1
|
Sharma A, Babich M, Li T, Radosevich JA. Topology and adenocarcinoma cell localization dataset on the labyrinthin diapeutic biomarker. BMC Res Notes 2023; 16:139. [PMID: 37415228 DOI: 10.1186/s13104-023-06373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
OBJECTIVE The discovery and characterization of tumor associated antigens is increasingly important to advance the field of immuno-oncology. In this regard, labyrinthin has been implicated as a neoantigen found on the cell surface of adenocarcinomas. Data on the (1) topology, (2) amino acid (a.a.) homology analyses and (3) cell surface localization of labyrinthin by fluorescent activated cell sorter (FACS) are studied in support of labyrinthin as a novel, pan-adenocarcinoma marker. RESULTS Bioinformatics analyses predict labyrinthin as a type II protein with calcium binding domain(s), N-myristoylation sites, and kinase II phosphorylation sites. Sequence homologies for labyrinthin (255 a.a.) were found vs. the intracellular aspartyl/asparaginyl beta-hydroxylase (ASPH; 758 a.a.) and the ASPH-gene related protein junctate (299 a.a.), which are both type II proteins. Labyrinthin was detected by FACS on only non-permeablized A549 human lung adenocarcinoma cells, but not on normal WI-38 human lung fibroblasts nor primary cultures of normal human glandular-related cells. Microscopic images of immunofluorescent labelled MCA 44-3A6 binding to A549 cells at random cell cycle stages complement the FACS results by further showing that labyrinthin persisted on the cell surfaces along with some cell internalization for greater than 20 min.
Collapse
Affiliation(s)
- Ankit Sharma
- LabyRx Immunologic Therapeutics Limited, 2700 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Michael Babich
- LabyRx Immunologic Therapeutics Limited, 2700 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Tianhong Li
- Division of Hematology & Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - James A Radosevich
- LabyRx Immunologic Therapeutics Limited, 2700 Stockton Blvd, Sacramento, CA, 95817, USA.
| |
Collapse
|
2
|
Babich M, Sharma A, Li T, Radosevich JA. Labyrinthin: A distinct pan-adenocarcinoma diagnostic and immunotherapeutic tumor specific antigen. Heliyon 2022; 8:e08988. [PMID: 35252607 PMCID: PMC8891966 DOI: 10.1016/j.heliyon.2022.e08988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/30/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Structural analysis and detection of optimal cell surface localization of labyrinthin, a pan-adenocarcinoma target, was studied with respect to adenocarcinoma specificity vs. normal and non-adenocarcinoma cells. Patient-derived tissue microarray immunohistochemistry (IHC) was performed on 729 commercially prepared tissue blocks of lung, colon, breast, pancreas, prostate, and ovary cancers combined, plus a National Cancer Institute (NCI) tissue microarray derived from another 236 cases. The results confirmed that anti-labyrinthin mouse monoclonal MCA 44-3A6 antibody recognized adenocarcinomas, but not normal or non-adenocarcinoma cancer cells. The consensus of multiple topology analysis programs on labyrinthin (255 amino acids) estimate a type II cell membrane associated protein with an N-terminus signal peptide. However, because the labyrinthin sequence is enveloped within the 758 amino acids of the intracellular aspartyl/asparaginyl beta-hydroxylase (ASPH), a purported tumor associated antigen, standard IHC methods that permeabilize cells can expose common epitopes. To circumvent antibody cross-reactivity, cell surface labyrinthin was distinguished from intracellular ASPH by FACS analysis of permeabilized vs non-permeabilized cells. All permeabilized normal, adeno-and non-adenocarcinoma cells produced a strong MCA 44-3A6 binding signal, likely reflecting co-recognition of intracellular ASPH proteins along with internalized labyrinthin, but in non-permeabilized cells only adenocarcinoma cells were positive for labyrinthin. Confocal microscopy confirmed the FACS results. Labyrinthin as a functional cell-surface marker was suggested when: 1) WI-38 normal lung fibroblasts transfected with labyrinthin sense cDNA displayed a cancerous phenotype; 2) antisense transfection of A549 human lung adenocarcinoma cells appeared more normal; and 3) MCA44-3A6 suppressed A549 cell proliferation. Collectively, the data indicate that labyrinthin is a unique, promising adenocarcinoma tumor-specific antigen and therapeutic target. The study also raises a controversial issue on the extent, specificity, and usefulness of ASPH as an adenocarcinoma tumor-associated antigen.
Collapse
Affiliation(s)
- Michael Babich
- LabyRx Immunologic Therapeutics (USA) Limited, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Ankit Sharma
- LabyRx Immunologic Therapeutics (USA) Limited, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Tianhong Li
- Division of Hematology & Oncology, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - James A. Radosevich
- LabyRx Immunologic Therapeutics (USA) Limited, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
3
|
Rudell JC, Borges LS, Yarov-Yarovoy V, Ferns M. The MX-Helix of Muscle nAChR Subunits Regulates Receptor Assembly and Surface Trafficking. Front Mol Neurosci 2020; 13:48. [PMID: 32265653 PMCID: PMC7105636 DOI: 10.3389/fnmol.2020.00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (AChRs) are pentameric channels that mediate fast transmission at the neuromuscular junction (NMJ) and defects in receptor expression underlie neuromuscular disorders such as myasthenia gravis and congenital myasthenic syndrome (CMS). Nicotinic receptor expression at the NMJ is tightly regulated and we previously identified novel Golgi-retention signals in the β and δ subunit cytoplasmic loops that regulate trafficking of the receptor to the cell surface. Here, we show that the Golgi retention motifs are localized in the MX-helix, a juxta-membrane alpha-helix present in the proximal cytoplasmic loop of receptor subunits, which was defined in recent crystal structures of cys-loop receptor family members. First, mutational analysis of CD4-MX-helix chimeric proteins showed that the Golgi retention signal was dependent on both the amphipathic nature of the MX-helix and on specific lysine residues (βK353 and δK351). Moreover, retention was associated with ubiquitination of the lysines, and βK353R and δK351R mutations reduced ubiquitination and increased surface expression of CD4-β and δ MX-helix chimeric proteins. Second, mutation of these lysines in intact β and δ subunits perturbed Golgi-based glycosylation and surface trafficking of the AChR. Notably, combined βK353R and δK351R mutations increased the amount of surface AChR with immature forms of glycosylation, consistent with decreased Golgi retention and processing. Third, we found that previously identified CMS mutations in the ε subunit MX-helix decreased receptor assembly and surface levels, as did an analogous mutation introduced into the β subunit MX-helix. Together, these findings indicate that the subunit MX-helix contributes to receptor assembly and is required for normal expression of the AChR and function of the NMJ. In addition, specific determinants in the β and δ subunit MX-helix contribute to quality control of AChR expression by intracellular retention and ubiquitination of unassembled subunits, and by facilitating the appropriate glycosylation of assembled surface AChR.
Collapse
Affiliation(s)
- Jolene Chang Rudell
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Lucia Soares Borges
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Michael Ferns
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States.,Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
4
|
Stokes C, Treinin M, Papke RL. Looking below the surface of nicotinic acetylcholine receptors. Trends Pharmacol Sci 2015; 36:514-23. [PMID: 26067101 DOI: 10.1016/j.tips.2015.05.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/10/2023]
Abstract
The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype has a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains have defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein-binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction.
Collapse
Affiliation(s)
- Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Millet Treinin
- Department of Medical Neurobiology, Hadassah Medical School, Hebrew University, Jerusalem 91120, Israel
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Bracamontes JR, Li P, Akk G, Steinbach JH. Mutations in the main cytoplasmic loop of the GABA(A) receptor α4 and δ subunits have opposite effects on surface expression. Mol Pharmacol 2014; 86:20-7. [PMID: 24723490 DOI: 10.1124/mol.114.092791] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the role of putative trafficking sequences in two GABA(A) receptor subunits: α4 and δ. These subunits assemble with a β subunit to form a subtype of GABA(A) receptor involved in generating the "tonic" outward current. Both α4 and δ subunits contain dibasic retention motifs in homologous positions. When basic residues are mutated to alanine in the α4 subunit, surface expression of epitope-tagged δ subunits is increased. When basic residues in homologous regions of the δ subunit are mutated, however, surface expression is reduced. We focused on the mutants that had the maximal effects to increase (in α4) or reduce (in δ) surface expression. The total expression of δ subunits is significantly decreased by the δ mutation, suggesting an effect on subunit maturation. We also examined surface expression of the β2 subunit. Expression of the mutated α4 subunit resulted in increased surface expression of β2 compared with wild-type α4, indicating enhanced forward trafficking. In contrast, mutated δ resulted in decreased surface expression of β2 compared with wild-type δ and to α4 and β2 in the absence of any δ. This observation suggests that the mutated δ incorporates into multimeric receptors and reduces the overall forward trafficking of receptors. These observations indicate that the roles of trafficking motifs are complex, even when located in homologous positions in related subunits. The physiologic properties of receptors containing mutated subunits were not significantly affected, indicating that the mutations in the α4 subunit will be useful to enhance surface expression.
Collapse
Affiliation(s)
- John R Bracamontes
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Ping Li
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Gustav Akk
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| | - Joe Henry Steinbach
- Department of Anesthesiology and the Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
6
|
Isacoff EY, Jan LY, Minor DL. Conduits of life's spark: a perspective on ion channel research since the birth of neuron. Neuron 2013; 80:658-74. [PMID: 24183018 DOI: 10.1016/j.neuron.2013.10.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heartbeats, muscle twitches, and lightning-fast thoughts are all manifestations of bioelectricity and rely on the activity of a class of membrane proteins known as ion channels. The basic function of an ion channel can be distilled into, "The hole opens. Ions go through. The hole closes." Studies of the fundamental mechanisms by which this process happens and the consequences of such activity in the setting of excitable cells remains the central focus of much of the field. One might wonder after so many years of detailed poking at such a seemingly simple process, is there anything left to learn?
