1
|
Fan W, Sun X, Yang C, Wan J, Luo H, Liao B. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:151-167. [PMID: 36450332 DOI: 10.1016/j.pbiomolbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
The primary pacemaking activity of the heart is determined by a spontaneous action potential (AP) within sinoatrial node (SAN) cells. This unique AP generation relies on two mechanisms: membrane clocks and calcium clocks. Nonhomologous arrhythmias are caused by several functional and structural changes in the myocardium. MicroRNAs (miRNAs) are essential regulators of gene expression in cardiomyocytes. These miRNAs play a vital role in regulating the stability of cardiac conduction and in the remodeling process that leads to arrhythmias. Although it remains unclear how miRNAs regulate the expression and function of ion channels in the heart, these regulatory mechanisms may support the development of emerging therapies. This study discusses the spread and generation of AP in the SAN as well as the regulation of miRNAs and individual ion channels. Arrhythmogenicity studies on ion channels will provide a research basis for miRNA modulation as a new therapeutic target.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Xuemei Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Chao Yang
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Hongli Luo
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| | - Bin Liao
- Department of Cardiovascular Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
2
|
Silva VLD, Souza SLBD, Mota GAF, Campos DHS, Melo AB, Vileigas DF, Sant’Ana PG, Coelho PM, Bazan SGZ, Leopoldo AS, Cicogna AC. Cenário Disfuncional dos Principais Componentes Responsáveis pelo Equilíbrio do Trânsito de Cálcio Miocárdico na Insuficiência Cardíaca Induzida por Estenose Aórtica. Arq Bras Cardiol 2021; 118:463-475. [PMID: 35262582 PMCID: PMC8856692 DOI: 10.36660/abc.20200618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
Fundamento O remodelamento cardíaco patológico se caracteriza por disfunção diastólica e sistólica, levando à insuficiência cardíaca. Neste contexto, o cenário disfuncional do trânsito de cálcio miocárdico (Ca2+) tem sido pouco estudado. Um modelo experimental de estenose aórtica tem sido extensamente utilizado para aprimorar os conhecimentos sobre os principais mecanismos do remodelamento patológico cardíaco. Objetivo Entender o processo disfuncional dos principais componentes responsáveis pelo equilíbrio do cálcio miocárdico e sua influência sobre a função cardíaca na insuficiência cardíaca induzida pela estenose aórtica. Métodos Ratos Wistar de 21 dias de idade foram distribuídos em dois grupos: controle (placebo; n=28) e estenose aórtica (EaO; n=18). A função cardíaca foi analisada com o ecocardiograma, músculo papilar isolado e cardiomiócitos isolados. No ensaio do músculo papilar, SERCA2a e a atividade do canal de Ca2+ do tipo L foram avaliados. O ensaio de cardiomiócitos isolados avaliou o trânsito de cálcio. A expressão proteica da proteínas do trânsito de cálcio foi analisada com o western blot. Os resultados foram estatisticamente significativos quando p <0,05. Resultados Os músculos papilares e cardiomiócitos dos corações no grupo EaO demonstraram falhas mecânicas. Os ratos com EaO apresentaram menor tempo de pico do Ca2+, menor sensibilidade das miofibrilas do Ca2+, prejuízos nos processos de entrada e recaptura de cálcio pelo retículo sarcoplasmático, bem como disfunção no canal de cálcio do tipo L (CCTL). Além disso, os animais com EaO apresentaram maior expressão de SERCA2a, CCTL e trocador de Na+/Ca2+. Conclusão Insuficiência cardíaca sistólica e diastólica devido à estenose aórtica supravalvular acarretou comprometimento da entrada de Ca2+ celular e inibição da recaptura de cálcio pelo retículo sarcoplasmático devido à disfunção no CCTL e SERCA2a, assim como mudanças no trânsito de cálcio e na expressão das principais proteínas responsáveis pela homeostase de Ca2+ celular.
Collapse
|
3
|
Trum M, Riechel J, Wagner S. Cardioprotection by SGLT2 Inhibitors-Does It All Come Down to Na +? Int J Mol Sci 2021; 22:ijms22157976. [PMID: 34360742 PMCID: PMC8347698 DOI: 10.3390/ijms22157976] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2i) are emerging as a new treatment strategy for heart failure with reduced ejection fraction (HFrEF) and—depending on the wistfully awaited results of two clinical trials (DELIVER and EMPEROR-Preserved)—may be the first drug class to improve cardiovascular outcomes in patients suffering from heart failure with preserved ejection fraction (HFpEF). Proposed mechanisms of action of this class of drugs are diverse and include metabolic and hemodynamic effects as well as effects on inflammation, neurohumoral activation, and intracellular ion homeostasis. In this review we focus on the growing body of evidence for SGLT2i-mediated effects on cardiac intracellular Na+ as an upstream mechanism. Therefore, we will first give a short overview of physiological cardiomyocyte Na+ handling and its deterioration in heart failure. On this basis we discuss the salutary effects of SGLT2i on Na+ homeostasis by influencing NHE1 activity, late INa as well as CaMKII activity. Finally, we highlight the potential relevance of these effects for systolic and diastolic dysfunction as well as arrhythmogenesis.
Collapse
|
4
|
Njegic A, Wilson C, Cartwright EJ. Targeting Ca 2 + Handling Proteins for the Treatment of Heart Failure and Arrhythmias. Front Physiol 2020; 11:1068. [PMID: 33013458 PMCID: PMC7498719 DOI: 10.3389/fphys.2020.01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Diseases of the heart, such as heart failure and cardiac arrhythmias, are a growing socio-economic burden. Calcium (Ca2+) dysregulation is key hallmark of the failing myocardium and has long been touted as a potential therapeutic target in the treatment of a variety of cardiovascular diseases (CVD). In the heart, Ca2+ is essential for maintaining normal cardiac function through the generation of the cardiac action potential and its involvement in excitation contraction coupling. As such, the proteins which regulate Ca2+ cycling and signaling play a vital role in maintaining Ca2+ homeostasis. Changes to the expression levels and function of Ca2+-channels, pumps and associated intracellular handling proteins contribute to altered Ca2+ homeostasis in CVD. The remodeling of Ca2+-handling proteins therefore results in impaired Ca2+ cycling, Ca2+ leak from the sarcoplasmic reticulum and reduced Ca2+ clearance, all of which contributes to increased intracellular Ca2+. Currently, approved treatments for targeting Ca2+ handling dysfunction in CVD are focused on Ca2+ channel blockers. However, whilst Ca2+ channel blockers have been successful in the treatment of some arrhythmic disorders, they are not universally prescribed to heart failure patients owing to their ability to depress cardiac function. Despite the progress in CVD treatments, there remains a clear need for novel therapeutic approaches which are able to reverse pathophysiology associated with heart failure and arrhythmias. Given that heart failure and cardiac arrhythmias are closely associated with altered Ca2+ homeostasis, this review will address the molecular changes to proteins associated with both Ca2+-handling and -signaling; their potential as novel therapeutic targets will be discussed in the context of pre-clinical and, where available, clinical data.
Collapse
Affiliation(s)
- Alexandra Njegic
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Ferdous A, Wang ZV, Luo Y, Li DL, Luo X, Schiattarella GG, Altamirano F, May HI, Battiprolu PK, Nguyen A, Rothermel BA, Lavandero S, Gillette TG, Hill JA. FoxO1-Dio2 signaling axis governs cardiomyocyte thyroid hormone metabolism and hypertrophic growth. Nat Commun 2020; 11:2551. [PMID: 32439985 PMCID: PMC7242347 DOI: 10.1038/s41467-020-16345-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Forkhead box O (FoxO) proteins and thyroid hormone (TH) have well established roles in cardiovascular morphogenesis and remodeling. However, specific role(s) of individual FoxO family members in stress-induced growth and remodeling of cardiomyocytes remains unknown. Here, we report that FoxO1, but not FoxO3, activity is essential for reciprocal regulation of types II and III iodothyronine deiodinases (Dio2 and Dio3, respectively), key enzymes involved in intracellular TH metabolism. We further show that Dio2 is a direct transcriptional target of FoxO1, and the FoxO1-Dio2 axis governs TH-induced hypertrophic growth of neonatal cardiomyocytes in vitro and in vivo. Utilizing transverse aortic constriction as a model of hemodynamic stress in wild-type and cardiomyocyte-restricted FoxO1 knockout mice, we unveil an essential role for the FoxO1-Dio2 axis in afterload-induced pathological cardiac remodeling and activation of TRα1. These findings demonstrate a previously unrecognized FoxO1-Dio2 signaling axis in stress-induced cardiomyocyte growth and remodeling and intracellular TH homeostasis.
Collapse
Affiliation(s)
- Anwarul Ferdous
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Zhao V Wang
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Yuxuan Luo
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Dan L Li
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Xiang Luo
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Gabriele G Schiattarella
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Francisco Altamirano
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Herman I May
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Pavan K Battiprolu
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Annie Nguyen
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Sergio Lavandero
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
- Advanced Center for Chronic Diseases (ACCDiS) and Corporacion Centro de Estudios Cientificos de las Enfermedades Cronicas (CECEC), Universidad de Chile, Santiago, 8380492, Chile
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA.
| |
Collapse
|
6
|
Li MCH, O'Brien TJ, Todaro M, Powell KL. Acquired cardiac channelopathies in epilepsy: Evidence, mechanisms, and clinical significance. Epilepsia 2019; 60:1753-1767. [PMID: 31353444 DOI: 10.1111/epi.16301] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/07/2019] [Accepted: 07/07/2019] [Indexed: 12/13/2022]
Abstract
There is growing evidence that cardiac dysfunction in patients with chronic epilepsy could play a pathogenic role in sudden unexpected death in epilepsy (SUDEP). Recent animal studies have revealed that epilepsy secondarily alters the expression of cardiac ion channels alongside abnormal cardiac electrophysiology and remodeling. These molecular findings represent novel evidence for an acquired cardiac channelopathy in epilepsy, distinct from inherited ion channels mutations associated with cardiocerebral phenotypes. Specifically, seizure activity has been shown to alter the messenger RNA (mRNA) and protein expression of voltage-gated sodium channels (Nav 1.1, Nav 1.5), voltage-gated potassium channels (Kv 4.2, Kv 4.3), sodium-calcium exchangers (NCX1), and nonspecific cation-conducting channels (HCN2, HCN4). The pathophysiology may involve autonomic dysfunction and structural cardiac disease, as both are independently associated with epilepsy and ion channel dysregulation. Indeed, in vivo and in vitro studies of cardiac pathology reveal a complex network of signaling pathways and transcription factors regulating ion channel expression in the setting of sympathetic overactivity, cardiac failure, and hypertrophy. Other mechanisms such as circulating inflammatory mediators or exogenous effects of antiepileptic medications lack evidence. Moreover, an acquired cardiac channelopathy may underlie the electrophysiologic cardiac abnormalities seen in chronic epilepsy, potentially contributing to the increased risk of malignant arrhythmias and sudden death. Therefore, further investigation is necessary to establish whether cardiac ion channel dysregulation similarly occurs in patients with epilepsy, and to characterize any pathogenic relationship with SUDEP.
Collapse
Affiliation(s)
- Michael C H Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Marian Todaro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kim L Powell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Matasic DS, Brenner C, London B. Emerging potential benefits of modulating NAD + metabolism in cardiovascular disease. Am J Physiol Heart Circ Physiol 2017; 314:H839-H852. [PMID: 29351465 DOI: 10.1152/ajpheart.00409.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) and related metabolites are central mediators of fuel oxidation and bioenergetics within cardiomyocytes. Additionally, NAD+ is required for the activity of multifunctional enzymes, including sirtuins and poly(ADP-ribose) polymerases that regulate posttranslational modifications, DNA damage responses, and Ca2+ signaling. Recent research has indicated that NAD+ participates in a multitude of processes dysregulated in cardiovascular diseases. Therefore, supplementation of NAD+ precursors, including nicotinamide riboside that boosts or repletes the NAD+ metabolome, may be cardioprotective. This review examines the molecular physiology and preclinical data with respect to NAD+ precursors in heart failure-related cardiac remodeling, ischemic-reperfusion injury, and arrhythmias. In addition, alternative NAD+-boosting strategies and potential systemic effects of NAD+ supplementation with implications on cardiovascular health and disease are surveyed.
