1
|
Haage TR, Charakopoulos E, Bhuria V, Baldauf CK, Korthals M, Handschuh J, Müller P, Li J, Harit K, Nishanth G, Frey S, Böttcher M, Fischer KD, Dudeck J, Dudeck A, Lipka DB, Schraven B, Green AR, Müller AJ, Mougiakakos D, Fischer T. Neutrophil-specific expression of JAK2-V617F or CALRmut induces distinct inflammatory profiles in myeloproliferative neoplasia. J Hematol Oncol 2024; 17:43. [PMID: 38853260 PMCID: PMC11163796 DOI: 10.1186/s13045-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Neutrophils play a crucial role in inflammation and in the increased thrombotic risk in myeloproliferative neoplasms (MPNs). We have investigated how neutrophil-specific expression of JAK2-V617F or CALRdel re-programs the functions of neutrophils. METHODS Ly6G-Cre JAK2-V617F and Ly6G-Cre CALRdel mice were generated. MPN parameters as blood counts, splenomegaly and bone marrow histology were compared to wild-type mice. Megakaryocyte differentiation was investigated using lineage-negative bone marrow cells upon in vitro incubation with TPO/IL-1β. Cytokine concentrations in serum of mice were determined by Mouse Cytokine Array. IL-1α expression in various hematopoietic cell populations was determined by intracellular FACS analysis. RNA-seq to analyse gene expression of inflammatory cytokines was performed in isolated neutrophils from JAK2-V617F and CALR-mutated mice and patients. Bioenergetics of neutrophils were recorded on a Seahorse extracellular flux analyzer. Cell motility of neutrophils was monitored in vitro (time lapse microscopy), and in vivo (two-photon microscopy) upon creating an inflammatory environment. Cell adhesion to integrins, E-selectin and P-selection was investigated in-vitro. Statistical analysis was carried out using GraphPad Prism. Data are shown as mean ± SEM. Unpaired, two-tailed t-tests were applied. RESULTS Strikingly, neutrophil-specific expression of JAK2-V617F, but not CALRdel, was sufficient to induce pro-inflammatory cytokines including IL-1 in serum of mice. RNA-seq analysis in neutrophils from JAK2-V617F mice and patients revealed a distinct inflammatory chemokine signature which was not expressed in CALR-mutant neutrophils. In addition, IL-1 response genes were significantly enriched in neutrophils of JAK2-V617F patients as compared to CALR-mutant patients. Thus, JAK2-V617F positive neutrophils, but not CALR-mutant neutrophils, are pathogenic drivers of inflammation in MPN. In line with this, expression of JAK2-V617F or CALRdel elicited a significant difference in the metabolic phenotype of neutrophils, suggesting a stronger inflammatory activity of JAK2-V617F cells. Furthermore, JAK2-V617F, but not CALRdel, induced a VLA4 integrin-mediated adhesive phenotype in neutrophils. This resulted in reduced neutrophil migration in vitro and in an inflamed vessel. This mechanism may contribute to the increased thrombotic risk of JAK2-V617F patients compared to CALR-mutant individuals. CONCLUSIONS Taken together, our findings highlight genotype-specific differences in MPN-neutrophils that have implications for the differential pathophysiology of JAK2-V617F versus CALR-mutant disease.
Collapse
Affiliation(s)
- Tobias Ronny Haage
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Emmanouil Charakopoulos
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Vikas Bhuria
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Conny K Baldauf
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Mark Korthals
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Juliane Handschuh
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Peter Müller
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Juan Li
- Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, GB, England
| | - Kunjan Harit
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Gopala Nishanth
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Stephanie Frey
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Martin Böttcher
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Jan Dudeck
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Dudeck
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Daniel B Lipka
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
- Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Anthony R Green
- Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge, GB, England
| | - Andreas J Müller
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany
| | - Thomas Fischer
- Healthcampus Immunology, Inflammation and Infectiology (GC-I, Otto-von-Guericke-University, Magdeburg, Germany.
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
2
|
Jia M, Fu H, Jiang X, Wang L, Xu J, Barnes PJ, Adcock IM, Liu Y, He S, Zhang F, Yao L, Sun P, Yao X. DEL-1, as an anti-neutrophil transepithelial migration molecule, inhibits airway neutrophilic inflammation in asthma. Allergy 2024; 79:1180-1194. [PMID: 37681299 DOI: 10.1111/all.15882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Neutrophil migration into the airways is a key process in neutrophilic asthma. Developmental endothelial locus-1 (DEL-1), an extracellular matrix protein, is a neutrophil adhesion inhibitor that attenuates neutrophilic inflammation. METHODS Levels of DEL-1 were measured in exhaled breath condensate (EBC) and serum in asthma patients by ELISA. DEL-1 modulation of neutrophil adhesion and transepithelial migration was examined in a co-culture model in vitro. The effects of DEL-1-adenoviral vector-mediated overexpression on ovalbumin/lipopolysaccharide (OVA/LPS)-induced neutrophilic asthma were studied in mice in vivo. RESULTS DEL-1 was primarily expressed in human bronchial epithelial cells and was decreased in asthma patients. Serum DEL-1 concentrations were reduced in patients with severe asthma compared with normal subjects (567.1 ± 75.3 vs. 276.8 ± 29.36 pg/mL, p < .001) and were negatively correlated to blood neutrophils (r = -0.2881, p = .0384) and neutrophil-to-lymphocyte ratio (NLR) (r = -0.5469, p < .0001). DEL-1 concentrations in the EBC of severe asthmatic patients (113.2 ± 8.09 pg/mL) were also lower than normal subjects (193.0 ± 7.61 pg/mL, p < .001) and were positively correlated with the asthma control test (ACT) score (r = 0.3678, p = .0035) and negatively related to EBC IL-17 (r = -0.3756, p = .0131), myeloperoxidase (MPO) (r = -0.5967, p = .0055), and neutrophil elastase (NE) (r = -0.5488, p = .0009) expression in asthma patients. Neutrophil adhesion and transepithelial migration in asthma patients were associated with LFA-1 binding to ICAM-1 and inhibited by DEL-1. DEL-1 mRNA and protein expression in human bronchial epithelial cells were regulated by IL-17. Exogenous DEL-1 inhibited IL-17-enhanced neutrophil adhesion and migration. DEL-1 expression was decreased while neutrophil infiltration was increased in the airway of a murine model of neutrophilic asthma. This was prevented by DEL-1 overexpression. CONCLUSIONS DEL-1 down-regulation leads to increased neutrophil migration across bronchial epithelial cells and is associated with neutrophilic airway inflammation in asthma.
Collapse
Affiliation(s)
- Man Jia
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Fu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Jiang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lina Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayan Xu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Yi Liu
- Department of Allergy, Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shujuan He
- Department of Respiratory Medicine, Nanjing Red Cross Hospital, Nanjing, China
| | - Fan Zhang
- Department of Respiratory Medicine, Nanjing Red Cross Hospital, Nanjing, China
| | - Lei Yao
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Sun
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Yao
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Li Z, Tan S, Qi L, Chen Y, Liu H, Liu X, Sha Z. Genome-wide characterization of integrin (ITG) gene family and their expression profiling in half-smooth tongue sole (Cynoglossus semilaevis) upon Vibrio anguillarum infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101099. [PMID: 37327728 DOI: 10.1016/j.cbd.2023.101099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Integrins (ITGs) are transmembrane heterodimer receptors with ITGα subunit and ITGβ subunit, participating in various physiological processes, including immunity. At present, systematic research on ITGs in teleost is scarce, especially in half-smooth tongue sole (Cynoglossus semilaevis). In this study, a set of 28 ITG genes in half-smooth tongue sole have been identified and characterized. The phylogenetic analysis showed that ITGα and ITGβ subunits were respectively classified into five and two clusters, consistent with previous studies. The selection pressure analysis indicated that most of ITG genes were under purifying selection, except for ITGα11b and ITGαL with positive selection. The expression profiles of eight selected ITG genes, including ITGα1, ITGα5, ITGα8, ITGα11, ITGβ1, ITGβ2, ITGβ3, and ITGβ8, were analyzed in healthy tissues and after infection with Vibrio anguillarum, revealed their implications in immune response. The study provided a comprehensive characterization and expression analysis of ITG genes in half-smooth tongue sole, setting a solid foundation for further functional studies and promising potential in disease control.
Collapse
Affiliation(s)
- Zhujun Li
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Longjiang Qi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yadong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hongning Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xinbao Liu
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Luik AL, Hannocks MJ, Loismann S, Kapupara K, Cerina M, van der Stoel M, Tsytsyura Y, Glyvuk N, Nordenvall C, Klingauf J, Huveneers S, Meuth S, Jakobsson L, Sorokin L. Endothelial basement membrane laminins - new players in mouse and human myoendothelial junctions and shear stress communication. Matrix Biol 2023; 121:56-73. [PMID: 37311512 DOI: 10.1016/j.matbio.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Basement membranes (BMs) are critical but frequently ignored components of the vascular system. Using high-resolution confocal imaging of whole-mount-stained mesenteric arteries, we identify integrins, vinculin, focal adhesion kinase (FAK) and several BM proteins including laminins as novel components of myoendothelial junctions (MEJs), anatomical microdomains that are emerging as regulators of cross-talk between endothelium and smooth muscle cells (SMCs). Electron microscopy revealed multiple layers of the endothelial BM that surround endothelial projections into the smooth muscle layer as structural characteristics of MEJs. The shear-responsive calcium channel TRPV4 is broadly distributed in endothelial cells and occurs in a proportion of MEJs where it localizes to the tips of the endothelial projections that are in contact with the underlying SMCs. In mice lacking the major endothelial laminin isoform, laminin 411 (Lama4-/-), which we have previously shown over-dilate in response to shear and exhibit a compensatory laminin 511 upregulation, localization of TRPV4 at the endothelial-SMC interface in MEJs was increased. Endothelial laminins do not affect TRPV4 expression, rather in vitro electrophysiology studies using human umbilical cord arterial endothelial cells revealed enhanced TRPV4 signalling upon culturing on an RGD-motif containing domain of laminin 511. Hence, integrin-mediated interactions with laminin 511 in MEJ structures unique to resistance arteries modulate TRPV4 localization at the endothelial-smooth muscle interface in MEJs and signalling over this shear-response molecule.