Collapse
Affiliation(s)
- Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
7
|
Rudell JC, Borges LS, Rudell JB, Beck KA, Ferns MJ. Determinants in the β and δ subunit cytoplasmic loop regulate Golgi trafficking and surface expression of the muscle acetylcholine receptor. J Biol Chem 2013; 289:203-14. [PMID: 24240098 DOI: 10.1074/jbc.m113.502328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The molecular determinants that govern nicotinic acetylcholine receptor (AChR) assembly and trafficking are poorly defined, and those identified operate largely during initial receptor biogenesis in the endoplasmic reticulum. To identify determinants that regulate later trafficking steps, we performed an unbiased screen using chimeric proteins consisting of CD4 fused to the muscle AChR subunit cytoplasmic loops. In C2 mouse muscle cells, we found that CD4-β and δ subunit loops were expressed at very low levels on the cell surface, whereas the other subunit loops were robustly expressed on the plasma membrane. The low surface expression of CD4-β and δ loops was due to their pronounced retention in the Golgi apparatus and also to their rapid internalization from the plasma membrane. Both retention and recovery were mediated by the proximal 25-28 amino acids in each loop and were dependent on an ordered sequence of charged and hydrophobic residues. Indeed, βK353L and δK351L mutations increased surface trafficking of the CD4-subunit loops by >6-fold and also decreased their internalization from the plasma membrane. Similarly, combined βK353L and δK351L mutations increased the surface levels of assembled AChR expressed in HEK cells to 138% of wild-type levels. This was due to increased trafficking to the plasma membrane and not decreased AChR turnover. These findings identify novel Golgi retention signals in the β and δ subunit loops that regulate surface trafficking of assembled AChR and may help prevent surface expression of unassembled subunits. Together, these results define molecular determinants that govern a Golgi-based regulatory step in nicotinic AChR trafficking.
Collapse
|
8
|
Colombo SF, Mazzo F, Pistillo F, Gotti C. Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. Biochem Pharmacol 2013; 86:1063-73. [DOI: 10.1016/j.bcp.2013.06.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/11/2022]
|
9
|
Garzón M, Duffy AM, Chan J, Lynch MK, Mackie K, Pickel VM. Dopamine D₂ and acetylcholine α7 nicotinic receptors have subcellular distributions favoring mediation of convergent signaling in the mouse ventral tegmental area. Neuroscience 2013; 252:126-43. [PMID: 23954803 DOI: 10.1016/j.neuroscience.2013.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 08/06/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
Abstract
Alpha7 nicotinic acetylcholine receptors (α7nAChRs) mediate nicotine-induced burst-firing of dopamine neurons in the ventral tegmental area (VTA), a limbic brain region critically involved in reward and in dopamine D2 receptor (D2R)-related cortical dysfunctions associated with psychosis. The known presence of α7nAChRs and Gi-coupled D2Rs in dopamine neurons of the VTA suggests that these receptors are targeted to at least some of the same neurons in this brain region. To test this hypothesis, we used electron microscopic immunolabeling of antisera against peptide sequences of α7nACh and D2 receptors in the mouse VTA. Dual D2R and α7nAChR labeling was seen in many of the same somata (co-localization over 97%) and dendrites (co-localization over 49%), where immunoreactivity for each of the receptors was localized to endomembranes as well as to non-synaptic or synaptic plasma membranes often near excitatory-type synapses. In comparison with somata and dendrites, many more small axons and axon terminals were separately labeled for each of the receptors. Thus, single-labeled axon terminals were predominant for both α7nAChR (57.9%) and D2R (89.0%). The majority of the immunolabeled axonal profiles contained D2R-immunoreactivity (81.6%) and formed either symmetric or asymmetric synapses consistent with involvement in the release of both inhibitory and excitatory transmitters. Of 160 D2R-labeled terminals, 81.2% were presynaptic to dendrites that expressed α7nAChR alone or together with the D2R. Numerous glial processes inclusive of those enveloping either excitatory- or inhibitory-type synapses also contained single labeling for D2R (n=152) and α7nAChR (n=561). These results suggest that classic antipsychotic drugs, all of which block the D2R, may facilitate α7nAChR-mediated burst-firing by elimination of D2R-dependent inhibition in neurons expressing both receptors as well as by indirect pre-synaptic and glial mechanisms.
Collapse
Affiliation(s)
- M Garzón
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA; Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina UAM, Madrid 28029, Spain; Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Paseo de la Castellana 261, Madrid 28046, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Biosynthesis of ionotropic acetylcholine receptors requires the evolutionarily conserved ER membrane complex. Proc Natl Acad Sci U S A 2013; 110:E1055-63. [PMID: 23431131 DOI: 10.1073/pnas.1216154110] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The number of nicotinic acetylcholine receptors (AChRs) present in the plasma membrane of muscle and neuronal cells is limited by the assembly of individual subunits into mature pentameric receptors. This process is usually inefficient, and a large number of the synthesized subunits are degraded by endoplasmic reticulum (ER)-associated degradation. To identify cellular factors required for the synthesis of AChRs, we performed a genetic screen in the nematode Caenorhabditis elegans for mutants with decreased sensitivity to the cholinergic agonist levamisole. We isolated a partial loss-of-function allele of ER membrane protein complex-6 (emc-6), a previously uncharacterized gene in C. elegans. emc-6 encodes an evolutionarily conserved 111-aa protein with two predicted transmembrane domains. EMC-6 is ubiquitously expressed and localizes to the ER. Partial inhibition of EMC-6 caused decreased expression of heteromeric levamisole-sensitive AChRs by destabilizing unassembled subunits in the ER. Inhibition of emc-6 also reduced the expression of homomeric nicotine-sensitive AChRs and GABAA receptors in C. elegans muscle cells. emc-6 is orthologous to the yeast and human EMC6 genes that code for a component of the recently identified ER membrane complex (EMC). Our data suggest this complex is required for protein folding and is connected to ER-associated degradation. We demonstrated that inactivation of additional EMC members in C. elegans also impaired AChR synthesis and induced the unfolded protein response. These results suggest that the EMC is a component of the ER folding machinery. AChRs might provide a valuable proxy to decipher the function of the EMC further.
Collapse
|
11
|
Duffy AM, Fitzgerald ML, Chan J, Robinson DC, Milner TA, Mackie K, Pickel VM. Acetylcholine α7 nicotinic and dopamine D2 receptors are targeted to many of the same postsynaptic dendrites and astrocytes in the rodent prefrontal cortex. Synapse 2011; 65:1350-67. [PMID: 21858872 PMCID: PMC3356922 DOI: 10.1002/syn.20977] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The alpha-7 nicotinic acetylcholine receptor (α7nAChR) and the dopamine D(2) receptor (D(2) R) are both implicated in attentional processes and cognition, mediated in part through the prefrontal cortex (PFC). We examined the dual electron microscopic immunolabeling of α7nAChR and either D(2) R or the vesicular acetylcholine transporter (VAChT) in rodent PFC to assess convergent functional activation sites. Immunoreactivity (ir) for α7nAChR and/or D(2) R was seen in the same as well as separate neuronal and glial profiles. At least half of the dually labeled profiles were somata and dendrites, while most labeled axon terminals expressed only D(2) R-ir. The D(2) R-labeled terminals were without synaptic specializations or formed inhibitory or excitatory-type synapses with somatodendritic profiles, some of which expressed the α7nAChR and/or D(2) R. Astrocytic glial processes comprised the majority of nonsomatodendritic α7nAChR or α7nAChR and D(2) R-labeled profiles. Glial processes containing α7nAChR-ir were frequently located near VAChT-labeled terminals and also showed perisynaptic and perivascular associations. We conclude that in rodent PFC α7nACh and D(2) R activation can dually modulate (1) postsynaptic dendritic responses within the same or separate but synaptically linked neurons in which the D(2) R has the predominately presynaptic distribution, and (2) astrocytic signaling that may be crucial for synaptic transmission and functional hyperemia.
Collapse
Affiliation(s)
- Aine M. Duffy
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - Megan L. Fitzgerald
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - June Chan
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - Danielle C. Robinson
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| | - Teresa A. Milner
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
| | - Kenneth Mackie
- Department of Psychological and Brain Sciences and the Gill Center, Indiana University, Bloomington, Indiana 47405
| | - Virginia M. Pickel
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
12
|
Murray TA, Bertrand D, Papke RL, George AA, Pantoja R, Srinivasan R, Liu Q, Wu J, Whiteaker P, Lester HA, Lukas RJ. α7β2 nicotinic acetylcholine receptors assemble, function, and are activated primarily via their α7-α7 interfaces. Mol Pharmacol 2011; 81:175-88. [PMID: 22039094 DOI: 10.1124/mol.111.074088] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated assembly and function of nicotinic acetylcholine receptors (nAChRs) composed of α7 and β2 subunits. We measured optical and electrophysiological properties of wild-type and mutant subunits expressed in cell lines and Xenopus laevis oocytes. Laser scanning confocal microscopy indicated that fluorescently tagged α7 and β2 subunits colocalize. Förster resonance energy transfer between fluorescently tagged subunits strongly suggested that α7 and β2 subunits coassemble. Total internal reflection fluorescence microscopy revealed that assemblies localized to filopodia-like processes of SH-EP1 cells. Gain-of-function α7 and β2 subunits confirmed that these subunits coassemble within functional receptors. Moreover, α7β2 nAChRs composed of wild-type subunits or fluorescently tagged subunits had pharmacological properties similar to those of α7 nAChRs, although amplitudes of α7β2 nAChR-mediated, agonist-evoked currents were generally ~2-fold lower than those for α7 nAChRs. It is noteworthy that α7β2 nAChRs displayed sensitivity to low concentrations of the antagonist dihydro-β-erythroidine that was not observed for α7 nAChRs at comparable concentrations. In addition, cysteine mutants revealed that the α7-β2 subunit interface does not bind ligand in a functionally productive manner, partly explaining lower α7β2 nAChR current amplitudes and challenges in identifying the function of native α7β2 nAChRs. On the basis of our findings, we have constructed a model predicting receptor function that is based on stoichiometry and position of β2 subunits within the α7β2 nAChRs.
