1
|
Sparić R, Andjić M, Rakić A, Bjekić-Macut J, Livadas S, Kontić-Vučinić O, Mastorakos G, Macut D. Insulin-sensitizing agents for infertility treatment in woman with polycystic ovary syndrome: a narrative review of current clinical practice. Hormones (Athens) 2024; 23:49-58. [PMID: 37792213 DOI: 10.1007/s42000-023-00494-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is an endocrine, metabolic, and reproductive disorder which, according to the Rotterdam criteria, affects up to 24% of women of childbearing age. Although the prevalence of infertility in this subpopulation of women is high, the optimal treatment has not been fully established yet. Insulin resistance is considered to be an important mechanism involved in the development of PCOS; hence, the aim of this narrative review is to present an overview of the current pharmacological insulin-sensitizing treatment modalities for infertile women with PCOS. METHODS A MEDLINE and PubMed search for the years 1990-2023 was performed using a combination of keywords. Clinical trials with insulin sensitizers used for infertility treatment as well as analyses of systematic reviews and meta-analyses were evaluated. When deemed necessary, additional articles referenced in the retrieved papers were included in this narrative review. RESULTS Several insulin-sensitizing compounds and various therapeutical protocols are available for infertility treatment of women with PCOS. Metformin is the most common adjuvant medication to induce ovulation in infertile women with PCOS and is more frequently administered in combination with clomiphene citrate than on its own. Recently, inositol and glucagon-like peptide-1 (GLP-1) receptor agonists have emerged as possible options for infertility treatment in PCOS. CONCLUSION The future of medical treatment of PCOS women with infertility lies in a personalized pharmacological approach, which involves various compounds with different mechanisms of action that could modify ovarian function and endometrial receptivity, ultimately leading to better overall reproductive outcomes in these women.
Collapse
Affiliation(s)
- Radmila Sparić
- University of Belgrade Faculty of Medicine, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, Belgrade, Serbia
| | - Mladen Andjić
- Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, Belgrade, Serbia
| | - Aleksandar Rakić
- Clinic for Gynecology and Obstetrics Narodni front, Belgrade, Serbia
| | - Jelica Bjekić-Macut
- Department of Endocrinology, UMC Bežanijska Kosa, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | | | - Olivera Kontić-Vučinić
- University of Belgrade Faculty of Medicine, Clinic for Gynecology and Obstetrics, University Clinical Center of Serbia, Belgrade, Serbia
| | - George Mastorakos
- Unit of Endocrine Diseases, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Djuro Macut
- University of Belgrade Faculty of Medicine, Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Dr Subotića 13, Belgrade, 11000, Serbia.
| |
Collapse
|
2
|
Dangudubiyyam SV, Mishra JS, Kumar S. Perfluorooctane sulfonic acid modulates expression of placental steroidogenesis-associated genes and hormone levels in pregnant rats. Reprod Toxicol 2023; 118:108390. [PMID: 37148813 PMCID: PMC10198953 DOI: 10.1016/j.reprotox.2023.108390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. Reports show that PFOS is a potential endocrine disruptor; however, the possible effects of PFOS on placental endocrine function are unclear. This study aimed to investigate the endocrine-disrupting effects of PFOS on the placenta in pregnant rats and its potential mechanism. Pregnant rats from gestational days 4-20 were exposed to 0, 10, and 50 μg/mL PFOS through drinking water followed by analysis of various biochemical parameters. PFOS dose-dependently decreased fetal and placental weight in both sexes, with a specific decrease in weight of labyrinth but not junctional layer. Plasma progesterone (↑166%), aldosterone (↑201%), corticosterone (↑205%), testosterone (↑45%), luteinizing hormone (↑49%) levels were significantly increased, while estradiol (↓27%), prolactin (↓28%) and hCG (↓62%) levels were reduced in groups exposed to higher doses of PFOS. Real-time quantitative reverse transcriptase-polymerase chain reaction analysis revealed a significant increase in mRNA levels of placental steroid biosynthesis enzymes, including Cyp11A1 and 3β-HSD1 in male placenta and StAR, Cyp11A1, 17β-HSD1 and 17β-HSD3 in female placenta of PFOS dams. Cyp19A1 expression in ovaries was significantly decreased in PFOS dams. mRNA levels for placental steroid metabolism enzyme UGT1A1 increased in male but not in female placenta of PFOS dams. These results suggest that the placenta is a target tissue of PFOS and PFOS-induced dysregulation in steroid hormone production might be related to the altered expression of hormone biosynthesis and metabolism enzyme genes in the placenta. This hormone disruption might affect maternal health and fetal growth.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|
3
|
An SM, Kim MJ, Jeong JS, Kim SY, Kim DS, An BS, Kim SC. Oxytocin modulates steroidogenesis-associated genes and estradiol levels in the placenta. Syst Biol Reprod Med 2023; 69:223-233. [PMID: 36787388 DOI: 10.1080/19396368.2023.2170296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Oxytocin (OXT) plays a significant role during pregnancy, especially toward the end of pregnancy. Some studies have reported that OXT is involved in the stimulation of steroidogenesis in several organs. However, the effects of OXT on placental steroidogenesis have not yet been established. In this study, we investigated the regulation of steroid hormones and steroidogenic enzymes by OXT-associated signaling in vitro and in vivo. OXT increased the gene expression of steroidogenic enzymes, which convert pregnenolone to progesterone and dehydroepiandrosterone (DHEA) in vitro. In OXT-administered pregnant rats, pregnenolone and DHEA levels were significantly enhanced in the plasma and the expression of the enzymes synthesizing DHEA, testosterone, and estradiol (E2) was increased in placental tissues. Furthermore, OXT was found to affect placental cell differentiation, which is closely related to steroid hormone synthesis. After treatment of the pregnant rats with atosiban, an antagonist of the OXT receptor, the concentration of E2 in the plasma and the expression of E2-synthesizing enzyme were reduced. This regulation may be due to OXT-mediated differentiation, because OXT increases the expression of corticotropin-releasing hormone, which is a biomarker of placental cell differentiation. Our findings suggest that OXT contributes to maintaining pregnancy by regulating the differentiation of placental cells and steroidogenesis during pregnancy.
Collapse
Affiliation(s)
- Sung-Min An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Min Jae Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Jea Sic Jeong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - So Young Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Da Som Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Seung Chul Kim
- Department of Obstetrics and Gynecology, Biomedical Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| |
Collapse
|
4
|
Walters KA, Moreno-Asso A, Stepto NK, Pankhurst MW, Rodriguez Paris V, Rodgers RJ. Key signalling pathways underlying the aetiology of polycystic ovary syndrome. J Endocrinol 2022; 255:R1-R26. [PMID: 35980384 DOI: 10.1530/joe-22-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine condition characterised by a range of reproductive, endocrine, metabolic and psychological abnormalities. Reports estimate that around 10% of women of reproductive age are affected by PCOS, representing a significant prevalence worldwide, which poses a high economic health burden. As the origin of PCOS remains largely unknown, there is neither a cure nor mechanism-based treatments leaving patient management suboptimal and focused solely on symptomatic treatment. However, if the underlying mechanisms underpinning the development of PCOS were uncovered then this would pave the way for the development of new interventions for PCOS. Recently, there have been significant advances in our understanding of the underlying pathways likely involved in PCOS pathogenesis. Key insights include the potential involvement of androgens, insulin, anti-Müllerian hormone and transforming growth factor beta in the development of PCOS. This review will summarise the significant scientific discoveries on these factors that have enhanced our knowledge of the mechanisms involved in the development of PCOS and discuss the impact these insights may have in shaping the future development of effective strategies for women with PCOS.
Collapse
Affiliation(s)
- Kirsty A Walters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alba Moreno-Asso
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
- Australian Institute of Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia
| | - Nigel K Stepto
- Institute for Health and Sport, Victoria University, Footscray, Victoria, Australia
- Australian Institute of Musculoskeletal Science, Victoria University, St. Albans, Victoria, Australia
- Monash Centre for Health Research and Implementation, Monash University and Monash Health, Clayton, Victoria, Australia
- Medicine at Western Health, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael W Pankhurst
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Valentina Rodriguez Paris
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Raymond J Rodgers
- The Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Triggle CR, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, MacDonald R, Hollenberg MD, Hill MA. Metformin: Is it a drug for all reasons and diseases? Metabolism 2022; 133:155223. [PMID: 35640743 DOI: 10.1016/j.metabol.2022.155223] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Metformin was first used to treat type 2 diabetes in the late 1950s and in 2022 remains the first-choice drug used daily by approximately 150 million people. An accumulation of positive pre-clinical and clinical data has stimulated interest in re-purposing metformin to treat a variety of diseases including COVID-19. In polycystic ovary syndrome metformin improves insulin sensitivity. In type 1 diabetes metformin may help reduce the insulin dose. Meta-analysis and data from pre-clinical and clinical studies link metformin to a reduction in the incidence of cancer. Clinical trials, including MILES (Metformin In Longevity Study), and TAME (Targeting Aging with Metformin), have been designed to determine if metformin can offset aging and extend lifespan. Pre-clinical and clinical data suggest that metformin, via suppression of pro-inflammatory pathways, protection of mitochondria and vascular function, and direct actions on neuronal stem cells, may protect against neurodegenerative diseases. Metformin has also been studied for its anti-bacterial, -viral, -malaria efficacy. Collectively, these data raise the question: Is metformin a drug for all diseases? It remains unclear as to whether all of these putative beneficial effects are secondary to its actions as an anti-hyperglycemic and insulin-sensitizing drug, or result from other cellular actions, including inhibition of mTOR (mammalian target for rapamycin), or direct anti-viral actions. Clarification is also sought as to whether data from ex vivo studies based on the use of high concentrations of metformin can be translated into clinical benefits, or whether they reflect a 'Paracelsus' effect. The environmental impact of metformin, a drug with no known metabolites, is another emerging issue that has been linked to endocrine disruption in fish, and extensive use in T2D has also raised concerns over effects on human reproduction. The objectives for this review are to: 1) evaluate the putative mechanism(s) of action of metformin; 2) analyze the controversial evidence for metformin's effectiveness in the treatment of diseases other than type 2 diabetes; 3) assess the reproducibility of the data, and finally 4) reach an informed conclusion as to whether metformin is a drug for all diseases and reasons. We conclude that the primary clinical benefits of metformin result from its insulin-sensitizing and antihyperglycaemic effects that secondarily contribute to a reduced risk of a number of diseases and thereby enhancing healthspan. However, benefits like improving vascular endothelial function that are independent of effects on glucose homeostasis add to metformin's therapeutic actions.