Collapse
Affiliation(s)
- Anna-Liisa Luik
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Sophie Loismann
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Kishan Kapupara
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre
| | - Manuela Cerina
- Cells in Motion Interfaculty Centre; Institute of Translational Neurology and Department of Neurology, University of Muenster, Germany
| | - Miesje van der Stoel
- Dept of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, the Netherlands
| | - Yaroslav Tsytsyura
- Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Nataliya Glyvuk
- Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Caroline Nordenvall
- Dept of Molecular Medicine and Surgery, Karolinska Institute, Sweden; Dept of Pelvic Cancer, GI Oncology and Colorectal Surgery Unit, Karolinska University Hospital, Sweden
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Germany
| | - Stephan Huveneers
- Dept of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, the Netherlands
| | - Sven Meuth
- Cells in Motion Interfaculty Centre; Institute of Translational Neurology and Department of Neurology, University of Muenster, Germany; Neurology Clinic, Medical Faculty, University of Düsseldorf, Germany
| | - Lars Jakobsson
- Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry; Cells in Motion Interfaculty Centre.
| |
Collapse
|
5
|
Song J, Deshpande T, Zhang X, Hannocks MJ, Lycke N, Cardell SL, Sorokin L. The extracellular matrix of lymph node reticular fibers modulates follicle border interactions and germinal center formation. iScience 2023; 26:106753. [PMID: 37234087 PMCID: PMC10206498 DOI: 10.1016/j.isci.2023.106753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Germinal center (GC) formation and antibody production in lymph node follicles require coordinated interactions between B-cells, T-cells and dendritic cells (DCs), orchestrated by the extracellular matrix-rich reticular fiber (RF) network. We describe a unique laminin 523-containing RF network around and between follicles that associates with PDGFrecβhighCCL19lowgp38low fibroblastic reticular cells (FRC). In the absence of FRC expression of laminin α5 (pdgfrb-cre:Lama5fl/fl), pre-Tfh-cells, B-cells and DCs are displaced from follicle borders, correlating with fewer Tfh-cells and GC B-cells. Total DCs are not altered in pdgfrb-cre:Lama5fl/fl mice, but cDC2s, which localize to laminin α5 in RFs at follicle borders, are reduced. In addition, PDGFrecβhighCCL19lowgp38low FRCs show lower Ch25h expression, required for 7α,25-dihydroxycholesterol synthesis that attracts pre-Tfh-cells, B-cells and DCs to follicle borders. We propose that RF basement membrane components represent a type of tissue memory that guides the localization and differentiation of both specialized FRC and DC populations, required for normal lymph node function.
Collapse
Affiliation(s)
- Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Muenster, 48149 Muenster, Germany
| | - Tushar Deshpande
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Muenster, 48149 Muenster, Germany
| | - Xueli Zhang
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Muenster, 48149 Muenster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Muenster, 48149 Muenster, Germany
| | - Nils Lycke
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Susanna L. Cardell
- Department of Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Interfaculty Centre (CIMIC), University of Muenster, 48149 Muenster, Germany
| |
Collapse
|
6
|
Recognition of Tumor Nidogen-1 by Neutrophil C-Type Lectin Receptors. Biomedicines 2022; 10:biomedicines10040908. [PMID: 35453656 PMCID: PMC9030733 DOI: 10.3390/biomedicines10040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Neutrophil-mediated cytotoxicity toward tumor cells requires cell contact and is mediated by hydrogen peroxide. We have recently shown that Cathepsin G expressed on the neutrophil surface interacts with tumor RAGE, and this interaction facilitates neutrophil cytotoxicity. Interruption of the Cathepsin G–RAGE interaction led to 50–80% reduction in cytotoxicity, suggesting that additional interactions are also involved. Here we show that blocking antibodies to the C-type lectin receptors (CLRs) Clec4e and Dectin-1, but not those to NKG2D, attenuated murine neutrophil cytotoxicity towards murine tumor cells, suggesting a contributing role for these CLRs in neutrophil recognition of tumor cells. We further observed that the CLRs interact with tumor Nidogen-1 and Hspg2, two sulfated glycoproteins of the basement membrane. Both Nidogen-1 and Hspg2 were found to be expressed on the tumor cell surface. The knockdown of Nidogen-1, but not that of Hspg2, led to reduced susceptibility of the tumor cells to neutrophil cytotoxicity. Altogether, this study suggests a role for CLR–Nidogen-1 interaction in the recognition of tumor cells by neutrophils, and this interaction facilitates neutrophil-mediated killing of the tumor cells.
Collapse
|
7
|
Kraus RF, Gruber MA. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front Immunol 2022; 12:767175. [PMID: 35003081 PMCID: PMC8732951 DOI: 10.3389/fimmu.2021.767175] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils (polymorphonuclear cells; PMNs) form a first line of defense against pathogens and are therefore an important component of the innate immune response. As a result of poorly controlled activation, however, PMNs can also mediate tissue damage in numerous diseases, often by increasing tissue inflammation and injury. According to current knowledge, PMNs are not only part of the pathogenesis of infectious and autoimmune diseases but also of conditions with disturbed tissue homeostasis such as trauma and shock. Scientific advances in the past two decades have changed the role of neutrophils from that of solely immune defense cells to cells that are responsible for the general integrity of the body, even in the absence of pathogens. To better understand PMN function in the human organism, our review outlines the role of PMNs within the innate immune system. This review provides an overview of the migration of PMNs from the vascular compartment to the target tissue as well as their chemotactic processes and illuminates crucial neutrophil immune properties at the site of the lesion. The review is focused on the formation of chemotactic gradients in interaction with the extracellular matrix (ECM) and the influence of the ECM on PMN function. In addition, our review summarizes current knowledge about the phenomenon of bidirectional and reverse PMN migration, neutrophil microtubules, and the microtubule organizing center in PMN migration. As a conclusive feature, we review and discuss new findings about neutrophil behavior in cancer environment and tumor tissue.
Collapse
Affiliation(s)
- Richard Felix Kraus
- Department of Anesthesiology, University Medical Center Regensburg, Regensburg, Germany
| | | |
Collapse
|
8
|
Di Russo J, Young JL, Wegner JW, Steins T, Kessler H, Spatz JP. Integrin α5β1 nano-presentation regulates collective keratinocyte migration independent of substrate rigidity. eLife 2021; 10:69861. [PMID: 34554089 PMCID: PMC8460267 DOI: 10.7554/elife.69861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023] Open
Abstract
Nanometer-scale properties of the extracellular matrix influence many biological processes, including cell motility. While much information is available for single-cell migration, to date, no knowledge exists on how the nanoscale presentation of extracellular matrix receptors influences collective cell migration. In wound healing, basal keratinocytes collectively migrate on a fibronectin-rich provisional basement membrane to re-epithelialize the injured skin. Among other receptors, the fibronectin receptor integrin α5β1 plays a pivotal role in this process. Using a highly specific integrin α5β1 peptidomimetic combined with nanopatterned hydrogels, we show that keratinocyte sheets regulate their migration ability at an optimal integrin α5β1 nanospacing. This efficiency relies on the effective propagation of stresses within the cell monolayer independent of substrate stiffness. For the first time, this work highlights the importance of extracellular matrix receptor nanoscale organization required for efficient tissue regeneration.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Interdisciplinary Centre for Clinical Research, Aachen, Germany.,DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstrasse, Aachen, Germany.,Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Jennifer L Young
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | - Timmy Steins
- Interdisciplinary Centre for Clinical Research, Aachen, Germany.,Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Horst Kessler
- Institute for Advance Study, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Molecular System Engineering - IMSE - Heidelberg University, Heidelberg, Germany.,Max Planck School Matter to Life, Heidelberg, Germany
| |
Collapse
|
9
|
Kraus RF, Gruber MA, Kieninger M. The influence of extracellular tissue on neutrophil function and its possible linkage to inflammatory diseases. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1237-1251. [PMID: 34115923 PMCID: PMC8589351 DOI: 10.1002/iid3.472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/01/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Migration, production of reactive oxygen species (ROS), release of myeloperoxidase (MPO), and NETosis are functional immunological reactions of elementary importance for polymorphonuclear neutrophils (PMN). Unregulated inflammatory response of PMN within tissues plays a key role in the pathophysiology of several diseases. However, little is known about the behavior of PMN after migration through blood vessel walls. Therefore, we investigated the influence of the extracellular matrix (ECM) on PMN function. MATERIALS AND METHODS We established an in vitro chemotaxis model of type I and III collagen, fibrin, and herbal agarose tissues using µ-slide chemotaxis devices and N-formylmethionine-leucyl-phenylalanine (fMLP). PMN within the matrices were assessed with a fluorescent time-lapse microscope for live-cell imaging. RESULTS PMN function was obviously influenced by the ECM. Type III collagen had an inhibitory effect on PMN migration regarding track length, direction, and targeting. Type III collagen also had an accelerating effect on neutrophil ROS production. Agarose had an inhibitory effect on MPO release and fibrin a retarding effect on NETosis. CONCLUSION Because of the high abundance of type III collagen in lung and skin matrices, the interaction of PMN with the respective matrix could be an important mechanism in the pathophysiology of acute respiratory distress syndrome and pyoderma gangrenosum.
Collapse
Affiliation(s)
- Richard F Kraus
- Department of Anaesthesiology, University Medical Centre Regensburg, Regensburg, Germany
| | - Michael A Gruber
- Department of Anaesthesiology, University Medical Centre Regensburg, Regensburg, Germany
| | - Martin Kieninger
- Department of Anaesthesiology, University Medical Centre Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Zhang X, Wang Y, Song J, Gerwien H, Chuquisana O, Chashchina A, Denz C, Sorokin L. The endothelial basement membrane acts as a checkpoint for entry of pathogenic T cells into the brain. J Exp Med 2021; 217:151744. [PMID: 32379272 PMCID: PMC7336306 DOI: 10.1084/jem.20191339] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
The endothelial cell basement membrane (BM) is a barrier to migrating leukocytes and a rich source of signaling molecules that can influence extravasating cells. Using mice lacking the major endothelial BM components, laminin 411 or 511, in murine experimental autoimmune encephalomyelitis (EAE), we show here that loss of endothelial laminin 511 results in enhanced disease severity due to increased T cell infiltration and altered polarization and pathogenicity of infiltrating T cells. In vitro adhesion and migration assays reveal higher binding to laminin 511 than laminin 411 but faster migration across laminin 411. In vivo and in vitro analyses suggest that integrin α6β1- and αvβ1-mediated binding to laminin 511-high sites not only holds T cells at such sites but also limits their differentiation to pathogenic Th17 cells. This highlights the importance of the interface between the endothelial monolayer and the underlying BM for modulation of immune cell phenotype.
