresses a heterozygous KRAS G13D allele, and not in DKO4 in which the mutant allele has been deleted by somatic recombination. We found that a ubiquitous binding partner of p190RhoGAP, p120RasGAP (RasGAP), is expressed in much lower levels in DKO4 cells compared to DLD1, and this expression is regulated by KRAS. Rescue of RasGAP expression in DKO4 rescued Rho pathway activation and partially rescued tumorigenicity in DKO4 cells, indicating that the combination of mutant KRAS and RasGAP expression is crucial to these phenotypes. We conclude that RasGAP is an important effector of mutant KRAS in CRC.
Collapse
Affiliation(s)
- Shawna L. Organ
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Josephine Hai
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nikolina Radulovich
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Lisa Leung
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Takehiko Sasazuki
- Department of Pathology, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Senji Shirasawa
- Department of Cell Biology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Chang-Qi Zhu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
13
|
Combined inhibition of PI3K and activation of MAPK p38 signaling pathways trigger erythroid alternative splicing switch of 4.1R pre-mRNA in DMSO-induced erythroleukemia cells. Cell Signal 2013; 25:2453-61. [PMID: 23993958 DOI: 10.1016/j.cellsig.2013.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 08/23/2013] [Indexed: 01/09/2023]
Abstract
There is increasing evidence showing that many extracellular cues modulate pre-mRNA alternative splicing, through different signaling pathways. We here show that 4.1R exon 16 splicing is altered in response to specific signals. The switch from erythroblastic isoform lacking exon 16 to mature erythrocytic isoform containing this exon is tightly regulated during late erythroid differentiation, and blocage of this splicing switch in erythroleukemia cells is seen as a consequence of the deregulation of important regulatory pathways. We support that combined inhibition of PI3K and activation of p38 signaling pathways impinge on erythroid 4.1R pre-mRNA alternative splicing switch, and on cell differentiation as witnessed by hemoglobin production. By contrast, MEK/ERK signaling appeared not to affect neither cell hemoglobin production nor erythroid 4.1R pre-mRNA splicing. We also found that the signal-induced alternative splicing is not typically distinctive of EPO-non-responsive cells, but operates in EPO-responsive cells as well. Pre-mRNA splicing is a major regulatory mechanism at the crossroad between transcription and translation. We here provide evidence that inhibition of PI3K activates the splicing switch in a promoter-dependent manner, whereas p38 activation induces this event in a promoter-independent fashion. Our data further support that constitutive activation of EPO-R by the viral protein gp55 and the short form of the tyrosine kinase receptor Stk, transduces PI3K proliferation signal, but not MAPK p38 differentiation signal. Concurrently, this work lend credence to the concept that DMSO triggers transient activation of p38 signaling and irreversible inhibition of PI3K/AKT signaling pathway, hence uncovering an old conundrum regarding the mechanism by which DMSO induces erythroleukemia cell differentiation.
Collapse
|
14
|
Epps CW, Castillo JA, Schmidt-Küntzel A, du Preez P, Stuart-Hill G, Jago M, Naidoo R. Contrasting historical and recent gene flow among African buffalo herds in the Caprivi Strip of Namibia. J Leukoc Biol 2013; 93:561-71. [PMID: 23341534 DOI: 10.1189/jlb.1211606] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Population genetic structure is often used to infer population connectivity, but genetic structure may largely reflect historical rather than recent processes. We contrasted genetic structure with recent gene-flow estimates among 6 herds of African buffalo (Syncerus caffer) in the Caprivi Strip, Namibia, using 134 individuals genotyped at 10 microsatellite loci. We tested whether historical and recent gene flows were influenced by distance, potential barriers (rivers), or landscape resistance (distance from water). We also tested at what scales individuals were more related than expected by chance. Genetic structure across the Caprivi Strip was weak, indicating that historically, gene flow was strong and was not affected by distance, barriers, or landscape resistance. Our analysis of simulated data suggested that genetic structure would be unlikely to reflect human disturbances in the last 10-20 generations (75-150 years) because of slow predicted rates of genetic drift, but recent gene-flow estimates would be affected. Recent gene-flow estimates were not consistently affected by rivers or distance to water but showed that isolation by distance appears to be developing. Average relatedness estimates among individuals exceeded random expectations only within herds. We conclude that historically, African buffalo moved freely throughout the Caprivi Strip, whereas recent gene flow has been more restricted. Our findings support efforts to maintain the connectivity of buffalo herds across this region and demonstrate the utility of contrasting genetic inferences from different time scales.
Collapse
Affiliation(s)
- Clinton W Epps
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Richards JS, Fan HY, Liu Z, Tsoi M, Laguë MN, Boyer A, Boerboom D. Either Kras activation or Pten loss similarly enhance the dominant-stable CTNNB1-induced genetic program to promote granulosa cell tumor development in the ovary and testis. Oncogene 2012; 31:1504-20. [PMID: 21860425 PMCID: PMC3223552 DOI: 10.1038/onc.2011.341] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/22/2011] [Accepted: 07/03/2011] [Indexed: 12/16/2022]
Abstract
WNT, RAS or phosphoinositide 3-kinase signaling pathways control specific stages of ovarian follicular development. To analyze the functional interactions of these pathways in granulosa cells during follicular development in vivo, we generated specific mutant mouse models. Stable activation of the WNT signaling effector β-catenin (CTNNB1) in granulosa cells results in the formation of premalignant lesions that develop into granulosa cell tumors (GCTs) spontaneously later in life or following targeted deletion of the tumor suppressor gene Pten. Conversely, expression of oncogenic KRAS(G12D) dramatically arrests proliferation, differentiation and apoptosis in granulosa cells, and consequently, small abnormal follicle-like structures devoid of oocytes accumulate in the ovary. Because of the potent anti-proliferative effects of KRAS(G12D) in granulosa cells, we sought to determine whether KRAS(G12D) would block precancerous lesion and tumor formation in follicles of the CTNNB1-mutant mice. Unexpectedly, transgenic Ctnnb1;Kras-mutant mice exhibited increased GC proliferation, decreased apoptosis and impaired differentiation and developed early-onset GCTs leading to premature death in a manner similar to the Ctnnb1;Pten-mutant mice. Microarray and reverse transcription-PCR analyses revealed that gene regulatory processes induced by CTNNB1 were mostly enhanced by either KRAS activation or Pten loss in remarkably similar patterns and degree. The concomitant activation of CTNNB1 and KRAS in Sertoli cells also caused testicular granulosa cell tumors that showed gene expression patterns that partially overlapped those observed in GCTs of the ovary. Although the mutations analyzed herein have not yet been linked to adult GCTs in humans, they may be related to juvenile GCTs or to tumors in other tissues where CTNNB1 is mutated. Importantly, the results provide strong evidence that CTNNB1 is the driver in these contexts and that KRAS(G12D) and Pten loss promote the program set in motion by the CTNNB1.