Collapse
Affiliation(s)
- Chris R Triggle
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar.
| | - Ibrahim Mohammed
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Khalifa Bshesh
- Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Isra Marei
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Kevin Ye
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar; Department of Medical Education, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Ross MacDonald
- Distribution eLibrary, Weill Cornell Medicine in Qatar, P.O. Box 24144, Education City, Doha, Qatar
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, a Cumming School of Medicine, University of Calgary, T2N 4N1, Canada
| | - Michael A Hill
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology & Physiology, School of Medicine, University of Missouri, Columbia 65211, MO, USA
| |
Collapse
|
6
|
Ohn J, Son HY, Yu DA, Kim MS, Kwon S, Park WS, Kim JI, Kwon O. Early onset female pattern hair loss: a case–control study for analyzing clinical features and genetic variants. J Dermatol Sci 2022; 106:21-28. [DOI: 10.1016/j.jdermsci.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/13/2022] [Accepted: 02/27/2022] [Indexed: 11/26/2022]
|
7
|
Pharmacological Approaches to Controlling Cardiometabolic Risk in Women with PCOS. Int J Mol Sci 2020; 21:ijms21249554. [PMID: 33334002 PMCID: PMC7765466 DOI: 10.3390/ijms21249554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is characterized by elevated androgen production and subclinical changes in cardiovascular and metabolic risk markers. Total cholesterol, high-density lipoprotein (HDL) cholesterol, fasting glucose, and fasting insulin appear to increase specifically in PCOS compared with fertile women. PCOS also confers an increased risk of cardiometabolic disease in later life. Novel biomarkers such as serum’s cholesterol efflux capacity and blood-derived macrophage activation profile may assist in more accurately defining the cardiometabolic risk profile in these women. Aldosterone antagonists, androgen receptor antagonists, 5α-reductase inhibitors, and synthetic progestogens are used to reduce hyperandrogenism. Because increased insulin secretion enhances ovarian androgen production, short-term treatment with metformin and other hypoglycemic agents results in significant weight loss, favorable metabolic changes, and testosterone reduction. The naturally occurring inositols display insulin-sensitizing effects and may be also used in this context because of their safety profile. Combined oral contraceptives represent the drug of choice for correction of androgen-related symptoms. Overall, PCOS management remains focused on specific targets including assessment and treatment of cardiometabolic risk, according to disease phenotypes. While new options are adding to established therapeutic approaches, a sometimes difficult balance between efficacy and safety of available medications has to be found in individual women.
Collapse
|
8
|
Ramot Y, Bertolini M, Boboljova M, Uchida Y, Paus R. PPAR-γ signalling as a key mediator of human hair follicle physiology and pathology. Exp Dermatol 2019; 29:312-321. [PMID: 31769892 DOI: 10.1111/exd.14062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are abundantly expressed in human skin, with PPAR-γ being the most intensively investigated isoform. In various ex vivo and in vivo models, PPAR-γ-mediated signalling has recently surfaced as an essential element of hair follicle (HF) development, growth and stem cell biology. Moreover, the availability of novel, topically applicable PPAR-γ modulators with a favourable toxicological profile has extended the range of potential applications in clinical dermatology. In this review, we synthesize where this field currently stands and sketch promising future research avenues, focussing on the role of PPAR-γ-mediated signalling in the biology and pathology of human scalp HFs, with special emphasis on scarring alopecias such as lichen planopilaris and frontal fibrosing alopecia as model human epithelial stem cell diseases. In particular, we discuss whether and how pharmacological modulation of PPAR-γ signalling may be employed for the management of hair growth disorders, for example, in scarring alopecia (by reducing HF inflammation as well as by promoting the survival and suppressing pathological epithelial-mesenchymal transition of keratin 15 + epithelial stem cells in the bulge) and in hirsutism/hypertrichosis (by promoting catagen development). Moreover, we explore the potential role of PPAR-γ in androgenetic alopecia, HF energy metabolism and HF ageing, and consider clinical perspectives that emanate from the limited data available on this so far. As this field of translational human hair research is still in its infancy, many open questions exist, for which we briefly delineate selected experimental approaches that promise to generate instructive answers in the near future.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah Medical Center, The Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Maria Boboljova
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Yoshikazu Uchida
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Muenster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, UK
| |
Collapse
|
9
|
Silva AR, Gonçalves-de-Albuquerque CF, Pérez AR, Carvalho VDF. Immune-endocrine interactions related to a high risk of infections in chronic metabolic diseases: The role of PPAR gamma. Eur J Pharmacol 2019; 854:272-281. [PMID: 30974105 DOI: 10.1016/j.ejphar.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/11/2019] [Accepted: 04/02/2019] [Indexed: 02/06/2023]
Abstract
Diverse disturbances in immune-endocrine circuitries are involved in the development and aggravation of several chronic metabolic diseases (CMDs), including obesity, diabetes, and metabolic syndrome. The chronic inflammatory syndrome observed in CMDs culminates in dysregulated immune responses with low microbial killing efficiency, by means low host innate immune response, and loss of ability to eliminate the pathogens, which results in a high prevalence of infectious diseases, including pneumonia, tuberculosis, and sepsis. Herein, we review evidence pointing out PPARγ as a putative player in immune-endocrine disturbances related to increased risk of infections in CMDs. Cumulated evidence indicates that PPARγ activation modulates host cells to control inflammation during CMDs because of PPARγ agonists have anti-inflammatory and pro-resolutive properties, increasing host ability to eliminate pathogen, modulating hormone production, and restoring glucose and lipid homeostasis. As such, we propose PPARγ as a putative therapeutic adjuvant for patients with CMDs to favor a better infection control.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil; Laboratório de Imunofarmacologia, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Unirio, Brazil.
| | - Ana Rosa Pérez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER-CONICET UNR), 2000, Rosario, Argentina.
| | - Vinicius de Frias Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil, 4365, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Faure M, Bertoldo MJ, Khoueiry R, Bongrani A, Brion F, Giulivi C, Dupont J, Froment P. Metformin in Reproductive Biology. Front Endocrinol (Lausanne) 2018; 9:675. [PMID: 30524372 PMCID: PMC6262031 DOI: 10.3389/fendo.2018.00675] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/29/2018] [Indexed: 12/19/2022] Open
Abstract
Initially produced in Europe in 1958, metformin is still one of the most widely prescribed drugs to treat type II diabetes and other comorbidities associated with insulin resistance. Metformin has been shown to improve fertility outcomes in females with insulin resistance associated with polycystic ovary syndrome (PCOS) and in obese males with reduced fertility. Metformin treatment reinstates menstrual cyclicity, decreases the incidence of cesareans, and limits the number of premature births. Notably, metformin reduces steroid levels in conditions associated with hyperandrogenism (e.g., PCOS and precocious puberty) in females and improves fertility of adult men with metabolic syndrome through increased testosterone production. While the therapeutical use of metformin is considered to be safe, in the last 10 years some epidemiological studies have described phenotypic differences after prenatal exposure to metformin. The goals of this review are to briefly summarize the current knowledge on metformin focusing on its effects on the female and male reproductive organs, safety concerns, including the potential for modulating fetal imprinting via epigenetics.
Collapse
Affiliation(s)
- Melanie Faure
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Michael J Bertoldo
- Discipline of Obstetrics and Gynaecology, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Alice Bongrani
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - François Brion
- INERIS, Direction des Risques Chroniques, Pole VIVA, Unite d'ecotoxicologie in vitro et in vivo, BP2, Verneuil-en-Halatte, France
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Medical Investigations of Neurodevelopmental Disorders Institute, University of California, Davis, Davis, CA, United States
| | - Joelle Dupont
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Centre Val de Loire, Institut National de la Recherche Agronomique, UMR85, Nouzilly, France
| |
Collapse
|
11
|
Jensterle M, Goricar K, Janez A. Add on DPP-4 inhibitor alogliptin alone or in combination with pioglitazone improved β-cell function and insulin sensitivity in metformin treated PCOS. Endocr Res 2017; 42:261-268. [PMID: 28323503 DOI: 10.1080/07435800.2017.1294602] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Impaired β-cell function remains unaddressed in PCOS. The aim of the study was to evaluate whether dipeptidyl peptidase-4 (DPP-4) inhibitor alogliptin (ALO) alone or in combination with pioglitazone (PIO) improves β-cell function along with insulin resistance (IR) in metformin (MET) treated obese women with PCOS with persistent IR. MATERIALS AND METHODS In 12-week randomized study, ALO 25 mg QD (n=15) or ALO 25 mg QD and PIO 30 mg QD (n=15) was added to MET 1000 mg BID in PCOS women (aged 34.4 ± 6.5 years, BMI 39.0 ± 4.9 kg/m2, HOMA-IR 4.82 ± 2.52, mean ± SD). Model derived parameters of glucose homeostasis from the meal tolerance test (MTT) were determined. The ability of the β-cell function was assessed by the adaptation index (AI). RESULTS MET-ALO and MET-ALO-PIO resulted in a significant decrease of HOMA-IR (by 1.6±2.3 (p=0.039) and 2.9±3.3 (p=0.001), respectively) and an increase in insulin sensitivity (IS) after meal ingestion (oral glucose IS) by 31.4±97.5 ml·min-1·m-2 (p=0.007) vs 39.0±58.1 ml·min-1·m-2 (p=0.039), respectively. AI across the entire group was significantly improved from 329.6±200.6 to 442.5±303.9 (p=0.048). CONCLUSIONS ALO alone and in combination with PIO improved IR along with dynamic IS and meal related β-cell function when added to MET treated PCOS.