Collapse
Affiliation(s)
- Xueli Zhang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Ying Wang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hanna Gerwien
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Omar Chuquisana
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Anna Chashchina
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Cornelia Denz
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Applied Physics, University of Muenster, Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| |
Collapse
|
11
|
Granath C, Noren H, Björck H, Simon N, Olesen K, Rodin S, Grinnemo KH, Österholm C. Characterization of Laminins in Healthy Human Aortic Valves and a Modified Decellularized Rat Scaffold. Biores Open Access 2020; 9:269-278. [PMID: 33376633 PMCID: PMC7757704 DOI: 10.1089/biores.2020.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 01/13/2023] Open
Abstract
Aortic valve stenosis is one of the most common cardiovascular diseases in western countries and can only be treated by replacement with a prosthetic valve. Tissue engineering is an emerging and promising treatment option, but in-depth knowledge about the microstructure of native heart valves is lacking, making the development of tissue-engineered heart valves challenging. Specifically, the basement membrane (BM) of heart valves remains incompletely characterized, and decellularization protocols that preserve BM components are necessary to advance the field. This study aims to characterize laminin isoforms expressed in healthy human aortic valves and establish a small animal decellularized aortic valve scaffold for future studies of the BM in tissue engineering. Laminin isoforms were assessed by immunohistochemistry with antibodies specific for individual α, β, and γ chains. The results indicated that LN-411, LN-421, LN-511, and LN-521 are expressed in human aortic valves (n = 3), forming a continuous monolayer in the endothelial BM, whereas sparsely found in the interstitium. Similar results were seen in rat aortic valves (n = 3). Retention of laminin and other BM components, concomitantly with effective removal of cells and residual DNA, was achieved through 3 h exposure to 1% sodium dodecyl sulfate and 30 min exposure to 1% Triton X-100, followed by nuclease processing in rat aortic valves (n = 3). Our results provide crucial data on the microenvironment of valvular cells relevant for research in both tissue engineering and heart valve biology. We also describe a decellularized rat aortic valve scaffold useful for mechanistic studies on the role of the BM in heart valve regeneration.
Collapse
Affiliation(s)
- Carl Granath
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hunter Noren
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida, USA
| | - Hanna Björck
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nancy Simon
- Cardiovascular Medicine Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kim Olesen
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Bioscience, University of Skövde, Skövde, Sweden
- Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Sergey Rodin
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Karl-Henrik Grinnemo
- Division of Cardiothoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Division of Cardiothoracic Surgery and Anesthesiology, Department of Surgical Sciences, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Cecilia Österholm
- Division of Clinical Genetics, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Address correspondence to: Cecilia Österholm Corbascio, PhD, Division of Clinical Genetics, Department of Molecular Medicine and Surgery, Karolinska Institutet, Solna, 171 64, Sweden
| |
Collapse
|
12
|
The role of basement membrane laminins in vascular function. Int J Biochem Cell Biol 2020; 127:105823. [DOI: 10.1016/j.biocel.2020.105823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/18/2022]
|
13
|
Forcina L, Cosentino M, Musarò A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells 2020; 9:E1297. [PMID: 32456017 PMCID: PMC7290814 DOI: 10.3390/cells9051297] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite a massive body of knowledge which has been produced related to the mechanisms guiding muscle regeneration, great interest still moves the scientific community toward the study of different aspects of skeletal muscle homeostasis, plasticity, and regeneration. Indeed, the lack of effective therapies for several physiopathologic conditions suggests that a comprehensive knowledge of the different aspects of cellular behavior and molecular pathways, regulating each regenerative stage, has to be still devised. Hence, it is important to perform even more focused studies, taking the advantage of robust markers, reliable techniques, and reproducible protocols. Here, we provide an overview about the general aspects of muscle regeneration and discuss the different approaches to study the interrelated and time-dependent phases of muscle healing.
Collapse
Affiliation(s)
| | | | - Antonio Musarò
- Laboratory affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Via Antonio Scarpa, 14, 00161 Rome, Italy; (L.F.); (M.C.)
| |
Collapse
|
14
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
15
|
Moreau HD, Lennon-Duménil AM, Pierobon P. “If you please… draw me a cell”. Insights from immune cells. J Cell Sci 2020; 133:133/5/jcs244806. [DOI: 10.1242/jcs.244806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Studies in recent years have shed light on the particular features of cytoskeleton dynamics in immune cells, challenging the classical picture drawn from typical adherent cell lines. New mechanisms linking the dynamics of the membrane–cytoskeleton interface to the mechanical properties of immune cells have been uncovered and shown to be essential for immune surveillance functions. In this Essay, we discuss these features, and propose immune cells as a new playground for cell biologists who try to understand how cells adapt to different microenvironments to fulfil their functions efficiently.
Collapse
Affiliation(s)
- Hélène D. Moreau
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| | - Ana-Maria Lennon-Duménil
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| | - Paolo Pierobon
- INSERM U932, Institut Curie, ANR-10-IDEX-0001-02 PSL and ANR-11-LABX-0043, 26 rue d'Ulm, 75248 Paris, Cedex 05, France
| |
Collapse
|
16
|
Wagner JUG, Chavakis E, Rogg EM, Muhly-Reinholz M, Glaser SF, Günther S, John D, Bonini F, Zeiher AM, Schaefer L, Hannocks MJ, Boon RA, Dimmeler S. Switch in Laminin β2 to Laminin β1 Isoforms During Aging Controls Endothelial Cell Functions-Brief Report. Arterioscler Thromb Vasc Biol 2018; 38:1170-1177. [PMID: 29599141 DOI: 10.1161/atvbaha.117.310685] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/06/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Endothelial cells play important roles in tissue homeostasis and vascularization, a function that is impaired by aging. Here, we aim to decipher the role of the microenvironment underlying the impairment of endothelial cell functions by aging. APPROACH AND RESULTS RNA sequencing of isolated cardiac endothelial cells derived from young and 18-month-old mouse hearts revealed that aging affects the endothelial expression of genes encoding extracellular matrix proteins, specifically the laminin β1 (Lamb1) and laminin β2 (Lamb2) chains. Whereas Lamb1 was upregulated, Lamb2 was decreased in endothelial cells in old mice compared with young controls. A similar change in expression patterns was observed after induction of acute myocardial infarction. Mimicking aging and injury conditions by plating endothelial cells on laminin β1-containing laminin 411 matrix impaired endothelial cell adhesion, migration, and tube formation and augmented endothelial-to-mesenchymal transition and endothelial detachment compared with laminin 421, which contains the laminin β2 chain. Because laminins can signal via integrin receptors, we determined the activation of ITGB1 (integrin β1). Laminin 421 coating induced a higher activation of ITGB1 compared with laminin 411. siRNA-mediated silencing of ITGB1 reduced laminin β2-dependent adhesion, suggesting that laminin β2 more efficiently activates ITGB1. CONCLUSIONS Mimicking age-related modulation of laminin β1 versus β2 chain expression changes the functional properties and phenotype of endothelial cells. The dysregulation of the extracellular matrix during vascular aging may contribute to age-associated impairment of organ function and fibrosis.
Collapse
Affiliation(s)
- Julian U G Wagner
- From the Institute for Cardiovascular Regeneration (J.U.G.W., E.-M.R., M.M.-R., S.F.G., D.J., F.B., R.A.B., S.D.).,German Center of Cardiovascular Research (DZHK), Frankfurt am Main (J.U.G.W., S.F.G., A.M.Z., R.A.B., S.D.)
| | - Emmanouil Chavakis
- Internal Medicine III, Department of Cardiology, Goethe University Hospital, Frankfurt am Main, Germany (E.C., A.M.Z.)
| | - Eva-Maria Rogg
- From the Institute for Cardiovascular Regeneration (J.U.G.W., E.-M.R., M.M.-R., S.F.G., D.J., F.B., R.A.B., S.D.)
| | - Marion Muhly-Reinholz
- From the Institute for Cardiovascular Regeneration (J.U.G.W., E.-M.R., M.M.-R., S.F.G., D.J., F.B., R.A.B., S.D.)
| | - Simone F Glaser
- From the Institute for Cardiovascular Regeneration (J.U.G.W., E.-M.R., M.M.-R., S.F.G., D.J., F.B., R.A.B., S.D.).,German Center of Cardiovascular Research (DZHK), Frankfurt am Main (J.U.G.W., S.F.G., A.M.Z., R.A.B., S.D.)
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (S.G.)
| | - David John
- From the Institute for Cardiovascular Regeneration (J.U.G.W., E.-M.R., M.M.-R., S.F.G., D.J., F.B., R.A.B., S.D.)
| | - Francesca Bonini
- From the Institute for Cardiovascular Regeneration (J.U.G.W., E.-M.R., M.M.-R., S.F.G., D.J., F.B., R.A.B., S.D.)
| | - Andreas M Zeiher
- Internal Medicine III, Department of Cardiology, Goethe University Hospital, Frankfurt am Main, Germany (E.C., A.M.Z.).,German Center of Cardiovascular Research (DZHK), Frankfurt am Main (J.U.G.W., S.F.G., A.M.Z., R.A.B., S.D.)
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology (L.S.), Goethe University, Frankfurt am Main, Germany
| | - Melanie-Jane Hannocks
- German Center of Cardiovascular Research (DZHK), Frankfurt am Main (J.U.G.W., S.F.G., A.M.Z., R.A.B., S.D.)
| | - Reinier A Boon
- From the Institute for Cardiovascular Regeneration (J.U.G.W., E.-M.R., M.M.-R., S.F.G., D.J., F.B., R.A.B., S.D.).,German Center of Cardiovascular Research (DZHK), Frankfurt am Main (J.U.G.W., S.F.G., A.M.Z., R.A.B., S.D.)