Collapse
Affiliation(s)
- Daniel S Matasic
- Division of Cardiovascular Medicine, Department of Medicine, University of Iowa , Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Charles Brenner
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa.,Department of Biochemistry, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Barry London
- Division of Cardiovascular Medicine, Department of Medicine, University of Iowa , Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
8
|
Olgar Y, Celen MC, Yamasan BE, Ozturk N, Turan B, Ozdemir S. Rho-kinase inhibition reverses impaired Ca 2+ handling and associated left ventricular dysfunction in pressure overload-induced cardiac hypertrophy. Cell Calcium 2017; 67:81-90. [PMID: 29029794 DOI: 10.1016/j.ceca.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/24/2017] [Accepted: 09/09/2017] [Indexed: 10/18/2022]
|
9
|
Duong E, Xiao J, Qi XY, Nattel S. MicroRNA-135a regulates sodium-calcium exchanger gene expression and cardiac electrical activity. Heart Rhythm 2017; 14:739-748. [PMID: 28188930 DOI: 10.1016/j.hrthm.2017.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Complete atrioventricular block (CAVB) causes arrhythmogenic remodeling and increases the risk of torsades de pointes arrhythmias. MicroRNAs (miRNAs) are key regulators of gene expression that contribute to cardiac remodeling. OBJECTIVE The purpose of this study was to assess miRNA changes after CAVB and identify novel candidates potentially involved in arrhythmogenic cardiac remodeling. METHODS CAVB was induced in mice via His-bundle ablation. Expression of miRNAs was evaluated by pan-miRNA microarray with quantitative polymerase chain reaction (qPCR) confirmation, on samples obtained 24 hours and 4 weeks post-CAVB. MiRNA target prediction algorithms were used to identify potential target genes. Targets confirmed by luciferase assays in HEK293 cells were followed up with overexpression studies in neonatal rat ventricular myocytes to evaluate regulation using real time- quantitative polymerase chain reaction (RT-qPCR), western blots, cell shortening measurements, and fura-2 Ca2+ fluorescence imaging. RESULTS Of >400 miRNAs assayed, only miRNA-135a (miR-135a) was altered at 24 hours, down-regulated 78% (P <.001). Algorithms predicted miR-135a regulation of the sodium-calcium exchanger type 1 (NCX1). miR-135a transfection suppressed NCX1 3'UTR reporter activity by 42% (P <.001), mRNA expression by 34% (P <.001), and protein levels by 45% (P <.001) vs noncoding miRNA control. miR-135a overexpression reduced spontaneous beating frequency of neonatal rat ventricular myocytes by 63% (P <.001) while slowing decay (by 56%, P <.05) of caffeine-induced Ca2+ transients. miR-135a also suppressed the Ca2+ loading effects of ouabain and ouabain-induced spontaneous Ca2+ release events. CONCLUSION NCX1 is negatively regulated by miR-135a, a microRNA that is down-regulated in the heart after CAVB in mice. By controlling NCX1 expression, miR-135a modulates cardiomyocyte automaticity, Ca2+ extrusion, and arrhythmogenic Ca2+ loading/spontaneous Ca2+ release events. Therefore, miR-135a may contribute to proarrhythmic remodeling after CAVB.
Collapse
Affiliation(s)
- Eric Duong
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Jiening Xiao
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Xiao Yan Qi
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada
| | - Stanley Nattel
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada; Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
10
|
Wasson S, Reddy HK, Dohrmann ML. Current Perspectives of Electrical Remodeling and Its Therapeutic Implications. J Cardiovasc Pharmacol Ther 2016; 9:129-44. [PMID: 15309249 DOI: 10.1177/107424840400900208] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Electrical remodeling involves alterations in the electrophysiologic milieu of myocardium in various disease states, such as ventricular hypertrophy, heart failure, atrial tachyarrhythmias, myocardial ischemia, and infarction that are associated with cardiac arrhythmias. Although research in this area dates back to early part of the 19th century, we still lack the exact knowledge of ionic remodeling, the role of various genes and channel proteins, and their relevance for the newer antiarrhythmic therapies. Structural remodeling may also have an impact on the electrical remodeling process, although differences in both structural and electrical remodeling are associated with different disease states. Various electrophysiologic, cellular, and structural alterations, including anisotropic conduction, increased intracellular calcium levels, and gap junction remodeling predispose to increased dispersion of action potential duration and refractoriness. This constitutes a favorable substrate for early and late afterdepolarizations and reentrant arrhythmias. Studying the role of ionic remodeling in the initiation and propagation of cardiac arrhythmias has significant relevance for developing newer antiarrhythmic therapies, for identifying patients at risk of developing fatal arrhythmias, and for implementing effective preventive measures. Further research is required to understand the specific effects of individual ion channel remodeling, to understand the signal transduction mechanisms, and to address whether detrimental effects of electrical remodeling can be altered.
Collapse
Affiliation(s)
- Sanjeev Wasson
- Division of Cardiology, University of Missouri Hospital, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
11
|
Ujihara Y, Iwasaki K, Takatsu S, Hashimoto K, Naruse K, Mohri S, Katanosaka Y. Induced NCX1 overexpression attenuates pressure overload-induced pathological cardiac remodelling. Cardiovasc Res 2016; 111:348-61. [PMID: 27229460 DOI: 10.1093/cvr/cvw113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/22/2016] [Indexed: 11/12/2022] Open
Abstract
AIMS Although increased Na(+)/Ca(2+) exchanger 1 (NCX1) expression is observed during heart failure (HF), the pathological role of NCX1 during the progression of HF remains unclear. We examined alterations of NCX1 expression and activity in hearts after transverse aortic constriction (TAC) surgery and explored whether NCX1 influences pressure overload-induced pathological cardiac remodelling. METHODS AND RESULTS We generated novel transgenic mice in which NCX1 expression is controlled by a cardiac-specific, doxycycline (DOX)-dependent promoter. In the absence of DOX, TAC surgery caused substantial chamber dilation with a gradual decrease in contractility by 16 weeks. Cardiomyocytes showed a decline in contractility with abnormal Ca(2+) handling during excitation-contraction (E-C) coupling. Reduced NCX1 activity was observed 8 weeks after TAC and was still apparent at 17 weeks. Induced NCX1 overexpression by DOX treatment starting 8 weeks after TAC returned NCX1 activity to pre-TAC levels and prevented chamber dilation with cardiac dysfunction. DOX treatment not only upregulated NCX1 expression in TAC-operated hearts but also returned L-type Ca(2+) channel and sarcoplasmic reticulum (SR) Ca(2+) ATPase expression levels to those in sham-operated hearts. In DOX-treated myocytes, contractility, T-tubule integrity, synchrony of Ca(2+) release from the SR, and Ca(2+) handling during E-C coupling was preserved 16 weeks after TAC surgery. In addition, DOX treatment attenuated the down-regulation of survival signalling and up-regulation of apoptosis signalling 16 weeks after TAC surgery. CONCLUSION Induced overexpression of NCX1 attenuated pressure overload-induced pathological cardiac remodelling. Thus, maintaining NCX1 activity may be a potential therapeutic strategy for preventing the progression of HF.
Collapse
Affiliation(s)
- Yoshihiro Ujihara
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| | - Keiichiro Iwasaki
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satomi Takatsu
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ken Hashimoto
- Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Mohri
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan Department of Physiology, Kawasaki Medical School, Kurashiki, Japan
| | - Yuki Katanosaka
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
12
|
Voelkl J, Alesutan I, Primessnig U, Feger M, Mia S, Jungmann A, Castor T, Viereck R, Stöckigt F, Borst O, Gawaz M, Schrickel JW, Metzler B, Katus HA, Müller OJ, Pieske B, Heinzel FR, Lang F. AMP-activated protein kinase α1-sensitive activation of AP-1 in cardiomyocytes. J Mol Cell Cardiol 2016; 97:36-43. [PMID: 27106803 DOI: 10.1016/j.yjmcc.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/12/2023]
Abstract
AMP-activated protein kinase (Ampk) regulates myocardial energy metabolism and plays a crucial role in the response to cell stress. In the failing heart, an isoform shift of the predominant Ampkα2 to the Ampkα1 was observed. The present study explored possible isoform specific effects of Ampkα1 in cardiomyocytes. To this end, experiments were performed in HL-1 cardiomyocytes, as well as in Ampkα1-deficient and corresponding wild-type mice and mice following AAV9-mediated cardiac overexpression of constitutively active Ampkα1. As a result, in HL-1 cardiomyocytes, overexpression of constitutively active Ampkα1 increased the phosphorylation of Pkcζ. Constitutively active Ampkα1 further increased AP-1-dependent transcriptional activity and mRNA expression of the AP-1 target genes c-Fos, Il6 and Ncx1, effects blunted by Pkcζ silencing. In HL-1 cardiomyocytes, angiotensin-II activated AP-1, an effect blunted by silencing of Ampkα1 and Pkcζ, but not of Ampkα2. In wild-type mice, angiotensin-II infusion increased cardiac Ampkα1 and cardiac Pkcζ protein levels, as well as c-Fos, Il6 and Ncx1 mRNA expression, effects blunted in Ampkα1-deficient mice. Pressure overload by transverse aortic constriction (TAC) similarly increased cardiac Ampkα1 and Pkcζ abundance as well as c-Fos, Il6 and Ncx1 mRNA expression, effects again blunted in Ampkα1-deficient mice. AAV9-mediated cardiac overexpression of constitutively active Ampkα1 increased Pkcζ protein abundance and the mRNA expression of c-Fos, Il6 and Ncx1 in cardiac tissue. In conclusion, Ampkα1 promotes myocardial AP-1 activation in a Pkcζ-dependent manner and thus contributes to cardiac stress signaling.
Collapse
Affiliation(s)
- Jakob Voelkl
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Ioana Alesutan
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Uwe Primessnig
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martina Feger
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Sobuj Mia
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Andreas Jungmann
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Tatsiana Castor
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Robert Viereck
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Florian Stöckigt
- Department of Medicine - Cardiology, University Hospital Bonn, Sigmund-Freud-Str.25, 53127 Bonn, Germany
| | - Oliver Borst
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany
| | - Jan Wilko Schrickel
- Department of Medicine - Cardiology, University Hospital Bonn, Sigmund-Freud-Str.25, 53127 Bonn, Germany
| | - Bernhard Metzler
- Department of Medicine - Cardiology, Medical University Innsbruck, Anichstr.35, 6020 Innsbruck, Austria
| | - Hugo A Katus
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Oliver J Müller
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany
| | - Burkert Pieske
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Cardiology, University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Frank R Heinzel
- Department of Cardiology, Charité, Campus Virchow & German Centre for Cardiovascular Research (DZHK), Charite & Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Florian Lang
- Department of Physiology & Cardiology and Cardiovascular Medicine, University of Tübingen, Gmelinstr.5/Otfried-Mueller-Str. 10, 72076, Tübingen, Germany.
| |
Collapse
|
13
|
Kim JO, Song DW, Kwon EJ, Hong SE, Song HK, Min CK, Kim DH. miR-185 plays an anti-hypertrophic role in the heart via multiple targets in the calcium-signaling pathways. PLoS One 2015; 10:e0122509. [PMID: 25767890 PMCID: PMC4358957 DOI: 10.1371/journal.pone.0122509] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/11/2015] [Indexed: 01/15/2023] Open
Abstract
MicroRNA (miRNA) is an endogenous non-coding RNA species that either inhibits RNA translation or promotes degradation of target mRNAs. miRNAs often regulate cellular signaling by targeting multiple genes within the pathways. In the present study, using Gene Set Analysis, a useful bioinformatics tool to identify miRNAs with multiple target genes in the same pathways, we identified miR-185 as a key candidate regulator of cardiac hypertrophy. Using a mouse model, we found that miR-185 was significantly down-regulated in myocardial cells during cardiac hypertrophy induced by transverse aortic constriction. To confirm that miR-185 is an anti-hypertrophic miRNA, genetic manipulation studies such as overexpression and knock-down of miR-185 in neonatal rat ventricular myocytes were conducted. The results showed that up-regulation of miR-185 led to anti-hypertrophic effects, while down-regulation led to pro-hypertrophic effects, suggesting that miR-185 has an anti-hypertrophic role in the heart. Our study further identified Camk2d, Ncx1, and Nfatc3 as direct targets of miR-185. The activity of Nuclear Factor of Activated T-cell (NFAT) and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) was negatively regulated by miR-185 as assessed by NFAT-luciferase activity and western blotting. The expression of phospho-phospholamban (Thr-17), a marker of CaMKIIδ activity, was also significantly reduced by miR-185. In conclusion, miR-185 effectively blocked cardiac hypertrophy signaling through multiple targets, rendering it a potential drug target for diseases such as heart failure.