Collapse
Affiliation(s)
- Mojca Jensterle
- a Department of Endocrinology, Diabetes and Metabolic Diseases , University Medical Centre Ljubljana , Ljubljana , Slovenia
| | - Katja Goricar
- b Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine , University of Ljubljana , Ljubljana , Slovenia
| | - Andrej Janez
- a Department of Endocrinology, Diabetes and Metabolic Diseases , University Medical Centre Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
12
|
Nepelska M, Odum J, Munn S. Adverse Outcome Pathway: Peroxisome Proliferator-Activated Receptor α Activation and Reproductive Toxicity—Development and Application in Assessment of Endocrine Disruptors/Reproductive Toxicants. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Małgorzata Nepelska
- European Commission, Joint Research Centre (JRC), Directorate F–Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods, Ispra, Italy
| | - Jenny Odum
- Regulatory Science Associates, Kip Marina, Inverkip, Renfrewshire, England
| | - Sharon Munn
- European Commission, Joint Research Centre (JRC), Directorate F–Health, Consumers and Reference Materials, Chemical Safety and Alternative Methods, Ispra, Italy
| |
Collapse
|
13
|
Bopst M, Atzpodien EA. Non-clinical safety evaluation and risk assessment to human of aleglitazar, a dual PPAR α/γ agonist, and its major human metabolite. Regul Toxicol Pharmacol 2017; 86:107-116. [PMID: 28274810 DOI: 10.1016/j.yrtph.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023]
Abstract
The non-clinical safety profile of aleglitazar, a peroxisome proliferator activated receptor alpha/gamma agonist, and its major human metabolite M6 was studied in a complete package consisting of drug metabolism and pharmacokinetics characterization, safety pharmacology, genotoxicity, repeat dose toxicity, reproductive toxicity and carcinogenicity studies. These studies identified the following main targets similar to other PPAR agonists: red blood cell parameters, liver, heart, kidney, ovaries, testes, bone marrow, adipose tissue, and fluid accumulation. Additionally, and in the 12-month monkey study only, an increased incidence of generalized hair loss/thinning was observed in all groups including controls. In the rat carcinogenicity study there was no statistically significant increase in tumors. In the mouse carcinogenicity study, there was an increased incidence of angiomatous tumors and there were three males with gallbladder adenoma. No relevant compound-related effects were observed in safety pharmacology, genotoxicity, and a 28-day immunotoxicity rat study. Effects observed in reproductive toxicity studies were similar to those known for other PPARγ agonists. Separate studies with the human metabolite M6 did not reveal findings that would prevent human dosing. Overall, the results from the non-clinical safety studies conducted with aleglitazar and the human metabolite M6 were considered to support the clinical Phase 3 program.
Collapse
Affiliation(s)
- Martin Bopst
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Elke-Astrid Atzpodien
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
14
|
Torres RC, Magalhães NS, E Silva PMR, Martins MA, Carvalho VF. Activation of PPAR-γ reduces HPA axis activity in diabetic rats by up-regulating PI3K expression. Exp Mol Pathol 2016; 101:290-301. [PMID: 27725163 DOI: 10.1016/j.yexmp.2016.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/16/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022]
Abstract
Increased hypothalamus-pituitary-adrenal axis (HPA) activity in diabetes is strongly associated with several morbidities noted in patients with the disease. We previously demonstrated that hyperactivity of HPA axis under diabetic conditions is associated with up-regulation of adrenocorticotrophic hormone (ACTH) receptors (MC2R) in adrenal and down-regulation of glucocorticoid receptors (GR and MR) in pituitary. This study investigates the role of peroxisome proliferator-activated receptor (PPAR)-γ in HPA axis hyperactivity in diabetic rats. Diabetes was induced by intravenous injection of alloxan into fasted rats. The PPAR-γ agonist rosiglitazone and/or PI3K inhibitor wortmannin were administered daily for 18 consecutive days, starting 3days after diabetes induction. Plasma ACTH and corticosterone were evaluated by radioimmunoassay, while intensities of MC2R, proopiomelanocortin (POMC), GR, MR, PI3K p110α and PPAR-γ were assessed using immunohistochemistry. Rosiglitazone treatment inhibited adrenal hypertrophy and hypercorticoidism observed in diabetic rats. Rosiglitazone also significantly reversed the diabetes-induced increase in the MC2R expression in adrenal cortex. We noted that rosiglitazone reduced the number of corticotroph cells and inhibited both anterior pituitary POMC expression and plasma ACTH levels. Furthermore, rosiglitazone treatment was unable to restore the reduced expression of GR and MR in the anterior pituitary of diabetic rats. Rosiglitazone increased the number of PPAR-γ+ cells and expression of PI3K p110α in both anterior pituitary and adrenal cortex of diabetic rats. In addition, wortmannin blocked the ability of rosiglitazone to restore corticotroph cell numbers, adrenal hypertrophy and plasma corticosterone levels in diabetic rats. In conclusion, our findings revealed that rosiglitazone down-regulates HPA axis hyperactivity in diabetic rats via a mechanism dependent on PI3K activation in pituitary and adrenal glands.
Collapse
Affiliation(s)
- Rafael Carvalho Torres
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil no. 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil.
| | - Nathalia Santos Magalhães
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil no. 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil.
| | - Patrícia M R E Silva
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil no. 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil.
| | - Marco A Martins
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil no. 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil.
| | - Vinicius F Carvalho
- Laboratório de Inflamação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil no. 4365, Manguinhos, CEP 21045-900 Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
Mitwally MFM, Witchel SF, Casper RF. Troglitazone: A Possible Modulator of Ovarian Steroidogenesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760200900308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Selma F. Witchel
- Reproductive Sciences Division, Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada: Department of Gynecology and Obstetrics, State University of New York (SUNY) at Buffalo, Buffalo, New York; Division of Pediatric Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert F. Casper
- Reproductive Sciences Division, Department of Obstetrics & Gynecology, University of Toronto, Room 876, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| |
Collapse
|
16
|
Mahalingaiah S, Diamanti-Kandarakis E. Targets to treat metabolic syndrome in polycystic ovary syndrome. Expert Opin Ther Targets 2015; 19:1561-74. [PMID: 26488852 DOI: 10.1517/14728222.2015.1101067] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Metabolic syndrome is comprised of a combination of the following states: increased insulin resistance, dyslipidemia, cardiovascular disease, and increased abdominal obesity. Women with polycystic ovary syndrome (PCOS) have an increased risk of developing metabolic syndrome over the course of their lives. Metabolic syndrome increases risk of major cardiovascular events, morbidity, quality of life, and overall health care costs. Though metabolic syndrome in women with PCOS is an area of great concern, there is no effective individual medical therapeutic to adequately treat this issue. AREAS COVERED This article will review key aspects of metabolic syndrome in PCOS. We will discuss classic and novel therapeutics to address metabolic syndrome in women with PCOS. We will conclude with the importance of developing strategic interventions to increase the compliance to lifestyle and dietary modification, in addition to appreciation of the emerging pharmaceutical therapeutics available. EXPERT OPINION Innovation in lifestyle modification, including diet, exercise, with and without dedicated stress reduction techniques is the future in treatment of metabolic syndrome in PCOS. Application of novel interventions, such as group medical care, may improve future adherence to lifestyle modification recommendations, in addition to or in combination with pharmaceutical therapeutics.
Collapse
Affiliation(s)
- Shruthi Mahalingaiah
- a Department of Obstetrics and Gynecology , Boston University School of Medicine , Boston , MA 02118 , USA
| | - Evanthia Diamanti-Kandarakis
- b Department of Endocrinology, Diabetes & Metabolism , University of Athens Medical School , Athens 11521 , Greece
| |
Collapse
|
17
|
Tatone C, Benedetti E, Vitti M, Di Emidio G, Ciriminna R, Vento ME, Cela V, Borzì P, Carta G, Lispi M, Cimini AM, Artini PG. Modulating Intrafollicular Hormonal Milieu in Controlled Ovarian Stimulation: Insights From PPAR Expression in Human Granulosa Cells. J Cell Physiol 2015; 231:908-14. [PMID: 26332656 DOI: 10.1002/jcp.25182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/31/2015] [Indexed: 01/06/2023]
Abstract
Controlled ovarian stimulation (COS) leading to ovulation of multiple follicles is a crucial aspect of biomedical infertility care. Nevertheless, biomarkers useful for COS management are still lacking. Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors relevant to steroid metabolism in granulosa cells (GCs). We investigated whether PPARs and their steroidogenic targets were differentially expressed in GCs differentiated under different recombinant or urinary gonadotropin preparations. GCs from women subjected to COS with r-hFSH, r-hFSH/r-hLH, or hMG-HP were processed to assess expression of PPARα, PPARβ/δ, PPARγ, and steroidogenic enzymes under PPAR modulation. As an evidence of their activation, all PPAR isotypes with their coactivators, the retinoic-X-receptors (RXRs), localized in the nucleus. When GCs from r-hFSH/r-hLH group were compared with r-hFSH, a significant reduction of PPARα protein was observed. By contrast, an increase of PPARβ/δ at both protein and mRNA levels along with that of PPARγ protein were detected. The steroidogenic enzymes 17βHSD IV, 3βHSD II, and HMG-CoA red were downregulated in the r-hFSH/r-hLH group in comparison to r-hFSH unlike CYP19A1 that remained unchanged. In GCs from urinary FSH-LH stimulation (hMG-HP), PPARα was more expressed in comparison with r-hFSH/r-hLH group. Likewise, 3βHSD II and 17βHSD IV were increased suggesting that hMG-HP partially mimicked r-hFSH/r-hLH effects. In summary, transcript analysis associated to protein investigation revealed differential effects of COS protocols on PPARs and their steroidogenic targets in relation to LH and gonadotropin source. These observations candidate PPARs as new biomarkers of follicle competence opening new hypotheses on COS effects on ovarian physiology. J. Cell. Physiol. 231: 908-914, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Gynecology and Fertility Unit, San Salvatore Hospital, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Vitti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | | | - Vito Cela
- Department of Experimental and Clinical Medicine, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| | | | - Gaspare Carta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Gynecology and Fertility Unit, San Salvatore Hospital, L'Aquila, Italy
| | - Monica Lispi
- Medical Liaison Office, Merck Serono S.p.A., Rome, Italy
| | - Anna Maria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paolo Giovanni Artini
- Department of Experimental and Clinical Medicine, Division of Gynecology and Obstetrics, University of Pisa, Pisa, Italy
| | | |
Collapse
|
18
|
Chen HH, Horng MH, Yeh SY, Lin IC, Yeh CJ, Muo CH, Sung FC, Kao CH. Glycemic Control with Thiazolidinedione Is Associated with Fracture of T2DM Patients. PLoS One 2015; 10:e0135530. [PMID: 26317995 PMCID: PMC4552881 DOI: 10.1371/journal.pone.0135530] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/22/2015] [Indexed: 01/27/2023] Open
Abstract
Objective Diabetes is a common diseases and a major problem worldwide. Diabetic osteopathy might be elevated in diabetic patients and is usually caused by bone fracture. Several diabetes medications, such as thiazolidinediones (TZDs), could lead to increased risks of fracture. Methods We used the nationwide database to identified 32466 patients who had developed type 2 diabetes from 2000 to 2010 as the diabetic cohort and, from that group, we selected 3427 diabetic patients who had developed bone fracture to survey the possible risk factors, includng commonly used diabetes medication. Results We found that TZDs might present increased risks for fracture in patients who used it for an extended period (7 to 730 days before the index date), especially in female patients younger than 64 years old, for whom the risk was elevated from a 1.74- to a 2.58-fold odds ratio. Conclusions We recommend that clinics follow up with non-osteoporotic female patients younger than 64 years old who are using TZDs, to avoid the associated risks of fracture.