Collapse
Affiliation(s)
- J S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Rothenberg EV. T cell lineage commitment: identity and renunciation. THE JOURNAL OF IMMUNOLOGY 2011; 186:6649-55. [PMID: 21646301 DOI: 10.4049/jimmunol.1003703] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Precursors undertaking T cell development shed their access to other pathways in a sequential process that begins before entry into the thymus and continues through many cell cycles afterward. This process involves three levels of regulatory change, in which the cells' intrinsic transcriptional regulatory factors, expression of signaling receptors (e.g., Notch1), and expression of distinct homing receptors separately contribute to confirmation of T cell identity. Each alternative potential has a different underlying molecular basis that is neutralized and then permanently silenced through different mechanisms in early T cell precursors. This regulatory mosaic has notable implications for the hierarchy of relationships linking T lymphocytes to other hematopoietic fates.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
17
|
Lindner HB, Zhang A, Eldridge J, Demcheva M, Tsichlis P, Seth A, Vournakis J, Muise-Helmericks RC. Anti-bacterial effects of poly-N-acetyl-glucosamine nanofibers in cutaneous wound healing: requirement for Akt1. PLoS One 2011; 6:e18996. [PMID: 21559496 PMCID: PMC3084735 DOI: 10.1371/journal.pone.0018996] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/23/2011] [Indexed: 11/20/2022] Open
Abstract
Background Treatment of cutaneous wounds with poly-N-acetyl-glucosamine nanofibers (sNAG) results in increased kinetics of wound closure in diabetic animal models, which is due in part to increased expression of several cytokines, growth factors, and innate immune activation. Defensins are also important for wound healing and anti-microbial activities. Therefore, we tested whether sNAG nanofibers induce defensin expression resulting in bacterial clearance. Methodology The role of sNAG in defensin expression was examined using immunofluoresence microscopy, pharmacological inhibition, and shRNA knockdown in vitro. The ability of sNAG treatment to induce defensin expression and bacterial clearance in WT and AKT1−/− mice was carried out using immunofluoresent microscopy and tissue gram staining. Neutralization, using an antibody directed against β-defensin 3, was utilized to determine if the antimicrobial properties of sNAG are dependent on the induction of defensin expression. Conclusions/Findings sNAG treatment causes increased expression of both α- and β-type defensins in endothelial cells and β-type defensins in keratinocytes. Pharmacological inhibition and shRNA knockdown implicates Akt1 in sNAG-dependent defensin expression in vitro, an activity also shown in an in vivo wound healing model. Importantly, sNAG treatment results in increased kinetics of wound closure in wild type animals. sNAG treatment decreases bacterial infection of cutaneous wounds infected with Staphylococcus aureus in wild type control animals but not in similarly treated Akt1 null animals. Furthermore, sNAG treatment of S. aureus infected wounds show an increased expression of β-defensin 3 which is required for sNAG-dependent bacterial clearance. Our findings suggest that Akt1 is involved in the regulation of defensin expression and the innate immune response important for bacterial clearance. Moreover, these findings support the use of sNAG nanofibers as a novel method for enhancing wound closure while simultaneously decreasing wound infection.
Collapse
Affiliation(s)
- Haley Buff Lindner
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Breig O, Théoleyre O, Douablin A, Baklouti F. Subtle distinct regulations of late erythroid molecular events by PI3K/AKT-mediated activation of Spi-1/PU.1 oncogene autoregulation loop. Oncogene 2010; 29:2807-16. [PMID: 20190819 DOI: 10.1038/onc.2010.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spi-1/PU.1 oncogene is downregulated as proerythroblasts undergo terminal differentiation. Insertion of the Friend virus upstream of the Spi-1/PU.1 locus leads to the constitutive upregulation of Spi-1/PU.1, and a subsequent block in the differentiation of the affected erythroblasts. We have shown that sustained overexpression of Spi-1/PU.1 also inhibits the erythroid splicing of protein 4.1R exon 16, irrespective of chemical induction of differentiation. Here, we show a positive feedback loop that couples constitutive phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling to high expression of Spi-1/PU.1 in Friend erythroleukemia cells. Inhibition of PI3K/AKT results in Spi-1/PU.1 downregulation in a stepwise manner and induces cell differentiation. Chromatin immunoprecipitation assays further supported the positive autoregulatory effect of Spi-1/PU.1. Mutational analysis indicated that Ser41, but not Ser148, is necessary for Spi-1/PU.1-mediated repression of hemoglobin expression, whereas both Ser residues are required for Spi-1/PU.1 inhibition of the erythroid splicing event. We further show that inhibition of the erythroid transcriptional and splicing events are strictly dependent on distinct Spi-1/PU.1 phosphorylation modifications rather than Spi-1/PU.1 expression level per se. Our data further support the fact that Spi-1/PU.1 inhibits 4.1R erythroid splicing through two different pathways, and bring new insights into the extracellular signal impact triggered by erythropoietin on late erythroid regulatory program, including pre-mRNA splicing.