Collapse
Affiliation(s)
- Jin Ock Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Dong Woo Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Eun Jeong Kwon
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Seong-Eui Hong
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Hong Ki Song
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Choon Kee Min
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| |
Collapse
|
14
|
Rain S, Bos DDSG, Handoko ML, Westerhof N, Stienen G, Ottenheijm C, Goebel M, Dorfmüller P, Guignabert C, Humbert M, Bogaard HJ, Remedios CD, Saripalli C, Hidalgo CG, Granzier HL, Vonk-Noordegraaf A, van der Velden J, de Man FS. Protein changes contributing to right ventricular cardiomyocyte diastolic dysfunction in pulmonary arterial hypertension. J Am Heart Assoc 2014; 3:e000716. [PMID: 24895160 PMCID: PMC4309054 DOI: 10.1161/jaha.113.000716] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Right ventricular (RV) diastolic function is impaired in patients with pulmonary arterial hypertension (PAH). Our previous study showed that elevated cardiomyocyte stiffness and myofilament Ca2+ sensitivity underlie diastolic dysfunction in PAH. This study investigates protein modifications contributing to cellular diastolic dysfunction in PAH. Methods and Results RV samples from PAH patients undergoing heart‐lung transplantation were compared to non‐failing donors (Don). Titin stiffness contribution to RV diastolic dysfunction was determined by Western‐blot analyses using antibodies to protein‐kinase‐A (PKA), Cα (PKCα) and Ca2+/calmoduling‐dependent‐kinase (CamKIIδ) titin and phospholamban (PLN) phosphorylation sites: N2B (Ser469), PEVK (Ser170 and Ser26), and PLN (Thr17), respectively. PKA and PKCα sites were significantly less phosphorylated in PAH compared with donors (P<0.0001). To test the functional relevance of PKA‐, PKCα‐, and CamKIIδ‐mediated titin phosphorylation, we measured the stiffness of single RV cardiomyocytes before and after kinase incubation. PKA significantly decreased PAH RV cardiomyocyte diastolic stiffness, PKCα further increased stiffness while CamKIIδ had no major effect. CamKIIδ activation was determined indirectly by measuring PLN Thr17phosphorylation level. No significant changes were found between the groups. Myofilament Ca2+ sensitivity is mediated by sarcomeric troponin I (cTnI) phosphorylation. We observed increased unphosphorylated cTnI in PAH compared with donors (P<0.05) and reduced PKA‐mediated cTnI phosphorylation (Ser22/23) (P<0.001). Finally, alterations in Ca2+‐handling proteins contribute to RV diastolic dysfunction due to insufficient diastolic Ca2+ clearance. PAH SERCA2a levels and PLN phosphorylation were significantly reduced compared with donors (P<0.05). Conclusions Increased titin stiffness, reduced cTnI phosphorylation, and altered levels of phosphorylation of Ca2+ handling proteins contribute to RV diastolic dysfunction in PAH.
Collapse
Affiliation(s)
- Silvia Rain
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.) Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.)
| | - Denielli da Silva Goncalves Bos
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.)
| | - M Louis Handoko
- Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.) Department of Cardiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (L.H.)
| | - Nico Westerhof
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.) Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.)
| | - Ger Stienen
- Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.) Department of Physics and Astronomy, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (G.S.)
| | - Coen Ottenheijm
- Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.)
| | - Max Goebel
- Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.)
| | - Peter Dorfmüller
- Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France (P.D., C.G., M.H.) Inserm U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (P.D., C.G., M.H.)
| | - Christophe Guignabert
- Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France (P.D., C.G., M.H.) Inserm U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (P.D., C.G., M.H.)
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Sud, Le Kremlin-Bicêtre, France (P.D., C.G., M.H.) Inserm U999, LabEx LERMIT, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (P.D., C.G., M.H.) Service d'Anatomie Pathologique, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France (M.H.) Assistance Publique-Hôspitaux de Paris, Service de Pneumologie, Département Hôspital Universitaire, Thorax innovation, (DHU-TORINO), Hôpital Bicêtre, France (M.H.)
| | - Harm-Jan Bogaard
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.)
| | - Cris Dos Remedios
- Muscle Research Unit, Discipline of Anatomy & Histology, Bosch Institute, The University of Sydney, Sydney, Australia (C.R.)
| | - Chandra Saripalli
- Sarver Molecular Cardiovascular Research Program, Department of Physiology, University of Arizona, Tucson, AZ, The Netherlands (C.S., C.G.H., H.L.G.)
| | - Carlos G Hidalgo
- Sarver Molecular Cardiovascular Research Program, Department of Physiology, University of Arizona, Tucson, AZ, The Netherlands (C.S., C.G.H., H.L.G.)
| | - Henk L Granzier
- Sarver Molecular Cardiovascular Research Program, Department of Physiology, University of Arizona, Tucson, AZ, The Netherlands (C.S., C.G.H., H.L.G.)
| | - Anton Vonk-Noordegraaf
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.)
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.) ICIN - The Netherlands Heart Institute, Amsterdam, The Netherlands (J.V.)
| | - Frances S de Man
- Department of Pulmonology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., D.S.G.B., N.W., H.J.B., A.V.N., F.S.M.) Department of Physiology, VU University Medical Center/Institute for Cardiovascular Research, Amsterdam, The Netherlands (S.R., L.H., N.W., G.S., C.O., M.G., J.V., F.S.M.)
| |
Collapse
|
15
|
Ottolia M, Torres N, Bridge JHB, Philipson KD, Goldhaber JI. Na/Ca exchange and contraction of the heart. J Mol Cell Cardiol 2013; 61:28-33. [PMID: 23770352 DOI: 10.1016/j.yjmcc.2013.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 12/19/2022]
Abstract
Sodium-calcium exchange (NCX) is the major calcium (Ca) efflux mechanism of ventricular cardiomyocytes. Consequently the exchanger plays a critical role in the regulation of cellular Ca content and hence contractility. Reductions in Ca efflux by the exchanger, such as those produced by elevated intracellular sodium (Na) in response to cardiac glycosides, raise sarcoplasmic reticulum (SR) Ca stores. The result is an increased Ca transient and cardiac contractility. Enhanced Ca efflux activity by the exchanger, for example during heart failure, may reduce diadic cleft Ca and excitation-contraction (EC) coupling gain. This aggravates the impaired contractility associated with SR Ca ATPase dysfunction and reduced SR Ca load in failing heart muscle. Recent data from our laboratories indicate that NCX can also impact the efficiency of EC coupling and contractility independent of SR Ca load through diadic cleft priming with Ca during the upstroke of the action potential. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Michela Ottolia
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
16
|
Wang J, Gao E, Chan TO, Zhang XQ, Song J, Shang X, Koch WJ, Feldman AM, Cheung JY. Induced overexpression of Na(+)/Ca(2+) exchanger does not aggravate myocardial dysfunction induced by transverse aortic constriction. J Card Fail 2013; 19:60-70. [PMID: 23273595 DOI: 10.1016/j.cardfail.2012.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alterations in expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) have been implicated in the pathogenesis of heart failure. METHODS AND RESULTS Using transgenic mice in which expression of rat NCX1 was induced at 5 weeks of age, we performed transverse aortic constriction (TAC) at 8 weeks and examined cardiac and myocyte function at 15-18 weeks after TAC (age 23-26 weeks). TAC induced left ventricular (LV) and myocyte hypertrophy and increased myocardial fibrosis in both wild-type (WT) and NCX1-overexpressed mice. NCX1 and phosphorylated ryanodine receptor expression was increased by TAC, whereas sarco(endo)plasmic reticulum Ca(2+)-ATPase levels were decreased by TAC. Action potential duration was prolonged by TAC, but to a greater extent in NCX1 myocytes. Na(+)/Ca(2+) exchange current was similar between WT-TAC and WT-sham myocytes, but was higher in NCX1-TAC myocytes. Both myocyte contraction and [Ca(2+)](i) transient amplitudes were reduced in WT-TAC myocytes, but restored to WT-sham levels in NCX1-TAC myocytes. Despite improvement in single myocyte contractility and Ca(2+) dynamics, induced NCX1 overexpression in TAC animals did not ameliorate LV hypertrophy, increase ejection fraction, or enhance inotropic (maximal first derivative of LV pressure rise, +dP/dt) responses to isoproterenol. CONCLUSIONS In pressure-overload hypertrophy, induced overexpression of NCX1 corrected myocyte contractile and [Ca(2+)](i) transient abnormalities but did not aggravate or improve myocardial dysfunction.
Collapse
Affiliation(s)
- Jufang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Descazeaud V, Mestre E, Marquet P, Essig M. Calcineurin regulation of cytoskeleton organization: a new paradigm to analyse the effects of calcineurin inhibitors on the kidney. J Cell Mol Med 2012; 16:218-27. [PMID: 21801302 PMCID: PMC3823286 DOI: 10.1111/j.1582-4934.2011.01398.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Calcineurin is a serine/threonine phosphatase originally involved in the immune response but is also known for its role as a central mediator in various non-immunological intracellular signals. The nuclear factor of activated T cell (NFAT) proteins are the most widely described substrates of calcineurin, but ongoing work has uncovered other substrates among which are the cytoskeleton organizing proteins (i.e. cofilin, synaptopodin, WAVE-1). Control over cytoskeletal proteins is of outmost interest because the phenotypic properties of cells are dependent on cytoskeleton architecture integrity, while rearrangements of the cytoskeleton are implicated in both physiological and pathological processes. Previous works investigating the role of calcineurin on the cytoskeleton have focused on neurite elongation, myocyte hypertrophic response and recently in kidney cells structure. Nuclear factor of activated T cell activation is expectedly identified in the signalling pathways for calcineurin-induced cytoskeleton organization, however new NFAT-independent pathways have also been uncovered. The aim of this review is to summarize the current knowledge on the effects of calcineurin on cytoskeletal proteins and related intracellular pathways. These newly described properties of calcineurin on cytoskeletal proteins may explain some of the beneficial or deleterious effects observed in kidney cells associated with the use of the calcineurin inhibitors, cyclosporine and tacrolimus.
Collapse
|
18
|
Gudmundsson H, Curran J, Kashef F, Snyder JS, Smith SA, Vargas-Pinto P, Bonilla IM, Weiss RM, Anderson ME, Binkley P, Felder RB, Carnes CA, Band H, Hund TJ, Mohler PJ. Differential regulation of EHD3 in human and mammalian heart failure. J Mol Cell Cardiol 2012; 52:1183-90. [PMID: 22406195 DOI: 10.1016/j.yjmcc.2012.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/12/2012] [Accepted: 02/23/2012] [Indexed: 12/25/2022]
Abstract
Electrical and structural remodeling during the progression of cardiovascular disease is associated with adverse outcomes subjecting affected patients to overt heart failure (HF) and/or sudden death. Dysfunction in integral membrane protein trafficking has long been linked with maladaptive electrical remodeling. However, little is known regarding the molecular identity or function of these intracellular targeting pathways in the heart. Eps15 homology domain-containing (EHD) gene products (EHD1-4) are polypeptides linked with endosomal trafficking, membrane protein recycling, and lipid homeostasis in a wide variety of cell types. EHD3 was recently established as a critical mediator of membrane protein trafficking in the heart. Here, we investigate the potential link between EHD3 function and heart disease. Using four different HF models including ischemic rat heart, pressure overloaded mouse heart, chronic pacing-induced canine heart, and non-ischemic failing human myocardium we provide the first evidence that EHD3 levels are consistently increased in HF. Notably, the expression of the Na/Ca exchanger (NCX1), targeted by EHD3 in heart is similarly elevated in HF. Finally, we identify a molecular pathway for EHD3 regulation in heart failure downstream of reactive oxygen species and angiotensin II signaling. Together, our new data identify EHD3 as a previously unrecognized component of the cardiac remodeling pathway.