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration (J.U.G.W., E.-M.R., M.M.-R., S.F.G., D.J., F.B., R.A.B., S.D.) .,German Center of Cardiovascular Research (DZHK), Frankfurt am Main (J.U.G.W., S.F.G., A.M.Z., R.A.B., S.D.)
| |
Collapse
|
17
|
Susek KH, Korpos E, Huppert J, Wu C, Savelyeva I, Rosenbauer F, Müller-Tidow C, Koschmieder S, Sorokin L. Bone marrow laminins influence hematopoietic stem and progenitor cell cycling and homing to the bone marrow. Matrix Biol 2018; 67:47-62. [PMID: 29360499 DOI: 10.1016/j.matbio.2018.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem and progenitor cell (HSPC) functions are regulated by a specialized microenvironment in the bone marrow - the hematopoietic stem cell niche - of which the extracellular matrix (ECM) is an integral component. We describe here the localization of ECM molecules, in particular the laminin α4, α3 and α5 containing isoforms in the bone marrow. Laminin 421 (composed of laminin α4, β2, γ1 chains) is identified as a major component of the bone marrow ECM, occurring abundantly surrounding venous sinuses and in a specialized reticular fiber network of the intersinusoidal spaces of murine bone marrow (BM) in close association with HSPC. Bone marrow from Lama4-/- mice is significantly less efficient in reconstituting the hematopoietic system of irradiated wildtype (WT) recipients in competitive bone marrow transplantation assays and shows reduced colony formation in vitro. This is partially due to retention of Lin-c-kit+Sca-1+CD48- long-term and short-term hematopoietic stem cells (LT-HSC/ST-HSC) in the G0 phase of the cell cycle in Lama4-/- bone marrow and hence a more quiescent phenotype. In addition, the extravasation of WT BM cells into Lama4-/- bone marrow is impaired, influencing the recirculation of HSPC. Our data suggest that these effects are mediated by a compensatory expression of laminin α5 containing isoforms (laminin 521/522) in Lama4-/- bone marrow. Collectively, these intrinsic and extrinsic effects lead to reduced HSPC numbers in Lama4-/- bone marrow and reduced hematopoietic potential.
Collapse
Affiliation(s)
- Katharina Helene Susek
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Eva Korpos
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Jula Huppert
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Chuan Wu
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Irina Savelyeva
- Institute of Molecular Tumor Biology, University of Muenster, Germany
| | - Frank Rosenbauer
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Institute of Molecular Tumor Biology, University of Muenster, Germany
| | - Carsten Müller-Tidow
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Department of Medicine A-Hematology, Oncology and Pneumology, University Hospital Muenster, Germany; Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg Germany
| | - Steffen Koschmieder
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Department of Medicine A-Hematology, Oncology and Pneumology, University Hospital Muenster, Germany; Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany.
| |
Collapse
|
18
|
Song J, Zhang X, Buscher K, Wang Y, Wang H, Di Russo J, Li L, Lütke-Enking S, Zarbock A, Stadtmann A, Striewski P, Wirth B, Kuzmanov I, Wiendl H, Schulte D, Vestweber D, Sorokin L. Endothelial Basement Membrane Laminin 511 Contributes to Endothelial Junctional Tightness and Thereby Inhibits Leukocyte Transmigration. Cell Rep 2017; 18:1256-1269. [PMID: 28147279 DOI: 10.1016/j.celrep.2016.12.092] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 12/02/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022] Open
Abstract
Endothelial basement membranes constitute barriers to extravasating leukocytes during inflammation, a process where laminin isoforms define sites of leukocyte exit; however, how this occurs is poorly understood. In addition to a direct effect on leukocyte transmigration, we show that laminin 511 affects endothelial barrier function by stabilizing VE-cadherin at junctions and downregulating expression of CD99L2, correlating with reduced neutrophil extravasation. Binding of endothelial cells to laminin 511, but not laminin 411 or non-endothelial laminin 111, enhanced transendothelial cell electrical resistance (TEER) and inhibited neutrophil transmigration. Data suggest that endothelial adhesion to laminin 511 via β1 and β3 integrins mediates RhoA-induced VE-cadherin localization to cell-cell borders, and while CD99L2 downregulation requires integrin β1, it is RhoA-independent. Our data demonstrate that molecular information provided by basement membrane laminin 511 affects leukocyte extravasation both directly and indirectly by modulating endothelial barrier properties.
Collapse
Affiliation(s)
- Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Xueli Zhang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Konrad Buscher
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Ying Wang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Huiyu Wang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Stefan Lütke-Enking
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Alexander Zarbock
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Anesthesiology and Intensive Care Medicine, University of Muenster, 48149 Muenster, Germany
| | - Anika Stadtmann
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Anesthesiology and Intensive Care Medicine, University of Muenster, 48149 Muenster, Germany
| | - Paul Striewski
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Institute for Computational and Applied Mathematics, University of Muenster, 48149 Muenster, Germany
| | - Benedikt Wirth
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Institute for Computational and Applied Mathematics, University of Muenster, 48149 Muenster, Germany
| | - Ivan Kuzmanov
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Neurology, University Hospital of Muenster, University of Muenster, 48149 Muenster, Germany
| | - Heinz Wiendl
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Neurology, University Hospital of Muenster, University of Muenster, 48149 Muenster, Germany
| | - Dörte Schulte
- Max-Planck Institute of Molecular Biomedicine, 48149 Muenster, Germany
| | - Dietmar Vestweber
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Max-Planck Institute of Molecular Biomedicine, 48149 Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany.
| |
Collapse
|
19
|
Laminin-511 and -521-based matrices for efficient ex vivo-expansion of human limbal epithelial progenitor cells. Sci Rep 2017; 7:5152. [PMID: 28698551 PMCID: PMC5506065 DOI: 10.1038/s41598-017-04916-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
Optimization of culture conditions for human limbal epithelial stem/progenitor cells (LEPC) that incorporate the in vivo cell-matrix interactions are essential to enhance LEPC ex vivo-expansion and transplantation efficiency. Here, we investigate the efficacy of laminin (LN) isoforms preferentially expressed in the limbal niche as culture matrices for epithelial tissue engineering. Analyses of expression patterns of LN chains in the human limbal niche provided evidence for enrichment of LN-α2, -α3, -α5, -β1, -β2, -β3, -γ1, -γ2 and -γ3 chains in the limbal basement membrane, with LN-α5 representing a signature component specifically produced by epithelial progenitor cells. Recombinant human LN-521 and LN-511 significantly enhanced in vitro LEPC adhesion, migration and proliferation compared to other isoforms, and maintained phenotype stability. The bioactive LN-511-E8 fragment carrying only C-terminal domains showed similar efficacy as full-length LN-511. Functional blocking of α3β1 and α6β1 integrins suppressed adhesion of LEPC to LN-511/521-coated surfaces. Cultivation of LEPC on fibrin-based hydrogels incorporating LN-511-E8 resulted in firm integrin-mediated adhesion to the scaffold and well-stratified epithelial constructs, with maintenance of a progenitor cell phenotype in their (supra)basal layers. Thus, the incorporation of chemically defined LN-511-E8 into biosynthetic scaffolds represents a promising approach for xeno-free corneal epithelial tissue engineering for ocular surface reconstruction.
Collapse
|
20
|
Nakatsuji Y. What is the difference between the blood-nerve barrier and blood-brain barrier? ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuji Nakatsuji
- Department of Neurology; Toyama University Hospital; Toyama Japan
| |
Collapse
|
21
|
Di Russo J, Hannocks MJ, Luik AL, Song J, Zhang X, Yousif L, Aspite G, Hallmann R, Sorokin L. Vascular laminins in physiology and pathology. Matrix Biol 2017; 57-58:140-148. [DOI: 10.1016/j.matbio.2016.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
|
22
|
Di Russo J, Luik AL, Yousif L, Budny S, Oberleithner H, Hofschröer V, Klingauf J, van Bavel E, Bakker EN, Hellstrand P, Bhattachariya A, Albinsson S, Pincet F, Hallmann R, Sorokin LM. Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO J 2016; 36:183-201. [PMID: 27940654 PMCID: PMC5239996 DOI: 10.15252/embj.201694756] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/09/2022] Open
Abstract
Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin β1-positive/vinculin-positive focal adhesions, and reduced junctional association of actin-myosin II In vitro assays reveal that β1 integrin-mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE-cadherin, stabilizing it at cell junctions and increasing cell-cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Anna-Liisa Luik
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lema Yousif
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Sigmund Budny
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hans Oberleithner
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Verena Hofschröer
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Juergen Klingauf
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Medical Physics, University of Muenster, Muenster, Germany
| | - Ed van Bavel
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Ntp Bakker
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Frederic Pincet
- Laboratoire de Physique Statistique, École Normale Superieure - PSL Research University, Paris, France.,CNRS UMR8550, Sorbonne Universités - UPMC Univ Paris 06, Université Paris, Paris, France
| | - Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia M Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany .,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| |
Collapse
|
23
|
Munger SJ, Davis MJ, Simon AM. Defective lymphatic valve development and chylothorax in mice with a lymphatic-specific deletion of Connexin43. Dev Biol 2016; 421:204-218. [PMID: 27899284 DOI: 10.1016/j.ydbio.2016.11.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Abstract
Lymphatic valves (LVs) are cusped luminal structures that permit the movement of lymph in only one direction and are therefore critical for proper lymphatic vessel function. Congenital valve aplasia or agenesis can, in some cases, be a direct cause of lymphatic disease. Knowledge about the molecular mechanisms operating during the development and maintenance of LVs may thus aid in the establishment of novel therapeutic approaches to treat lymphatic disorders. In this study, we examined the role of Connexin43 (Cx43), a gap junction protein expressed in lymphatic endothelial cells (LECs), during valve development. Mouse embryos with a null mutation in Cx43 (Gja1) were previously shown to completely lack mesenteric LVs at embryonic day 18. However, interpreting the phenotype of Cx43-/- mice was complicated by the fact that global deletion of Cx43 causes perinatal death due to heart defects during embryogenesis. We have now generated a mouse model (Cx43∆LEC) with a lymphatic-specific ablation of Cx43 and show that the absence of Cx43 in LECs causes a delay (rather than a complete block) in LV initiation, an increase in immature valves with incomplete leaflet elongation, a reduction in the total number of valves, and altered lymphatic capillary patterning. The physiological consequences of these lymphatic changes were leaky valves, insufficient lymph transport and reflux, and a high incidence of lethal chylothorax. These results demonstrate that the expression of Cx43 is specifically required in LECs for normal development of LVs.