Collapse
Affiliation(s)
- O Breig
- mRNA Metabolism in Normal and Pathological Cells, CGMC, CNRS, Université Lyon 1, Villeurbanne, France
| | | | | | | |
Collapse
|
19
|
Zacharioudaki V, Androulidaki A, Arranz A, Vrentzos G, Margioris AN, Tsatsanis C. Adiponectin promotes endotoxin tolerance in macrophages by inducing IRAK-M expression. THE JOURNAL OF IMMUNOLOGY 2009; 182:6444-51. [PMID: 19414798 DOI: 10.4049/jimmunol.0803694] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High levels of plasma adiponectin are associated with low levels of inflammatory markers and cardioprotection. The mechanism via which adiponectin exerts its anti-inflammatory effect is yet unknown. In the present study, we demonstrate that globular adiponectin (gAd) induces the expression of the inactive isoform of IL-1R-associated kinases (IRAK), IRAK-M. Homologous deletion of IRAK-M in IRAK-M(-/-) mice abolished the tolerogenic properties of gAd because pretreatment of IRAK-M(-/-) macrophages with gAd did not suppress LPS-induced proinflammatory cytokine production. GAd activated the MAPKs MEK1/2 and ERK1/2 in macrophages via their upstream regulator Tpl2. Activation of ERK1/2 via Tpl2 appeared necessary for the induction of IRAK-M because gAd did not induce IRAK-M in Tpl2(-/-) macrophages or in macrophages pretreated with the MEK1/2 inhibitor UO126. In addition, activation of PI3K and Akt1 also appeared necessary for the induction of IRAK-M by gAd, because treatment of Akt1(-/-) macrophages or pretreatment of macrophages with the PI3K inhibitor wortmannin abolished gAd-induced IRAK-M expression. Analysis of IRAK-M expression in human peripheral blood cells confirmed that serum adiponectin was negatively associated with IRAK-M and responsiveness to LPS. In conclusion, our data demonstrate that IRAK-M is a major mediator of gAd-induced endotoxin tolerance in primary macrophages, expression of which depends on the activation of Tpl2/ERK and PI3K/Akt1 signaling pathways.
Collapse
Affiliation(s)
- Vassiliki Zacharioudaki
- Department of Clinical Chemistry, Graduate Program on Molecular Basis of Human Disease, School of Medicine, University of Crete, Crete, Greece
| | | | | | | | | | | |
Collapse
|
20
|
A cascade of Ca(2+)/calmodulin-dependent protein kinases regulates the differentiation and functional activation of murine neutrophils. Exp Hematol 2008; 36:832-44. [PMID: 18400360 DOI: 10.1016/j.exphem.2008.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 01/28/2008] [Accepted: 02/14/2008] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The function of neutrophils as primary mediators of innate immunity depends on the activity of granule proteins and critical components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Expression of their cognate genes is regulated during neutrophil differentiation by a complex network of intracellular signaling pathways. In this study, we have investigated the role of two members of the calcium/calmodulin-dependent protein kinase (CaMK) signaling cascade, CaMK I-like kinase (CKLiK) and CaMKKalpha, in regulating neutrophil differentiation and functional activation. MATERIALS AND METHODS Mouse myeloid cell lines were used to examine the expression of a CaMK cascade in developing neutrophils and to examine the effects of constitutive activation vs inhibition of CaMKs on neutrophil maturation. RESULTS Expression of CaMKKalpha was shown to increase during neutrophil differentiation in multiple cell lines, whereas expression of CKLiK increased as multipotent progenitors committed to promyelocytes, but then decreased as cells differentiated into mature neutrophils. Expression of constitutively active CKLiKs did not affect morphologic maturation, but caused dramatic decreases in both respiratory burst responses and chemotaxis. This loss of neutrophil function was accompanied by reduced secondary granule and gp91(phox) gene expression. The CaMK inhibitor KN-93 attenuated cytokine-stimulated proliferative responses in promyelocytic cell lines, and inhibited the respiratory burst. Similar data were observed with the CaMKKalpha inhibitor, STO-609. CONCLUSIONS Overactivation of a cascade of CaMKs inhibits neutrophil maturation, suggesting that these kinases play an antagonistic role during neutrophil differentiation, but at least one CaMK is required for myeloid cell expansion and functional activation.
Collapse
|
21
|
Houston IB, Huang KJ, Jennings SR, DeKoter RP. PU.1 immortalizes hematopoietic progenitors in a GM-CSF-dependent manner. Exp Hematol 2007; 35:374-384. [PMID: 17309818 DOI: 10.1016/j.exphem.2006.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The Ets family transcription factor PU.1 is essential for both myeloid and lymphoid development. PU.1 was discovered because of its involvement in murine erythroleukemia. We previously described that infection with a retroviral vector encoding PU.1 immortalizes fetal liver progenitor cells in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling. In this study, we sought to characterize PU.1-immortalized progenitor (PIP) cells. METHODS PIP cells were characterized using microscopy, reverse-transcriptase polymerase chain reaction analysis, and flow cytometric analysis. In addition, progenitors were immortalized with a retrovirus containing a PU.1 cDNA flanked by loxP sites. The differentiation potential of immortalized progenitors was tested by Cre-mediated excision of the proviral PU.1 cDNA. RESULTS PIP cells are blastlike in morphology and express cell surface markers indicative of myeloid development. Immortalization of progenitor cells requires both an acidic activation domain and an intact DNA-binding domain of PU.1. Gene expression analysis of PIP cells demonstrated the expression of genes of both myeloid and erythroid lineages. Proliferation of PIP cells was GM-CSF dependent and restricted. Upon Cre-mediated excision of proviral PU.1 cDNA, increased expression of myeloid and erythroid-specific genes was observed; as well as the appearance of both macrophages and erythrocytes in culture. CONCLUSION We demonstrate that ectopic expression of PU.1 is sufficient to immortalize a hematopoietic progenitor with myeloid and erythroid differentiation potential in response to GM-CSF. These data highlight the importance of the level of PU.1 expression at critical stages of hematopoiesis.