Collapse
Affiliation(s)
- Hjalti Gudmundsson
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu HB, Yang BF, Dong DL. Calcineurin and electrical remodeling in pathologic cardiac hypertrophy. Trends Cardiovasc Med 2011; 20:148-53. [PMID: 21742270 DOI: 10.1016/j.tcm.2010.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
Calcineurin is a cytoplasmic Ca(2+)/calmodulin-dependent protein phosphatase that contributes to cardiac hypertrophy. Numerous studies have demonstrated that calcineurin/nuclear factor of activated T cell pathway affects the architecture of the heart under pathologic conditions, and the effects of calcineurin/nuclear factor of activated T cell pathway on cardiac hypertrophy have been well reviewed. Cardiac electrical remodeling is generally accompanied with the cardiac hypertrophy, and alteration of cardiac ion channel activity also leads to the changes of calcineurin activity and cardiac hypertrophy. Many studies have linked calcineurin with changes of a variety of ion channels, but the therapeutic approaches to target calcineurin for correcting cardiac electrical disturbance have not been formulated. Here, we review the recent progress in calcineurin and electrical remodeling in pathologic cardiac hypertrophy.
Collapse
Affiliation(s)
- Hui-Bin Liu
- Department of Pharmacology, Harbin Medical University, Harbin 150086, PR China
| | | | | |
Collapse
|
20
|
Xu L, Chen J, Li XY, Ren S, Huang CX, Wu G, Li XY, Jiang XJ. Analysis of Na(+)/Ca (2+) exchanger (NCX) function and current in murine cardiac myocytes during heart failure. Mol Biol Rep 2011; 39:3847-52. [PMID: 21750914 DOI: 10.1007/s11033-011-1163-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 06/30/2011] [Indexed: 11/29/2022]
Abstract
Na(+)/Ca(2+) exchanger (NCX) plays important roles in cardiac electrical activity and calcium homeostasis. NCX current (I(NCX)) shows transmural gradient across left ventricle in many species. Previous studies demonstrated that NCX expression was increased and transmural gradient of I(NCX) was disrupted in failing heart, but the mechanisms underlying I(NCX) remodeling still remain unknown. In present study, we used patch clamp technique to record I(NCX) from subepicardial (EPI) myocytes and subendocardial (ENDO) myocytes isolated from sham operation (SO) mice and heart failure (HF) mice. Our results showed that I(NCX) was higher in normal EPI cells compared with that in ENDO, whatever for forward mode or reverse mode. In HF group, I(NCX) was significantly up-regulated, but EPI-ENDO difference was disrupted because of a more increase of I(NCX) in ENDO myocytes. In order to explore the molecular mechanism underlying remodeling of I(NCX) in failing heart, we detected the protein expression of NCX1 and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) by Western blot. We found that CaMKII activity was dramatically enhanced and parallel with the expression of NCX1 in failing heart. Our study demonstrated that transmural gradient of I(NCX) existed in murine left ventricle, and increased activity of CaMKII should account for I(NCX) remodeling in failing heart.
Collapse
Affiliation(s)
- Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Cutler MJ, Jeyaraj D, Rosenbaum DS. Cardiac electrical remodeling in health and disease. Trends Pharmacol Sci 2011; 32:174-80. [PMID: 21316769 DOI: 10.1016/j.tips.2010.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/25/2010] [Accepted: 12/01/2010] [Indexed: 01/12/2023]
Abstract
Electrical remodeling of the heart takes place in response to both functional (altered electrical activation) and structural (including heart failure and myocardial infarction) stressors. These electrophysiological changes produce a substrate that is prone to malignant ventricular arrhythmias. Understanding the cellular and molecular mechanisms of electrical remodeling is important in elucidating potential therapeutic targets designed to alter maladaptive electrical remodeling. For example, altered patterns of electrical activation lead primarily to electrical remodeling, without significant structural remodeling. By contrast, secondary remodeling arises in response to a structural insult. In this article we review cardiac electrical remodeling (predominantly in the ventricle) with an emphasis on the mechanisms causing these adaptations. These mechanisms suggest novel therapeutic targets for the management or prevention of the most devastating manifestation of heart disease, sudden cardiac death (SCD).
Collapse
Affiliation(s)
- Michael J Cutler
- The Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
22
|
Wang HS, Arvanitis DA, Dong M, Niklewski PJ, Zhao W, Lam CK, Kranias EG, Sanoudou D. SERCA2a superinhibition by human phospholamban triggers electrical and structural remodeling in mouse hearts. Physiol Genomics 2011; 43:357-64. [PMID: 21266500 DOI: 10.1152/physiolgenomics.00032.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phospholamban (PLN), the reversible inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), is a key regulator of myocyte Ca(2+) cycling with a significant role in heart failure. We previously showed that the single amino acid difference between human and mouse PLN results in increased inhibition of Ca(2+) cycling and cardiac remodeling and attenuated stress responses in transgenic mice expressing the human PLN (hPLN) in the null background. Here we dissect the molecular and electrophysiological processes triggered by the superinhibitory hPLN in the mouse. Using a multidisciplinary approach, we performed global gene expression analysis, electrophysiology, and mathematical simulations on hPLN mice. We identified significant changes in a series of Na(+) and K(+) homeostasis genes/proteins (including Kcnd2, Scn9a, Slc8a1) and ionic conductance (including L-type Ca(2+) current, Na(+)/Ca(2+) exchanger, transient outward K(+) current). Simulation analysis suggests that this electrical remodeling has a critical role in rescuing cardiac function by improving sarcoplasmic reticulum Ca(2+) load and overall Ca(2+) dynamics. Furthermore, multiple structural and transcription factor gene expression changes indicate an ongoing structural remodeling process, favoring hypertrophy and myogenesis while suppressing apoptosis and progression to heart failure. Our findings expand current understanding of the hPLN function and provide additional insights into the downstream implications of SERCA2a superinhibition in the mammalian heart.
Collapse
Affiliation(s)
- Hong-Sheng Wang
- Department of Pharmacology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang Y, Hill JA. Electrophysiological remodeling in heart failure. J Mol Cell Cardiol 2010; 48:619-32. [PMID: 20096285 DOI: 10.1016/j.yjmcc.2010.01.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 11/25/2022]
Abstract
Heart failure affects nearly 6 million Americans, with a half-million new cases emerging each year. Whereas up to 50% of heart failure patients die of arrhythmia, the diverse mechanisms underlying heart failure-associated arrhythmia are poorly understood. As a consequence, effectiveness of antiarrhythmic pharmacotherapy remains elusive. Here, we review recent advances in our understanding of heart failure-associated molecular events impacting the electrical function of the myocardium. We approach this from an anatomical standpoint, summarizing recent insights gleaned from pre-clinical models and discussing their relevance to human heart failure.
Collapse
Affiliation(s)
- Yanggan Wang
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
24
|
Maillet M, Davis J, Auger-Messier M, York A, Osinska H, Piquereau J, Lorenz JN, Robbins J, Ventura-Clapier R, Molkentin JD. Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function. J Biol Chem 2009; 285:6716-24. [PMID: 20037164 PMCID: PMC2825466 DOI: 10.1074/jbc.m109.056143] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calcineurin is a protein phosphatase that is uniquely regulated by sustained increases in intracellular Ca2+ following signal transduction events. Calcineurin controls cellular proliferation, differentiation, apoptosis, and inducible gene expression following stress and neuroendocrine stimulation. In the adult heart, calcineurin regulates hypertrophic growth of cardiomyocytes in response to pathologic insults that are associated with altered Ca2+ handling. Here we determined that calcineurin signaling is directly linked to the proper control of cardiac contractility, rhythm, and the expression of Ca2+-handling genes in the heart. Our approach involved a cardiomyocyte-specific deletion using a CnB1-LoxP-targeted allele in mice and three different cardiac-expressing Cre alleles/transgenes. Deletion of calcineurin with the Nkx2.5-Cre knock-in allele resulted in lethality at 1 day after birth due to altered right ventricular morphogenesis, reduced ventricular trabeculation, septal defects, and valvular overgrowth. Slightly later deletion of calcineurin with the α-myosin heavy chain Cre transgene resulted in lethality in early mid adulthood that was characterized by substantial reductions in cardiac contractility, severe arrhythmia, and reduced myocyte content in the heart. Young calcineurin heart-deleted mice died suddenly after pressure overload stimulation or neuroendocrine agonist infusion, and telemetric monitoring of older mice showed arrhythmia leading to sudden death. Mechanistically, loss of calcineurin reduced expression of key Ca2+-handling genes that likely lead to arrhythmia and reduced contractility. Loss of calcineurin also directly impacted cellular proliferation in the postnatal developing heart. These results reveal multiple mechanisms whereby calcineurin regulates cardiac development and myocyte contractility.
Collapse
Affiliation(s)
- Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tandan S, Wang Y, Wang TT, Jiang N, Hall DD, Hell JW, Luo X, Rothermel BA, Hill JA. Physical and functional interaction between calcineurin and the cardiac L-type Ca2+ channel. Circ Res 2009; 105:51-60. [PMID: 19478199 DOI: 10.1161/circresaha.109.199828] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The L-type Ca(2+) channel (LTCC) is the major mediator of Ca(2+) influx in cardiomyocytes, leading to both mechanical contraction and activation of signaling cascades. Among these Ca(2+)-activated cascades is calcineurin, a protein phosphatase that promotes hypertrophic growth of the heart. Coimmunoprecipitations from heart extracts and pulldowns using heterologously expressed proteins provided evidence for direct binding of calcineurin at both the N and C termini of alpha(1)1.2. At the C terminus, calcineurin bound specifically at amino acids 1943 to 1971, adjacent to a well-characterized protein kinase (PK)A/PKC/PKG phospho-acceptor site Ser1928. In vitro assays demonstrated that calcineurin can dephosphorylate alpha(1)1.2. Channel function was increased in voltage-clamp recordings of I(Ca,L) from cultured cardiomyocytes expressing constitutively active calcineurin, consistent with previous observations in cardiac hypertrophy in vivo. Conversely, acute suppression of calcineurin pharmacologically or with specific peptides decreased I(Ca,L). These data reveal direct physical interaction between the LTCC and calcineurin in heart. Furthermore, they demonstrate that calcineurin induces robust increases in I(Ca,L) and highlight calcineurin as a key modulator of pathological electrical remodeling in cardiac hypertrophy.
Collapse
Affiliation(s)
- Samvit Tandan
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, 75390-8573, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yuan Q, Han P, Dong M, Ren X, Zhou X, Chen S, Jones WK, Chu G, Wang HS, Kranias EG. Partial downregulation of junctin enhances cardiac calcium cycling without eliciting ventricular arrhythmias in mice. Am J Physiol Heart Circ Physiol 2009; 296:H1484-90. [PMID: 19286959 DOI: 10.1152/ajpheart.00229.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human failing hearts exhibit significant decreases in junctin expression levels with almost nondetectable levels, which may be associated with premature death, induced by lethal cardiac arrhythmias, based on mouse models. However, the specific contribution of junctin to the delayed afterdepolarizations has been difficult to delineate in the phase of increased Na(+)-Ca(2+) exchanger activity accompanying junctin ablation. Thus we characterized the heterozygous junctin-deficient hearts, which expressed 54% of junctin levels and similar increases in Na(+)-Ca(2+) exchanger activity, as the null model. Cardiac contractile parameters, Ca(2+) transients, and sarcoplasmic reticulum Ca(2+) content were significantly increased in junctin heterozygous hearts, although they did not reach the levels of null hearts. However, Ca(2+) spark properties were not altered in heterozygous cardiomyocytes, compared with wild-types, and there were no aftercontractions elicited by the increased frequency of stimulation in the presence of isoproterenol, unlike the junctin-deficient cells. Furthermore, heterozygous mice did not exhibit an increased susceptibility to arrhythmia upon catecholamine challenge in vivo, and there were no premature deaths up to 1 yr of age. These findings suggest that a partial downregulation of junctin enhances sarcoplasmic reticulum Ca(2+) cycling but does not elicit cardiac arrhythmias even in the context of increased Na(+)-Ca(2+) exchanger activity.