Collapse
Affiliation(s)
| | - Michael J Davis
- Dept. of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO, USA.
| | - Alexander M Simon
- Department of Physiology, University of Arizona, Tucson AZ 85724, USA.
| |
Collapse
|
24
|
Wegner J, Loser K, Apsite G, Nischt R, Eckes B, Krieg T, Werner S, Sorokin L. Laminin α5 in the keratinocyte basement membrane is required for epidermal-dermal intercommunication. Matrix Biol 2016; 56:24-41. [PMID: 27234307 DOI: 10.1016/j.matbio.2016.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 12/22/2022]
Abstract
Laminin α5 is broadly expressed in the epidermal basement membrane (BM) of mature mice and its elimination at this site (Lama5Ker5 mouse) results in hyperproliferation of basal keratinocytes and a delay in hair follicle development, which correlated with upregulation of the dermally-derived laminin α2 and laminin α4 chains in the epidermal BM and of tenascin-C subjacent to the BM. In vitro studies revealed laminin 511 to be strongly adhesive for primary keratinocytes and that loss of laminin α5 does not result in cell autonomous defects in proliferation. Flow cytometry reveals that the loss of laminin α5 resulted in increased numbers of CD45+, CD4+ and CD11b+ immune cells in the skin, which temporo-spatial analyses revealed were detectable only subsequent to the loss of laminin α5 and the appearance of the hyperproliferative keratinocyte phenotype. These findings indicate that immune cell changes are the consequence and not the cause of keratinocyte hyperproliferation. Loss of laminin α5 in the epidermal BM was also associated with changes in the expression of several dermally-derived growth factors involved in keratinocyte proliferation and hair follicle development in adult but not new born Lama5Ker5 skin, including KGF, EGF and KGF-2. In situ binding of FGF-receptor-2α (IIIb)-Fc chimera (FGFR2IIIb) to mouse skin sections revealed decoration of several BMs, including the epidermal BM, which was absent in Lama5Ker5 skin. This indicates reduced levels of FGFR2IIIb ligands, which include KGF and KGF-2, in the epidermal BM of adult Lama5Ker5 skin. Our data suggest an initial inhibitory effect of laminin α5 on basal keratinocyte proliferation and migration, which is exacerbated by subsequent changes in growth factor expression by epidermal and dermal cells, implicating laminin α5 in epidermal-dermal intercommunication.
Collapse
Affiliation(s)
- Jeannine Wegner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | - Karin Loser
- Cells-in-Motion Cluster of Excellence, University of Muenster, Germany; Department of Dermatology, University of Muenster, Germany
| | - Gunita Apsite
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany
| | | | - Beate Eckes
- Department of Dermatology, University of Cologne, Germany
| | - Thomas Krieg
- Department of Dermatology, University of Cologne, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Switzerland
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, Germany.
| |
Collapse
|
25
|
Munger SJ, Geng X, Srinivasan RS, Witte MH, Paul DL, Simon AM. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Dev Biol 2016; 412:173-90. [PMID: 26953188 PMCID: PMC4826804 DOI: 10.1016/j.ydbio.2016.02.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 01/25/2023]
Abstract
Venous valves (VVs) are critical for unidirectional blood flow from superficial and deep veins towards the heart. Congenital valve aplasia or agenesis may, in some cases, be a direct cause of vascular disease, motivating an understanding of the molecular mechanisms underlying the development and maintenance of VVs. Three gap junction proteins (Connexins), Cx37, Cx43, and Cx47, are specifically expressed at VVs in a highly polarized fashion. VVs are absent from adult mice lacking Cx37; however it is not known if Cx37 is required for the initial formation of valves. In addition, the requirement of Cx43 and Cx47 for VV development has not been studied. Here, we provide a detailed description of Cx37, Cx43, and Cx47 expression during mouse vein development and show by gene knockout that each Cx is necessary for normal valve development. The valve phenotypes in the knockout lines exhibit Cx-specific differences, however, including whether peripheral or central VVs are affected by gene inactivation. In addition, we show that a Cx47 null mutation impairs peripheral VV development but does not affect lymphatic valve formation, a finding of significance for understanding how some CX47 mutations cause inherited lymphedema in humans. Finally, we demonstrate a striking segregation of Foxc2 and NFATc1 transcription factor expression between the downstream and upstream faces, respectively, of developing VV leaflets and show that this segregation is closely associated with the highly polarized expression of Cx37, Cx43, and Cx47. The partition of Foxc2 and NFATc1 expression at VV leaflets makes it unlikely that these factors directly cooperate during the leaflet elongation stage of VV development.
Collapse
Affiliation(s)
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Marlys H Witte
- Department of Surgery, University of Arizona, Tucson, AZ 85724, USA.
| | - David L Paul
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Alexander M Simon
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
26
|
Kangwantas K, Pinteaux E, Penny J. The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation 2016; 13:25. [PMID: 26832174 PMCID: PMC4736307 DOI: 10.1186/s12974-016-0495-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Background The blood–brain barrier (BBB) of the central nervous system (CNS) is essential for normal brain function. However, the loss of BBB integrity that occurs after ischaemic injury is associated with extracellular matrix (ECM) remodelling and inflammation, and contributes to poor outcome. ECM remodelling also contributes to BBB repair after injury, but the precise mechanisms and contribution of specific ECM molecules involved are unknown. Here, we investigated the mechanisms by which hypoxia and inflammation trigger loss of BBB integrity and tested the hypothesis ECM changes could contribute to BBB repair in vitro. Methods We used an in vitro model of the BBB, composed of primary rat brain endothelial cells grown on collagen (Col) I-, Col IV-, fibronectin (FN)-, laminin (LM) 8-, or LM10-coated tissue culture plates, either as a single monolayer culture or on Transwell® inserts above mixed glial cell cultures. Cultures were exposed to oxygen-glucose deprivation (OGD) and/or reoxygenation, in the absence or the presence of recombinant interleukin-1β (IL-1β). Cell adhesion to ECM molecules was assessed by cell attachment and cell spreading assays. BBB dysfunction was assessed by immunocytochemistry for tight junction proteins occludin and zona occludens-1 (ZO-1) and measurement of trans-endothelial electrical resistance (TEER). Change in endothelial expression of ECM molecules was assessed by semi-quantitative RT-PCR. Results OGD and/or IL-1 induce dramatic changes associated with loss of BBB integrity, including cytoplasmic relocalisation of membrane-associated tight junction proteins occludin and ZO-1, cell swelling, and decreased TEER. OGD and IL-1 also induced gene expression of key ECM molecules associated with the BBB, including FN, Col IV, LM 8, and LM10. Importantly, we found that LM10, but not FN, Col IV, nor LM8, plays a key role in maintenance of BBB integrity and reversed most of the key hallmarks of BBB dysfunction induced by IL-1. Conclusions Our data unravel new mechanisms of BBB dysfunction induced by hypoxia and inflammation and identify LM10 as a key ECM molecule involved in BBB repair after hypoxic injury and inflammation.
Collapse
Affiliation(s)
- Korakoch Kangwantas
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK.
| | - Emmanuel Pinteaux
- Faculty of Life Sciences, University of Manchester, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Jeffrey Penny
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
27
|
Ojo OO, Ryu MH, Jha A, Unruh H, Halayko AJ. High-mobility group box 1 promotes extracellular matrix synthesis and wound repair in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1354-66. [PMID: 26432865 DOI: 10.1152/ajplung.00054.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) protein that binds Toll-like receptors (e.g., TLR4) and the receptor for advanced glycated end products (RAGE). The direct effects of HMGB1 on airway structural cells are not fully known. As epithelial cell responses are fundamental drivers of asthma, including abnormal repair-restitution linked to changes in extracellular matrix (ECM) synthesis, we tested the hypothesis that HMGB1 promotes bronchial epithelial cell wound repair via TLR4 and/or RAGE signaling that regulates ECM (fibronectin and the γ2-chain of laminin-5) and integrin protein abundance. To assess impact of HMGB1 we used molecular and pharmacological inhibitors of RAGE or TLR4 signaling in scratch wound, immunofluorescence, and immunoblotting assays to assess wound repair, ECM synthesis, and phosphorylation of intracellular signaling. HMGB1 increased wound closure, and this effect was attenuated by blocking RAGE and TLR4 signaling. HMGB1-induced fibronectin and laminin-5 (γ2 chain) was diminished by blocking RAGE and/or blunting TLR4 signaling. Similarly, induction of α3-integrin receptor for fibronectin and laminin-5 was also diminished by blocking TLR4 signaling and RAGE. Lastly, rapid and/or sustained phosphorylation of SMAD2, ERK1/2, and JNK signaling modulated HMGB1-induced wound closure. Our findings suggest a role for HMGB1 in human airway epithelial cell repair and restitution via multiple pathways mediated by TLR4 and RAGE that underpin increased ECM synthesis and modulation of cell-matrix adhesion.
Collapse
Affiliation(s)
- Oluwaseun O Ojo
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Min Hyung Ryu
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Helmut Unruh
- Department of Internal Medicine,University of Manitoba, Winnipeg, Manitoba, Canada; Section of Thoracic Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Internal Medicine,University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
28
|
Morgner J, Ghatak S, Jakobi T, Dieterich C, Aumailley M, Wickström SA. Integrin-linked kinase regulates the niche of quiescent epidermal stem cells. Nat Commun 2015; 6:8198. [PMID: 26349061 PMCID: PMC4569844 DOI: 10.1038/ncomms9198] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023] Open
Abstract
Stem cells reside in specialized niches that are critical for their function. Quiescent hair follicle stem cells (HFSCs) are confined within the bulge niche, but how the molecular composition of the niche regulates stem cell behaviour is poorly understood. Here we show that integrin-linked kinase (ILK) is a key regulator of the bulge extracellular matrix microenvironment, thereby governing the activation and maintenance of HFSCs. ILK mediates deposition of inverse laminin (LN)-332 and LN-511 gradients within the basement membrane (BM) wrapping the hair follicles. The precise BM composition tunes activities of Wnt and transforming growth factor-β pathways and subsequently regulates HFSC activation. Notably, reconstituting an optimal LN microenvironment restores the altered signalling in ILK-deficient cells. Aberrant stem cell activation in ILK-deficient epidermis leads to increased replicative stress, predisposing the tissue to carcinogenesis. Overall, our findings uncover a critical role for the BM niche in regulating stem cell activation and thereby skin homeostasis.
Collapse
Affiliation(s)
- Jessica Morgner
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Sushmita Ghatak
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Tobias Jakobi
- Computational RNA Biology and Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Christoph Dieterich
- Computational RNA Biology and Ageing, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Monique Aumailley
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne 50931, Germany
| | - Sara A. Wickström
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing', Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
29
|
Abstract
Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests that while stem cells represent an important determinant for tissue regeneration, a “qualified” environment is necessary to guarantee and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling, and maturation/functional repair.