Collapse
Affiliation(s)
- Isaac B Houston
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | |
Collapse
|
22
|
Azim AC, Wang X, Park GY, Sadikot RT, Cao H, Mathew B, Atchison M, van Breemen RB, Joo M, Christman JW. NF-kappaB-inducing kinase regulates cyclooxygenase 2 gene expression in macrophages by phosphorylation of PU.1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:7868-75. [PMID: 18025233 DOI: 10.4049/jimmunol.179.11.7868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Selective expression of cyclooxygenase 2 (COX-2) by macrophages could have an important role in the pathobiology of inflammation. We reported a functional synergism between PU.1 and other transcription factors that contributes to COX-2 gene expression in macrophages. PU.1 resides in the nuclear compartment and is activated by phosphorylation to bind to cognate DNA elements containing a 5'-GGAA/T-3' motif, but the involved kinase has not been discovered. We tested the hypothesis that NF-kappaB-inducing kinase (NIK) regulates COX-2 gene expression in macrophages through inducible phosphorylation of PU.1. Our initial experiments showed an in vitro protein-protein binding interaction between myc-NIK and GST-PU.1. Purified myc-NIK had a strong in vitro kinase activity for purified GST-PU.1, and this activity and production of COX-2 protein is blocked by treatment with a nonspecific kinase inhibitor, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. We used short interfering RNA to develop a stable NIK knockdown macrophage cell line that had an approximately 50% decrease in COX-2 protein production and decreased generation of PGD(2), and this was correlated with decreased binding of activated PU.1 to the COX-2 promoter in response to treatment with endotoxin. These findings suggest a novel role for NIK in mediating COX-2 gene expression in endotoxin-treated macrophages by a mechanism that involves phosphorylation of PU.1.
Collapse
Affiliation(s)
- Anser C Azim
- Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zawlik I, Witusik M, Hulas-Bigoszewska K, Piaskowski S, Szybka M, Golanska E, Liberski PP, Rieske P. Regulation of PrPC expression: Nerve growth factor (NGF) activates the prion gene promoter through the MEK1 pathway in PC12 cells. Neurosci Lett 2006; 400:58-62. [PMID: 16520000 DOI: 10.1016/j.neulet.2006.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/12/2006] [Accepted: 02/05/2006] [Indexed: 10/24/2022]
Abstract
A high expression of PrP(C) in cells is one factor that increases the risk of conversion to the misfolded, disease-associated form (PrP(Sc)) characteristic of transmissible spongiform encephalopathies. Thus, developing a method to control the level of PrP(C) expression in cells could be one way to delay or prevent the onset of clinical signs of these diseases. In this study the mechanisms controlling the expression of the Prnp gene in PC12 cells and in rat brain were examined. We observed a slight activation of a cloned fragment of the human PRNP gene promoter using the luciferase reporter system in PC12 cells stimulated with nerve growth factor (NGF). The activating effect of NGF was enhanced by mitogen-activated protein kinase (MEK1) and suppressed by myristylated serine/threonine kinase (myrAKT). These results suggest that MEK1 is a positive activator of the PRNP promoter that inhibits the AKT pathway. Independent experiments suggested that high expression of PrP(C) in the brain depends on the rate of translation and/or the efficiency of PrP(C) stabilization. We also investigated the epigenic status of the Prnp promoter. We observed no increase of PrP(C) or Prnp mRNA levels in PC12 cells after treatment with the DNA-demethylating agent. The Prnp promoter did not display methylation either in NGF-treated and untreated PC12 cells, or in the rat brain. These results improve the understanding of the regulation of the Prnp gene promoter, a DNA regulatory element controlling the expression of PrP(C), a protein involved in several neurological diseases.
Collapse
Affiliation(s)
- Izabela Zawlik
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, 8/10 Czechoslowacka str., 92-216 Lodz, Poland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gross SA, Zheng JH, Le AT, Kerzic PJ, Irons RD. PU.1 phosphorylation correlates with hydroquinone-induced alterations in myeloid differentiation and cytokine-dependent clonogenic response in human CD34+ hematopoietic progenitor cells. Cell Biol Toxicol 2006; 22:229-41. [PMID: 16642264 DOI: 10.1007/s10565-006-0128-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 02/02/2005] [Indexed: 12/12/2022]
Abstract
The transcriptional regulatory factor PU.1 is important for the regulation of a diverse group of hematopoietic and myeloid genes. Posttranslational phosphorylation of PU.1 has been demonstrated in the regulation of a variety of promoters in normal cells. In leukemia cells, differing patterns of PU.1 phosphorylation have been described among acute myelogenous leukemia (AML) subtypes. Therefore, we hypothesized that modulation of PU.1-dependent gene expression might be a molecular mediator of alterations in myeloid cell growth and differentiation that have been demonstrated to be early events in benzene-induced leukemogenesis. We found that freshly isolated human CD34(+) hematopoietic progenitor cells (HPC) exhibit multiple PU.1-DNA binding species that represent PU.1 proteins in varying degrees of phosphorylation states as determined by phosphatase treatment in combination with electrophoretic mobility shift assay (EMSA). Maturation of granulocyte and monocyte lineages is also accompanied by distinct changes in PU.1-DNA binding patterns. Experiments reveal that increasing doses of the benzene metabolite, hydroquinone (HQ) induce a time-and dose-dependent alteration in the pattern of PU.1-DNA binding in cultured human CD34(+) cells, corresponding to hyperphosphorylation of the PU.1 protein. HQ-induced alterations in PU.1-DNA binding are concomitant with a sustained immature CD34(+) phenotype and cytokine-dependent enhanced clonogenic activity in cultured human HPC. These results suggest that HQ induces a dysregulation in the external signals modulating PU.1 protein phosphorylation and this dysregulation may be an early event in the generation of benzene-induced AML.
Collapse
Affiliation(s)
- S A Gross
- Molecular Toxicology and Environmental Health Sciences Program, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | | | | | |
Collapse
|
25
|
Wei P, Taniguchi S, Sakai Y, Imamura M, Inoguchi T, Nawata H, Oda S, Nakabeppu Y, Nishimura J, Ikuyama S. Expression of adipose differentiation-related protein (ADRP) is conjointly regulated by PU.1 and AP-1 in macrophages. J Biochem 2006; 138:399-412. [PMID: 16272134 DOI: 10.1093/jb/mvi136] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
ADRP is associated with intracellular lipid droplets. We demonstrate the regulatory mechanism for ADRP expression in RAW264.7 macrophages. The ADRP mRNA expression was stimulated by PMA, and synergistically enhanced in association with its protein level in the presence of lipids. A proteasome inhibitor protected the protein from degradation under the lipid-free conditions. One of the possible sites of the PMA action was proved to be an Ets/AP-1 element in the promoter, since mutations of this site reduced the PMA-induced promoter activity, and ligation of this element led to a significant increase in the PMA-responsiveness of homologous or heterologous promoters. Mutations of this site diminished the synergistic effect on the promoter activity induced by PMA and oleic acid, suggesting a possible interaction between this site and the downstream PPARdelta site. EMSA revealed that PU.1 and AP-1 conjointly bound to this site. The juxtaposition of the two sequences was requisite for full activity, since spacer sequences between them decreased the PMA-induced activity. PI3 kinase inhibitor was found to reduce the PMA-induced mRNA expression and promoter activity in parallel with PU.1/AP-1 complex formation on EMSA. From these results, we concluded that the Ets/AP-1 site is an important cis-acting element that regulates the ADRP gene expression in macrophages.