Collapse
Affiliation(s)
- Hsin-Hung Chen
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Metabolism & Endocrinology, Changhua Christian Hospital, Changhua, Taiwan
- Division of Metabolism & Endocrinology, Nantou Christian Hospital, Nantou, Taiwan
| | - Ming-Hwarng Horng
- Division of Critical Care Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Changhua Christian medical foundation, Yuanlin Christian Hospital, Changhua, Taiwan
| | - Su-Yin Yeh
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - I-Ching Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Jung Yeh
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
- Education and Research on Geriatrics and Gerontology, Chung Shan Medical University, Taichung, Taiwan
- * E-mail: (C-HK); (C-JY)
| | - Chih-Hsin Muo
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Fung-Chang Sung
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
- * E-mail: (C-HK); (C-JY)
| |
Collapse
|
19
|
Toda K, Hayashi Y, Ono M, Saibara T. Co-administration of insulin with a gonadotropin partly improves ovulatory responses of estrogen-deficient mice. Mol Cell Endocrinol 2015; 411:177-86. [PMID: 25957088 DOI: 10.1016/j.mce.2015.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/30/2022]
Abstract
Administration of 17-βestradiol (E2) with pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) can induce ovulation in estrogen-deficient (ArKO) mice; nevertheless, ovulatory efficiency and rate are low. In this study, effects of insulin on the ovulatory responses were investigated. In ArKO ovary, hCG signal was found to be transmitted in an uncoordinated manner when phosphorylation levels of signaling molecules are examined. Co-administration of insulin with hCG improved the transmission of hCG signal as well as the ovulatory efficiency in ArKO mice. It also improved the ovulatory rate but far below the wild-type rate. Gene expression analysis demonstrated that Cyp11a1 and Cyp17a1 mRNAs were significantly induced 4 h after PMSG administration in the wild-type ovary, but not in ArKO ovary. Collectively, these results suggest that insulin improves ovulatory responses of ArKO mice, but it fails to ameliorate follicular dysfunctions caused possibly by an inappropriate intraovarian milieu during follicular maturation.
Collapse
Affiliation(s)
- Katsumi Toda
- Department of Biochemistry, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan.
| | - Yoshihiro Hayashi
- Department of Pathology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Masafumi Ono
- Department of Gastroenterology and Hepatology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| | - Toshiji Saibara
- Department of Gastroenterology and Hepatology, Kochi University School of Medicine, Nankoku, Kochi 783-8505, Japan
| |
Collapse
|
20
|
Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol 2015; 145:213-25. [PMID: 25008465 DOI: 10.1016/j.jsbmb.2014.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/16/2014] [Accepted: 06/05/2014] [Indexed: 11/17/2022]
Abstract
Approximately 20-30% of PCOS women demonstrate excess adrenal precursor androgen (APA) production, primarily using DHEAS as a marker of APA in general and more specifically DHEA, synthesis. The role of APA excess in determining or causing PCOS is unclear, although observations in patients with inherited APA excess (e.g., patients with 21-hydroxylase deficient congenital classic or non-classic adrenal hyperplasia) demonstrate that APA excess can result in a PCOS-like phenotype. Inherited defects of the enzymes responsible for steroid biosynthesis, or defects in cortisol metabolism, account for only a very small fraction of women suffering from hyperandrogenism or APA excess. Rather, women with PCOS and APA excess appear to have a generalized exaggeration in adrenal steroidogenesis in response to ACTH stimulation, although they do not have an overt hypothalamic-pituitary-adrenal axis dysfunction. In general, extra-adrenal factors, including obesity, insulin and glucose levels, and ovarian secretions, play a limited role in the increased APA production observed in PCOS. Substantial heritabilities of APAs, particularly DHEAS, have been found in the general population and in women with PCOS; however, the handful of SNPs discovered to date account only for a small portion of the inheritance of these traits. Paradoxically, and as in men, elevated levels of DHEAS appear to be protective against cardiovascular risk in women, although the role of DHEAS in modulating this risk in women with PCOS remains unknown. In summary, the exact cause of APA excess in PCOS remains unclear, although it may reflect a generalized and inherited exaggeration in androgen biosynthesis of an inherited nature.
Collapse
Affiliation(s)
| | | | - Ricardo Azziz
- Georgia Regents University, Office of the President, 120 15th St., AA 311, Augusta, GA 30912, USA.
| |
Collapse
|
21
|
Svechnikov K, Stukenborg JB, Savchuck I, Söder O. Similar causes of various reproductive disorders in early life. Asian J Androl 2014; 16:50-9. [PMID: 24369133 PMCID: PMC3901882 DOI: 10.4103/1008-682x.122199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
During the past few decades, scientific evidence has been accumulated concerning the possible adverse effects of the exposure to environmental chemicals on the well-being of wildlife and human populations. One large and growing group of such compounds of anthropogenic or natural origin is referred to as endocrine-disrupting chemicals (EDCs), due to their deleterious action on the endocrine system. This concern was first focused on the control of reproductive function particularly in males, but has later been expanded to include all possible endocrine functions. The present review describes the underlying physiology behind the cascade of developmental events that occur during sexual differentiation of males and the specific role of androgen in the masculinization process and proper organogenesis of the external male genitalia. The impact of the genetic background, environmental exposures and lifestyle factors in the etiology of hypospadias, cryptorchidism and testicular cancer are reviewed and the possible role of EDCs in the development of these reproductive disorders is discussed critically. Finally, the possible direct and programming effects of exposures in utero to widely use therapeutic compounds, environmental estrogens and other chemicals on the incidence of reproductive abnormalities and poor semen quality in humans are also highlighted.
Collapse
Affiliation(s)
| | | | | | - Olle Söder
- Department of Women's and Children's Health, Paediatric Endocrinology Unit, Karolinska Institutet and University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Rak-Mardyła A, Karpeta A. Rosiglitazone stimulates peroxisome proliferator-activated receptor gamma expression and directly affects in vitro steroidogenesis in porcine ovarian follicles. Theriogenology 2014; 82:1-9. [PMID: 24681211 DOI: 10.1016/j.theriogenology.2014.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) synthetic activator from the group of thiazolidinediones often used in the treatment of chronic diseases such as type 2 diabetes and other forms of insulin resistance. The present in vitro study assessed the direct effects of rosiglitazone at 25 and 50 μM doses on PPARγ gene expression, steroid secretion (progesterone [P4], androstenedione [A4], testosterone [T], and estradiol), and protein expression of PPARγ, 3βHSD, CYP17, 17βHSD, CYP19 by porcine ovarian follicles from prepubertal and cycling animals. We analyzed also steroid enzymatic activity by conversion of pregnen-3β-ol-20-one to P4, P4 to A4, and A4 to T. Our results indicated that rosiglitazone increased significantly PPARγ expression, P4 secretion, 3βHSD activity, and protein expression. Rosiglitazone decreased A4 and T secretion by reducing the expression and activity of CYP17 and 17βHSD and did not change estradiol secretion and CYP19. Similarly results was observed both in prepubertal and cycling pigs. Our results indicate that these direct effects of rosiglitazone on ovarian steroidogenesis provide a framework for testing several potential new mechanisms of PPAR-γ actions on porcine ovarian function.
Collapse
Affiliation(s)
- Agnieszka Rak-Mardyła
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| | - Anna Karpeta
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
23
|
Nishizato Y, Imai S, Yabunaka A, Okahashi N, Kunimatsu T, Yabuki M. Effect of SMP-028 on steroidogenesis in rats; mechanism of toxicological events on endocrine organs of rats. Toxicol In Vitro 2013; 28:397-402. [PMID: 24362046 DOI: 10.1016/j.tiv.2013.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/19/2013] [Accepted: 12/11/2013] [Indexed: 11/19/2022]
Abstract
SMP-028 is a new compound for treatment of asthma. Oral administration of SMP-028 to rats was associated with toxicological events in endocrine organs. These events mainly consisted of pathological changes in the adrenal gland, testis, prostate, seminal vesicle, ovaries, and uterus. In this study, we set to clarify whether SMP-028 inhibits steroidogenesis in primary culture cells obtained from rat endocrine organs in vitro. Adrenal cells, testicular cells, and ovarian cells were treated with SMP-028 and the production of steroid hormones, i.e., progesterone, aldosterone, corticosterone, total testosterone, and estradiol from these cells was measured by radioimmunoassay. We found that the production of progesterone from these cells treated with SMP-028 at 1 μM decreased to 16-67% that of the control. These findings indicate that SMP-028 inhibits steroidogenesis in rat endocrine organs in vitro. Considering that free maximum concentration in rats treated with SMP-028 are higher than the IC50 values for the inhibition of steroidogenesis in vitro, it is therefore believed that the toxicological events seen in rats following treatment with SMP-028 are due to inhibition of steroidogenesis in vivo.
Collapse
Affiliation(s)
- Yohei Nishizato
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Japan.
| | - Satoki Imai
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Japan
| | - Atsushi Yabunaka
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Japan
| | - Noriko Okahashi
- Research Planning & Intelligence, Dainippon Sumitomo Pharma Co., Ltd., Japan
| | - Takeshi Kunimatsu
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Japan
| | - Masashi Yabuki
- Preclinical Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Japan
| |
Collapse
|
24
|
Tee MK, Miller WL. Phosphorylation of human cytochrome P450c17 by p38α selectively increases 17,20 lyase activity and androgen biosynthesis. J Biol Chem 2013; 288:23903-13. [PMID: 23836902 DOI: 10.1074/jbc.m113.460048] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cytochrome P450c17, a steroidogenic enzyme encoded by the CYP17A1 gene, catalyzes the steroid 17α-hydroxylation needed for glucocorticoid synthesis, which may or may not be followed by 17,20 lyase activity needed for sex steroid synthesis. Whether or not P450c17 catalyzes 17,20 lyase activity is determined by three post-translational mechanisms influencing availability of reducing equivalents donated by P450 oxidoreductase (POR). These are increased amounts of POR, the allosteric action of cytochrome b5 to promote POR-P450c17 interaction, and Ser/Thr phosphorylation of P450c17, which also appears to promote POR-P450c17 interaction. The kinase(s) that phosphorylates P450c17 is unknown. In a series of kinase inhibition experiments, the pyridinyl imidazole drugs SB202190 and SB203580 inhibited 17,20 lyase but not 17α-hydroxylase activity in human adrenocortical HCI-H295A cells, suggesting an action on p38α or p38β. Co-transfection of non-steroidogenic COS-1 cells with P450c17 and p38 expression vectors showed that p38α, but not p38β, conferred 17,20 lyase activity on P450c17. Antiserum to P450c17 co-immunoprecipitated P450c17 and both p38 isoforms; however, knockdown of p38α, but not knockdown of p38β, inhibited 17,20 lyase activity in NCI-H295A cells. Bacterially expressed human P450c17 was phosphorylated by p38α in vitro at a non-canonical site, conferring increased 17,20 lyase activity. This phosphorylation increased the maximum velocity, but not the Michaelis constant, of the 17,20 lyase reaction. p38α phosphorylates P450c17 in a fashion that confers increased 17,20 lyase activity, implying that the production of adrenal androgens (adrenarche) is a regulated event.