Collapse
|
30
|
Olin AI, Mörgelin M, Truedsson L, Sturfelt G, Bengtsson AA. Pathogenic mechanisms in lupus nephritis: Nucleosomes bind aberrant laminin β1 with high affinity and colocalize in the electron-dense deposits. Arthritis Rheumatol 2014; 66:397-406. [PMID: 24504812 DOI: 10.1002/art.38250] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 10/22/2013] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Apoptotic nucleosomes are structurally and immunologically involved in lupus nephritis. The purpose of this study was to examine the expression and function of laminins and their interactions with nucleosomes in the kidneys of patients with lupus nephritis, using surface plasmon resonance (SPR) analysis. METHODS SPR interaction analysis was used to quantify the strength of laminin-nucleosome interactions. Electron microscopy techniques were used to determine in vivo colocalization of IgG, chromatin, and laminin β1, as well as to characterize nucleosome-laminin interactions in vitro. RESULTS Nucleosomes were found to possess high affinity for laminin β1-containing laminins and to have the potential to form stable molecular complexes with these structures. In vivo, laminin β1 was aberrantly expressed in the glomerular basement membrane (GMB) of lupus nephritis patients, and in situ, it acted as a nucleosome ligand, selectively colocalizing with nucleosomes within electron-dense deposits (EDDs). Normal adult laminin 11, which contains laminin β2, did not bind nucleosomes, and it did not colocalize in vivo with the nucleosomes in the nephritic GBM. In addition, TGFβ1 was expressed by the glomerular mesangium, glomerular endothelial cells, and by podocytes in patients with lupus nephritis. It was trapped in situ within EDDs by an as-yet-unknown ligand. As was recently described in a transgenic mouse model, paracrine kidney glomerular TGFβ1 may thereby contribute to the development of glomerulopathy via the induction of laminin β1 incorporation in the GBM, whereas systemic blood vessel-derived TGFβ1 could be trapped during filtration. CONCLUSION Our findings of the specific high-affinity binding of nucleosomes to aberrantly expressed laminin β1 in the GBM and their colocalization in the GBM may explain important features of the initial steps in the pathogenesis of lupus nephritis, the planted antigen hypothesis.
Collapse
Affiliation(s)
- Anders I Olin
- Lund University and Lund University Hospital, Lund, Sweden
| | | | | | | | | |
Collapse
|
31
|
Leukocytes require ADAM10 but not ADAM17 for their migration and inflammatory recruitment into the alveolar space. Blood 2014; 123:4077-88. [PMID: 24833351 DOI: 10.1182/blood-2013-09-511543] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Inflammation is a key process in various diseases, characterized by leukocyte recruitment to the inflammatory site. This study investigates the role of a disintegrin and a metalloproteinase (ADAM) 10 and ADAM17 for leukocyte migration in vitro and in a murine model of acute pulmonary inflammation. Inhibition experiments or RNA knockdown indicated that monocytic THP-1 cells and primary human neutrophils require ADAM10 but not ADAM17 for efficient chemokine-induced cell migration. Signaling and adhesion events that are linked to cell migration such as p38 and ρ GTPase-family activation, F-actin polymerization, adhesion to fibronectin, and up-regulation of α5 integrin were also dependent on ADAM10 but not ADAM17. This was confirmed with leukocytes isolated from mice lacking either ADAM10 or ADAM17 in all hematopoietic cells (vav 1 guanine nucleotide exchange factor [Vav]-Adam10(-/-) or Vav-Adam17(-/-) mice). In lipopolysaccharide-induced acute pulmonary inflammation, alveolar recruitment of neutrophils and monocytes was transiently increased in Vav-Adam17(-/-) but steadily reduced in Vav-Adam10(-/-) mice. This deficit in alveolar leukocyte recruitment was also observed in LysM-Adam10(-/-) mice lacking ADAM10 in myeloid cells and correlated with protection against edema formation. Thus, with regard to leukocyte migration, leukocyte-expressed ADAM10 but not ADAM17 displays proinflammatory activities and may therefore serve as a target to limit inflammatory cell recruitment.
Collapse
|
32
|
Summers L, Kangwantas K, Rodriguez-Grande B, Denes A, Penny J, Kielty C, Pinteaux E. Activation of brain endothelial cells by interleukin-1 is regulated by the extracellular matrix after acute brain injury. Mol Cell Neurosci 2013; 57:93-103. [DOI: 10.1016/j.mcn.2013.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/04/2013] [Accepted: 10/15/2013] [Indexed: 11/15/2022] Open
|
33
|
Zhang X, Wu C, Song J, Götte M, Sorokin L. Syndecan-1, a cell surface proteoglycan, negatively regulates initial leukocyte recruitment to the brain across the choroid plexus in murine experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:4551-61. [PMID: 24078687 DOI: 10.4049/jimmunol.1300931] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cell surface heparan sulfate proteoglycan, syndecan-1, has been reported to be a negative regulator of various inflammatory processes, but its precise mode of action is poorly defined. In this study, we use the murine model of the 35-55 peptide of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE), a T lymphocyte-mediated inflammation where the steps in disease development and recovery are well characterized, to decipher how syndecan-1 impacts on the inflammatory reaction. Syndecan-1 knockout (Sdc-1(-/-)) mice show enhanced disease severity and impaired recovery. The use of bone marrow chimeric mice reveals that both an immune cell and a CNS-resident source of syndecan-1 contribute to this phenotype. Epithelial cells of the choroid plexus, where initial CCL20-induced leukocyte recruitment to the brain occurs, are identified as the predominant site of syndecan-1 expression. Syndecan-1 is lost from this site during the course of EAE by shedding into the cerebrospinal fluid, which correlates with loss of epithelial cell surface-bound CCL20 and is associated with the upregulation of IL-6 expression. In Sdc-1(-/-) mice, early leukocyte recruitment via the choroid plexus is enhanced, and IL-6 is elevated, which collectively results in higher numbers of the disease inducing Th17 cells in the CNS, thereby contributing to enhanced disease severity. Furthermore, Sdc-1(-/-) mice have intrinsically elevated plasma cell numbers and higher myelin oligodendrocyte glycoprotein-specific Ab levels during EAE, which we propose contributes to impaired recovery. Our data identify the choroid plexus epithelium as a novel source of IL-6 in EAE and demonstrate that its expression negatively correlates with syndecan-1 expression at this site.
Collapse
Affiliation(s)
- Xueli Zhang
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany
| | | | | | | | | |
Collapse
|
34
|
Oehmcke S, Westman J, Malmström J, Mörgelin M, Olin AI, Kreikemeyer B, Herwald H. A novel role for pro-coagulant microvesicles in the early host defense against streptococcus pyogenes. PLoS Pathog 2013; 9:e1003529. [PMID: 23935504 PMCID: PMC3731245 DOI: 10.1371/journal.ppat.1003529] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/15/2013] [Indexed: 01/30/2023] Open
Abstract
Previous studies have shown that stimulation of whole blood or peripheral blood mononuclear cells with bacterial virulence factors results in the sequestration of pro-coagulant microvesicles (MVs). These particles explore their clotting activity via the extrinsic and intrinsic pathway of coagulation; however, their pathophysiological role in infectious diseases remains enigmatic. Here we describe that the interaction of pro-coagulant MVs with bacteria of the species Streptococcus pyogenes is part of the early immune response to the invading pathogen. As shown by negative staining electron microscopy and clotting assays, pro-coagulant MVs bind in the presence of plasma to the bacterial surface. Fibrinogen was identified as a linker that, through binding to the M1 protein of S. pyogenes, allows the opsonization of the bacteria by MVs. Surface plasmon resonance analysis revealed a strong interaction between pro-coagulant MVs and fibrinogen with a KD value in the nanomolar range. When performing a mass-spectrometry-based strategy to determine the protein quantity, a significant up-regulation of the fibrinogen-binding integrins CD18 and CD11b on pro-coagulant MVs was recorded. Finally we show that plasma clots induced by pro-coagulant MVs are able to prevent bacterial dissemination and possess antimicrobial activity. These findings were confirmed by in vivo experiments, as local treatment with pro-coagulant MVs dampens bacterial spreading to other organs and improved survival in an invasive streptococcal mouse model of infection. Taken together, our data implicate that pro-coagulant MVs play an important role in the early response of the innate immune system in infectious diseases. The coagulation system is much more than a passive bystander in our defense against exogenous microorganisms. Over the last years there has been a growing body of evidence pointing to an integral part of coagulation in innate immunity and a special focus has been on bacterial entrapment in a fibrin network. However, thus far, pro-coagulant MVs have not been discussed in this context, though it is known that their numbers can dramatically increase in many pathological conditions, including severe infectious diseases. In the present study we see a significant increase of pro-coagulant MVs in an invasive streptococcal mouse model, suggesting that their release is an immune response to the infection. We find that pro-coagulant MVs bind to Streptococcus pyogenes and promote clotting, entrapment, and killing of the bacteria in a fibrin network. As a proof of concept pro-coagulant MVs were applied as local treatment in the streptococcal infection model, and it was demonstrated that this led to a significantly improved survival in mice.
Collapse
Affiliation(s)
- Sonja Oehmcke
- University Medicine, Institute of Medical Microbiology, Virology and Hygiene, Rostock University, Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival. Proc Natl Acad Sci U S A 2013; 110:E2915-24. [PMID: 23847204 DOI: 10.1073/pnas.1218131110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We describe a unique extracellular matrix (ECM) niche in the spleen, the marginal zone (MZ), characterized by the basement membrane glycoproteins, laminin α5 and agrin, that promotes formation of a specialized population of MZ B lymphocytes that respond rapidly to blood-borne antigens. Mice with reduced laminin α5 expression show reduced MZ B cells and increased numbers of newly formed (NF) transitional B cells that migrate from the bone marrow, without changes in other immune or stromal cell compartments. Transient integrin α6β1-mediated interaction of NF B cells with laminin α5 in the MZ supports the MZ B-cell population, their long-term survival, and antibody response. Data suggest that the unique 3D structure and biochemical composition of the ECM of lymphoid organs impacts on immune cell fate.