Collapse
Affiliation(s)
- Ping Wei
- Division of Clinical Immunology, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Beppu 874-0838, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Miranda MB, Xu H, Torchia JA, Johnson DE. Cytokine-induced myeloid differentiation is dependent on activation of the MEK/ERK pathway. Leuk Res 2005; 29:1293-306. [PMID: 16164983 DOI: 10.1016/j.leukres.2005.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 03/14/2005] [Indexed: 11/30/2022]
Abstract
The intracellular signaling pathways that mediate cytokine-induced granulocytic and monocytic differentiation are incompletely understood. In this study, we examined the importance of the MEK/ERK signal transduction pathway in granulocyte-colony stimulating factor (G-CSF)-induced granulocytic differentiation of murine 32 Dc l3 cells, and in interleukin-6 (IL-6)-induced monocytic differentiation of murine M1 cells. Induction of granulocytic differentiation with G-CSF, or monocytic differentiation with IL-6, led to rapid and sustained activation of the MEK-1/-2 and ERK-1/-2 enzymes. Inhibition of the MEK/ERK pathway by pretreatment with the MEK inhibitor U 0126 dramatically attenuated G-CSF-induced granulocytic differentiation and IL-6-induced monocytic differentiation. Inhibition of MEK/ERK signaling also significantly reduced cytokine-induced DNA binding activities of STAT 3 and PU.1, transcription factors that have been implicated in myeloid differentiation. Additionally, interleukin-3, which inhibits G-CSF-induced differentiation of 32 Dc l3 cells, also inhibited the ability of G-CSF to stimulate prolonged MEK/ERK activation. Thus, the opposing actions of different hematopoietic cytokines on myeloid progenitors may be mediated at the level of MEK/ERK activation. Taken together, these studies demonstrate an important requirement for MEK/ERK activation during cytokine-induced granulocytic and monocytic differentiation.
Collapse
Affiliation(s)
- Michelle B Miranda
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
27
|
Dionne CJ, Tse KY, Weiss AH, Franco CB, Wiest DL, Anderson MK, Rothenberg EV. Subversion of T lineage commitment by PU.1 in a clonal cell line system. Dev Biol 2005; 280:448-66. [PMID: 15882585 DOI: 10.1016/j.ydbio.2005.01.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/25/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
Specification of mammalian T lymphocytes involves prolonged developmental plasticity even after lineage-specific gene expression begins. Expression of transcription factor PU.1 may maintain some myeloid-like developmental alternatives until commitment. Commitment could reflect PU.1 shutoff, resistance to PU.1 effects, and/or imposition of a suicide penalty for diversion. Here, we describe subclones from the SCID.adh murine thymic lymphoma, adh.2C2 and adh.6D4, that represent a new tool for probing these mechanisms. PU.1 can induce many adh.2C2 cells to undergo diversion to a myeloid-like phenotype, in an all-or-none fashion with multiple, coordinate gene expression changes; adh.6D4 cells resist diversion, and most die. Diversion depends on the PU.1 Ets domain but not on known interactions in the PEST or Q-rich domains, although the Q-rich domain enhances diversion frequency. Protein kinase C/MAP kinase stimulation can make adh.6D4 cells permissive for diversion without protecting from suicide. These results show distinct roles for regulated cell death and another stimulation-sensitive function that establishes a threshold for diversion competence. PU.1 also diverts normal T-cell precursors from wild type or Bcl2-transgenic mice to a myeloid-like phenotype, upon transduction in short-term culture. The adh.2C2 and adh.6D4 clones thus provide an accessible system for defining mechanisms controlling developmental plasticity in early T-cell development.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Line, Tumor
- Cell Lineage
- Cell Proliferation
- Cloning, Molecular
- Flow Cytometry
- Gene Expression Regulation, Developmental
- Hematopoietic Stem Cells
- MAP Kinase Signaling System
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Mice, Transgenic
- Microscopy, Fluorescence
- Models, Biological
- Myeloid Cells/metabolism
- Phenotype
- Protein Kinase C/metabolism
- Protein Structure, Tertiary
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Receptors, Interleukin-2/biosynthesis
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Time Factors
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transgenes
Collapse
Affiliation(s)
- Christopher J Dionne
- Division of Biology 156-29, California Institute of Technology, Pasadena, 91125 USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
29
|
Zhong H, Takeda A, Nazari R, Shio H, Blobel G, Yaseen NR. Carrier-independent nuclear import of the transcription factor PU.1 via RanGTP-stimulated binding to Nup153. J Biol Chem 2005; 280:10675-82. [PMID: 15632149 DOI: 10.1074/jbc.m412878200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PU.1 is a transcription factor of the Ets family with important functions in hematopoietic cell differentiation. Using green fluorescent protein-PU.1 fusions, we show that the Ets DNA binding domain of PU.1 is necessary and sufficient for its nuclear localization. Fluorescence and ultrastructural nuclear import assays showed that PU.1 nuclear import requires energy but not soluble carriers. PU.1 interacted directly with two nucleoporins, Nup62 and Nup153. The binding of PU.1 to Nup153, but not to Nup62, increased dramatically in the presence of RanGMPPNP, indicating the formation of a PU.1.RanGTP.Nup153 complex. The Ets domain accounted for the bulk of the interaction of PU.1 with Nup153 and RanGMPPNP. Because Nup62 is located close to the midplane of the nuclear pore complex whereas Nup153 is at its nuclear side, these findings suggest a model whereby RanGTP propels PU.1 toward the nuclear side of the nuclear pore complex by increasing its affinity for Nup153. This notion was confirmed by ultrastructural studies using gold-labeled PU.1 in permeabilized cells.