Collapse
Affiliation(s)
- Meng Kian Tee
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
25
|
Valsamakis G, Lois K, Kumar S, Mastorakos G. Metabolic and other effects of pioglitazone as an add-on therapy to metformin in the treatment of polycystic ovary syndrome (PCOS). Hormones (Athens) 2013; 12:363-78. [PMID: 24121378 DOI: 10.1007/bf03401302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Insulin resistance is a key pathogenic defect of the clustered metabolic disturbances seen in polycystic ovary syndrome (PCOS). Metformin is an insulin sensitizer acting in the liver and the peripheral tissues that ameliorates the metabolic and reproductive defects in PCOS. In addition, pioglitazone is an insulin sensitizer used in diabetes mellitus type 2 (T2DM), improving insulin resistance (IR) in adipose tissue and muscles. In T2DM, these drugs are also used as a combined treatment due to their "add-on effect" on insulin resistance. Although the beneficial role of troglitazone (a member of the thiazolidinediones (TZDs) family) in PCOS has been shown in the past, currently only pioglitazone is available in the market. A few small randomized controlled trials have directly compared the effectiveness of pioglitazone in women with PCOS, while there are a limited number of small studies that support the beneficial metabolic add-on effect of pioglitazone on metformin-treated PCOS women as compared to metformin or pioglitazone monotherapy. These findings suggest a potentially promising role for combined pioglitazone/metformin treatment in the management of PCOS in metformin-resistant patients. In view of recent concerns regarding pioglitazone usage and its associated health risk, we aim to compare the pros and cons of each drug regarding their metabolic and other hormonal effects in women with PCOS and to explore the possible beneficial effect of combined therapy in certain cases, taking into consideration the teratogenic effect of pioglitazone. Finally, we discuss the need for a randomized controlled trial that will evaluate the metabolic and other hormonal effects of combined metformin/pioglitazone treatment in PCOS with selective treatment targets.
Collapse
Affiliation(s)
- Georgios Valsamakis
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire, Warwick Medical School, Coventry, UK, Endocrine Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | | | | |
Collapse
|
26
|
Sridhar S, Walia R, Sachdeva N, Bhansali A. Effect of pioglitazone on testosterone in eugonadal men with type 2 diabetes mellitus: a randomized double-blind placebo-controlled study. Clin Endocrinol (Oxf) 2013; 78:454-9. [PMID: 22816533 DOI: 10.1111/j.1365-2265.2012.04510.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 06/19/2012] [Accepted: 07/17/2012] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Pioglitazone is an insulin sensitizer used for the management of type 2 diabetes mellitus (T2DM). It has been shown to reduce testosterone level in patients with polycystic ovarian syndrome. However, its effect on testosterone in men has not been studied. RESEARCH DESIGN AND METHODS A randomized, double-blind, placebo-controlled trial with 6 months follow-up. Fifty (25 in each group) eugonadal men (well virilized and total testosterone ≥ 12 nm) with T2DM, aged 30-55 year and HbA1c of ≤ 7.5% were randomly assigned to receive pioglitazone 30 mg per day or placebo along with existing glimepiride and metformin therapy. RESULTS As compared to placebo, 6 months of pioglitazone therapy in patients with T2DM resulted in significant reduction in mean total testosterone level (16.1 to 14.9 vs 17.1 to 17.0 nm; P = 0.031), calculated free testosterone (P = 0.001) and bioavailable testosterone (P = 0.000) despite significant increase in sex hormone-binding globulin (P = 0.000). Plasma androstenedione (∆(4) ) level increased (1.5 to 1.9 vs 1.7 to 1.7 ng/ml; P = 0.051) following pioglitazone therapy. The decrease in testosterone was independent of change in body weight, body fat and HbA1c. CONCLUSION Pioglitazone therapy significantly decreases total, free and bioavailable testosterone in eugonadal men with T2DM. The effects of these alterations need to be determined by further long-term studies.
Collapse
Affiliation(s)
- Subbiah Sridhar
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | |
Collapse
|
27
|
Baba T, Endo T, Ikeda K, Shimizu A, Morishita M, Kuno Y, Honnma H, Kiya T, Ishioka SI, Saito T. Weight reduction and pioglitazone ameliorate polycystic ovary syndrome after removal of a Sertoli-stromal cell tumor. Int J Womens Health 2012; 4:607-11. [PMID: 23226075 PMCID: PMC3514067 DOI: 10.2147/ijwh.s36667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This report presents an unusual case of Sertoli-stromal cell tumor and polycystic ovary syndrome successfully treated with weight reduction and an insulin-sensitizing agent. A 22-year-old woman, gravida 0, para 0, visited our hospital for the first time with a 12-year history of secondary amenorrhea and hypertrichosis. Transvaginal ultrasonography revealed a solid tumor in the right ovary. Right salpingo-oophorectomy was performed and pathological examination confirmed a Sertoli-stromal cell tumor. The patient's serum androgen levels declined postoperatively, but remained above normal. Pioglitazone treatment for 6 months also significantly reduced serum androgen levels, but they still remained above normal. However, after losing 12 kg of body weight, the patient's serum androgen levels declined to normal, and spontaneous menstruation became regular. Weight reduction with pioglitazone is an effective means of treating hyperandrogenism.
Collapse
Affiliation(s)
- Tsuyoshi Baba
- Department of Obstetrics and Gynecology, Sapporo Medical University, Sapporo
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 2012; 33:981-1030. [PMID: 23065822 PMCID: PMC5393155 DOI: 10.1210/er.2011-1034] [Citation(s) in RCA: 1067] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polycystic ovary syndrome (PCOS) is now recognized as an important metabolic as well as reproductive disorder conferring substantially increased risk for type 2 diabetes. Affected women have marked insulin resistance, independent of obesity. This article summarizes the state of the science since we last reviewed the field in the Endocrine Reviews in 1997. There is general agreement that obese women with PCOS are insulin resistant, but some groups of lean affected women may have normal insulin sensitivity. There is a post-binding defect in receptor signaling likely due to increased receptor and insulin receptor substrate-1 serine phosphorylation that selectively affects metabolic but not mitogenic pathways in classic insulin target tissues and in the ovary. Constitutive activation of serine kinases in the MAPK-ERK pathway may contribute to resistance to insulin's metabolic actions in skeletal muscle. Insulin functions as a co-gonadotropin through its cognate receptor to modulate ovarian steroidogenesis. Genetic disruption of insulin signaling in the brain has indicated that this pathway is important for ovulation and body weight regulation. These insights have been directly translated into a novel therapy for PCOS with insulin-sensitizing drugs. Furthermore, androgens contribute to insulin resistance in PCOS. PCOS may also have developmental origins due to androgen exposure at critical periods or to intrauterine growth restriction. PCOS is a complex genetic disease, and first-degree relatives have reproductive and metabolic phenotypes. Several PCOS genetic susceptibility loci have been mapped and replicated. Some of the same susceptibility genes contribute to disease risk in Chinese and European PCOS populations, suggesting that PCOS is an ancient trait.
Collapse
|
29
|
Hirsch A, Hahn D, Kempná P, Hofer G, Nuoffer JM, Mullis PE, Flück CE. Metformin inhibits human androgen production by regulating steroidogenic enzymes HSD3B2 and CYP17A1 and complex I activity of the respiratory chain. Endocrinology 2012; 153:4354-66. [PMID: 22778212 DOI: 10.1210/en.2012-1145] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformin's action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.
Collapse
Affiliation(s)
- Andrea Hirsch
- Department of Pediatrics, Division of Pediatric Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Torres RC, Batista MM, Pons AH, Silva AR, Cordeiro RSB, Martins MA, E Silva PMR, Carvalho VF. Activation of PPARγ by restores mast cell numbers and reactivity in alloxan-diabetic rats by reducing the systemic glucocorticoid levels. Eur J Pharmacol 2012; 691:261-7. [PMID: 22713549 DOI: 10.1016/j.ejphar.2012.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/04/2012] [Accepted: 06/09/2012] [Indexed: 01/26/2023]
Abstract
Mast cell function and survival have been shown to be down-regulated under diabetic conditions. This study investigates the role of the peroxisome proliferator-activated receptor (PPAR)-γ in reducing mast cell number and reactivity in diabetic rats. The effect of rosiglitazone on mast cell apoptosis was also evaluated. Diabetes was induced by intravenous injection of alloxan into fasted rats and PPARγ agonist rosiglitazone and/or specific antagonist 2-chloro-5-nitrobenzanilide (GW9662) were administered 3 day after diabetes induction, once daily for 18 consecutive days. Mast cell apoptosis and plasma corticosterone levels were evaluated by TUNEL and radioimmunoassay, respectively. Treatment with rosiglitazone restored mast cell numbers in the pleural cavity and mesenteric tissue of diabetic rats. Rosiglitazone also significantly reversed the diabetes-induced reduction of histamine release by mast cells, as measured by fluorescence, following activation with the antigen in vitro. Increased apoptosis in mast cells from diabetic rats were inhibited by rosiglitazone. Moreover, we noted that the increase in plasma corticosterone levels in diabetic rats was inhibited by rosiglitazone. In addition, GW9662 blocked the ability of rosiglitazone to restore baseline numbers of mast cells and plasma corticosterone in diabetic rats. In conclusion, our findings showed that rosiglitazone restored the number and reactivity of mast cells in diabetic rats, accompanied with a suppression of apoptosis, in parallel with impairment of diabetes hypercorticolism, indicating that PPARγ has an important role in these phenomena.