Collapse
|
13
|
Goyal R, Salahudeen AA, Jansen M. Engineering a prokaryotic Cys-loop receptor with a third functional domain. J Biol Chem 2011; 286:34635-42. [PMID: 21844195 DOI: 10.1074/jbc.m111.269647] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prokaryotic members of the Cys-loop receptor ligand-gated ion channel superfamily were recently identified. Previously, Cys-loop receptors were only known from multicellular organisms (metazoans). Contrary to the metazoan Cys-loop receptors, the prokaryotic ones consist of an extracellular (ECD) and a transmembrane domain (TMD), lacking the large intracellular domain (ICD) present in metazoa (between transmembrane segments M3 and M4). Using a chimera approach, we added the 115-amino acid ICD from mammalian serotonin type 3A receptors (5-HT(3A)) to the prokaryotic proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC). We created 12 GLIC-5-HT(3A)-ICD chimeras by replacing a variable number of amino acids in the short GLIC M3M4 linker with the entire 5-HT(3A)-ICD. Two-electrode voltage clamp recordings after expression in Xenopus laevis oocytes showed that only two chimeras were functional and produced currents upon acidification. The pH(50) was comparable with wild-type GLIC. 5-HT(3A) receptor expression can be inhibited by the chaperone protein RIC-3. We have shown previously that the 5-HT(3A)-ICD is required for the attenuation of 5-HT-induced currents when RIC-3 is co-expressed with 5-HT(3A) receptors in X. laevis oocytes. Expression of both functional 5-HT(3A) chimeras was inhibited by RIC-3 co-expression, indicating appropriate folding of the 5-HT(3A)-ICD in the chimeras. Our results indicate that the ICD can be considered a separate domain that can be removed from or added to the ECD and TMD while maintaining the overall structure and function of the ECD and TMD.
Collapse
Affiliation(s)
- Raman Goyal
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | |
Collapse
|
14
|
Morton MJ, Farr GA, Hull M, Capendeguy O, Horisberger JD, Caplan MJ. Association with {beta}-COP regulates the trafficking of the newly synthesized Na,K-ATPase. J Biol Chem 2010; 285:33737-46. [PMID: 20801885 DOI: 10.1074/jbc.m110.141119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane expression of the Na,K-ATPase requires assembly of its α- and β-subunits. Using a novel labeling technique to identify Na,K-ATPase partner proteins, we detected an interaction between the Na,K-ATPase α-subunit and the coat protein, β-COP, a component of the COP-I complex. When expressed in the absence of the Na,K-ATPase β-subunit, the Na,K-ATPase α-subunit interacts with β-COP, is retained in the endoplasmic reticulum, and is targeted for degradation. In the presence of the Na,K-ATPase β-subunit, the α-subunit does not interact with β-COP and traffics to the plasma membrane. Pulse-chase experiments demonstrate that in cells expressing both the Na,K-ATPase α- and β-subunits, newly synthesized α-subunit associates with β-COP immediately after its synthesis but that this interaction does not constitute an obligate intermediate in the assembly of the α- and β-subunits to form the pump holoenzyme. The interaction with β-COP was reduced by mutating a dibasic motif at Lys(54) in the Na,K-ATPase α-subunit. This mutant α-subunit is not retained in the endoplasmic reticulum and reaches the plasma membrane, even in the absence of Na,K-ATPase β-subunit expression. Although the Lys(54) α-subunit reaches the cell surface without need for β-subunit assembly, it is only functional as an ion-transporting ATPase in the presence of the β-subunit.
Collapse
Affiliation(s)
- Michael J Morton
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA
| | | | | | | | | | | |
Collapse
|
15
|
The ubiquitin-proteasome system regulates the stability of neuronal nicotinic acetylcholine receptors. J Mol Neurosci 2009; 40:177-84. [PMID: 19693707 DOI: 10.1007/s12031-009-9272-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 12/16/2022]
Abstract
Ubiquitination is a key event for protein degradation by the proteasome system, membrane protein internalization, and protein trafficking among cellular compartments. Few data are available on the role of the ubiquitin-proteasome system (UPS) in the trafficking of neuronal nicotinic acetylcholine receptors (nAChRs). Experiments conducted in neuron-like differentiated rat pheochromocytoma cells (PC12 cells) show that the alpha3, beta2, and beta4 nAChR subunits are ubiquitinated and that their ubiquitination is necessary for degradation. A 24-h treatment with the proteasome inhibitor PS-341 increased the total levels of alpha3 and the two beta subunits in both whole cell lysates and fractions enriched for the ER/Golgi compartment. nAChR subunit upregulation was also detected in plasma membrane-enriched fractions. Inhibition of the lysosomal degradation machinery by E-64 had a significantly smaller effect on nAChR turnover. The present data, together with previous results showing that the alpha7 nAChR subunit is a target of the UPS, point to a prominent role of the proteasome in nAChR trafficking.
Collapse
|
16
|
Zouridakis M, Zisimopoulou P, Poulas K, Tzartos SJ. Recent advances in understanding the structure of nicotinic acetylcholine receptors. IUBMB Life 2009; 61:407-23. [PMID: 19319967 DOI: 10.1002/iub.170] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs), members of the Cys-loop ligand-gated ion channels (LGICs) superfamily, are involved in signal transduction upon binding of the neurotransmitter acetylcholine or exogenous ligands, such as nicotine. nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and are expressed at the neuromuscular junction and in the nervous system and several nonneuronal cell types. The 17 known nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes. nAChRs are implicated in a range of physiological functions and pathophysiological conditions related to muscle contraction, learning and memory, reward, motor control, arousal, and analgesia, and therefore present an important target for drug research. Such studies would be greatly facilitated by knowledge of the high-resolution structure of the nAChR. Although this information is far from complete, important progress has been made mainly based on electron microscopy studies of Torpedo nAChR and the high-resolution X-ray crystal structures of the homologous molluscan acetylcholine-binding proteins, the extracellular domain of the mouse nAChR alpha1 subunit, and two prokaryotic pentameric LGICs. Here, we review some of the latest advances in our understanding of nAChR structure and gating.
Collapse
Affiliation(s)
- Marios Zouridakis
- Department of Biochemistry, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
17
|
UBXD4, a UBX-containing protein, regulates the cell surface number and stability of alpha3-containing nicotinic acetylcholine receptors. J Neurosci 2009; 29:6883-96. [PMID: 19474315 DOI: 10.1523/jneurosci.4723-08.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Adaptor proteins are likely to modulate spatially and temporally the trafficking of a number of membrane proteins, including neuronal nicotinic acetylcholine receptors (nAChRs). A yeast two-hybrid screen identified a novel UBX-containing protein, UBXD4, as one of the cytosolic proteins that interact directly with the alpha3 and alpha4 nAChR subunits. The function of UBX-containing proteins is largely unknown. Immunoprecipitation and confocal microscopy confirmed the interaction of UBXD4 with alpha3-containing nAChRs (alpha3* nAChRs) expressed in HEK293 cells, PC12 cells, and rat cortical neurons. Overexpression of UBXD4 in differentiated PC12 cells (dPC12) increased nAChR cell surface expression, especially that of the alpha3beta2 subtype. These findings were corroborated by electrophysiology, immunofluorescent staining, and biotinylation of surface receptors. Silencing of UBXD4 led to a significant reduction of alpha3* nAChRs in rat cortical neurons and dPC12 cells. Biochemical and immunofluorescence studies of endogenous UBXD4 showed that the protein is located in both the ER and cis-Golgi compartments. Our investigations also showed that the alpha3 subunit is ubiquitinated and that UBXD4 can interfere with its ubiquitination and consequent degradation by the proteasome. Our data suggest that UBXD4 modulates the distribution of alpha3* nAChRs between specialized intracellular compartments and the plasma membrane. This effect is achieved by controlling the stability of the alpha3 subunit and, consequently, the number of receptors at the cell surface.
Collapse
|
18
|
Millar NS. A review of experimental techniques used for the heterologous expression of nicotinic acetylcholine receptors. Biochem Pharmacol 2009; 78:766-76. [PMID: 19540210 DOI: 10.1016/j.bcp.2009.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop family of neurotransmitter-gated ion channels, a family that also includes receptors for gamma-aminobutyric acid, glycine and 5-hydroxytryptamine. In humans, nAChRs have been implicated in several neurological and psychiatric disorders and are major targets for pharmaceutical drug discovery. In addition, nAChRs are important targets for neuroactive pesticides in insects and in other invertebrates. Historically, nAChRs have been one of the most intensively studied families of neurotransmitter receptors. They were the first neurotransmitter receptors to be biochemically purified and the first to be characterized by molecular cloning and heterologous expression. Although much has been learnt from studies of native nAChRs, the expression of recombinant nAChRs has provided dramatic advances in the characterization of these important receptors. This review will provide a brief history of the characterization of nAChRs by heterologous expression. It will focus, in particular, upon studies of recombinant nAChRs, work that has been conducted by many hundreds of scientists during a period of almost 30 years since the molecular cloning of nAChR subunits in the early 1980s.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
19
|
Abstract
Nicotinic acetylcholine receptors (nAChRs) play critical roles throughout the body. Precise regulation of the cellular location and availability of nAChRs on neurons and target cells is critical to their proper function. Dynamic, post-translational regulation of nAChRs, particularly control of their movements among the different compartments of cells, is an important aspect of that regulation. A combination of new information and new techniques has the study of nAChR trafficking poised for new breakthroughs.