Collapse
Affiliation(s)
- Qunying Yuan
- Dept. of Pharmacology and Cell Biophysics, Univ. of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cutler MJ, Rosenbaum DS, Dunlap ME. Structural and electrical remodeling as therapeutic targets in heart failure. J Electrocardiol 2008; 40:S1-7. [PMID: 17993305 DOI: 10.1016/j.jelectrocard.2007.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 05/30/2007] [Indexed: 10/22/2022]
Abstract
Heart failure is a progressive clinical syndrome that is characterized by remodeling of the myocardium in response to various stress signals. The past several years has seen remarkable progress in unraveling the molecular and cellular mechanisms of structural and electrical remodeling in HF. Improved understanding of the molecular mechanism of myocardial remodeling has resulted in improved HF therapies and revealed potentially novel therapeutic targets. This review discusses the mechanisms of myocardial remodeling in HF and their clinical manifestations. Current and investigational HF therapies targeting these mechanisms also will be discussed.
Collapse
Affiliation(s)
- Michael J Cutler
- Heart and Vascular Research Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH 44109-1998, USA
| | | | | |
Collapse
|
28
|
Roos KP, Jordan MC, Fishbein MC, Ritter MR, Friedlander M, Chang HC, Rahgozar P, Han T, Garcia AJ, MacLellan WR, Ross RS, Philipson KD. Hypertrophy and heart failure in mice overexpressing the cardiac sodium-calcium exchanger. J Card Fail 2007; 13:318-29. [PMID: 17517353 PMCID: PMC2017112 DOI: 10.1016/j.cardfail.2007.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2006] [Revised: 11/03/2006] [Accepted: 01/15/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND The cardiac sodium-calcium exchanger (NCX1) is a key sarcolemmal protein for the maintenance of calcium homeostasis in the heart. Because heart failure is associated with increased expression of NCX1, heterozygous (HET) and homozygous (HOM) transgenic mice overexpressing NCX1 were developed and evaluated. METHODS AND RESULTS The NCX1 transgenic mice display 2.3-fold (HET) and 3.1-fold (HOM) increases in exchanger activity from wild-type (WT) mice. Functional information was obtained by echocardiography and catheterizations before and after hemodynamic stress from pregnancy, treadmill exercise or transaortic constriction (TAC). HET and HOM mice exhibited hypertrophy and blunted responses with beta-adrenergic stimulation. Postpartum mice from all groups were hypertrophied, but only the HOM mice exhibited premature death from heart failure. HOM mice became exercise intolerant after 6 weeks of daily treadmill running. After 21 days TAC, HET, and HOM mice exhibited significant contractile dysfunction and 15% to 40% mortality with clinical evidence of heart failure. CONCLUSIONS Hemodynamic stress results in a compensated hypertrophy in WT mice, but NCX1 transgenic mice exhibit decreased contractile function and heart failure in proportion to their level of NCX1 expression. Thus exchanger overexpression in mice leads to abnormal calcium handling and a decompensatory transition to heart failure with stress.
Collapse
Affiliation(s)
- Kenneth P. Roos
- The Cardiovascular Research Laboratory Department of Physiology, David Geffen School of Medicine at UCLA Los Angeles, CA 90095-1751
| | - Maria C. Jordan
- The Cardiovascular Research Laboratory Department of Physiology, David Geffen School of Medicine at UCLA Los Angeles, CA 90095-1751
| | - Michael C. Fishbein
- The Cardiovascular Research Laboratory Department of Pathology David Geffen School of Medicine at UCLA Los Angeles, CA 90095-1751
| | - Matthew R. Ritter
- Department of Cell Biology The Scripps Research Institute La Jolla, CA 92037
| | - Martin Friedlander
- Department of Cell Biology The Scripps Research Institute La Jolla, CA 92037
| | - Helen C. Chang
- The Cardiovascular Research Laboratory Department of Physiology, David Geffen School of Medicine at UCLA Los Angeles, CA 90095-1751
| | - Paymon Rahgozar
- The Cardiovascular Research Laboratory Department of Physiology, David Geffen School of Medicine at UCLA Los Angeles, CA 90095-1751
| | - Tieyan Han
- The Cardiovascular Research Laboratory Department of Physiology, David Geffen School of Medicine at UCLA Los Angeles, CA 90095-1751
| | - Alejandro J. Garcia
- The Cardiovascular Research Laboratory Department of Medicine David Geffen School of Medicine at UCLA Los Angeles, CA 90095-1751
| | - W. Robb MacLellan
- The Cardiovascular Research Laboratory Department of Medicine David Geffen School of Medicine at UCLA Los Angeles, CA 90095-1751
| | - Robert S. Ross
- The Department of Medicine, UCSD School of Medicine and Veterans Administration San Diego Healthcare System, San Diego, CA 92161
| | - Kenneth D. Philipson
- The Cardiovascular Research Laboratory Department of Physiology, David Geffen School of Medicine at UCLA Los Angeles, CA 90095-1751
- The Cardiovascular Research Laboratory Department of Medicine David Geffen School of Medicine at UCLA Los Angeles, CA 90095-1751
| |
Collapse
|
29
|
Török TL. Electrogenic Na+/Ca2+-exchange of nerve and muscle cells. Prog Neurobiol 2007; 82:287-347. [PMID: 17673353 DOI: 10.1016/j.pneurobio.2007.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 04/12/2007] [Accepted: 06/12/2007] [Indexed: 12/19/2022]
Abstract
The plasma membrane Na(+)/Ca(2+)-exchanger is a bi-directional electrogenic (3Na(+):1Ca(2+)) and voltage-sensitive ion transport mechanism, which is mainly responsible for Ca(2+)-extrusion. The Na(+)-gradient, required for normal mode operation, is created by the Na(+)-pump, which is also electrogenic (3Na(+):2K(+)) and voltage-sensitive. The Na(+)/Ca(2+)-exchanger operational modes are very similar to those of the Na(+)-pump, except that the uncoupled flux (Na(+)-influx or -efflux?) is missing. The reversal potential of the exchanger is around -40 mV; therefore, during the upstroke of the AP it is probably transiently activated, leading to Ca(2+)-influx. The Na(+)/Ca(2+)-exchange is regulated by transported and non-transported external and internal cations, and shows ATP(i)-, pH- and temperature-dependence. The main problem in determining the role of Na(+)/Ca(2+)-exchange in excitation-secretion/contraction coupling is the lack of specific (mode-selective) blockers. During recent years, evidence has been accumulated for co-localisation of the Na(+)-pump, and the Na(+)/Ca(2+)-exchanger and their possible functional interaction in the "restricted" or "fuzzy space." In cardiac failure, the Na(+)-pump is down-regulated, while the exchanger is up-regulated. If the exchanger is working in normal mode (Ca(2+)-extrusion) during most of the cardiac cycle, upregulation of the exchanger may result in SR Ca(2+)-store depletion and further impairment in contractility. If so, a normal mode selective Na(+)/Ca(2+)-exchange inhibitor would be useful therapy for decompensation, and unlike CGs would not increase internal Na(+). In peripheral sympathetic nerves, pre-synaptic alpha(2)-receptors may regulate not only the VSCCs but possibly the reverse Na(+)/Ca(2+)-exchange as well.
Collapse
Affiliation(s)
- Tamás L Török
- Department of Pharmacodynamics, Semmelweis University, P.O. Box 370, VIII. Nagyvárad-tér 4, H-1445 Budapest, Hungary.
| |
Collapse
|
30
|
Shen C, Lin MJ, Yaradanakul A, Lariccia V, Hill JA, Hilgemann DW. Dual control of cardiac Na+ Ca2+ exchange by PIP(2): analysis of the surface membrane fraction by extracellular cysteine PEGylation. J Physiol 2007; 582:1011-26. [PMID: 17540704 PMCID: PMC2075243 DOI: 10.1113/jphysiol.2007.132720] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We describe a new assay to determine the fraction of cardiac Na(+)-Ca(2+) exchangers (NCX1) in the surface membrane of cells (F(surf)). An extracellular NCX1 disulphide bond is rapidly reduced by tris(2-carboxyethyl)phosphine hydrochloride (TCEP), cysteines are 'PEGylated' by alkylation with an impermeable conjugate of maleimide and a 5000 MW polyethylene glycol (MPEG), and F(surf) is quantified from Western blots as the fraction of NCX1 that migrates at a higher molecular weight. F(surf) remains less than 0.1 when NCX1 is expressed via transient transfections. Values of 0.15-0.4 are obtained for cell lines with stable NCX1 expression, 0.3 for neonatal myocytes and 0.6-0.8 for adult hearts. To validate the assay, we analysed an intervention that promotes clathrin-independent endocytosis in fibroblasts. Using BHK cells, removal of extracellular potassium (K(+)) caused yellow fluorescent protein (YFP)-tagged NCX1 to redistribute diffusely into the cytoplasm within 30 min, F(surf) decreased by 35%, and whole-cell exchange currents decreased by > 50%. In both HEK 293 and BHK cell lines, expression of human hPIP5Ibeta kinase significantly decreases F(surf). In BHK cells expressing M1 receptors, a muscarinic agonist (carbachol) causes a 40% decrease of F(surf) in normal media. This decrease is blocked by a high wortmannin concentration (3 mum), suggesting that type III phosphatidylinositol-4-kinase (PI4K) activity is required. As predicted from functional studies, carbachol increases F(surf) when cytoplasmic Ca(2) is increased by removing extracellular Na(+). Phorbol esters are without effect in BHK cells. In intact hearts, interventions that change contractility have no effect within 15 min, but we have identified two long-term changes. First, we analysed the diurnal dependence of F(surf) because messages for cardiac phosphatidylinositol-4-phosphate (PIP) 5-kinases increase during the light phase in entrained mice (i.e. during sleep). Cardiac phosphatidylinositol-(4,5)-bis-phosphate (PIP(2)) levels increase during the light phase and F(surf) decreases in parallel. Second, we analysed effects of aortic banding because NCX1 currents do not mirror the increases of NCX1 message and protein that occur in this model. F(surf) decreases significantly within 10 days, and cardiac PIP and PIP(2) levels are significantly increased. In summary, multiple experimental approaches suggest that PIP(2) synthesis favours NCX1 internalization, that NCX1 internalization is probably clathrin-independent, and that significant changes of NCX1 surface expression occur physiologically and pathologically in intact myocardium.