Collapse
|
31
|
Hirsch A, Hahn D, Kempná P, Hofer G, Mullis PE, Nuoffer JM, Flück CE. Role of AMP-activated protein kinase on steroid hormone biosynthesis in adrenal NCI-H295R cells. PLoS One 2012; 7:e30956. [PMID: 22295121 PMCID: PMC3266282 DOI: 10.1371/journal.pone.0030956] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/27/2011] [Indexed: 11/24/2022] Open
Abstract
Regulation of human androgen biosynthesis is poorly understood. However, detailed knowledge is needed to eventually solve disorders with androgen dysbalance. We showed that starvation growth conditions shift steroidogenesis of human adrenal NCI-H295R cells towards androgen production attributable to decreased HSD3B2 expression and activity and increased CYP17A1 phosphorylation and 17,20-lyase activity. Generally, starvation induces stress and energy deprivation that need to be counteracted to maintain proper cell functions. AMP-activated protein kinase (AMPK) is a master energy sensor that regulates cellular energy balance. AMPK regulates steroidogenesis in the gonad. Therefore, we investigated whether AMPK is also a regulator of adrenal steroidogenesis. We hypothesized that starvation uses AMPK signaling to enhance androgen production in NCI-H295R cells. We found that AMPK subunits are expressed in NCI-H295 cells, normal adrenal tissue and human as well as pig ovary cells. Starvation growth conditions decreased phosphorylation, but not activity of AMPK in NCI-H295 cells. In contrast, the AMPK activator 5-aminoimidazole-4-carboxamide (AICAR) increased AMPKα phosphorylation and increased CYP17A1-17,20 lyase activity. Compound C (an AMPK inhibitor), directly inhibited CYP17A1 activities and can therefore not be used for AMPK signaling studies in steroidogenesis. HSD3B2 activity was neither altered by AICAR nor compound C. Starvation did not affect mitochondrial respiratory chain function in NCI-H295R cells suggesting that there is no indirect energy effect on AMPK through this avenue. In summary, starvation-mediated increase of androgen production in NCI-H295 cells does not seem to be mediated by AMPK signaling. But AMPK activation can enhance androgen production through a specific increase in CYP17A1-17,20 lyase activity.
Collapse
Affiliation(s)
- Andrea Hirsch
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Dagmar Hahn
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Petra Kempná
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Gaby Hofer
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Primus E. Mullis
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Jean-Marc Nuoffer
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| | - Christa E. Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- Department of Clinical Research, Inselspital, University Hospital, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Simpson CM, Calori GM, Giannoudis PV. Diabetes and fracture healing: the skeletal effects of diabetic drugs. Expert Opin Drug Saf 2011; 11:215-20. [PMID: 22145960 DOI: 10.1517/14740338.2012.639359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Over 39,000 diabetic patients are surgically treated for trauma and orthopaedic injuries annually in the UK, yet the effects of diabetic medications on the skeletal system is an under researched and under acknowledged field. AREAS COVERED This review covers all English language novel experimental data reports investigating the effects of the main classes of diabetic drugs on the skeletal system, specifically their effects on fracture healing, located through the literature search engines Medline and Web of Science. EXPERT OPINION Post-surgical gylcaemic control is paramount in insulin-controlled type 1 diabetic patients. Data on pharmacological control compounds used in type 2 diabetes are limited. Reports to date indicate thiazolidinediones to exert anti-osteogenic effects, in contrast to the observed osteogenic effects of biguanides. Ongoing research is desirable to guide future clinical recommendations.
Collapse
Affiliation(s)
- Christopher M Simpson
- University of Leeds, Leeds Teaching Hospitals NHS Trust, School of Medicine, Academic Dept. of Trauma and Orthopaedics, Leeds, UK
| | | | | |
Collapse
|
33
|
Sathyapalan T, Smith KA, Coady AM, Kilpatrick ES, Atkin SL. Atorvastatin therapy decreases androstenedione and dehydroepiandrosterone sulphate concentrations in patients with polycystic ovary syndrome: randomized controlled study. Ann Clin Biochem 2011; 49:80-5. [PMID: 21972424 DOI: 10.1258/acb.2011.011071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hyperandrogenaemia in polycystic ovary syndrome (PCOS) represents a composite of raised serum concentrations of testosterone, androstenedione, dehydroepiandrosterone (DHEA) and DHEA sulphate (DHEAS). In patients with PCOS, testosterone and androstenedione are primarily derived from the ovaries and DHEAS is a metabolite predominantly from the adrenals. It has been shown that atorvastatin reduces testosterone concentrations in patients with PCOS. The objective was to study the effect of atorvastatin on serum androstenedione and DHEAS concentrations in patients with PCOS. METHODS A randomized, double-blind, placebo-controlled study was performed. Forty medication-naive patients with PCOs were randomized to either atorvastatin 20mg daily or placebo for three months. Subsequently, a three-month extension study for all patients was undertaken with metformin 1500 mg daily. The main outcome measures were change in androstenedione and DHEAS concentrations. RESULTS The mean (SD) baseline androstenedione (5.7 [0.8] versus 5.6 [1.3] nmol/L; P = 0.69) and DHEAS (7.1 [1.0] versus 7.2 [1.2] μmol/L; P = 0.72) concentrations were comparable between two groups. There was a significant reduction of androstenedione (5.7 [0.8] versus 4.7 [0.7] nmol/L; P = 0.03) and DHEAS (7.1 [1.0] versus 6.0 [0.9] μmol/L; P = 0.02) with three months of atorvastatin while there were no significant changes with placebo. Three months' treatment with metformin maintained the reduction of androstenedione and DHEAS concentrations with atorvastatin compared with baseline. There were no changes in either DHEAS or androstenedione concentrations in the initial placebo group after 12 weeks of metformin. CONCLUSIONS Twelve weeks of atorvastatin significantly reduced both DHEAS and androstenedione contributing to the total reduction of androgen concentrations and indicating that the reduction of the hyperandrogenaemia could be partly due to the action of atorvastatin at both the ovary and the adrenal gland in PCOS.
Collapse
|
34
|
PPAR Gamma: Coordinating Metabolic and Immune Contributions to Female Fertility. PPAR Res 2011; 2008:243791. [PMID: 18309368 PMCID: PMC2246065 DOI: 10.1155/2008/243791] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/02/2007] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARG) regulates cellular functions such as adipogenesis and immune cell activation. However, new information has indicated additional roles of PPARG directing the cyclic changes that occur within ovarian tissue of female mammals, including those that facilitate the release of oocytes each estrous cycle. In addition to ovarian PPARG expression and function, many PPARG actions within adipocytes and macrophages have additional direct and indirect implications for ovarian function and female fertility. This encompasses the regulation of lipid uptake and transport, insulin sensitivity, glucose metabolism, and the regulation of inflammatory mediator synthesis and release. This review discusses the developing links between PPARG activity and female reproductive function, and highlights several mechanisms that may facilitate such a relationship.
Collapse
|
35
|
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32:81-151. [PMID: 21051590 PMCID: PMC3365799 DOI: 10.1210/er.2010-0013] [Citation(s) in RCA: 1460] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/20/2010] [Indexed: 02/08/2023]
Abstract
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Collapse
Affiliation(s)
- Walter L Miller
- Distinguished Professor of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA.
| | | |
Collapse
|
36
|
Berberoglu Z, Yazici AC, Demirag NG. Effects of rosiglitazone on bone mineral density and remodelling parameters in Postmenopausal diabetic women: a 2-year follow-up study. Clin Endocrinol (Oxf) 2010; 73:305-12. [PMID: 20148906 DOI: 10.1111/j.1365-2265.2010.03784.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the effect of rosiglitazone on bone metabolism and bone density. DESIGN An open-label, randomized, controlled trial of 24-month duration. Patients and measurements Obese, postmenopausal women with newly diagnosed diabetes were studied. Before and after the intervention, metabolic bone markers and bone density were assessed. RESULTS Twenty-six patients received rosiglitazone (4 mg/day), and 23 remained on diet alone. Serum bone-specific alkaline phosphatase and osteocalcin levels decreased by 17% (P < 0.001 vs control group) and 26% (P < 0.01 vs control group), respectively, in the rosiglitazone group. There were no significant changes in the deoxypyridinoline levels between the two groups. Annual bone loss at the trochanter and at the lumbar spine associated with each year of rosiglitazone use was 2.56% (P = 0.01 vs control group) and 2.18% (P < 0.01 vs control group), respectively. Femoral neck and total hip bone density declined significantly in both groups (P < 0.01, and P = 0.01, respectively) but was not significantly different between the two groups. CONCLUSIONS Rosiglitazone treatment adversely affects bone formation over a 2-year period. It increases bone loss at the lumbar spine and trochanter in postmenopausal, type 2 diabetic women. However, bone loss at the total hip did not differ with use of this agent.
Collapse
Affiliation(s)
- Zehra Berberoglu
- Department of Endocrinology and Metabolism, Turkiye Yuksek Ihtisas Education and Research Hospital, Ankara, Turkey.
| | | | | |
Collapse
|
37
|
Abstract
Polycystic ovary syndrome is the most common endocrinological disorder affecting 4-12% of women and also the most controversial. Metformin was logically introduced to establish the extent to which hyperinsulinaemia influences the pathogenesis of the condition. Early studies were very encouraging. Randomized controlled studies and several metaanalyses have changed the picture and put the drug that was once heralded as magic in a much contracted place. More work is needed to establish its right place in particular with regards to the prevention of many gestational and long-term complications.