Collapse
|
20
|
Lester HA, Xiao C, Srinivasan R, Son CD, Miwa J, Pantoja R, Banghart MR, Dougherty DA, Goate AM, Wang JC. Nicotine is a selective pharmacological chaperone of acetylcholine receptor number and stoichiometry. Implications for drug discovery. AAPS JOURNAL 2009; 11:167-77. [PMID: 19280351 DOI: 10.1208/s12248-009-9090-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 02/07/2009] [Indexed: 01/11/2023]
Abstract
The acronym SePhaChARNS, for "selective pharmacological chaperoning of acetylcholine receptor number and stoichiometry," is introduced. We hypothesize that SePhaChARNS underlies classical observations that chronic exposure to nicotine causes "upregulation" of nicotinic receptors (nAChRs). If the hypothesis is proven, (1) SePhaChARNS is the molecular mechanism of the first step in neuroadaptation to chronic nicotine; and (2) nicotine addiction is partially a disease of excessive chaperoning. The chaperone is a pharmacological one, nicotine; and the chaperoned molecules are alpha4beta2* nAChRs. SePhaChARNS may also underlie two inadvertent therapeutic effects of tobacco use: (1) the inverse correlation between tobacco use and Parkinson's disease; and (2) the suppression of seizures by nicotine in autosomal dominant nocturnal frontal lobe epilepsy. SePhaChARNS arises from the thermodynamics of pharmacological chaperoning: ligand binding, especially at subunit interfaces, stabilizes AChRs during assembly and maturation, and this stabilization is most pronounced for the highest-affinity subunit compositions, stoichiometries, and functional states of receptors. Several chemical and pharmacokinetic characteristics render exogenous nicotine a more potent pharmacological chaperone than endogenous acetylcholine. SePhaChARNS is modified by desensitized states of nAChRs, by acid trapping of nicotine in organelles, and by other aspects of proteostasis. SePhaChARNS is selective at the cellular, and possibly subcellular, levels because of variations in the detailed nAChR subunit composition, as well as in expression of auxiliary proteins such as lynx. One important implication of the SePhaChARNS hypothesis is that therapeutically relevant nicotinic receptor drugs could be discovered by studying events in intracellular compartments rather than exclusively at the surface membrane.
Collapse
Affiliation(s)
- Henry A Lester
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Denmark DL, Buck KJ. Molecular analyses and identification of promising candidate genes for loci on mouse chromosome 1 affecting alcohol physical dependence and associated withdrawal. GENES BRAIN AND BEHAVIOR 2008; 7:599-608. [PMID: 18363851 DOI: 10.1111/j.1601-183x.2008.00396.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We recently mapped quantitative trait loci (QTLs) with large effects on predisposition to physical dependence and associated withdrawal severity following chronic and acute alcohol exposure (Alcdp1/Alcw1) to a 1.1-Mb interval of mouse chromosome 1 syntenic with human chromosome 1q23.2-23.3. Here, we provide a detailed analysis of the genes within this interval and show that it contains 40 coding genes, 17 of which show validated genotype-dependent transcript expression and/or non-synonymous coding sequence variation that may underlie the influence of Alcdp1/Alcw1 on ethanol dependence and associated withdrawal. These high priority candidates are involved in diverse cellular functions including intracellular trafficking, oxidative homeostasis, mitochondrial respiration, and extracellular matrix dynamics, and indicate both established and novel aspects of the neurobiological response to ethanol. This work represents a substantial advancement toward identification of the gene(s) that underlies the phenotypic effects of Alcdp1/Alcw1. Additionally, a multitude of QTLs for a variety of complex traits, including diverse behavioral responses to ethanol, have been mapped in the vicinity of Alcdp1/Alcw1, and as many as four QTLs on human chromosome 1q have been implicated in human mapping studies for alcoholism and associated endophenotypes. Thus, our results will be primary to further efforts to identify genes involved in a wide variety of behavioral responses to alcohol and may directly facilitate progress in human alcoholism genetics.
Collapse
Affiliation(s)
- D L Denmark
- Department of Behavioral Neuroscience, Neuroscience Graduate Program, and Portland Alcohol Research Center, Veterans Affairs Medical Center and Oregon Health and Science University, Portland, OR, USA.
| | | |
Collapse
|
22
|
Pollock VV, Pastoor T, Katnik C, Cuevas J, Wecker L. Cyclic AMP-dependent protein kinase A and protein kinase C phosphorylate alpha4beta2 nicotinic receptor subunits at distinct stages of receptor formation and maturation. Neuroscience 2008; 158:1311-25. [PMID: 19101612 DOI: 10.1016/j.neuroscience.2008.11.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/17/2008] [Accepted: 11/19/2008] [Indexed: 11/30/2022]
Abstract
Neuronal nicotinic receptor alpha4 subunits associated with nicotinic alpha4beta2 receptors are phosphorylated by cyclic AMP-dependent protein kinase (PKA) and protein kinase C (PKC), but the stages of receptor formation during which phosphorylation occurs and the functional consequences of kinase activation are unknown. SH-EP1 cells transfected with DNAs coding for human alpha4 and/or beta2 subunits were incubated with (32)Pi, and PKA or PKC was activated by forskolin or phorbol 12,13-dibutyrate, respectively. Immunoprecipitation and immunoblotting of proteins from cells expressing alpha4beta2 receptors or only alpha4 subunits were used to identify free alpha4 subunits, and alpha4 subunits present in immature alpha4beta2 complexes and mature alpha4beta2 pentamers containing complex carbohydrates. In the absence of kinase activation, phosphorylation of alpha4 subunits associated with mature pentamers was three times higher than subunits associated with immature complexes. PKA and PKC activation increased phosphorylation of free alpha4 subunits on different serine residues; only PKC activation phosphorylated subunits associated with mature alpha4beta2 receptors. Activation of both PKA and PKC increased the density of membrane-associated receptors, but only PKC activation increased peak membrane currents. PKA and PKC activation also phosphorylated beta2 subunits associated with mature alpha4beta2 receptors. Results indicate that activation of PKA and PKC leads to the phosphorylation alpha4beta2 receptors at different stages of receptor formation and maturation and has differential effects on the expression and function of human alpha4beta2 receptors.
Collapse
Affiliation(s)
- V V Pollock
- Department of Psychiatry and Behavioral Medicine, USF College of Medicine, Tampa, FL 33613, USA
| | | | | | | | | |
Collapse
|
23
|
Salas R, Main A, Gangitano DA, Zimmerman G, Ben-Ari S, Soreq H, De Biasi M. Nicotine Relieves Anxiogenic-Like Behavior in Mice that Overexpress the Read-Through Variant of Acetylcholinesterase but Not in Wild-Type Mice. Mol Pharmacol 2008; 74:1641-8. [DOI: 10.1124/mol.108.048454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Eimer S, Gottschalk A, Hengartner M, Horvitz HR, Richmond J, Schafer WR, Bessereau JL. Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50. EMBO J 2007; 26:4313-23. [PMID: 17853888 PMCID: PMC2034668 DOI: 10.1038/sj.emboj.7601858] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 08/22/2007] [Indexed: 01/21/2023] Open
Abstract
Nicotinic acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels that mediate fast synaptic transmission at the neuromuscular junction (NMJ). After assembly in the endoplasmic reticulum (ER), AChRs must be transported to the plasma membrane through the secretory apparatus. Little is known about specific molecules that mediate this transport. Here we identify a gene that is required for subtype-specific trafficking of assembled nicotinic AChRs in Caenorhabditis elegans. unc-50 encodes an evolutionarily conserved integral membrane protein that localizes to the Golgi apparatus. In the absence of UNC-50, a subset of AChRs present in body-wall muscle are sorted to the lysosomal system and degraded. However, the trafficking of a second AChR type and of GABA ionotropic receptors expressed in the same muscle cells is not affected in unc-50 mutants. These results suggest that, in addition to ER quality control, assembled AChRs are sorted within the Golgi system by a mechanism that controls the amount of cell-surface AChRs in a subtype-specific way.
Collapse
Affiliation(s)
- Stefan Eimer
- Ecole Normale Supérieure, Biology Department, Paris, France
- INSERM, U789, Biologie cellulaire de la synapse, Paris, France
| | - Alexander Gottschalk
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael Hengartner
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Janet Richmond
- Department of Biology, University of Illinois, Chicago, IL, USA
| | - William R Schafer
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Louis Bessereau
- Ecole Normale Supérieure, Biology Department, Paris, France
- INSERM, U789, Biologie cellulaire de la synapse, Paris, France
- Ecole Normale Supérieure, INSERM, U789, Biologie cellulaire de la synapse, 46 Rue d'Ulm, Paris 75005, France. Tel.: +33 1 44 32 23 05; Fax: +33 1 44 32 36 54; E-mail:
| |
Collapse
|
25
|
Nashmi R, Xiao C, Deshpande P, McKinney S, Grady SR, Whiteaker P, Huang Q, McClure-Begley T, Lindstrom JM, Labarca C, Collins AC, Marks MJ, Lester HA. Chronic nicotine cell specifically upregulates functional alpha 4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. J Neurosci 2007; 27:8202-18. [PMID: 17670967 PMCID: PMC6673074 DOI: 10.1523/jneurosci.2199-07.2007] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding effects of chronic nicotine requires identifying the neurons and synapses whose responses to nicotine itself, and to endogenous acetylcholine, are altered by continued exposure to the drug. To address this problem, we developed mice whose alpha4 nicotinic receptor subunits are replaced by normally functioning fluorescently tagged subunits, providing quantitative studies of receptor regulation at micrometer resolution. Chronic nicotine increased alpha4 fluorescence in several regions; among these, midbrain and hippocampus were assessed functionally. Although the midbrain dopaminergic system dominates reward pathways, chronic nicotine does not change alpha4* receptor levels in dopaminergic neurons of ventral tegmental area (VTA) or substantia nigra pars compacta. Instead, upregulated, functional alpha4* receptors localize to the GABAergic neurons of the VTA and substantia nigra pars reticulata. In consequence, GABAergic neurons from chronically nicotine-treated mice have a higher basal firing rate and respond more strongly to nicotine; because of the resulting increased inhibition, dopaminergic neurons have lower basal firing and decreased response to nicotine. In hippocampus, chronic exposure to nicotine also increases alpha4* fluorescence on glutamatergic axons of the medial perforant path. In hippocampal slices from chronically treated animals, acute exposure to nicotine during tetanic stimuli enhances induction of long-term potentiation in the medial perforant path, showing that the upregulated alpha4* receptors in this pathway are also functional. The pattern of cell-specific upregulation of functional alpha4* receptors therefore provides a possible explanation for two effects of chronic nicotine: sensitization of synaptic transmission in forebrain and tolerance of dopaminergic neuron firing in midbrain.