Collapse
Affiliation(s)
- Hualin Zhong
- Laboratory of Cell Biology, Howard Hughes Medical Institute, New York, New York 10031, USA
| | | | | | | | | | | |
Collapse
|
30
|
Nishiyama C, Masuoka N, Nishiyama M, Ito T, Yamane H, Okumura K, Ogawa H. Evidence against requirement of Ser41 and Ser45 for function of PU.1 -- molecular cloning of rat PU.1. FEBS Lett 2004; 572:57-64. [PMID: 15304324 DOI: 10.1016/j.febslet.2004.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 07/07/2004] [Accepted: 07/07/2004] [Indexed: 11/20/2022]
Abstract
The transcription factor PU.1 plays an important role in the development of the myeloid and lymphoid lineages and regulates the transcription of several genes expressed in these cells. Ser41 is conserved in the acidic region (33-47) of PU.1 from a variety of eukaryocytes and has been reported to be one of the two important Ser residues (S41 and S45) for the function of PU.1. In the present study, however, we found that rat PU.1 has Gly at position 41. To elucidate the role of amino acid residues at 41 and 45 in functions of PU.1, we generated mutants of rat PU.1, G41S, G41A, and S45A, and analyzed their transcription-enhancing activities by using two different systems, transient reporter assay system and retroviral transfection system. The amino acid substitution at 41 of PU.1 causes no effect on both transcription-enhancing activity for M-CSF receptor promoter and the cooperative transcription-enhancing activity with GATA-1 for FcRI alpha-chain promoter. Furthermore, the substitution at 41 also had no effect on the activity to induce monocyte-specific gene expression in the bone marrow-derived hematopoietic cells. From these results, we conclude that Ser41 as well as Ser45 are not essential for the promoter-upregulating function of PU.1.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang N, Su Q, Boeckh-Herwig S, Yaneva M, Tempst P. Delayed-late activation of a myeloid defensin minimal promoter by retinoids and inflammatory mediators. Leuk Res 2004; 28:879-89. [PMID: 15203286 DOI: 10.1016/j.leukres.2003.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 12/12/2003] [Indexed: 11/30/2022]
Abstract
Alpha-defensin-1 gene expression in promyelocytic HL-60 cells is ('delayed-late' > or =1-2 days) activated by retinoic acid (RA), lipopolysaccharide, tumor necrosis factor-alpha and elevated levels of cAMP. Using stably integrated reporter constructs, we show that this activation is directed through a proximal and distal element within a minimal (-83/+82) def1 promoter, and is mediated by phosphorylation of the associated factors, PU.1 and D1BP, in an inducer-dependent manner. Whereas binding of PU.1 to the proximal element confers cell specificity and relays the effects of most inducers, the selectively enhancing capacity of the distal element for RA- and cAMP-dependent activation is uniquely correlated with D1BP-binding. We propose that D1BP and PU.1 are the end-points of separate pathways.
Collapse
Affiliation(s)
- Nan Wang
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
32
|
Mirnics ZK, Caudell E, Gao Y, Kuwahara K, Sakaguchi N, Kurosaki T, Burnside J, Mirnics K, Corey SJ. Microarray analysis of Lyn-deficient B cells reveals germinal center-associated nuclear protein and other genes associated with the lymphoid germinal center. THE JOURNAL OF IMMUNOLOGY 2004; 172:4133-41. [PMID: 15034025 DOI: 10.4049/jimmunol.172.7.4133] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lyn is the only member of the Src family expressed in DT40 B cells, which provide a unique model to study the singular contribution of this protein tyrosine kinase (PTK) family to cell signaling. In these cells, gene ablation of Lyn leads to defective B cell receptor signaling. Complementary DNA array analysis of Lyn-deficient DT40 cells shows that the absence of Lyn leads to down-regulation of numerous genes encoding proteins involved in B cell receptor signaling, proliferation, control of transcription, immunity/inflammation response, and cytoskeletal organization. Most of these expression changes have not been previously associated with Lyn PTK signaling. They include alterations in mRNA levels of germinal center-associated nuclear protein (germinal center-associated DNA primase) (GANP), CD74, CD22, NF-kappaB, elongation factor 1alpha, CD79b, octamer binding factor 1, Ig H chain, stathmin, and gamma-actin. Changes in GANP expression were also confirmed in Lyn-deficient mice, suggesting that Lyn PTK has a unique function not compensated for by other Src kinases. Because Lyn-deficient mice have impaired development of germinal centers in spleen, the decreased expression of GANP in the Lyn-deficient DT40 cell line and Lyn-deficient mice suggests that Lyn controls the formation and proliferation of germinal centers via GANP. GANP promoter activity was higher in wild-type vs Lyn-deficient cells. Mutation of the PU.1 binding site reduced activity in wild-type cells and had no effect in Lyn-deficient cells. The presence of Lyn enhanced PU.1 expression in a Northern blot. Thus, the following new signaling pathway has been described: Lyn-->PU.1-->GANP.