Collapse
Affiliation(s)
- Hany Lashen
- Correspondence to: Hany Lashen, MB, BCh, MD, FRCOG Senior Clinical Lecturer in Obstetrics and Gynaecology, Honorary Consultant in Reproductive Medicine and Gynaecology, Reproductive and Developmental Unit / Department of Human Metabolism, University of Sheffield, Jessop Wing, Tree Root Walk, Sheffield, South Yorkshire S10 2SF, UK
| |
Collapse
|
38
|
Nishizato Y, Imai S, Yabuki M, Kido H, Komuro S. Development of relevant assay system to identify steroidogenic enzyme inhibitors. Toxicol In Vitro 2010; 24:677-85. [DOI: 10.1016/j.tiv.2009.07.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 07/03/2009] [Accepted: 07/31/2009] [Indexed: 11/17/2022]
|
39
|
Couto JA, Saraiva KLA, Barros CD, Udrisar DP, Peixoto CA, Vieira JSBC, Lima MC, Galdino SL, Pitta IR, Wanderley MI. Effect of chronic treatment with Rosiglitazone on Leydig cell steroidogenesis in rats: in vivo and ex vivo studies. Reprod Biol Endocrinol 2010; 8:13. [PMID: 20144211 PMCID: PMC2829566 DOI: 10.1186/1477-7827-8-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 02/09/2010] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The present study was designed to examine the effect of chronic treatment with rosiglitazone - thiazolidinedione used in the treatment of type 2 diabetes mellitus for its insulin sensitizing effects - on the Leydig cell steroidogenic capacity and expression of the steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (P450scc) in normal adult rats. METHODS Twelve adult male Wistar rats were treated with rosiglitazone (5 mg/kg) administered by gavage for 15 days. Twelve control animals were treated with the vehicle. The ability of rosiglitazone to directly affect the production of testosterone by Leydig cells ex vivo was evaluated using isolated Leydig cells from rosiglitazone-treated rats. Testosterone production was induced either by activators of the cAMP/PKA pathway (hCG and dbcAMP) or substrates of steroidogenesis [22(R)-hydroxy-cholesterol (22(R)-OH-C), which is a substrate for the P450scc enzyme, and pregnenolone, which is the product of the P450scc-catalyzed step]. Testosterone in plasma and in incubation medium was measured by radioimmunoassay. The StAR and P450scc expression was detected by immunocytochemistry. RESULTS The levels of total circulating testosterone were not altered by rosiglitazone treatment. A decrease in basal or induced testosterone production occurred in the Leydig cells of rosiglitazone-treated rats. The ultrastructural and immunocytochemical analysis of Leydig cells from rosiglitazone-treated rats revealed cells with characteristics of increased activity as well as increased StAR and P450scc expression, which are key proteins in androgen biosynthesis. However, a number of rosiglitazone-treated cells exhibited significant mitochondrial damage. CONCLUSION The results revealed that the Leydig cells from rosiglitazone-treated rats showed significant reduction in testosterone production under basal, hCG/dbcAMP- or 22 (R)-OH-C/pregnenolone-induced conditions, although increased labeling of StAR and P450scc was detected in these cells by immunocytochemistry. The ultrastructural study suggested that the lower levels of testosterone produced by these cells could be due to mitochondrial damage induced by rosiglitazone.
Collapse
Affiliation(s)
- Janaína A Couto
- Department of Morphology and Physiology, Universidade Federal Rural de Pernambuco, Recife, 52.171-900, Brazil
| | - Karina LA Saraiva
- Ultrastructure Laboratory, Aggeu Magalhães Research Center (FIOCRUZ) and Center for Strategic Technologies of the Northeast (CETENE), Recife, 50.670-901, Brazil
| | - Cleiton D Barros
- Department of Antibiotics, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Daniel P Udrisar
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Christina A Peixoto
- Ultrastructure Laboratory, Aggeu Magalhães Research Center (FIOCRUZ) and Center for Strategic Technologies of the Northeast (CETENE), Recife, 50.670-901, Brazil
| | - Juliany SB César Vieira
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Maria C Lima
- Department of Antibiotics, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Suely L Galdino
- Department of Antibiotics, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Ivan R Pitta
- Department of Antibiotics, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| | - Maria I Wanderley
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, 50.670-901, Brazil
| |
Collapse
|
40
|
Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev 2009; 30:883-925. [PMID: 19887492 DOI: 10.1210/er.2009-0016] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Masculinization depends on adequate production of testosterone by the fetal testis within a specific "masculinization programming window." Disorders resulting from subtle deficiencies in this process are common in humans, and environmental exposures/lifestyle could contribute causally because common therapeutic and environmental compounds can affect steroidogenesis. This evidence derives mainly from rodent studies, but because there are major species differences in regulation of steroidogenesis in the fetal testis, this may not always be a guide to potential effects in the human. In addition to direct study of the effects of compounds on steroidogenesis, information also derives from study of masculinization disorders that result from mutations in genes in pathways regulating steroidogenesis. This review addresses this issue by critically reviewing the comparative timing of production and regulation of steroidogenesis in the fetal testis of humans and of rodents and its susceptibility to disruption; where there is limited information for the fetus, evidence from effects on steroidogenesis in the adult testis is considered. There are a number of fundamental regulatory differences between the human and rodent fetal testis, most notably in the importance of paracrine vs. endocrine drives during masculinization such that inactivating LH receptor mutations block masculinization in humans but not in rodents. Other large differences involve the steroidogenic response to estrogens and GnRH analogs and possibly phthalates, whereas for other compounds there may be differences in sensitivity to disruption (ketoconazole). This comparison identifies steroidogenic targets that are either vulnerable (mitochondrial cholesterol transport, CYP11A, CYP17) or not (cholesterol uptake) to chemical interference.
Collapse
Affiliation(s)
- Hayley M Scott
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | | | | |
Collapse
|
41
|
Activation of PPARγ by Rosiglitazone does not negatively impact male sex steroid hormones in diabetic rats. PPAR Res 2009; 2009:101857. [PMID: 19536350 PMCID: PMC2696180 DOI: 10.1155/2009/101857] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/17/2009] [Accepted: 04/29/2009] [Indexed: 01/09/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) activation decreased serum testosterone (T) in women with hyperthecosis and/or polycystic ovary syndrome and reduced the conversion of androgens to estradiol (E2) in female rats. This implies modulation of female sex steroid hormones by PPARγ. It is not clear if PPARγ modulates sex steroid hormones in diabetic males. Because PPARγ activation by thiazolidinedione increased insulin sensitivity in type 2 diabetes, understanding the long term impact of PPARγ activation on steroid sex hormones in males is critical. Our objective was to determine the effect of PPARγ activation on serum and intratesticular T, luteinizing hormone (LH), follicle stimulating hormone (FSH) and E2 concentrations in male Zucker diabetic fatty (ZDF) rats treated with the PPARγ agonist rosiglitazone (a thiazolidinedione). Treatment for eight weeks increased PPARγ mRNA and protein in the testis and elevated serum adiponectin, an adipokine marker for PPARγ activation. PPARγ activation did not alter serum or intratesticular T concentrations. In contrast, serum T level but not intratesticular T was reduced by diabetes. Neither diabetes nor PPARγ activation altered serum E2 or gonadotropins FSH and LH concentrations. The results suggest that activation of PPARγ by rosiglitazone has no negative impact on sex hormones in male ZDF rats.
Collapse
|
42
|
In polycystic ovary syndrome, adrenal steroids are regulated differently in the morning versus in response to nutrient intake. Fertil Steril 2009; 93:1192-9. [PMID: 19342030 DOI: 10.1016/j.fertnstert.2009.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate adrenal steroid regulation in polycystic ovary syndrome. DESIGN Five-hour oral glucose tolerance test (OGTT) and frequently sampled-intravenous gluclose tolerance test. SETTING University research center. PATIENT(S) Thirty patients. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Anthropometrics, leptin, cortisol, DHEAS, glucose, insulin. RESULT(S) Morning cortisol correlated with sensitivity index (SI, r = .540), DHEAS correlated inversely with age (r = -.6359), body mass index (BMI, r = -.6199), fat mass (r = -0.630), and leptin (r = -0.5676). Between the second and fourth hour of OGTT, cortisol changes (Delta) exhibited three patterns: I, responders (n = 9, Delta: 10.7 +/- 1.0 microg/dL); II, nonresponders (n = 10, Delta: -3.5 +/- 0.6 microg/dL); III, intermediates (n = 11, Delta: 4.3 +/- 1.0 microg/dL). Compared with nonresponders, responders were more obese (BMI: 37.0 +/- 1.6 vs. 31.7 +/- 1.8 kg/m(2)); had higher leptin (28.9 +/- 1.7 vs. 24.1 +/- 1.1 ng/mL), and lower DHEAS (133 +/- 12 vs. 236 +/- 32 ng/mL), higher glucose at 1 h of OGTT (195 +/- 13 vs. 131 +/- 12 mg/dL), higher area under the curve (AUC)(Glucose) (332 +/- 20 vs. 265 +/- 17 mg/dL), higher AUC(Insulin) (244 +/- 50 vs. 125 +/- 30 muU/mL), and lower nadir glucose (61 +/- 2 vs. 70 +/- 2 mg/dL). CONCLUSION(S) Obesity and insulin resistance are associated with lower morning cortisol and DHEAS but increased cortisol and DHEA responses after glucose ingestion. Morning steroid levels may not reflect the day-long exposure.
Collapse
|
43
|
Aroda VR, Ciaraldi TP, Burke P, Mudaliar S, Clopton P, Phillips S, Chang RJ, Henry RR. Metabolic and hormonal changes induced by pioglitazone in polycystic ovary syndrome: a randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab 2009; 94:469-76. [PMID: 18984667 PMCID: PMC2646515 DOI: 10.1210/jc.2008-1133] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is characterized by insulin resistance, compensatory hyperinsulinemia, increased prevalence of impaired glucose tolerance, and increased ovarian androgen biosynthesis. OBJECTIVE The aim of the study was to evaluate effects of pioglitazone on whole body insulin action and ovarian androgen biosynthesis in PCOS. DESIGN We performed a randomized placebo-controlled trial. SETTING The study was conducted at the Special Diagnostic and Treatment Unit of the Veterans Affairs Medical Center, San Diego, and the University of California, San Diego, General Clinical Research Center. PATIENTS OR OTHER PARTICIPANTS A total of 23 subjects with PCOS were evaluated at baseline and end of treatment. Six age- and body mass index-matched women without PCOS were normal controls for baseline evaluation. INTERVENTION Subjects with PCOS were randomized to oral placebo or pioglitazone 45 mg daily for 6 months. MAIN OUTCOME MEASURE(S) The primary outcome measures were whole body insulin action as measured by hyperinsulinemic euglycemic clamp and ovarian androgen biosynthesis as measured by leuprolide-stimulated production of 17-hydroxyprogesterone (17-OHP). RESULTS Compared with placebo, pioglitazone treatment significantly improved multiple measures of insulin action, including glucose disposal rate (P < 0.01), 2-h glucose during 75-g oral glucose tolerance test (P < 0.01), area under the curve glucose during oral glucose tolerance test (P < 0.01), serum adiponectin (P < 0.01), and fasting hyperinsulinemia (P < 0.01). Compared to placebo, pioglitazone treatment reduced the increment of leuprolide-stimulated 17-OHP (P < 0.02). Improvements in glucose disposal rate correlated with reductions in 17-OHP stimulation (P < 0.02). CONCLUSIONS Compared to placebo, pioglitazone treatment in PCOS was associated with improvements in insulin action and glucose homeostasis and ameliorated the hyperandrogenic ovarian response.