Collapse
Affiliation(s)
- Raad Nashmi
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Cheng Xiao
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Purnima Deshpande
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Sheri McKinney
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Sharon R. Grady
- Institute of Behavioral Genetics, University of Colorado, Boulder, Colorado 80309, and
| | - Paul Whiteaker
- Institute of Behavioral Genetics, University of Colorado, Boulder, Colorado 80309, and
| | - Qi Huang
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104
| | - Cesar Labarca
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| | - Allan C. Collins
- Institute of Behavioral Genetics, University of Colorado, Boulder, Colorado 80309, and
| | - Michael J. Marks
- Institute of Behavioral Genetics, University of Colorado, Boulder, Colorado 80309, and
| | - Henry A. Lester
- Division of Biology, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
26
|
Yu Y, Platoshyn O, Safrina O, Tsigelny I, Yuan JXJ, Keller SH. Cystic fibrosis transmembrane conductance regulator (CFTR) functionality is dependent on coatomer protein I (COPI). Biol Cell 2007; 99:433-44. [PMID: 17388782 DOI: 10.1042/bc20060114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Cystic fibrosis results from mutations in the ABC transporter CFTR (cystic fibrosis transmembrane conductance regulator), which functions as a cAMP-regulated anion channel. The most prevalent mutation in CFTR, the Phe(508) deletion, results in the generation of a trafficking and functionally deficient channel. The cellular machineries involved in modulating CFTR trafficking and function have not been fully characterized. In the present study, we identified a role for the COPI (coatomer protein I) cellular trafficking machinery in the development of the CFTR polypeptide into a functional chloride channel. To examine the role of COPI in CFTR biosynthesis, we employed the cell line ldlF, which harbours a temperature-sensitive mutation in epsilon-COP, a COPI subunit, to inhibit COPI function and then determined whether the CFTR polypeptide produced from the transfected gene developed into a cAMP-regulated chloride channel. RESULTS When COPI was inactivated in the ldlF cells by an elevated temperature pulse (39 degrees C), the CFTR polypeptide was detected on the cell surface by immunofluorescence microscopy and cell-surface biotinylation. Therefore, CFTR proceeded upstream in the secretory pathway in the absence of COPI function, a result demonstrated previously by others. In contrast, electrophysiological measurements indicated an absence of cAMP-stimulated chloride efflux, suggesting that channel function was impaired. In comparison, expression of CFTR at the same elevated temperature (39 degrees C) in an epsilon-COP-rescued cell line [ldlF(ldlF)], which has an introduced wild-type epsilon-COP gene in addition to the mutant epsilon-COP gene, showed restoration of cAMP-stimulated channel activity, confirming the requirement of COPI for channel function. CONCLUSIONS These results therefore suggest that generation of the folded-functional conformation of CFTR requires COPI.
Collapse
Affiliation(s)
- Ying Yu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0725, USA
| | | | | | | | | | | |
Collapse
|
27
|
Nashmi R, Lester H. Cell autonomy, receptor autonomy, and thermodynamics in nicotine receptor up-regulation. Biochem Pharmacol 2007; 74:1145-54. [PMID: 17662697 PMCID: PMC2128788 DOI: 10.1016/j.bcp.2007.06.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/23/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
Chronic nicotine exposure, in smokers or in experimental rodents administered nicotine, produces elevated levels of nicotinic acetylcholine receptors in several brain regions. However, there are few data on up-regulation of receptors in specific neuronal subtypes. We tested whether functional up-regulation of nicotinic responses occurs in cultured GABAergic neurons of the ventral midbrain. Fura-2 measurements of nicotinic responses were made on ventral midbrain neurons from knock-in mice heterozygous for the alpha4-M2 domain Leu9'Ala mutation, which confers nicotine hypersensitivity. Chronic nicotine exposure at a concentration (10 nM for 3 days) that activates only the hypersensitive alpha4* (Leu9'Ala) receptors, but not wild-type receptors, resulted in significant potentiation of ACh (100 microM)-elicited responses. Experiments were also performed on midbrain neuronal cultures heterozygous for the alpha4* (Leu9'Ala) mutation as well as for a GFP protein fused to a GABA transporter that reliably reveals GABAergic neurons. In cultures chronically treated with 10nM nicotine, there was significantly increased alpha4* nicotinic-induced Ca(2+) influx elicited by low concentration of ACh (3 microM). Furthermore, chronic exposure to the competitive antagonist dihydro-beta-erythroidine, but not to the noncompetitive antagonist mecamylamine, induced up-regulation of ACh elicited nicotinic responses. These results suggest that occupation of alpha4* nicotinic receptor binding site(s), at the interface between two subunits, is sufficient to promote assembly and/or up-regulation of functional receptors in GABAergic neurons. Up-regulation in neurons is both "cell-autonomous", occurring at the cell itself, and "receptor autonomous", occurring at the receptor itself, and may be a thermodynamic necessity of ligand-protein interactions.
Collapse
Affiliation(s)
- Raad Nashmi
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
28
|
Krzywkowski K, Jensen AA, Connolly CN, Bräuner-Osborne H. Naturally occurring variations in the human 5-HT3A gene profoundly impact 5-HT3 receptor function and expression. Pharmacogenet Genomics 2007; 17:255-66. [PMID: 17496724 DOI: 10.1097/fpc.0b013e3280117269] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The serotonin [5-hydroxytryptamine (5-HT)]-gated ion channel 5-HT3 is involved in the mediation of postoperative and radiotherapy/chemotherapy-induced nausea/emesis and in irritable bowel syndrome. It has also been suggested to play a role in various psychiatric diseases. Five naturally occurring single nucleotide polymorphisms leading to amino acid changes have been identified in the human 5-HT3A gene. METHODS AND RESULTS We investigated the functional effects of these polymorphisms on the 5-HT3A receptor using fluorescence-based cellular assays. Notably, variants A33T, S253N, and M257I displayed 5-HT-induced maximal responses of 3-64% of the wild-type response, whereas R344H and P391R exhibited wild-type-like function. All variants displayed wild-type-like potencies of 5-HT and three 5-HT3 antagonists. Furthermore, all variants displayed Kd values similar to that of the wild-type receptor in a [H]GR65630-binding assay. The surface expression of A33T, M257I, and R344H was reduced 2-4-fold compared with the wild-type, despite similar total expression levels. Finally, coexpression of wild-type 5-HT3A or 5-HT3B subunits with 5-HT3A variants A33T, S253N, or M257I resulted in mixed or heteromeric receptors, characterized by significantly reduced maximal responses to 5-HT compared with the wild-type receptors. CONCLUSIONS Three polymorphisms of the 5-HT3A gene gave rise to functionally impaired receptors whose function could not be rescued by either wild-type 5-HT3A or 5-HT3B. Three of the variant receptors were surface-expressed at reduced levels in spite of total expression levels similar to wild-type, indicating that these variants affect receptor biogenesis and/or trafficking. These severe single nucleotide polymorphism effects hold promise for identification of new 5-HT3A gene-disease causalities.
Collapse
Affiliation(s)
- Karen Krzywkowski
- Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
29
|
Roccamo AM, Barrantes FJ. Charged amino acid motifs flanking each extreme of the alphaM4 transmembrane domain are involved in assembly and cell-surface targeting of the muscle nicotinic acetylcholine receptor. J Neurosci Res 2007; 85:285-93. [PMID: 17131427 DOI: 10.1002/jnr.21123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The alphaM4 transmembrane domain of the nicotinic acetylcholine receptor (AChR) is flanked by two basic amino acids (His(408) and Arg(429)) located at its cytoplasmic- and extracellular-facing extremes, respectively, at the level of the phospholipid polar head regions of the postsynaptic membrane. A series of single and double alphaM4 mutants (His(408)Ala, Arg(429)Ala, Arg(429)Glu, His(408)Ala/Arg(429)Ala, and His(408)Ala/Arg(429)Glu) of the adult muscle-type AChR were produced and coexpressed with wild-type beta, delta, and epsilon subunits as stable clones in a mammalian heterologous expression system (CHO-K1 cells). The mutants were studied by alpha-bungarotoxin ([(125)I]alpha-BTX) binding, fluorescence microscopy, and equilibrium sucrose gradient centrifugation. Cell-surface [(125)I]alpha-BTX binding diminished approximately 40% in His(408)Ala and as much as 95% in the Arg(429)Ala mutant. Reversing the amino acid charge (e.g., Arg(429)Glu) abolished cell-surface expression of AChR. Fluorescence microscopy disclosed that AChR was retained at the endoplasmic reticulum, with an enhanced occurrence of unassembled AChR species in the mutant clones. Centrifugation analysis confirmed the lack of fully assembled AChR pentamers in all mutants with the exception of His(408)Ala. We conclude that His(408) and Arg(429) in alphaM4 are involved in assembly and cell-surface targeting of muscle AChR. Arg(429) plays a more decisive role in these two processes, suggesting an asymmetric weight of the charged motifs at each extreme of the alpha subunit M4 transmembrane segment. (c) 2006 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- A M Roccamo
- Instituto de Investigaciones Bioquimicas and UNESCO Chair of Biophysics and Molecular Neurobiology, Bahía Blanca, Argentina
| | | |
Collapse
|
30
|
Baier CJ, Barrantes FJ. Sphingolipids are necessary for nicotinic acetylcholine receptor export in the early secretory pathway. J Neurochem 2007; 101:1072-84. [PMID: 17437537 DOI: 10.1111/j.1471-4159.2007.04561.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nicotinic acetylcholine receptor (AChR) is the prototype ligand-gated ion channel, and its function is dependent on its lipid environment. In order to study the involvement of sphingolipids (SL) in AChR trafficking, we used pharmacological approaches to dissect the SL biosynthetic pathway in CHO-K1/A5 cells heterologously expressing the muscle-type AChR. When SL biosynthesis was impaired, the cell surface targeting of AChR diminished with a concomitant increase in the intracellular receptor pool. The SL-inhibiting drugs increased unassembled AChR forms, which were retained at the endoplasmic reticulum (ER). These effects on AChR biogenesis and trafficking could be reversed by the addition of exogenous SL, such as sphingomyelin. On the basis of these effects we propose a 'chaperone-like' SL intervention at early stages of the AChR biosynthetic pathway, affecting both the efficiency of the assembly process and subsequent receptor trafficking to the cell surface.