Collapse
Affiliation(s)
- Chengcheng Shen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, USA
| | | | | | | | | | | |
Collapse
|
31
|
Katanosaka Y, Kim B, Wakabayashi S, Matsuoka S, Shigekawa M. Phosphorylation of Na+/Ca2+ exchanger in TAB-induced cardiac hypertrophy. Ann N Y Acad Sci 2007; 1099:373-6. [PMID: 17446477 DOI: 10.1196/annals.1387.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Both protein kinase Calpha-dependent Na+/Ca2+ exchanger1 (NCX1) phosphorylation and calcineurin activity are required for the depression of NCX activity observed in chronically phenylephrine (PE)-treated hypertrophic neonatal rat cardiomyocytes. In this study, we explored the possibility that the same changes occur in vivo hypertrophy. In the hypertrophic hearts of thoracic aortic-banded (TAB) mice, NCX1 phosphorylation increased significantly compared with control hearts. Furthermore, the TAB-induced cardiac hypertrophy was much less prominent in transgenic mice overexpressing an NCX1 mutant having defective phosphorylation sites. These data suggest that the phosphorylation status of NCX1 may play an important role in the pathogenesis of load-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Yuki Katanosaka
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | | | | | | |
Collapse
|
32
|
Shigekawa M, Katanosaka Y, Wakabayashi S. Regulation of the cardiac Na+/Ca2+ exchanger by calcineurin and protein kinase C. Ann N Y Acad Sci 2007; 1099:53-63. [PMID: 17446445 DOI: 10.1196/annals.1387.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Na+/Ca2+ exchanger (NCX) activity is markedly inhibited in hypertrophic neonatal rat cardiomyocytes subjected to chronic phenylephrine treatment. This inhibition is reversed partially and independently by acute inhibition of calcineurin and protein kinase C (PKC) activities. Similar NCX inhibition occurs in CCL39 cells expressing cloned wild-type NCX1, when they are infected with adenoviral vectors carrying activated calcineurin A and then treated acutely with phorbol myristoyl acetate or protein phosphatase-1 inhibitors. The data obtained with these cells suggest that calcineurin activity, PKCalpha-mediated NCX1 phosphorylation, and the central loop of NCX1 (possibly its beta1 repeat) are required for the observed NCX inhibition. We observe partial inhibition of NCX activity independent of NCX1 phosphorylation when CCL39 cells are infected with activated calcineurin A but not further treated with phorbol myristoyl acetate or phosphatase inhibitors. Calcineurin thus appears to downregulate NCX activity via two independent mechanisms, one involving NCX1 phosphorylation and the other not involving NCX1 phosphorylation. These data indicate the existence of a novel regulatory mechanism for NCX1 involving calcineurin and PKC, which may be important in cardiac pathology.
Collapse
Affiliation(s)
- Munekazu Shigekawa
- Department of Human Life Sciences, Senri-Kinran University, Fujishiro-dai 5-25-1, Suita, Osaka 565-0873, Japan.
| | | | | |
Collapse
|
33
|
Yuan Q, Fan GC, Dong M, Altschafl B, Diwan A, Ren X, Hahn HH, Zhao W, Waggoner JR, Jones LR, Jones WK, Bers DM, Dorn GW, Wang HS, Valdivia HH, Chu G, Kranias EG. Sarcoplasmic reticulum calcium overloading in junctin deficiency enhances cardiac contractility but increases ventricular automaticity. Circulation 2007; 115:300-9. [PMID: 17224479 DOI: 10.1161/circulationaha.106.654699] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abnormal sarcoplasmic reticulum calcium (Ca) cycling is increasingly recognized as an important mechanism for increased ventricular automaticity that leads to lethal ventricular arrhythmias. Previous studies have linked lethal familial arrhythmogenic disorders to mutations in the ryanodine receptor and calsequestrin genes, which interact with junctin and triadin to form a macromolecular Ca-signaling complex. The essential physiological effects of junctin and its potential regulatory roles in sarcoplasmic reticulum Ca cycling and Ca-dependent cardiac functions, such as myocyte contractility and automaticity, are unknown. METHODS AND RESULTS The junctin gene was targeted in embryonic stem cells, and a junctin-deficient mouse was generated. Ablation of junctin was associated with enhanced cardiac function in vivo, and junctin-deficient cardiomyocytes exhibited increased contractile and Ca-cycling parameters. Short-term isoproterenol stimulation elicited arrhythmias, including premature ventricular contractions, atrioventricular heart block, and ventricular tachycardia. Long-term isoproterenol infusion also induced premature ventricular contractions and atrioventricular heart block in junctin-null mice. Further examination of the electrical activity revealed a significant increase in the occurrence of delayed afterdepolarizations. Consistently, 25% of the junctin-null mice died by 3 months of age with structurally normal hearts. CONCLUSIONS Junctin is an essential regulator of sarcoplasmic reticulum Ca release and contractility in normal hearts. Ablation of junctin is associated with aberrant Ca homeostasis, which leads to fatal arrhythmias. Thus, normal intracellular Ca cycling relies on maintenance of junctin levels and an intricate balance among the components in the sarcoplasmic reticulum quaternary Ca-signaling complex.
Collapse
Affiliation(s)
- Qunying Yuan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cunha SR, Bhasin N, Mohler PJ. Targeting and stability of Na/Ca exchanger 1 in cardiomyocytes requires direct interaction with the membrane adaptor ankyrin-B. J Biol Chem 2006; 282:4875-4883. [PMID: 17178715 DOI: 10.1074/jbc.m607096200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na/Ca exchanger activity is important for calcium extrusion from the cardiomyocyte cytosol during repolarization. Animal models exhibiting altered Na/Ca exchanger expression display abnormal cardiac phenotypes. In humans, elevated Na/Ca exchanger expression/activity is linked with pathophysiological conditions including arrhythmia and heart failure. Whereas the molecular mechanisms underlying Na/Ca exchanger biophysical properties are widely studied and generally well characterized, the cellular pathways and molecular partners underlying the specialized membrane localization of Na/Ca exchanger in cardiac tissue are essentially unknown. In this report, we present the first direct evidence for a protein pathway required for Na/Ca exchanger localization and stability in primary cardiomyocytes. We define the minimal structural requirements on ankyrin-B for direct Na/Ca exchanger interactions. Moreover, using ankyrin-B mutants that lack Na/Ca exchanger binding activity, and primary cardiomyocytes with reduced ankyrin-B expression, we demonstrate that direct interaction with the membrane adaptor ankyrin-B is required for the localization and post-translational stability of Na/Ca exchanger 1 in neonatal mouse cardiomyocytes. These results raise exciting new questions regarding potentially dynamic roles for ankyrin proteins in the biogenesis and maintenance of specialized membrane domains in excitable cells.
Collapse
Affiliation(s)
- Shane R Cunha
- Departments of University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Naina Bhasin
- Departments of University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Peter J Mohler
- Departments of University of Iowa Carver College of Medicine, Iowa City, Iowa 52242; Internal Medicine, Division of Cardiology and University of Iowa Carver College of Medicine, Iowa City, Iowa 52242; Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242.
| |
Collapse
|
35
|
Collis LP, Meyers MB, Zhang J, Phoon CKL, Sobie EA, Coetzee WA, Fishman GI. Expression of a sorcin missense mutation in the heart modulates excitation‐contraction coupling. FASEB J 2006; 21:475-87. [PMID: 17130302 DOI: 10.1096/fj.06-6292com] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sorcin is a Ca2+ binding protein implicated in the regulation of intracellular Ca2+ cycling and cardiac excitation-contraction coupling. Structural and human genetic studies suggest that a naturally occurring sequence variant encoding L112-sorcin disrupts an E-F hand Ca2+ binding domain and may be responsible for a heritable form of hypertension and hypertrophic heart disease. We generated transgenic mice overexpressing L112-sorcin in the heart and characterized the effects on Ca2+ regulation and cardiac function both in vivo and in dissociated cardiomyocytes. Hearts of sorcin(F112L) transgenic mice were mildly dilated but ventricular function was preserved and systemic blood pressure was normal. Sorcin(F112L) myocytes were smaller than control cells and displayed complex alterations in Ca2+ regulation and contractility, including a slowed inactivation of L-type Ca2+ current, enhanced Ca2+ spark width, duration, and frequency, and increased Na+-Ca2+ exchange activity. In contrast, mice with cardiac-specific overexpression of wild-type sorcin displayed directionally opposite effects on L-type Ca2+ channel function and Ca2+ spark behavior. These data further define the role of sorcin in cardiac excitation-contraction coupling and highlight its negative regulation of SR calcium release. Our results also suggest that additional factors may be responsible for the development of cardiac hypertrophy and hypertension in humans expressing the L112-sorcin sequence variant.
Collapse
Affiliation(s)
- Leon P Collis
- Division of Pediatric Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Xu L, Renaud L, Müller JG, Baicu CF, Bonnema DD, Zhou H, Kappler CS, Kubalak SW, Zile MR, Conway SJ, Menick DR. Regulation of Ncx1 expression. Identification of regulatory elements mediating cardiac-specific expression and up-regulation. J Biol Chem 2006; 281:34430-40. [PMID: 16966329 PMCID: PMC3096005 DOI: 10.1074/jbc.m607446200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na+-Ca2+ exchanger (NCX1) is up-regulated in hypertrophy and is often found up-regulated in end-stage heart failure. Studies have shown that the change in its expression contributes to contractile dysfunction. We have previously shown that the 1831-bp Ncx1 H1 (1831Ncx1) promoter directs cardiac-specific expression of the exchanger in both development and in the adult, and is sufficient for the up-regulation of Ncx1 in response to pressure overload. Here, we utilized adenoviral mediated gene transfer and transgenics to identify minimal regions and response elements that mediate Ncx1 expression in the heart. We demonstrate that the proximal 184 bp of the Ncx1 H1 (184Ncx1) promoter is sufficient for expression of reporter genes in adult cardiomyocytes and for the correct spatiotemporal pattern of Ncx1 expression in development but not for up-regulation in response to pressure overload. Mutational analysis revealed that both the -80 CArG and the -50 GATA elements were required for expression in isolated adult cardiomyocytes. Chromatin immunoprecipitation assays in adult cardiocytes demonstrate that SRF and GATA4 are associated with the proximal region of the endogenous Ncx1 promoter. Transgenic lines were established for the 1831Ncx1 promoter-luciferase containing mutations in the -80 CArG or -50 GATA element. No luciferase activity was detected during development, in the adult, or after pressure overload in any of the -80 CArG transgenic lines. The Ncx1 -50 GATA mutant promoter was sufficient for driving the normal spatiotemporal pattern of Ncx1 expression in development and for up-regulation in response to pressure overload but importantly, expression was no longer cardiac restricted. This work is the first in vivo study that demonstrates which cis elements are important for Ncx1 regulation.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Base Sequence
- Cats
- Chromatin Immunoprecipitation
- Disease Models, Animal
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Female
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Heart/physiology
- Male
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Mutation/genetics
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Promoter Regions, Genetic/physiology
- RNA, Messenger/metabolism
- Rats
- Regulatory Sequences, Nucleic Acid/physiology
- Sequence Homology, Nucleic Acid
- Sodium-Calcium Exchanger/genetics
- Sodium-Calcium Exchanger/metabolism
- Transgenes
- Up-Regulation
Collapse
Affiliation(s)
- Lin Xu
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ludivine Renaud
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joachim G. Müller
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Catalin F. Baicu
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - D. Dirk Bonnema
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hongming Zhou
- Cardiovascular Development Group, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Christiana S. Kappler
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Steven W. Kubalak
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Michael R. Zile
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Simon J. Conway
- Cardiovascular Development Group, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Donald R. Menick
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
- To whom correspondence should be addressed: 114 Doughty St. Charleston, SC 29425. Tel.: 843-876-5045;
| |
Collapse
|
37
|
Smith GL, Elliott EEB, Kettlewell S, Currie S, Quinn FR. Na+/Ca2+ Exchanger Expression and Function in a Rabbit Model of Myocardial Infarction. J Cardiovasc Electrophysiol 2006; 17 Suppl 1:S57-S63. [PMID: 16686683 DOI: 10.1111/j.1540-8167.2006.00384.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION In general, sarcolemmal Na(+)/Ca(2+) exchanger (NCX) protein and activity is increased in hearts with ventricular dysfunction. However, in a subset of studies, reduced activity of NCX has been reported. Left ventricular dysfunction (LVD) was induced in the rabbit eight weeks after an apical myocardial infarction. METHODS Using single microelectrode voltage clamp to assess the NCX activity in isolated ventricular cells, a decrease in NCX activity by approximately 30% was observed. Immunoblot analysis indicated increased NCX protein levels by approximately 20% in the LVD group. The cause of this paradox is unknown. Overexpression of the protein sorcin increased the activity of NCX without affecting NCX protein levels. RESULTS Sorcin protein (dimer) levels were significantly lower in the LVD group (0.67+/-0.05 n=15, P<0.05) compared to sham (1.0+/-0.16, n=15). Sorcin monomer levels were not significantly different (sham: 1.0+/-0.26, LVD: 0.83+/-0.13). Mathematical modeling of NCX suggests that a reduction of NCX activity during diastole to that in LVD could be achieved by holding the diastolic membrane potential at -60 mV instead of -80 mV. Holding E(m) at -60 mV decreased NCX-mediated Ca(2+) efflux rates to values comparable to those seen in LVD and increased SR Ca(2+) content and peak systolic [Ca(2+)] in sham and LVD cardiomyocytes. CONCLUSIONS In conclusion, reduced sorcin expression may be linked to the lower NCX activity in the rabbit model of LVD. Reduced NCX activity during diastole increases SR Ca(2+) content and Ca(2+) transient amplitude.