Collapse
Affiliation(s)
- Vanita R Aroda
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Palomba S, Falbo A, Zullo F, Orio F. Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: a comprehensive review. Endocr Rev 2009; 30:1-50. [PMID: 19056992 DOI: 10.1210/er.2008-0030] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metformin is an insulin sensitizer widely used for the treatment of patients affected by type 2 diabetes mellitus. Because many women with polycystic ovary syndrome (PCOS) are insulin resistant, metformin was introduced in clinical practice to treat these patients also. Moreover, metformin's effect has other targets beside its insulin-sensitizing action. The present review was aimed at describing all evidence-based and potential uses of metformin in PCOS patients. In particular, we will analyze the uses of metformin not only for the treatment of all PCOS-related disturbances such as menstrual disorders, anovulatory infertility, increased abortion, or complicated pregnancy risk, hyperandrogenism, endometrial, metabolic and cardiovascular abnormalities, but also for the prevention of the syndrome.
Collapse
Affiliation(s)
- Stefano Palomba
- Department of Gynecology and Obstetrics, University "Magna Graecia" of Catanzaro, Via Pio X, 88100 Catanzaro, Italy.
| | | | | | | |
Collapse
|
45
|
Mathur R, Alexander CJ, Yano J, Trivax B, Azziz R. Use of metformin in polycystic ovary syndrome. Am J Obstet Gynecol 2008; 199:596-609. [PMID: 19084097 DOI: 10.1016/j.ajog.2008.09.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/29/2008] [Accepted: 09/03/2008] [Indexed: 12/25/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) have a myriad of phenotypic and clinical features that may guide therapeutic options for metabolic protection and ovulation induction. The use of metformin may prove beneficial in a subset of the population of women with PCOS. Hyperinsulinemia, as demonstrated by elevated insulin levels on a 2-hour 75-g load glucose tolerance test, is an important parameter in deciding whether or not to initiate metformin therapy to women with PCOS with the hope of preventing or delaying the onset of type 2 diabetes mellitus (DM). Cardiovascular risk factors including markers of subclinical inflammation, and dyslipidemia may also be improved by metformin therapy. For ovulation induction, metformin is not as effective as clomiphene citrate as first-line therapy for women with PCOS. There are no clear data to suggest that metformin reduces pregnancy loss or improves pregnancy outcome in PCOS, and it is currently recommended that metformin be discontinued with the first positive pregnancy test result, unless there are other medical indications (eg, type 2 DM). This review addresses practical management guidelines for the uses of metformin in women with PCOS.
Collapse
|
46
|
Successful pregnancies treated with pioglitazone in infertile patients with polycystic ovary syndrome. Fertil Steril 2008; 90:709-13. [DOI: 10.1016/j.fertnstert.2007.01.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 01/10/2007] [Accepted: 01/10/2007] [Indexed: 11/21/2022]
|
47
|
Jensterle M, Janez A, Mlinar B, Marc J, Prezelj J, Pfeifer M. Impact of metformin and rosiglitazone treatment on glucose transporter 4 mRNA expression in women with polycystic ovary syndrome. Eur J Endocrinol 2008; 158:793-801. [PMID: 18322300 DOI: 10.1530/eje-07-0857] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The insulin-resistant state of the polycystic ovary syndrome (PCOS) was found to be associated with a decreased glucose transporter GLUT4 expression in the insulin target tissues. This study was performed to explore whether the well-known clinical, hormonal and metabolic efficacy of metformin or rosiglitazone treatment is reflected in the modulation of adipocyte GLUT4 mRNA expression in patients with PCOS. METHODS We enrolled 35 women with PCOS. They received either metformin or rosiglitazone for 6 months. A history, blood samples for the measurement of androgens and s.c. adipose tissue samples were taken at baseline and end point. Quantification of GLUT4 mRNA expression in adipose tissue was performed using real-time quantitative PCR. Homeostasis model assessment (HOMA(IR)) score calculation was applied as a measure for insulin resistance (IR). RESULTS GLUT4 mRNA expression in adipose tissue increased significantly in both groups (P<0.001). The increase was more pronounced in the rosiglitazone group (P=0.040). There was a statistically significant improvement of HOMA(IR) in both groups (P=0.008). After treatment, frequencies of menstrual bleeding were significantly higher (P<0.001) and serum total testosterone levels significantly lower in both groups (P=0.001). CONCLUSIONS A 6-month therapy with insulin sensitizers resulted in marked improvement in adipose tissue GLUT4 mRNA expression in PCOS patients, rosiglitazone being more effective when compared with metformin. The augmentation of the insulin signal transduction was accompanied by a significant improvement of HOMA(IR), menstrual pattern and androgen profile.
Collapse
Affiliation(s)
- Mojca Jensterle
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre, Zaloska 7, SI-1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
48
|
Bremer AA, Miller WL. The serine phosphorylation hypothesis of polycystic ovary syndrome: a unifying mechanism for hyperandrogenemia and insulin resistance. Fertil Steril 2008; 89:1039-1048. [PMID: 18433749 DOI: 10.1016/j.fertnstert.2008.02.091] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/20/2007] [Accepted: 02/07/2008] [Indexed: 11/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy affecting 4%-8% of reproductive-aged women. The syndrome is characterized by hyperandrogenemia and disordered gonadotropin secretion and is often associated with insulin resistance. However, rather than being one disease entity caused by a single molecular defect, PCOS under its current diagnostic criteria most likely includes a number of distinct disease processes with similar clinical phenotypes but different pathophysiologic mechanisms. The serine phosphorylation hypothesis can potentially explain two major features of PCOS--hyperandrogenemia and insulin resistance. Further defining the molecular mechanisms regulating androgen biosynthesis and insulin action in PCOS patients will permit a better understanding of the syndrome and may lead to the generation of novel specific pharmacologic therapies.
Collapse
Affiliation(s)
- Andrew A Bremer
- Department of Pediatrics, Division of Endocrinology, University of California-Davis, Sacramento, California.
| | - Walter L Miller
- Department of Pediatrics, Division of Endocrinology, University of California-San Francisco, San Francisco, California
| |
Collapse
|
49
|
Drug insight: insulin-sensitizing drugs in the treatment of polycystic ovary syndrome--a reappraisal. ACTA ACUST UNITED AC 2008; 4:272-83. [PMID: 18364705 DOI: 10.1038/ncpendmet0787] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 01/02/2008] [Indexed: 12/30/2022]
Abstract
The recognition that insulin resistance has a pivotal role in the pathogenesis of polycystic ovary syndrome (PCOS) revolutionized our understanding of this complex disorder. PCOS causes major metabolic and reproductive morbidities, including substantially increased risk for type 2 diabetes mellitus and the metabolic syndrome. Insulin-sensitizing drugs (ISDs) ameliorate reproductive abnormalities, restore ovulation and regular menses, increase pregnancy rates and reduce androgenic symptoms in affected women with PCOS. Accordingly, ISDs, specifically metformin, have been widely adopted as therapy for this condition. A recent, large, randomized, multicenter, clinical trial that assessed live-birth rates rather than surrogate end points suggested that metformin alone is inferior to clomiphene citrate in treating infertility associated with PCOS. There is, furthermore, no evidence to support the use of metformin during pregnancy to prevent spontaneous abortions or gestational diabetes mellitus in women with PCOS. Renewed safety concerns about thiazolidinediones followed recent studies that reported increased cardiovascular morbidity with these agents. These concerns might preclude thiazolidinedione use in otherwise healthy women with PCOS. Finally, although ISDs improve insulin action and cardiovascular disease risk, there is no evidence that they provide long-term health benefits in PCOS. This article discusses the role of ISDs in PCOS in light of these new data.
Collapse
|
50
|
Brannian JD, Eyster KM, Weber M, Diggins M. Pioglitazone administration alters ovarian gene expression in aging obese lethal yellow mice. Reprod Biol Endocrinol 2008; 6:10. [PMID: 18348723 PMCID: PMC2279121 DOI: 10.1186/1477-7827-6-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 03/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Women with polycystic ovary syndrome (PCOS) are often treated with insulin-sensitizing agents, e.g. thiazolidinediones (TZD), which have been shown to reduce androgen levels and improved ovulatory function. Acting via peroxisome proliferator-activated receptor (PPAR) gamma, TZD alter the expression of a large variety of genes. Lethal yellow (LY; C57BL/6J Ay/a) mice, possessing a mutation (Ay) in the agouti gene locus, exhibit progressive obesity, reproductive dysfunction, and altered metabolic regulation similar to women with PCOS. The current study was designed to test the hypothesis that prolonged treatment of aging LY mice with the TZD, pioglitazone, alters the ovarian expression of genes that may impact reproduction. METHODS Female LY mice received daily oral doses of either 0.01 mg pioglitazone (n = 4) or an equal volume of vehicle (DMSO; n = 4) for 8 weeks. At the end of treatment, ovaries were removed and DNA microarrays were used to analyze differential gene expression. RESULTS Twenty-seven genes showed at least a two-fold difference in ovarian expression with pioglitazone treatment. These included leptin, angiopoietin, angiopoietin-like 4, Foxa3, PGE1 receptor, resistin-like molecule-alpha (RELM), and actin-related protein 6 homolog (ARP6). For most altered genes, pioglitazone changed levels of expression to those seen in untreated C57BL/6J(a/a) non-mutant lean mice. CONCLUSION TZD administration may influence ovarian function via numerous diverse mechanisms that may or may not be directly related to insulin/IGF signaling.
Collapse
Affiliation(s)
- John D Brannian
- Department of Obstetrics and Gynecology and Division of Basic Biomedical Sciences Sanford School of Medicine of The University of South Dakota, Sioux Falls and Vermillion, SD, USA
- Sanford Research USD, Sioux Falls, SD, USA
| | - Kathleen M Eyster
- Department of Obstetrics and Gynecology and Division of Basic Biomedical Sciences Sanford School of Medicine of The University of South Dakota, Sioux Falls and Vermillion, SD, USA
| | - Mitch Weber
- Department of Biology, Augustana College, Sioux Falls, SD, USA
| | - Maureen Diggins
- Department of Biology, Augustana College, Sioux Falls, SD, USA
| |
Collapse
|