Collapse
Affiliation(s)
- C J Baier
- UNESCO Chair of Biophysics and Molecular Neurobiology and Instituto de Investigaciones Bioquímicas de Bahía Blanca, Bahía Blanca, Argentina
| | | |
Collapse
|
31
|
Jones HM, Bailey MA, Baty CJ, Macgregor GG, Syme CA, Hamilton KL, Devor DC. An NH2-terminal multi-basic RKR motif is required for the ATP-dependent regulation of hIK1. Channels (Austin) 2007; 1:80-91. [PMID: 18690018 DOI: 10.4161/chan.3999] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously demonstrated that the ATP/PKA-dependent activation of the human intermediate conductance, Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal motif. The NH2-terminus of hIK1 contains a multi-basic 13RRRKR17 motif, known to be important in the trafficking and function of ion channels. While individual mutations within this domain have no effect on channel function, the triple mutation (15RKR17/AAA), as well as additional double mutations, result in a near complete loss of functional channels, as assessed by whole-cell patch-clamp. However, cell-surface immunoprecipitation studies confirmed expression of these mutated channels at the plasma membrane. To elucidate the functional consequences of the (15)RKR(17)/AAA mutation we performed inside-out patch clamp recordings where we observed no difference in Ca2+ affinity between the wild-type and mutated channels. However, in contrast to wild-type hIK1, channels expressing the 15RKR17/AAA mutation exhibited rundown, which could not be reversed by the addition of ATP. Wild-type hIK1 channel activity was reduced by alkaline phosphatase both in the presence and absence of ATP, indicative of a phosphorylation event, whereas the 15RKR17/AAA mutation eliminated this effect of alkaline phosphatase. Further, single channel analysis demonstrated that the 15RKR17/AAA mutation resulted in a four-fold lower channel open probability (P(o)), in the presence of saturating Ca2+ and ATP, compared to wild-type hIK1. In conclusion, these results represent the first demonstration for a role of the NH2-terminus in the second messenger-dependent regulation of hIK1 and, in combination with our previous findings, suggest that this regulation is dependent upon a close NH2/C-terminal association.
Collapse
Affiliation(s)
- Heather M Jones
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Fleck MW. Glutamate receptors and endoplasmic reticulum quality control: looking beneath the surface. Neuroscientist 2006; 12:232-44. [PMID: 16684968 DOI: 10.1177/1073858405283828] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glutamate is the principal excitatory neurotransmitter in the mammalian central nervous system. The cellular regulation of glutamate receptor (GluR) ion channel function and expression is important for maintaining or adjusting target cell excitability to meet ever-changing demands, for example, in relation to developmental or use-dependent synaptic plasticity. Dysregulation of GluR function or expression may be a contributing factor in certain forms of epilepsy, stroke/ischemia, head trauma, cognitive impairments, and neurodegenerative disease. Recent years have seen substantial progress in understanding how GluRs operate in terms of their structural and functional properties, their synaptic targeting and membrane anchoring by PDZ-domain proteins, and their activity-dependent cycling at the plasma membrane. Yet precious little is known about the earliest events in GluR biogenesis or the mechanisms in place to ensure the GluRs that reach the cell surface are processed, folded, and oligomerized in an appropriate manner. Indeed, only a minor fraction of the GluR content of cells is expressed at any given time on the cell surface, whereas most of the remaining receptors exist in the endoplasmic reticulum (ER). The functional competence and significance of the ER fraction of receptors are presently unknown, but they are generally thought to represent immature, unassembled, or improperly assembled subunits. Some are ultimately destined for insertion in the plasma membrane. Others may be targeted for proteosomal degradation. Still others might provide a latent pool of fully functional receptors that can be recruited to enhance cell excitability in response to specific signals or under pathological conditions. This review will explore the structural and functional elements that regulate GluR assembly and export from the ER.
Collapse
Affiliation(s)
- Mark W Fleck
- Center for Neuropharmacology & Neuroscience, Albany Medical College, NY 12208, USA.
| |
Collapse
|
33
|
Exley R, Moroni M, Sasdelli F, Houlihan LM, Lukas RJ, Sher E, Zwart R, Bermudez I. Chaperone protein 14-3-3 and protein kinase A increase the relative abundance of low agonist sensitivity human alpha 4 beta 2 nicotinic acetylcholine receptors in Xenopus oocytes. J Neurochem 2006; 98:876-85. [PMID: 16787419 DOI: 10.1111/j.1471-4159.2006.03915.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpha4 and beta2 nicotinic acetylcholine (nACh) receptor subunits expressed heterologously in Xenopus oocytes assemble into a mixture of receptors with high and low agonist sensitivity whose relative abundance is influenced by the heteropentamer subunit ratio. We have found that inhibition of protein kinase A by KT5720 decreased maximal [3H]cytisine binding and acetylcholine (ACh)-induced current responses, and increased the relative proportion of alpha4beta2 receptors with high agonist sensitivity. Mutation of serine 467, a putative protein kinase A substrate in a chaperone protein binding motif within the large cytoplasmic domain of the alpha4 subunit, to alanine or asparate decreased or increased, respectively, maximal [3H]cytisine binding and ACh response amplitude. Expression of alpha4S467A mutant subunits decreased steady levels of alpha4 and the relative proportion of alpha4beta2 receptors with low agonist sensitivity, whilst expression of alpha4S467D increased steady levels of alpha4 and alpha4beta2 receptors with low agonist sensitivity. Difopein, an inhibitor of chaperone 14-3-3 proteins, decreased [3H]cytisine binding and ACh responses and increased the proportion of alpha4beta2 with high sensitivity to activation by ACh. Thus, post-translational modification affecting steady-state levels of alpha4 subunits provides a possible means for physiologically relevant, chaperone-mediated variation in the relative proportion of high and low agonist sensitivity alpha4beta2 nACh receptors.
Collapse
Affiliation(s)
- Richard Exley
- School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Vivithanaporn P, Yan S, Swanson GT. Intracellular Trafficking of KA2 Kainate Receptors Mediated by Interactions with Coatomer Protein Complex I (COPI) and 14-3-3 Chaperone Systems. J Biol Chem 2006; 281:15475-84. [PMID: 16595684 DOI: 10.1074/jbc.m512098200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly and trafficking of neurotransmitter receptors are processes contingent upon interactions between intracellular chaperone systems and discrete determinants in the receptor proteins. Kainate receptor subunits, which form ionotropic glutamate receptors with diverse roles in the central nervous system, contain a variety of trafficking determinants that promote either membrane expression or intracellular sequestration. In this report, we identify the coatomer protein complex I (COPI) vesicle coat as a critical mechanism for retention of the kainate receptor subunit KA2 in the endoplasmic reticulum. COPI subunits immunoprecipitated with KA2 subunits from both cerebellum and COS-7 cells, and beta-COP protein interacted directly with immobilized KA2 peptides containing the arginine-rich retention/retrieval determinant. Association between COPI proteins and KA2 subunits was significantly reduced upon alanine substitution of this signal in the cytoplasmic tail of KA2. Temperature-sensitive degradation of COPI complex proteins was correlated with an increase in plasma membrane localization of the homologous KA2 receptor. Assembly of heteromeric GluR6a/KA2 receptors markedly reduced association of KA2 and COPI. Finally, the reduction in COPI binding was correlated with an increased association with 14-3-3 proteins, which mediate forward trafficking of other integral signaling proteins. These interactions therefore represent a critical early checkpoint for biosynthesis of functional KARs.
Collapse
Affiliation(s)
- Pornpun Vivithanaporn
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555-1031, USA
| | | | | |
Collapse
|
35
|
Ren XQ, Cheng SB, Treuil MW, Mukherjee J, Rao J, Braunewell KH, Lindstrom JM, Anand R. Structural determinants of alpha4beta2 nicotinic acetylcholine receptor trafficking. J Neurosci 2006; 25:6676-86. [PMID: 16014729 PMCID: PMC6725434 DOI: 10.1523/jneurosci.1079-05.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structural determinants of nicotinic acetylcholine receptor (AChR) trafficking have yet to be fully elucidated. Hydrophobic residues occur within short motifs important for endoplasmic reticulum (ER) export or endocytotic trafficking. Hence, we tested whether highly conserved hydrophobic residues, primarily leucines, in the cytoplasmic domain of the alpha4beta2 AChR subunits were required for cell surface expression of alpha4beta2 AChRs. Mutation of F350, L351, L357, and L358 to alanine in the alpha4 AChR subunit attenuates cell surface expression of mutant alpha4beta2 AChRs. Mutation of F342, L343, L349, and L350 to alanine at homologous positions in the beta2 AChR subunit abolishes cell surface expression of mutant alpha4beta2 AChRs. The hydrophobic nature of the leucine residue is a primary determinant of its function because mutation of L343 to another hydrophobic amino acid, phenylalanine, in the beta2 AChR subunit only poorly inhibits trafficking of mutant alpha4beta2 AChR to the cell surface. All mutant alpha4beta2 AChRs exhibit high-affinity binding for [3H]epibatidine. In both tsA201 cells and differentiated SH-SY5Y neural cells, wild-type alpha4beta2 AChRs colocalize with the Golgi marker giantin, whereas mutant alpha4beta2 AChRs fail to do so. The striking difference between mutant alpha4 versus mutant beta2 AChR subunits on cell surface expression of mutant alpha4beta2 AChRs points to a cooperative or regulatory role for the alpha4 AChR subunit and an obligatory role for the beta2 AChR subunit in ER export. Collectively, our results identify, for the first time, residues within AChR subunits that are essential structural determinants of alpha4beta2 AChR ER export.