Collapse
|
36
|
Lopez-Escobar B, De Felipe B, Sanchez-Alcazar JA, Sasaki T, Copp AJ, Ybot-Gonzalez P. Laminin and integrin expression in the ventral ectodermal ridge of the mouse embryo: implications for regulation of BMP signalling. Dev Dyn 2012; 241:1808-15. [PMID: 22911573 PMCID: PMC3629792 DOI: 10.1002/dvdy.23846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2012] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. RESULTS We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β, and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, β3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. CONCLUSIONS Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm.
Collapse
Affiliation(s)
- Beatriz Lopez-Escobar
- Grupo de Neurodesarrollo, Unidad de Gestión de Pediatría, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Teles LMB, Aquino EN, Neves ACD, Garcia CHS, Roepstorff P, Fontes B, Castro MS, Fontes W. Comparison of the neutrophil proteome in trauma patients and normal controls. Protein Pept Lett 2012; 19:663-72. [PMID: 22519539 PMCID: PMC3382372 DOI: 10.2174/092986612800493977] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 01/11/2023]
Abstract
Background: Neutrophils have an impressive array of microbicidal weapons, and in the presence of a pathogen, progress from a quiescent state in the bloodstream to a completely activated state. Failure to regulate this activation, for example, when the blood is flooded with cytokines after severe trauma, causes inappropriate neutrophil activation that paradoxically, is associated with tissue and organ damage. Acidic proteomic maps of quiescent human neutrophils were analyzed and compared to those of activated neutrophils from severe trauma patients. The analysis revealed 114 spots whose measured volumes differed between activated and quiescent neutrophils, with 27 upregulated and 87 downregulated in trauma conditions. Among the identified proteins, grancalcin, S100-A9 and CACNB2 reinforce observed correlations between motility and ion flux, ANXA3, SNAP, FGD1 and Zfyve19 are involved in vesicular transport and exocytosis, and GSTP1, HSPA1 HSPA1L, MAOB, UCH-L5, and PPA1 presented evidence that activated neutrophils may have diminished protection against oxidative damage and are prone to apoptosis. These are discussed, along with proteins involved in cytoskeleton reorganization, reactive oxygen species production, and ion flux. Proteins such as Zfyve19, MAOB and albumin- like protein were described for the first time in the neutrophil. In this work we achieved the identification of several proteins potentially involved in inflammatory signaling after trauma, as well as proteins described for the first time in neutrophils. | ![]() |
Collapse
Affiliation(s)
- Liz M B Teles
- Laboratory of Biochemistry and Protein Chemistry, Cell Biology Department, University of Brasília, Brasilia, DF, Brazil. CEP 70910-900
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Fock RA, Vinolo MAR, Blatt SL, Borelli P. Impairment of the hematological response and interleukin-1β production in protein-energy malnourished mice after endotoxemia with lipopolysaccharide. Braz J Med Biol Res 2012; 45:1163-71. [PMID: 22983177 PMCID: PMC3854220 DOI: 10.1590/s0100-879x2012007500151] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/04/2012] [Indexed: 12/03/2022] Open
Abstract
The objectives of this study were to determine if protein-energy malnutrition (PEM) could affect the hematologic response to lipopolysaccharide (LPS), the interleukin-1β (IL-1β) production, leukocyte migration, and blood leukocyte expression of CD11a/CD18. Two-month-old male Swiss mice were submitted to PEM (N = 30) with a low-protein diet (14 days) containing 4% protein, compared to 20% protein in the control group (N = 30). The total cellularity of blood, bone marrow, spleen, and bronchoalveolar lavage evaluated after the LPS stimulus indicated reduced number of total cells in all compartments studied and different kinetics of migration in malnourished animals. The in vitro migration assay showed reduced capacity of migration after the LPS stimulus in malnourished animals (45.7 ± 17.2 × 104 cells/mL) compared to control (69.6 ± 7.1 × 104 cells/mL, P ≤ 0.05), but there was no difference in CD11a/CD18 expression on the surface of blood leukocytes. In addition, the production of IL-1β in vivo after the LPS stimulus (180.7 pg·h−1·mL−1), and in vitro by bone marrow and spleen cells (41.6 ± 15.0 and 8.3 ± 4.0 pg/mL) was significantly lower in malnourished animals compared to control (591.1 pg·h−1·mL−1, 67.0 ± 23.0 and 17.5 ± 8.0 pg/mL, respectively, P ≤ 0.05). The reduced expression of IL-1β, together with the lower number of leukocytes in the central and peripheral compartments, different leukocyte kinetics, and reduced leukocyte migration capacity are factors that interfere with the capacity to mount an adequate immune response, being partly responsible for the immunodeficiency observed in PEM.
Collapse
Affiliation(s)
- R A Fock
- Laboratório de Hematologia Experimental, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil.
| | | | | | | |
Collapse
|
39
|
Proebstl D, Voisin MB, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, Rowe D, Nourshargh S. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med 2012; 209:1219-34. [PMID: 22615129 PMCID: PMC3371725 DOI: 10.1084/jem.20111622] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 04/25/2012] [Indexed: 12/21/2022] Open
Abstract
Neutrophil transmigration through venular walls that are composed of endothelial cells (ECs), pericytes, and the venular basement membrane is a key component of innate immunity. Through direct analysis of leukocyte-pericyte interactions in inflamed tissues using confocal intravital microscopy, we show how pericytes facilitate transmigration in vivo. After EC migration, neutrophils crawl along pericyte processes to gaps between adjacent pericytes in an ICAM-1-, Mac-1-, and LFA-1-dependent manner. These gaps were enlarged in inflamed tissues through pericyte shape change and were used as exit points by neutrophils in breaching the venular wall. The findings identify previously unknown roles for pericytes in neutrophil transmigration in vivo and add additional steps to the leukocyte adhesion cascade that supports leukocyte trafficking into sites of inflammation.
Collapse
Affiliation(s)
- Doris Proebstl
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Mathieu-Benoît Voisin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Abigail Woodfin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - James Whiteford
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Fulvio D’Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Gareth E. Jones
- Randall Division, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - David Rowe
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Sussan Nourshargh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
40
|
Janardhan KS, Charavaryamath C, Aulakh GK, Singh B. Integrin β3 is not critical for neutrophil recruitment in a mouse model of pneumococcal pneumonia. Cell Tissue Res 2012; 348:177-87. [DOI: 10.1007/s00441-011-1300-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 12/08/2011] [Indexed: 02/06/2023]
|
41
|
Stenzel D, Franco CA, Estrach S, Mettouchi A, Sauvaget D, Rosewell I, Schertel A, Armer H, Domogatskaya A, Rodin S, Tryggvason K, Collinson L, Sorokin L, Gerhardt H. Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo. EMBO Rep 2011; 12:1135-43. [PMID: 21979816 DOI: 10.1038/embor.2011.194] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 01/12/2023] Open
Abstract
How individual components of the vascular basement membrane influence endothelial cell behaviour remains unclear. Here we show that laminin α4 (Lama4) regulates tip cell numbers and vascular density by inducing endothelial Dll4/Notch signalling in vivo. Lama4 deficiency leads to reduced Dll4 expression, excessive filopodia and tip cell formation in the mouse retina, phenocopying the effects of Dll4/Notch inhibition. Lama4-mediated Dll4 expression requires a combination of integrins in vitro and integrin β1 in vivo. We conclude that appropriate laminin/integrin-induced signalling is necessary to induce physiologically functional levels of Dll4 expression and regulate branching frequency during sprouting angiogenesis in vivo.
Collapse
Affiliation(s)
- Denise Stenzel
- Vascular Biology Laboratory, London Research Institute - Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Reyna E, Mejia J, Reyna N, Torres D, Santos J, Perozo J. Concentraciones de interleucina 1 beta en pacientes con preeclampsia y embarazadas normotensas sanas. CLINICA E INVESTIGACION EN GINECOLOGIA Y OBSTETRICIA 2011. [DOI: 10.1016/j.gine.2009.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Copp AJ, Carvalho R, Wallace A, Sorokin L, Sasaki T, Greene NDE, Ybot-Gonzalez P. Regional differences in the expression of laminin isoforms during mouse neural tube development. Matrix Biol 2011; 30:301-9. [PMID: 21524702 DOI: 10.1016/j.matbio.2011.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 01/13/2023]
Abstract
Many significant human birth defects originate around the time of neural tube closure or early during post-closure nervous system development. For example, failure of the neural tube to close generates anencephaly and spina bifida, faulty cell cycle progression is implicated in primary microcephaly, while defective migration of neuroblasts can lead to neuronal migration disorders such as lissencephaly. At the stage of neural tube closure, basement membranes are becoming organised around the neuroepithelium, and beneath the adjacent non-neural surface ectoderm. While there is circumstantial evidence to implicate basement membrane dynamics in neural tube and surface ectodermal development, we have an incomplete understanding of the molecular composition of basement membranes at this stage. In the present study, we examined the developing basement membranes of the mouse embryo at mid-gestation (embryonic day 9.5), with particular reference to laminin composition. We performed in situ hybridization to detect the mRNAs of all eleven individual laminin chains, and immunohistochemistry to identify which laminin chains are present in the basement membranes. From this information, we inferred the likely laminin variants and their tissues of origin: that is, whether a given basement membrane laminin is contributed by epithelium, mesenchyme, or both. Our findings reveal major differences in basement composition along the body axis, with the rostral neural tube (at mandibular arch and heart levels) exhibiting many distinct laminin variants, while the lumbar level where the neural tube is just closing shows a much simpler laminin profile. Moreover, there appears to be a marked difference in the extent to which the mesenchyme contributes laminin variants to the basement membrane, with potential contribution of several laminins rostrally, but no contribution caudally. This information paves the way towards a mechanistic analysis of basement membrane laminin function during early neural tube development in mammals.
Collapse
Affiliation(s)
- Andrew J Copp
- Neural Development Unit, Institute of Child Health, University College London, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
The GTPase-activating protein ARAP3 regulates chemotaxis and adhesion-dependent processes in neutrophils. Blood 2011; 118:1087-98. [PMID: 21490342 DOI: 10.1182/blood-2010-10-312959] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophils form a vital part of the innate immune response, but at the same time their inappropriate activation contributes to autoimmune diseases. Many molecular components are involved in fine-tuning neutrophil function. We report here the first characterization of the role of ARAP3, a PI3K and Rap-regulated GTPase-activating protein for RhoA and Arf6 in murine neutrophils. We show that neutrophils lacking ARAP3 are preactivated in vitro and in vivo, exhibiting increased β2 integrin affinity and avidity. ARAP3-deficient neutrophils are hyperresponsive in several adhesion-dependent situations in vitro, including the formation of reactive oxygen species, adhesion, spreading, and granule release. ARAP3-deficient cells adhere more firmly under flow conditions in vitro and to the vessel wall in vivo. Finally, loss of ARAP3 interferes with integrin-dependent neutrophil chemotaxis. The results of the present study suggest an important function of ARAP3 downstream of Rap. By modulating β2 integrin activity, ARAP3 guards neutrophils in their quiescent state unless activated.