Collapse
Affiliation(s)
- Godfrey L Smith
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
38
|
Matsunaga M, Saotome M, Satoh H, Katoh H, Terada H, Hayashi H. Different actions of cardioprotective agents on mitochondrial Ca2+ regulation in a Ca2+ paradox-induced Ca2+ overload. Circ J 2005; 69:1132-40. [PMID: 16127199 DOI: 10.1253/circj.69.1132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Mitochondrial Ca2+ overload is a major cause of irreversible cell injury during various metabolic stresses. The protective effects of various agents that affect mitochondrial function against Ca2+ overload during Ca2+ paradox were investigated in rat ventricular myocytes. METHODS AND RESULTS On Ca2+ repletion following Ca2+ depletion, [Ca2+]i increased rapidly, and 90 of 210 cells (43%) died. In viable cells, the increase in [Ca2+]i was lower than in dead cells. KB-R7943 prevented the increase in [Ca2+]i, and completely inhibited cell death. Ruthenium red (RuR), diazoxide (Dz) or cyclosporin A (CsA) prevented cell death (15%, 26% and 17%, respectively; p < 0.05), and the protective effect of Dz was abolished by 5-hydroxydecanoate. These agents did not reduce the increase in [Ca2+]i in viable cells or the rate of initial increase in [Ca2+]i in all cells. RuR and Dz decreased [Ca2+]m in skinned myocytes, but CsA did not affect [Ca2+]m. Dz reduced NADH fluorescence, whereas RuR and CsA did not. CONCLUSIONS The protective effects of RuR and Dz could be ascribed to altered Ca2+ regulation by decreasing [Ca2+]m, and Dz could have an additional effect on oxidative phosphorylation. The protective effect of CsA could be directly associated with the mitochondrial permeability transition pore.
Collapse
Affiliation(s)
- Masaki Matsunaga
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Rothermel BA, Berenji K, Tannous P, Kutschke W, Dey A, Nolan B, Yoo KD, Demetroulis E, Gimbel M, Cabuay B, Karimi M, Hill JA. Differential activation of stress-response signaling in load-induced cardiac hypertrophy and failure. Physiol Genomics 2005; 23:18-27. [PMID: 16033866 PMCID: PMC4118287 DOI: 10.1152/physiolgenomics.00061.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Hypertrophic growth of the myocardium occurs in most forms of heart failure and may contribute to the pathogenesis of the failure state. Little is known about the regulatory mechanisms governing the often-coexisting phenotypes of hypertrophy, systolic failure, and diastolic stiffness that characterize clinical disease. We hypothesized that intracellular signaling pathways are differentially activated by graded degrees of hemodynamic stress. To test this, we developed models of graded pressure stress in mice and used them to directly compare compensated hypertrophy and pressure-overload heart failure. Surgical interventions were designed to be similar, on either side of a threshold separating compensated from decompensated responses. Our findings revealed two dramatically different hypertrophic phenotypes with only modest differences in the activation of relevant intracellular signaling pathways. Furthermore, we uncovered a functional requirement of calcineurin signaling in each model such that calcineurin suppression blunted hypertrophic growth. Remarkably, in each case, suppression of calcineurin signaling was not associated with clinical deterioration or increased mortality. Profiles of stress-response signaling and Ca2+ handling differ between the steady-state, maintenance phases of load-induced cardiac hypertrophy and failure. This information may be useful in identifying novel targets of therapy in chronic disease.
Collapse
Affiliation(s)
- Beverly A Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Emter CA, McCune SA, Sparagna GC, Radin MJ, Moore RL. Low-intensity exercise training delays onset of decompensated heart failure in spontaneously hypertensive heart failure rats. Am J Physiol Heart Circ Physiol 2005; 289:H2030-8. [PMID: 15994855 DOI: 10.1152/ajpheart.00526.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Data regarding the effectiveness of chronic exercise training in improving survival in patients with congestive heart failure (CHF) are inconclusive. Therefore, we conducted a study to determine the effect of exercise training on survival in a well-defined animal model of heart failure (HF), using the lean male spontaneously hypertensive HF (SHHF) rat. In this model, animals typically present with decompensated, dilated HF between approximately 18 and 23 mo of age. SHHF rats were assigned to sedentary or exercise-trained groups at 9 and 16 mo of age. Exercise training consisted of 6 mo of low-intensity treadmill running. Exercise training delayed the onset of overt HF and improved survival (P < 0.01), independent of any effects on the hypertensive status of the rats. Training delayed the myosin heavy chain (MyHC) isoform shift from alpha- to beta-MyHC that was seen in sedentary animals that developed HF. Exercise was associated with a concurrent increase in cardiomyocyte length (approximately 6%), width, and area and prevented the increase in the length-to-width ratio seen in sedentary animals in HF. The increases in proteinuria, plasma atrial natriuretic peptide, and serum leptin levels observed in rats with HF were suppressed by low-intensity exercise training. No significant alterations in sarco(endo)plasmic reticulum Ca2+ ATPase, phospholamban, or Na+/Ca2+ exchanger protein expression were found in response to training. Our results indicate that 6 mo of low-intensity exercise training delays the onset of decompensated HF and improves survival in the male SHHF rat. Similarly, exercise intervention prevented or suppressed alterations in several key variables that normally occur with the development of overt CHF. These data support the idea that exercise may be a useful and inexpensive intervention in the treatment of HF.
Collapse
Affiliation(s)
- Craig A Emter
- Dept. of Integrative Physiology, Univ. of Colorado at Boulder, Boulder, CO 80309-0354, USA
| | | | | | | | | |
Collapse
|
41
|
Fowler MR, Naz JR, Graham MD, Bru-Mercier G, Harrison SM, Orchard CH. Decreased Ca2+extrusion via Na+/Ca2+exchange in epicardial left ventricular myocytes during compensated hypertrophy. Am J Physiol Heart Circ Physiol 2005; 288:H2431-8. [PMID: 15615841 DOI: 10.1152/ajpheart.01069.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension-induced cardiac hypertrophy alters the amplitude and time course of the systolic Ca2+transient of subepicardial and subendocardial ventricular myocytes. The present study was designed to elucidate the mechanisms underlying these changes. Myocytes were isolated from the left ventricular subepicardium and subendocardium of 20-wk-old spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY; control). We monitored intracellular Ca2+using fluo 3 or fura 2; caffeine (20 mmol/l) was used to release Ca2+from the sarcoplasmic reticulum (SR), and Ni2+(10 mM) was used to inhibit Na+/Ca2+exchange (NCX) function. SHR myocytes were significantly larger than those from WKY hearts, consistent with cellular hypertrophy. Subepicardial myocytes from SHR hearts showed larger Ca2+transient amplitude and SR Ca2+content and less Ca2+extrusion via NCX compared with subepicardial WKY myocytes. These parameters did not change in subendocardial myocytes. The time course of decline of the Ca2+transient was the same in all groups of cells, but its time to peak was shorter in subepicardial cells than in subendocardial cells in WKY and SHR and was slightly prolonged in subendocardial SHR cells compared with WKY subendocardial myocytes. It is concluded that the major change in Ca2+cycling during compensated hypertrophy in SHR is a decrease in NCX activity in subepicardial cells; this increases SR Ca2+content and hence Ca2+transient amplitude, thus helping to maintain the strength of contraction in the face of an increased afterload.
Collapse
Affiliation(s)
- Mark R Fowler
- School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Stagg MA, Malik AH, MacLeod KT, Terracciano CMN. The effects of overexpression of the Na+/Ca2+ exchanger on calcium regulation in hypertrophied mouse cardiac myocytes. Cell Calcium 2005; 36:111-8. [PMID: 15193859 DOI: 10.1016/j.ceca.2004.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/04/2003] [Accepted: 01/06/2004] [Indexed: 11/23/2022]
Abstract
In cardiac hypertrophy and failure it has been shown that the amount of Na/Ca exchanger protein can increase. Several studies have investigated this modification in overt heart failure. However, the role of Na/Ca exchanger overexpression during the development of hypertrophy is unknown. To address this question we investigated Ca2+ regulation in an early stage of cardiac hypertrophy before signs of heart failure occurred and evaluated the role of Na/Ca exchanger overexpression. Cardiac hypertrophy was induced by a constant infusion of angiotensin II (Ang, 1 microg/min/kg) via an osmotic pump for 14 days. Thereafter, ventricular myocytes from either wild type (NON) or transgenic mice overexpressing the Na/Ca exchanger (TR) were isolated. Myocytes were loaded with indo-1 AM or fluo-4 AM to monitor cytoplasmic [Ca2+] with all experiments performed at 37 degrees C. In myocytes exposed to Ang there was an increase in cell capacitance of more than 20% indicating cellular hypertrophy. Ca2+ transients were prolonged in hypertrophied NON myocytes but not in TR myocytes. Action potentials had a less negative plateau in TR myocytes. Sarcoplasmic reticulum (SR) Ca2+ content, measured using rapid caffeine application, was greater in TR myocytes but unaffected by hypertrophy. Ca2+ spark frequency was significantly greater in TR. Na/Ca exchanger overexpression prevented the prolongation of the Ca2+ transient observed in hypertrophy and maintained a similar SR Ca2+ leak suggesting a compensatory role in Ca2+ regulation in hypertrophied cardiac myocytes from transgenic mice. We suggest this compensatory effect is mediated by increased SR Ca2+ content and faster Ca2+ removal via the Na/Ca exchanger.
Collapse
Affiliation(s)
- Mark A Stagg
- Cellular Electrophysiology, Heart Science Centre, Imperial College London, National Heart & Lung Institute, Harefield Hospital, Hill End Road Harefield, Middlesex UB9 6JH, UK.
| | | | | | | |
Collapse
|
43
|
Katanosaka Y, Iwata Y, Kobayashi Y, Shibasaki F, Wakabayashi S, Shigekawa M. Calcineurin inhibits Na+/Ca2+ exchange in phenylephrine-treated hypertrophic cardiomyocytes. J Biol Chem 2004; 280:5764-72. [PMID: 15557343 DOI: 10.1074/jbc.m410240200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac Na(+)/Ca(2+) exchanger (NCX1) is the predominant mechanism for the extrusion of Ca(2+) from beating cardiomyocytes. The role of protein phosphorylation in the regulation of NCX1 function in normal and diseased hearts remains unclear. In our search for proteins that interact with NCX1 using a yeast two-hybrid screen, we found that the C terminus of calcineurin Abeta, containing the autoinhibitory domain, binds to the beta1 repeat of the central cytoplasmic loop of NCX1 that presumably constitutes part of the allosteric Ca(2+) regulatory site. The association of NCX1 with calcineurin was significantly increased in the BIO14.6 cardiomyopathic hamster heart compared with that in the normal control. In hypertrophic neonatal rat cardiomyocytes subjected to chronic phenylephrine treatment, we observed a marked depression of NCX activity measured as the rate of Na(+)(i)-dependent (45)Ca(2+) uptake or the rate of Na(+)(o)-dependent (45)Ca(2+) efflux. Depressed NCX activity was partially and independently reversed by the acute inhibition of calcineurin and protein kinase C activities with little effect on myocyte hypertrophic phenotypes. Studies of NCX1 deletion mutants expressed in CCL39 cells were consistent with the view that the beta1 repeat is required for the action of endogenous calcineurin and that the large cytoplasmic loop may be required to maintain the interaction of the enzyme with its substrate. Our data suggest that NCX1 is a novel regulatory target for calcineurin and that depressed NCX activity might contribute to the etiology of in vivo cardiac hypertrophy and dysfunction occurring under conditions in which both calcineurin and protein kinase C are chronically activated.