Collapse
Affiliation(s)
- Xiao-Qin Ren
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gottschalk A, Schafer WR. Visualization of integral and peripheral cell surface proteins in live Caenorhabditis elegans. J Neurosci Methods 2006; 154:68-79. [PMID: 16466809 DOI: 10.1016/j.jneumeth.2005.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2005] [Revised: 11/08/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
To study the abundance of specific receptors and other cell surface proteins at synapses, it would be advantageous to specifically label these proteins only when inserted in the plasma membrane. We describe a method that allows to fluorescently label cell surface proteins in live and behaving animals, namely in the nematode Caenorhabditis elegans. Proteins such as subunits of the levamisole sensitive nicotinic acetylcholine receptor (nAChR) were epitope-tagged at their extracellular C-termini, and fluorescent antibodies against those tags were injected into the body fluid. These antibodies specifically labelled synaptic regions on the cell surface of muscles and neurons, and simultaneous use of different tags facilitated co-localization studies. Quantification of the fluorescence is possible, as verified by demonstrating that mutations in ric-3 and unc-38, which cause behavioural resistance to cholinergic agonists, strongly reduce or even abolish nAChR cell surface expression. We also used this method to visualize the extracellular peripheral membrane protein ODR-2, which is related to a neurotoxin-like protein regulating vertebrate neuronal nAChRs. Likewise, fluorescent alpha-bungarotoxin, when injected, bound to certain nAChRs in the pharynx and the nervous system. This showed that, theoretically, any molecular interaction of sufficient affinity may be used to specifically label cell surface structures in live nematodes.
Collapse
Affiliation(s)
- Alexander Gottschalk
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Biochemistry, Biocenter N210, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| | | |
Collapse
|
37
|
Cauvi DM, Tian X, von Loehneysen K, Robertson MW. Transport of the IgE receptor alpha-chain is controlled by a multicomponent intracellular retention signal. J Biol Chem 2006; 281:10448-60. [PMID: 16459334 DOI: 10.1074/jbc.m510751200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human high affinity IgE receptor (FcepsilonRI) is a central component of the allergic response and is expressed as either a trimeric alphagamma2 or tetrameric alphabetagamma2 complex. It has been previously described that the cytoplasmic domain (CD) of the alpha-chain carries a dilysine motif at positions -3/-7 from the C terminus that functions in intracellular retention prior to assembly with other FcepsilonRI subunits. In this report we have further explored the role of the -3/-7 dilysine signal in controlling steady-state alpha-chain transport by mutational analysis and found little surface expression of a -3/-7 dialanine alpha-chain mutant but significant Golgi localization. We compared the transport properties of a series of alpha-chain cytoplasmic domain truncation mutants and observed that truncation mutants lacking 23 or more C-terminal residues showed a dramatic increase in steady-state transport suggesting a role for the membrane-proximal CD sequence in alpha-chain retention. By performing alanine-scanning mutagenesis we identified a dilysine sequence (Lys(212)-Lys(216)) proximal to the transmembrane domain (TMD) that is important for both alpha-chain cell-surface expression and intracellular stability. Furthermore, co-mutation of the Lys(212)-Lys(216) residues with the -3/-7 dilysine signal produced a dramatic increase in alpha-chain surface expression that was further increased by co-mutation of the lone charged residue (Asp(192)) in the TMD thereby defining three regions that function to regulate alpha-chain transport and in a highly synergistic manner.
Collapse
Affiliation(s)
- David M Cauvi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
38
|
Yoo D, Fang L, Mason A, Kim BY, Welling PA. A Phosphorylation-dependent Export Structure in ROMK (Kir 1.1) Channel Overrides an Endoplasmic Reticulum Localization Signal. J Biol Chem 2005; 280:35281-9. [PMID: 16118216 DOI: 10.1074/jbc.m504836200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell surface density of functional Kir1.1 (ROMK, KCNJ1) channels in the renal collecting duct is precisely regulated to maintain potassium balance. Here, we explore the mechanism by which phosphorylation of Kir1.1a serine 44 controls plasmalemma expression. Studies in Xenopus oocytes, expressing wild-type, phosphorylation mimic (S44D), or phosphorylation null (S44A) Kir1.1a, revealed that phosphorylation of serine 44 is required to stimulate traffic of newly synthesized channels to the plasma membrane through a brefeldin A-sensitive pathway. ROMK channels were found to acquire mature glycosylation in a serine 44 phosphorylation-dependent manner, consistent with a phosphorylation-dependent trafficking step within the endoplasmic reticulum/Golgi. Serine 44 neighbors a string of three "RXR" motifs, reminiscent of basic trafficking signals involved in directing early transport steps within the secretory pathway. Replacement of the arginine residues with alanine (R35A, R37A, R39A, R41A, or all Arg to Ala) did not restore cell surface expression of the phospho-null S44A channel, making it unlikely that phosphorylation abrogates a nearby RXR-type endoplasmic reticulum (ER) localization signal. Instead, analysis of the compound S44D phospho-mimic mutants revealed that the neighboring arginine residues are also necessary for cell surface expression, identifying a structure that determines export in the biosynthetic pathway. Suppressor mutations in a putative dibasic ER retention signal, located within the cytoplasmic C terminus (K370A, R371A), restored cell surface expression of the phospho-null S44A channel to levels exhibited by the phospho-mimic S44D channel. Taken together, these studies indicate that phosphorylation of Ser44 drives an export step within the secretory pathway to override an independent endoplasmic reticulum localization signal.
Collapse
Affiliation(s)
- Dana Yoo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
39
|
Craig PJ, Bose S, Zwart R, Beattie RE, Folly EA, Johnson LR, Bell E, Evans NM, Benedetti G, Pearson KH, McPhie GI, Volsen SG, Millar NS, Sher E, Broad LM. Stable expression and characterisation of a human alpha 7 nicotinic subunit chimera: a tool for functional high-throughput screening. Eur J Pharmacol 2005; 502:31-40. [PMID: 15464087 DOI: 10.1016/j.ejphar.2004.08.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 08/09/2004] [Accepted: 08/19/2004] [Indexed: 11/23/2022]
Abstract
A chimera comprising the N-terminal region of the human alpha7 nicotinic acetylcholine receptor, fused to the transmembrane/C-terminal domains of the mouse serotonin 5-HT3 receptor, was constructed. Injection of the chimera cDNA into Xenopus oocytes, or transient transfection in human embryonic kidney (HEK-293) cells, resulted in the expression of functional channels that were sensitive to nicotinic acetylcholine, but not serotonin receptor ligands. In both systems, the responses obtained from chimeric receptors inactivated more slowly than those recorded following activation of wild-type alpha7 receptors. A stable HEK-293 cell line expressing the human alpha7/mouse 5-HT3 chimera was established, which showed that the chimera displayed a similar pharmacological profile to wild-type alpha7 receptors. Use of this chimera in high-throughput screening may enable the identification of novel pharmacological agents that will help to define further the role of alpha7 nicotinic receptors in physiology and disease.
Collapse
Affiliation(s)
- Peter J Craig
- Eli Lilly and Company Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Free RB, McKay SB, Gottlieb PD, Boyd RT, McKay DB. Expression of native alpha3beta4* neuronal nicotinic receptors: binding and functional studies investigating turnover of surface and intracellular receptor populations. Mol Pharmacol 2005; 67:2040-8. [PMID: 15772292 DOI: 10.1124/mol.104.009282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several pathological conditions involve alterations in expression of neuronal nicotinic acetylcholine receptors (nAChRs). Although some studies have addressed processes involved with muscle nAChR expression, knowledge of the regulation of neuronal nAChRs is particularly sparse. The following studies were designed to investigate cellular mechanisms involved with expression of neuronal alpha3beta4* nAChRs. Catecholamine secretion assays and receptor binding studies coupled with receptor alkylation were used to study the nAChR regulation and turnover. Alkylation of adrenal nAChRs results in a rapid and complete loss of receptor-mediated neurosecretion and surface [(3)H]epibatidine binding sites. After alkylation, both neurosecretory function and nAChR binding slowly (24-48 h) return to prealkylation levels. When cells are treated with the protein synthesis inhibitor puromycin, after alkylation, receptor-mediated neurosecretion does not recover. Long-term treatment (24-48-h) with puromycin, in the absence of alkylation, results in a slow, time-dependent shift to the right, followed by a downward shift, in the nicotine concentration-response curve, documenting a disappearance of surface nAChRs. Puromycin treatment alone also results in a loss to both surface and intracellular [(3)H]epibatidine binding sites. nAChR beta4 subunit levels are significantly decreased after treatment with puromycin. These data support a constitutive turnover of adrenal alpha3beta4* nAChRs, requiring continual de novo synthesis of new receptor protein.
Collapse
Affiliation(s)
- R Benjamin Free
- Division of Pharmacology, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
41
|
Mah SJ, Cornell E, Mitchell NA, Fleck MW. Glutamate receptor trafficking: endoplasmic reticulum quality control involves ligand binding and receptor function. J Neurosci 2005; 25:2215-25. [PMID: 15745947 PMCID: PMC6726086 DOI: 10.1523/jneurosci.4573-04.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 01/18/2005] [Accepted: 01/18/2005] [Indexed: 11/21/2022] Open
Abstract
The glutamate receptor (GluR) agonist-binding site consists of amino acid residues in the extracellular S1 and S2 domains in the N-terminal and M3-M4 loop regions, respectively. In the present study, we sought to confirm that the conserved ligand-binding residues identified in the AMPA receptor S1S2 domains also participate in ligand binding of GluR6 kainate receptors. Amino acid substitutions were made in the GluR6 parent at R523, T690, and E738 to alter their potential interactions with ligand. Mutant receptors were expressed in human embryonic kidney 293 cells, confirmed by Western blot analysis, and tested by [3H]kainate binding and patch-clamp recording. Each of the binding site mutations was sufficient to reduce [3H]kainate binding to undetectable levels and eliminate functional responses to glutamate or kainate. As with our studies of other nonfunctional mutants (Fleck et al., 2003), immunocytochemical staining and cell-surface biotinylation studies showed that the mutant receptors were retained intracellularly and did not traffic to the cell surface. Endoglycosidase-H digests and colocalization with endoplasmic reticulum (ER) markers demonstrated that the mutant receptors are immaturely glycosylated and retained in the ER. Immunoprecipitation, native PAGE, and functional studies confirmed that the GluR6-binding site mutants are capable of multimeric assembly, indicating their retention in the ER does not result from a gross protein folding error. Together, these results confirm the role of R523, T690, and E738 directly in ligand binding to GluR6 and further support our previous report that nonfunctional GluRs are retained intracellularly by a functional checkpoint in ER quality control.