Collapse
Affiliation(s)
- Zeljka Korade Mirnics
- Department of Pediatrics, University of Pittsburgh, School of Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nishiyama C, Nishiyama M, Ito T, Masaki S, Masuoka N, Yamane H, Kitamura T, Ogawa H, Okumura K. Functional analysis of PU.1 domains in monocyte-specific gene regulation. FEBS Lett 2004; 561:63-8. [PMID: 15013752 DOI: 10.1016/s0014-5793(04)00116-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 01/28/2004] [Accepted: 01/28/2004] [Indexed: 10/26/2022]
Abstract
The Ets family transcription factor PU.1 is required for the development of various lymphoid and myeloid cell lineages, and regulates the expression of several genes in a cell type-specific manner. Recently we found that overproduction of PU.1 in mouse bone marrow-derived mast cell progenitors induced the expression of monocyte-specific genes. This prompted us to analyze the functions of each domain of PU.1 in monocyte-specific gene expression, using transfection of mast cell progenitors with a series of retrovirus vectors for overexpression of various truncation mutants. Both the acidic region and the Ets domain of PU.1 were required for expression of monocyte-specific genes, and for enhanced interleukin-6 production in response to lipopolysaccharide. The Gln-rich region was suggested to be involved in expression of both MHC class II and F4/80. On the other hand, when PU.1 protein lacking the PEST domain was produced in the progenitor cells, expression of monocyte-specific genes was substantially enhanced, suggesting that the PEST domain plays a negative role in monocyte-specific gene expression.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Joo M, Park GY, Wright JG, Blackwell TS, Atchison ML, Christman JW. Transcriptional Regulation of the Cyclooxygenase-2 Gene in Macrophages by PU.1. J Biol Chem 2004; 279:6658-65. [PMID: 14966110 DOI: 10.1074/jbc.m306267200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Macrophages are an abundant source of cyclooxygenase-2 (COX-2) enzymatic products, but a specific mechanism for macrophage COX-2 gene expression has not been described. We examined whether PU.1, a myeloid-specific Ets family transcription factor, is involved. Sequence analysis revealed two potential c-Ets binding sites in the COX-2 promoter (COX-2p) which bind to immunoreactive PU.1. Chromatin immunoprecipitation analysis shows inducible PU.1 binding to these sites in response to lipopolysaccharide, and COX-2 protein production is augmented by ectopic expression of PU.1 but not by PU.1S148A, indicating that PU.1 phosphorylation is likely involved. Interestingly, expression of PU.1 results in acetylation of CCAAT/enhancer-binding protein-beta (C/EBP-beta) and increased production of COX-2 protein. Coimmunoprecipitation experiments suggest a role for p300 in C/EBP-beta acetylation and COX-2 expression. In contrast, E1A inhibits acetylation of C/EBP-beta and is correlated with decreased COX-2 expression. Together, these data suggest that PU.1 is activated by phosphorylation of Ser148 in response to lipopolysaccharide treatment and subsequently binds to sequences in the endogenous COX-2p in a time-dependent manner. Concomitantly, C/EBP-beta becomes acetylated, and expression of the COX-2 gene increases. We speculate that a combinatorial role of PU.1 and C/EBP-beta mediates the robust production of COX-2 products by macrophages which occurs in Gram-negative bacterial sepsis.
Collapse
Affiliation(s)
- Myungsoo Joo
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2650, USA
| | | | | | | | | | | |
Collapse
|
35
|
Partington GA, Fuller K, Chambers TJ, Pondel M. Mitf-PU.1 interactions with the tartrate-resistant acid phosphatase gene promoter during osteoclast differentiation. Bone 2004; 34:237-45. [PMID: 14962802 DOI: 10.1016/j.bone.2003.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 10/10/2003] [Accepted: 11/03/2003] [Indexed: 10/26/2022]
Abstract
It has been postulated that the transcription factors micropthalmia associated factor (Mitf) and PU.1 interact with the tartrate-resistant acid phosphatase (TRAP) gene promoter and activate TRAP gene expression in osteoclasts. However, studies on the interaction of these factors with the TRAP promoter employing nuclear extracts from osteoclasts and osteoclast precursors have not been reported. We therefore treated murine mononuclear phagocyte cells with various cytokines to generate cultures of osteoclasts and macrophagic cells with high or low potential to form osteoclasts. The presence of Mitf and PU.1 in nuclear extracts from these cultures and the ability of these factors to bind to the TRAP promoter was then assessed. We demonstrate that Mitf and a related factor, TFE3, are present in nuclear extracts from all cultures and bind the TRAP promoter. While PU.1 is present in nuclear extracts from all cultures, it does not significantly interact with a putative binding site in the TRAP promoter. These results suggest Mitf and PU.1 interactions with the TRAP promoter are not responsible for the specific activation of TRAP gene expression in osteoclasts.
Collapse
Affiliation(s)
- G A Partington
- Department of Cellular and Molecular Medicine, St. George's Hospital Medical School, London SW17 0RE, UK
| | | | | | | |
Collapse
|
36
|
Ishii H, Sen R, Pazin MJ. Combinatorial control of DNase I-hypersensitive site formation and erasure by immunoglobulin heavy chain enhancer-binding proteins. J Biol Chem 2003; 279:7331-8. [PMID: 14660676 DOI: 10.1074/jbc.m308973200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNase I-hypersensitive sites in cellular chromatin are usually believed to be nucleosome-free regions generated by transcription factor binding. Using a cell-free system we show that hypersensitivity does not simply correlate with the number of DNA-bound proteins. Specifically, the leucine zipper containing basic helix-loop-helix protein TFE3 was sufficient to induce a DNase I-hypersensitive site at the immunoglobulin heavy chain micro enhancer in vitro. TFE3 enhanced binding of an ETS protein PU.1 to the enhancer. However, PU.1 binding erased the DNase I-hypersensitive site without abolishing TFE3 binding. Furthermore, TFE3 binding enhanced transcription in the presence and absence of a hypersensitive site, whereas endonuclease accessibility correlated strictly with DNase I hypersensitivity. We infer that chromatin constraints for transcription and nuclease sensitivity can differ.
Collapse
Affiliation(s)
- Haruhiko Ishii
- Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
37
|
Carlsson R, Persson C, Leanderson T. SPI-C, a PU-box binding ETS protein expressed temporarily during B-cell development and in macrophages, contains an acidic transactivation domain located to the N-terminus. Mol Immunol 2003; 39:1035-43. [PMID: 12749910 DOI: 10.1016/s0161-5890(03)00032-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mice deficient for SPI-group ETS transcription factors PU.1 or SPI-B fail to generate lymphocytes or do not mount normal antibody mediated immune responses, respectively. PU.1 expression is restricted to B-, T-lymphocytes and macrophages, while SPI-B is expressed in B- and T-lymphocytes. SPI-C is an ETS transcription factor closely related to PU.1 and SPI-B, and expressed temporarily during B-cell development and in macrophages. By deletion and mutation analysis we show that the SPI-C protein has a transactivation domain located to the N-terminus, and that the transactivation activity is reduced to that of the DNA binding domain (DBD) alone when four aspartic acid residues are mutated to alanines. PU.1 and SPI-B regulate transcription from acidic domains located to the N-terminus and by recruiting the co-activator PIP to adjacent sites in a sequence specific manner. In contrast to PU.1 and PIP, SPI-C and PIP were unable to form a distinct ternary complex on the Ig lambda light chain lambda(2-4) enhancer element, suggesting that SPI-C could act both as a positive and negative transcriptional regulator during B-lymphocyte differentiation.