Collapse
|
45
|
Burton VJ, Butler LM, McGettrick HM, Stone PC, Jeffery HC, Savage CO, Rainger GE, Nash GB. Delay of migrating leukocytes by the basement membrane deposited by endothelial cells in long-term culture. Exp Cell Res 2010; 317:276-92. [PMID: 21056557 PMCID: PMC3025349 DOI: 10.1016/j.yexcr.2010.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 12/25/2022]
Abstract
We investigated the migration of human leukocytes through endothelial cells (EC), and particularly their underlying basement membrane (BM). EC were cultured for 20 days on 3 μm-pore filters or collagen gels to form a distinct BM, and then treated with tumour necrosis factor-α, interleukin-1β or interferon-γ. Neutrophil migration through the cytokine-treated EC and BM was delayed for 20-day compared to 4-day cultures. The BM alone obstructed chemotaxis of neutrophils, and if fresh EC were briefly cultured on stripped BM, there was again a hold-up in migration. In studies with lymphocytes and monocytes, we could detect little hold-up of migration for 20-day versus 4-day cultures, in either the filter- or gel-based models. Direct microscopic observations showed that BM also held-up neutrophil migration under conditions of flow. Treatment of upper and/or lower compartments of filters with antibodies against integrins, showed that neutrophil migration through the endothelial monolayer was dependent on β2-integrins, but not β1- or β3-integrins. Migration from the subendothelial compartment was supported by β1- and β2-integrins for all cultures, but blockade of β3-integrin only inhibited migration effectively for 20-day cultures. Flow cytometry indicated that there was no net increase in expression of β1- or β3-integrins during neutrophil migration, and that their specific subendothelial function was likely dependent on turnover of integrins during migration. These studies show that BM is a distinct barrier to migration of human neutrophils, and that β3-integrins are particularly important in crossing this barrier. The lesser effect of BM on lymphocytes and monocytes supports the concept that crossing the BM is a separate, leukocyte-specific, regulated step in migration.
Collapse
Affiliation(s)
- Victoria J Burton
- Centre for Cardiovascular Sciences and MRC Centre for Immune Regulation, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee S, Bowrin K, Hamad AR, Chakravarti S. Extracellular matrix lumican deposited on the surface of neutrophils promotes migration by binding to beta2 integrin. J Biol Chem 2009; 284:23662-9. [PMID: 19531489 PMCID: PMC2749141 DOI: 10.1074/jbc.m109.026229] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 05/27/2009] [Indexed: 01/09/2023] Open
Abstract
During inflammation, circulating polymorphonuclear neutrophils (PMNs) receive signals to cross the endothelial barrier and migrate through the extracellular matrix (ECM) to reach the injured site. Migration requires complex and poorly understood interactions of chemokines, chemokine receptors, ECM molecules, integrins, and other receptors. Here we show that the ECM protein lumican regulates PMN migration through interactions with specific integrin receptors. Lumican-deficient (Lum(-/-)) mice manifest connective tissue defects, impaired innate immune response, and poor wound healing with reduced PMN infiltration. Lum(-/-) PMNs exhibit poor chemotactic migration that is restored with exogenous recombinant lumican and inhibited by anti-lumican antibody, confirming a role for lumican in PMN migration. Treatment of PMNs with antibodies that block beta(2), beta(1), and alpha(M) integrin subunits inhibits lumican-mediated migration. Furthermore, immunohistochemical and biochemical approaches indicate binding of lumican to beta(2), alpha(M), and alpha(L) integrin subunits. Thus, lumican may regulate PMN migration mediated by MAC-1 (alpha(M)/beta(2)) and LFA-1 (alpha(L)/beta(2)), the two major PMN surface integrins. We detected lumican on the surface of peritoneal PMNs and not bone marrow or peripheral blood PMNs. This suggests that PMNs must acquire lumican during or after crossing the endothelial barrier as they exit circulation. We also found that peritoneal PMNs do not express lumican, whereas endothelial cells do. Taken together these observations suggest a novel endothelial lumican-mediated paracrine regulation of neutrophils early on in their migration path.
Collapse
Affiliation(s)
| | | | - Abdel Rahim Hamad
- Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | |
Collapse
|
47
|
Endothelial basement membrane laminin α5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med 2009; 15:519-27. [DOI: 10.1038/nm.1957] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 04/01/2009] [Indexed: 11/08/2022]
|
48
|
Recombinant human activated protein C inhibits integrin-mediated neutrophil migration. Blood 2009; 113:4078-85. [PMID: 19244161 DOI: 10.1182/blood-2008-09-180968] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated cell migration is central to many biologic and pathologic processes. During inflammation, tissue injury results from excessive infiltration and sequestration of activated leukocytes. Recombinant human activated protein C (rhAPC) has been shown to protect patients with severe sepsis, although the mechanism underlying this protective effect remains unclear. Here, we show that rhAPC directly binds to beta(1) and beta(3) integrins and inhibits neutrophil migration, both in vitro and in vivo. We found that human APC possesses an Arg-Gly-Asp (RGD) sequence, which is critical for the inhibition. Mutation of this sequence abolished both integrin binding and inhibition of neutrophil migration. In addition, treatment of septic mice with a RGD peptide recapitulated the beneficial effects of rhAPC on survival. Thus, we conclude that leukocyte integrins are novel cellular receptors for rhAPC and the interaction decreases neutrophil recruitment into tissues, providing a potential mechanism by which rhAPC may protect against sepsis.
Collapse
|
49
|
Marino JS, Tausch BJ, Dearth CL, Manacci MV, McLoughlin TJ, Rakyta SJ, Linsenmayer MP, Pizza FX. Beta2-integrins contribute to skeletal muscle hypertrophy in mice. Am J Physiol Cell Physiol 2008; 295:C1026-36. [PMID: 18753316 DOI: 10.1152/ajpcell.212.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We tested the contribution of beta(2)-integrins, which are important for normal function of neutrophils and macrophages, to skeletal muscle hypertrophy after mechanical loading. Using the synergist ablation model of hypertrophy and mice deficient in the common beta-subunit of beta(2)-integrins (CD18(-/-)), we found that overloaded muscles of wild-type mice had greater myofiber size, dry muscle mass, and total protein content compared with CD18(-/-) mice. The hypertrophy in wild-type mice was preceded by elevations in neutrophils, macrophages, satellite cell/myoblast proliferation (5'-bromo-2'-deoxyuridine- and desmin-positive cells), markers of muscle differentiation (MyoD1 and myogenin gene expression and formation and size of regenerating myofibers), signaling for protein synthesis [phosphorylation of Akt and 70-kDa ribosomal protein S6 kinase (p70S6k)], and reduced signaling for protein degradation (decreased gene expression of muscle atrophy F box/atrogin-1). The deficiency in beta(2)-integrins, however, altered the accumulation profile of neutrophils and macrophages, disrupted the temporal profile of satellite cell/myoblast proliferation, reduced the markers of muscle differentiation, and impaired the p70S6k signaling, all of which could serve as mechanisms for the impaired hypertrophy in overloaded CD18(-/-) mice. In conclusion, our findings indicate that beta(2)-integrins contribute to the hypertrophic response to muscle overload by temporally regulating satellite cells/myoblast proliferation and by enhancing muscle differentiation and p70S6k signaling.
Collapse
Affiliation(s)
- Joseph S Marino
- Department of Kinesiology, The University of Toledo, Toledo, Ohio 43606, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Mathison RD, Christie E, Davison JS. The tripeptide feG inhibits leukocyte adhesion. JOURNAL OF INFLAMMATION-LONDON 2008; 5:6. [PMID: 18492254 PMCID: PMC2408570 DOI: 10.1186/1476-9255-5-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 05/20/2008] [Indexed: 12/30/2022]
Abstract
Background The tripeptide feG (D-Phe-D-Glu-Gly) is a potent anti-inflammatory peptide that reduces the severity of type I immediate hypersensitivity reactions, and inhibits neutrophil chemotaxis and adhesion to tissues. feG also reduces the expression of β1-integrin on circulating neutrophils, but the counter ligands involved in the anti-adhesive actions of the peptide are not known. In this study the effects of feG on the adhesion of rat peritoneal leukocytes and extravasated neutrophils to several different integrin selective substrates were evaluated. Results The adhesion of peritoneal leukocytes and extravasated neutrophils from rats to adhesive proteins coated to 96-well plates was dependent upon magnesium (Mg2+) ion, suggestive of integrin-mediated adhesion. feG inhibited leukocyte adhesion, but only if the cells were stimulated with PAF (10-9M), indicating that feG's actions in vitro require cell activation. In the dose range of 10-10M to 10-12M feG inhibited the adhesion of peritoneal leukocytes to fibrinogen and fibronectin, but not IgG, vitronectin or ICAM-1. feG inhibited the binding of extravasated neutrophils to heparin, IgG, fibronectin and CD16 antibody. Antigen-challenge of sensitized rats reduced the adhesion of peritoneal leukocytes to most substrates and abolished the inhibitory effects of feG. However, pretreating the animals with intraperitoneal feG (100 μg/kg) 18 h before collecting the cells from the antigen-challenged animal restored the inhibition of adhesion by in vitro feG of peritoneal leukocytes and extravasated neutrophils to fibronectin. Conclusion The modulation of leukocyte adhesion by feG appears to involve actions on αMβ2 integrin, with a possible interaction with the low affinity FcγRIII receptor (CD16). The modulation of cell adhesion by feG is dual in nature. When administered in vivo, feG prevents inflammation-induced reductions in cell adhesion, as well as restoring its inhibitory effect in vitro. The mechanism by which in vivo treatment with feG exerts these effects remains to be elucidated.
Collapse
Affiliation(s)
- Ronald D Mathison
- University of Calgary, Faculty of Medicine, Department of Physiology and Biophysics, 3330 Hospital Drive NW, Calgary Alberta T2N 4N1, Canada.
| | | | | |
Collapse
|