Collapse
Affiliation(s)
- Yuki Katanosaka
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Eigel BN, Gursahani H, Hadley RW. Na+/Ca2+ exchanger plays a key role in inducing apoptosis after hypoxia in cultured guinea pig ventricular myocytes. Am J Physiol Heart Circ Physiol 2004; 287:H1466-75. [PMID: 15155263 DOI: 10.1152/ajpheart.00874.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Altered Na(+)/Ca(2+) exchanger (NCX) protein expression or activity is thought to contribute to various aspects of cardiac pathology. In guinea pig ventricular myocytes, NCX-mediated Ca(2+) entry is almost entirely responsible for Ca(2+) overload during hypoxia-reoxygenation. Because Ca(2+) overload is a common initiator of apoptosis, the purpose of this study was to test the hypotheses that NCX activity is critically involved in initiating apoptosis after hypoxia-reoxygenation and that hypoxia-reoxygenation-induced apoptosis can be modulated by changes in NCX protein expression or activity. An NCX antisense oligonucleotide was used to reduce NCX protein expression in cultured adult guinea pig ventricular myocytes. Caspase-3 activation and cytochrome c release were used as markers of apoptosis. Hypoxia-reoxygenation-induced apoptosis was significantly decreased in antisense-treated myocytes compared with untreated control or nonsense-treated myocytes. Pretreatment of cultured myocytes for 24 h with either endothelin-1 or phenylephrine was found to increase both NCX protein expression and evoked NCX activity as well as enhance hypoxia-reoxygenation-induced apoptosis. Control experiments demonstrated that endothelin-1 and phenylephrine did not induce apoptosis on their own nor did they enhance the apoptotic response in a model of Ca(2+)-dependent, NCX-independent apoptosis. Additional control experiments demonstrated that the NCX antisense oligonucleotide did not alter the apoptotic response of myocytes to either H(2)O(2) or isoproterenol. Taken together, these data suggest that the NCX has a critical and specific role in the initiation of apoptosis after hypoxia-reoxygenation in guinea pig myocytes and that hypoxia-reoxygenation-induced apoptosis is quite sensitive to changes in NCX activity.
Collapse
Affiliation(s)
- B N Eigel
- Dept. of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, MS-371 UKMC, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
45
|
Abstract
In recent years, electrical remodeling has emerged as an important pathophysiologic mechanism in many types of cardiac pathology. Because clinical heart disease often involves both hypertrophic and failure phenotypes, identification of disease-specific mechanisms is essential. This review focuses on mechanisms of electrical remodeling in cardiac hypertrophy, emphasizing transmembrane Ca2+ fluxes and Ca(2+)-responsive signaling pathways. Where information is available, the remodeling of hypertrophy is contrasted with what is known about heart failure.
Collapse
Affiliation(s)
- Joseph A Hill
- Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| |
Collapse
|
46
|
Reuter H, Han T, Motter C, Philipson KD, Goldhaber JI. Mice overexpressing the cardiac sodium-calcium exchanger: defects in excitation-contraction coupling. J Physiol 2003; 554:779-89. [PMID: 14645454 PMCID: PMC1664807 DOI: 10.1113/jphysiol.2003.055046] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Homozygous overexpression of the cardiac Na(+)-Ca(2+) exchanger causes cardiac hypertrophy and increases susceptibility to heart failure in response to stress. We studied the functional effects of homozygous overexpression of the exchanger at the cellular level in isolated mouse ventricular myocytes. Compared with patch-clamped myocytes from wild-type animals, non-failing myocytes from homozygous transgenic mice exhibited increased cell capacitance (from 208 +/- 16 pF to 260 +/- 15 pF, P < 0.05). Intracellular Ca(2+) oscillations were readily elicited in homozygous transgenic animals during depolarizations to +80 mV, consistent with rapid Ca(2+) overload caused by reverse Na(+)-Ca(2+) exchange. After normalization to cell capacitance, transgenic myocytes had significant increases in Na(+)-Ca(2+) exchange activity (318%) and peak L-type Ca(2+) current (8.2 +/- 0.7 pA pF(-1) at 0 mV test potential) compared to wild-type (5.8 +/- 0.9 pA pF(-1) at 0 mV, P < 0.02). The peak Ca(2+) current amplitude and its rate of inactivation could be modulated by rapid reversible block of the exchanger. Thus, we describe an unexpected direct influence of Na(+)-Ca(2+) exchange activity on the L-type Ca(2+) channel. Despite intact sarcoplasmic reticular Ca(2+) content and larger peak L-type Ca(2+) currents, homozygous transgenic animals exhibited smaller Ca(2+) transients (Delta[Ca(2+)](i)= 466 +/- 48 nm in transgenics versus 892 +/- 104 nm in wild-type, P < 0.0005) and substantially reduced gain of excitation-contraction coupling. These alterations in excitation-contraction coupling may underlie the tendency for these animals to develop heart failure following haemodynamic stress.
Collapse
Affiliation(s)
- Hannes Reuter
- Department of Physiology, Division of Cardiology, David Geffen School of Medicine at UCLA, 47-123 CHS, 10833 LeConte Avenue, Los Angeles, CA 90095-1679, USA
| | | | | | | | | |
Collapse
|
47
|
Quinn FR, Currie S, Duncan AM, Miller S, Sayeed R, Cobbe SM, Smith GL. Myocardial infarction causes increased expression but decreased activity of the myocardial Na+-Ca2+ exchanger in the rabbit. J Physiol 2003; 553:229-42. [PMID: 12949221 PMCID: PMC2343488 DOI: 10.1113/jphysiol.2003.050716] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Na+-Ca2+ exchanger (NCX) protein levels and activity were measured in myocardium from the basal region of the left ventricle of rabbit hearts with significant left ventricular dysfunction (LVD), 8-9 weeks after an apical infarction. NCX protein abundance was higher in the tissue homogenates (121 +/- 11%) and purified membrane fractions (143 +/- 12%) in the LVD compared to the sham-operated (sham) group. NCX mRNA was also higher in the LVD group (126%). Lower NCX protein expression was observed in the membrane fractions from the epicardium compared to the endocardium in both the sham and LVD groups. Transmembrane currents were recorded in isolated cardiomyocytes by single-electrode voltage clamp; [Ca2+]i was measured using Fura-2. Rapid application of 10 mmol l-1 caffeine was used to induce Ca2+ release from the sarcoplasmic reticulum. The subsequent NCX-mediated Ca2+ efflux rate constant was lower (70% of sham) in the LVD group. NCX currents were measured in cardiomyocytes dialysed with 250 nM Ca2+ (50 mmol l-1 EGTA). A lower NCX current (75% of sham) was observed in the LVD group. Lower NCX activity was also observed in cardiomyocytes isolated from the epicardium compared to the endocardium; a transmural difference that was also seen in the LVD group. Reduced activity despite increased protein expression may result from reduced Ca2+ sensitivity of the allosteric regulation of NCX. However, measurements indicated increased Ca2+ sensitivity in the LVD group. Cardiomyocytes from LVD hearts displayed a marked reduction in the transverse tubule area (59% of sham) and the surface area/volume ratio (80% of sham). Disrupted transverse tubule structure may contribute to the decrease in NCX activity despite increased protein expression in LVD.
Collapse
Affiliation(s)
- F R Quinn
- Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Electrical conductance is greatly altered in end-stage heart failure, but little is known about the underlying events. We therefore investigated the expression of genes coding for major inward and outward ion channels, calcium binding proteins, ion receptors, ion exchangers, calcium ATPases, and calcium/calmodulin-dependent protein kinases in explanted hearts (n=13) of patients diagnosed with end-stage heart failure. With the exception of Kv11.1 and Kir3.1 and when compared with healthy controls, major sodium, potassium, and calcium ion channels, ion transporters, and exchangers were significantly repressed, but expression of Kv7.1, HCN4, troponin C and I, SERCA1, and phospholamban was elevated. Hierarchical gene cluster analysis provided novel insight into regulated gene networks. Significant induction of the transcriptional repressor m-Bop and the translational repressor NAT1 coincided with repressed cardiac gene expression. The statistically significant negative correlation between repressors and ion channels points to a mechanism of disease. We observed coregulation of ion channels and the androgen receptor and propose a role for this receptor in ion channel regulation. Overall, the reversal of repressed ion channel gene expression in patients with implanted assist devices exemplifies the complex interactions between pressure load/stretch force and heart-specific gene expression.
Collapse
Affiliation(s)
- Jürgen Borlak
- Fraunhofer Institute of Toxicology and Experimental Medicine, Center for Drug Research and Medical Biotechnology, 30625 Hannover, Germany.
| | | |
Collapse
|
49
|
Doggrell SA, Hancox JC. Is timing everything? Therapeutic potential of modulators of cardiac Na(+) transporters. Expert Opin Investig Drugs 2003; 12:1123-42. [PMID: 12831348 DOI: 10.1517/13543784.12.7.1123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Sodium ion (Na(+)) transporters have roles in the modulation of cardiomyocyte pH and Na(+) and Ca(2+) handling. Activation of the cardiac Na(+)-H(+) exchanger 1 (NHE1) during ischaemia induces arrhythmias, myocardial stunning and irreversible cell injury. As the benefits of NHE1 inhibitors (e.g., amiloride, cariporide) in models of myocardial infarction are usually much greater when used as pretreatment, rather than during or after ischaemia, it is probably not surprising that clinical trials with cariporide in ischaemia have shown little shortterm benefit. NHE1 inhibitors have been shown to be beneficial in animal models of ventricular fibrillation and resuscitation, cardioplegia, hypertrophy and heart failure, and their therapeutic potential in these conditions should be further developed. The Na(+)-HCO(3)(-) cotransporter (NBC) is also stimulated by intracellular acidification, and part of the benefit of angiotensin-converting enzyme inhibitors after myocardial infarction may be due to inhibition of the NBC. Selective inhibitors of the NBC are required to determine the therapeutic potential of this mechanism. The Na(+)-Ca(2+) exchanger (NCX) has a major role in cardiac Na(+) and Ca(2+) homeostasis and influences cardiac electrical activity. The NCX also has a role in ischaemia/infarction, arrhythmias, hypertrophy and heart failure. NCX inhibitors may have beneficial effects in animal models of ischaemia and reperfusion injury and the therapeutic benefit of these should be further studied in animal models.
Collapse
Affiliation(s)
- Sheila A Doggrell
- School of Biomedical Sciences, The University of Queensland, QLD 4072, Australia.
| | | |
Collapse
|
50
|
Wilkins BJ, De Windt LJ, Bueno OF, Braz JC, Glascock BJ, Kimball TF, Molkentin JD. Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Mol Cell Biol 2002; 22:7603-13. [PMID: 12370307 PMCID: PMC135666 DOI: 10.1128/mcb.22.21.7603-7613.2002] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A calcineurin-nuclear factor of activated T cells (NFAT) regulatory pathway has been implicated in the control of cardiac hypertrophy, suggesting one mechanism whereby alterations in intracellular calcium handling are linked to the expression of hypertrophy-associated genes. Although recent studies have demonstrated a necessary role for calcineurin as a mediator of cardiac hypertrophy, the potential involvement of NFAT transcription factors as downstream effectors of calcineurin signaling has not been evaluated. Accordingly, mice with targeted disruptions in NFATc3 and NFATc4 genes were characterized. Whereas the loss of NFATc4 did not compromise the ability of the myocardium to undergo hypertrophic growth, NFATc3-null mice demonstrated a significant reduction in calcineurin transgene-induced cardiac hypertrophy at 19 days, 26 days, 6 weeks, 8 weeks, and 10 weeks of age. NFATc3-null mice also demonstrated attenuated pressure overload- and angiotensin II-induced cardiac hypertrophy. These results provide genetic evidence that calcineurin-regulated responses require NFAT effectors in vivo.
Collapse
Affiliation(s)
- Benjamin J Wilkins
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati Ohio 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|