Collapse
Affiliation(s)
- Robert Carlsson
- Section for Immunology, CMB, Lund University, BMC I:13, 22184, Lund, Sweden.
| | | | | |
Collapse
|
38
|
Marden CM, Stefanidis D, Cunninghame-Graham DS, Casimir CM. Differentiation-dependent up-regulation of p47(phox) gene transcription is associated with changes in PU.1 phosphorylation and increased binding affinity. Biochem Biophys Res Commun 2003; 305:193-202. [PMID: 12732216 DOI: 10.1016/s0006-291x(03)00727-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p47(phox) gene encodes a cytosolic component of the phagocytic NADPH oxidase complex. Expression of p47(phox) is both tissue-specific and developmentally regulated. Stable transfection of the myeloid cell lines PLB985 and HL60, with reporter gene constructs containing as little as 58 bp of proximal promoter sequence, was capable of directing significant reporter gene activity in myeloid cells, which increased significantly on induction of myeloid differentiation. EMSA analysis of a binding site for the Ets family member, PU.1, located at positions -39 to -44 revealed that the pattern of complex formation changed significantly on induction of myeloid differentiation. All EMSA complexes were competed by a functional PU.1 binding site and could be supershifted in the presence of polyclonal anti-PU.1 antibody. Reaction of EMSA complexes with anti-phosphoserine antibody, treatment with phosphatase, or Western blotting of proteins captured on the PU.1 binding site, was used to demonstrate that the changes in PU.1 complex formation dependent on myeloid differentiation were associated with increased levels of PU.1 phosphorylation. Furthermore, the more highly phosphorylated forms of PU.1 were shown to have a greater affinity for the p47(phox) PU.1 consensus binding site. Up-regulated transcriptional activity in response to myeloid differentiation can therefore be correlated with increased levels of PU.1 phosphorylation and a greater binding affinity.
Collapse
Affiliation(s)
- Chloe M Marden
- Department of Haematology, Faculty of Medicine, Imperial College of Science Technology and Medicine, Norfolk Place, London, UK
| | | | | | | |
Collapse
|
39
|
Kurpios NA, Sabolic NA, Shepherd TG, Fidalgo GM, Hassell JA. Function of PEA3 Ets transcription factors in mammary gland development and oncogenesis. J Mammary Gland Biol Neoplasia 2003; 8:177-90. [PMID: 14635793 DOI: 10.1023/a:1025948823955] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Ets gene families of mice and man currently comprise 27 genes that encode sequence-specific transcription factors. Ets proteins share an approximately 85 amino acid structurally conserved ETS DNA binding domain. Genetic analyses in model organisms suggest roles for Ets proteins in embryonic development and various adult physiological processes. Chromosomal translocations involving several ETS genes are associated with Ewing's sarcomas and leukemias, whereas the overexpression of some ETS genes is linked with numerous malignancies, including breast cancer. Indeed PEA3, ETS-1, PDEF, and ELF-3 transcripts have all been reported to be elevated in human breast tumors. Some of the ETS genes that are overexpressed in human breast tumors are also overexpressed in mouse models of this disease. Notably, pea3, as well as its close paralogs er81 and erm, which comprise the pea3 subfamily of ets genes, are coordinately overexpressed in mouse mammary tumors. Genetic analyses in mice reveal required roles for one or more of the PEA3 subfamily Ets proteins in the initiation and progression of mouse mammary tumors. The pea3 subfamily genes are normally expressed in the primitive epithelium of mouse mammary buds during embryogenesis, and these three genes are expressed in epithelial progenitor cells during postnatal mammary gland development. Loss-of-function mutations in the mouse pea3 gene results in increased numbers of terminal end buds and an increased fraction of proliferating cells in these structures, suggesting a role for PEA3 in progenitor cell renewal or terminal differentiation. Taken together these observations suggest that the PEA3 subfamily proteins play key regulatory roles in both mammary gland development and oncogenesis.
Collapse
Affiliation(s)
- Natasza A Kurpios
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
40
|
Kane LP, Weiss A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev 2003; 192:7-20. [PMID: 12670391 DOI: 10.1034/j.1600-065x.2003.00008.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ligation of the T cell receptor for antigen (TCR) and/or costimulatory receptor CD28 results in rapid activation of phosphoinositide-3 kinase (PI-3 kinase). It remains unclear, however, precisely how this activation occurs and also how the newly generated phospholipid products trigger the various events associated with T cell activation. Here we discuss the current understanding of how PI-3 kinase is activated by the TCR and CD28 and what roles its products play in T cell activation. We also review recent advances in understanding the function of Akt in particular, especially its role in CD28 costimulation. Several functional targets of Akt are discussed in this regard: inducible transcription, cell survival, glucose metabolism, and the cellular translational machinery. These pathways have been associated with TCR/CD28 costimulation, and they have also been implicated as targets of Akt.
Collapse
Affiliation(s)
- Lawrence P Kane
- Department of Medicine, The Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
41
|
Abstract
The Ets family of transcription factors characterized by an evolutionarily-conserved DNA-binding domain regulates expression of a variety of viral and cellular genes by binding to a purine-rich GGAA/T core sequence in cooperation with other transcriptional factors and co-factors. Most Ets family proteins are nuclear targets for activation of Ras-MAP kinase signaling pathway and some of them affect proliferation of cells by regulating the immediate early response genes and other growth-related genes. Some of them also regulate apoptosis-related genes. Several Ets family proteins are preferentially expressed in specific cell lineages and are involved in their development and differentiation by increasing the enhancer or promoter activities of the genes encoding growth factor receptors and integrin families specific for the cell lineages. Many Ets family proteins also modulate gene expression through protein-protein interactions with other cellular partners. Deregulated expression or formation of chimeric fusion proteins of Ets family due to proviral insertion or chromosome translocation is associated with leukemias and specific types of solid tumors. Several Ets family proteins also participate in malignancy of tumor cells including invasion and metastasis by activating the transcription of several protease genes and angiogenesis-related genes.
Collapse
Affiliation(s)
- Tsuneyuki Oikawa
- Department of Cell Genetics, Sasaki Institute, 2-2 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
42
|
|