Collapse
MESH Headings
- Amino Acid Substitution/physiology
- Binding Sites/physiology
- Biotinylation/methods
- Blotting, Western/methods
- Cell Line
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Electric Stimulation/methods
- Endoplasmic Reticulum/physiology
- Gene Expression/genetics
- Glutamic Acid/pharmacology
- Glycosylation/drug effects
- Humans
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- Kainic Acid/pharmacokinetics
- Ligands
- Luminescent Proteins
- Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase/pharmacology
- Membrane Potentials/genetics
- Membrane Potentials/radiation effects
- Microscopy, Confocal/methods
- Models, Molecular
- Mutagenesis, Site-Directed/methods
- Mutation/physiology
- Patch-Clamp Techniques/methods
- Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/pharmacology
- Protein Binding/genetics
- Protein Binding/physiology
- Protein Transport/physiology
- Radioligand Assay/methods
- Receptors, AMPA/chemistry
- Receptors, AMPA/metabolism
- Receptors, Kainic Acid/chemistry
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/metabolism
- Sequence Alignment/methods
- Structure-Activity Relationship
- Transfection/methods
- Tritium/pharmacokinetics
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Stephanie J Mah
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
42
|
Kane JK, Konu O, Ma JZ, Li MD. Nicotine coregulates multiple pathways involved in protein modification/degradation in rat brain. ACTA ACUST UNITED AC 2004; 132:181-91. [PMID: 15582157 DOI: 10.1016/j.molbrainres.2004.09.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2004] [Indexed: 10/26/2022]
Abstract
Previously, we used cDNA microarrays to demonstrate that the phosphatidylinositol and MAP kinase signaling pathways are regulated by nicotine in different rat brain regions. In the present report, we show that, after exposure to nicotine for 14 days, ubiquitin, ubiquitin-conjugating enzymes, 20S and 19S proteasomal subunits, and chaperonin-containing TCP-1 protein (CCT) complex members are upregulated in rat prefrontal cortex (PFC) while being downregulated in the medial basal hypothalamus (MBH). In particular, relative to saline controls, ubiquitins B and C were upregulated by 33% and 47% (P<0.01), respectively, in the PFC. The proteasome beta subunit 1 (PSMB1) and 26S ATPase 3 (PSMC3) genes were upregulated in the PFC by 95% and 119% (P<0.001), respectively. In addition to the protein degradation pathway of the ubiquitin-proteasome complexes, we observed in the PFC an increase in the expression of small, ubiquitin-related modifiers (SUMO) 1 and 2 by 80% and 33%, respectively (P<0.001), and in 3 of 6 CCT subunits by up to 150% (P<0.0001). To a lesser extent, a change in the opposite direction was obtained in the expression of the same gene families in the MBH. Quantitative real-time RT-PCR was used to validate the microarray results obtained with some representative genes involved in these pathways. Taken together, our results suggest that, in response to systemic nicotine administration, the ubiquitin-proteasome, SUMO, and chaperonin complexes provide an intricate control mechanism to maintain cellular homeostasis, possibly by regulating the composition and signaling of target neurons in a region-specific manner.
Collapse
Affiliation(s)
- Justin K Kane
- Program in Genomics and Bioinformatics on Drug Addiction, Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | | | | | | |
Collapse
|
43
|
Kottwitz D, Kukhtina V, Dergousova N, Alexeev T, Utkin Y, Tsetlin V, Hucho F. Intracellular domains of the δ-subunits of Torpedo and rat acetylcholine receptors—expression, purification, and characterization. Protein Expr Purif 2004; 38:237-47. [PMID: 15555939 DOI: 10.1016/j.pep.2004.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Indexed: 11/19/2022]
Abstract
There are quite detailed structural data on the extracellular ligand-binding domain and the intramembrane channel-forming domain of the nicotinic acetylcholine receptors (nAChR). However, the structure of the intracellular domain, which has variable amino acid sequences in different nAChR subunits, remains unknown. We expressed in Escherichia coli the intracellular loops (between transmembrane fragments TM3 and TM4) of the delta-subunits from the Torpedo californica and Rattus norvegicus muscle nAChRs. To facilitate purification, (His)6-tags were attached with or without linkers, and the effects of protein truncations at C- or N-termini were examined. The proteins were purified from inclusion bodies under denaturing conditions by Ni-NTA-chromatography. Molecular weight and peptide mass fingerprint was determined by MALDI mass spectrometry. Size-exclusion chromatography revealed that the Torpedo intracellular delta-loop refolded in an aqueous buffer was present in solution as a dimer. Phosphorylation of this protein with protein kinase A and tyrosine kinase (Abl) occurred at the same serine and tyrosine residues as in the native receptor. According to CD spectra, the secondary structure was not sensitive to phosphorylation. The rat intracellular loops could be solubilized only in the presence of non-ionic detergents or lipids. CD spectra indicate that the Torpedo and rat proteins have differences in their secondary structure. In the presence of dodecylphosphocholine, high concentrations (up to 6 mg/ml) of the Torpedo and rat intracellular loops were achieved. The results suggest that the spatial structure of the intracellular loops is dependent on environment and species, but is not changed significantly upon enzymatic phosphorylation.
Collapse
Affiliation(s)
- Denise Kottwitz
- Institute of Biochemistry, Free University of Berlin, Thielallee 63, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Christianson JC, Green WN. Regulation of nicotinic receptor expression by the ubiquitin-proteasome system. EMBO J 2004; 23:4156-65. [PMID: 15483627 PMCID: PMC524400 DOI: 10.1038/sj.emboj.7600436] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 09/14/2004] [Indexed: 01/23/2023] Open
Abstract
Control of ligand-gated ion channel (LGIC) expression is essential for the formation, maintenance and plasticity of synapses. Treatment of mouse myotubes with proteasome inhibitors increased the number of surface nicotinic acetylcholine receptors (AChRs), indicating LGIC expression is regulated by the ubiquitin-proteasome system (UPS). Elevated surface expression resulted from increased AChR delivery to the plasma membrane and not from decreased turnover from the surface. The rise in AChR trafficking was the direct result of increased assembly of subunits in the endoplasmic reticulum (ER). Because proteasome inhibitors also blocked ER-associated degradation (ERAD) of unassembled AChR subunits, the data indicate that the additional AChRs were assembled from subunits normally targeted for ERAD. Our data show that AChR surface expression is regulated by the UPS through ERAD, whose activity determines oligomeric receptor assembly efficiency.
Collapse
Affiliation(s)
- John C Christianson
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL, USA
| | - William N Green
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
45
|
Bromann PA, Weiner JA, Apel ED, Lewis RM, Sanes JR. A putative ariadne-like E3 ubiquitin ligase (PAUL) that interacts with the muscle-specific kinase (MuSK). Gene Expr Patterns 2004; 4:77-84. [PMID: 14678832 DOI: 10.1016/s1567-133x(03)00146-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Formation of the postsynaptic membrane at the skeletal neuromuscular junction (NMJ) requires activation of the muscle-specific receptor tyrosine kinase (MuSK). Few intracellular mediators or modulators of MuSK actions are known. E3 ubiquitin ligases may serve this role, because activities of several receptor tyrosine kinases, G-protein-coupled receptors and channels are modulated by ubiquitination. Here, we report identification of a putative Ariadne-like ubiquitin ligase (PAUL) that binds to the cytoplasmic domain of MuSK. PAUL is expressed in numerous tissues of developing and adult mice, and is present at NMJs in muscle fibers but is not confined to them.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Brain/embryology
- Brain/metabolism
- Cell Line
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Humans
- In Situ Hybridization
- Kidney/embryology
- Kidney/metabolism
- Liver/embryology
- Liver/metabolism
- Lung/cytology
- Lung/embryology
- Lung/metabolism
- Mice
- Molecular Sequence Data
- Muscle, Skeletal/cytology
- Muscle, Skeletal/embryology
- Muscle, Skeletal/metabolism
- Myocardium/cytology
- Myocardium/metabolism
- Phylogeny
- Precipitin Tests
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Two-Hybrid System Techniques
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Paul A Bromann
- Department of Anatomy and Neurobiology, Washington University Medical School, 660 South Euclid, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
46
|
Belouzard S, Delcroix D, Rouillé Y. Low levels of expression of leptin receptor at the cell surface result from constitutive endocytosis and intracellular retention in the biosynthetic pathway. J Biol Chem 2004; 279:28499-508. [PMID: 15123629 DOI: 10.1074/jbc.m400508200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leptin receptor is mainly localized in intracellular compartments in target tissues. To study the mechanisms leading to this intracellular localization, two main isoforms of leptin receptors, OB-Ra and OB-Rb, were expressed in HeLa cells. Both isoforms were localized at steady state in the trans-Golgi network, in endosomes, and to a lesser extent, at the cell surface. They turned over with a half-life of less than 2 h. Both isoforms of leptin receptors were constitutively endocytosed in a ligand-independent manner and degraded in lysosomes with no evidence of recycling to the cell surface or to the trans-Golgi network. The endocytosis was inhibited by the deletion of the cytoplasmic domain. Newly synthesized leptin receptors were partially retained in the Golgi complex or in a post-Golgi intracellular compartment. The transmembrane domain was found to be important for this intracellular retention in the biosynthetic pathway, whereas the cytoplasmic domain was not involved. The data suggest that the low levels of expression of leptin receptors at the cell surface results from partial retention in the biosynthetic pathway, coupled to constitutive removal from the plasma membrane via ligand-independent, constitutive endocytosis.
Collapse
Affiliation(s)
- Sandrine Belouzard
- Unité Propre de Recherche 2511, Institut de Biologie de Lille, CNRS, 59021 Lille, France
| | | | | |
Collapse
|
47
|
Assembly of alpha4beta2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J Neurosci 2004. [PMID: 14684858 DOI: 10.1523/jneurosci.23-37-11554.2003] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fura-2 recording of Ca2+ influx was used to show that incubation in 1 microm nicotine (2-6 d) upregulates several pharmacological components of acetylcholine (ACh) responses in ventral midbrain cultures, including a MLA-resistant, DHbetaE-sensitive component that presumably corresponds to alpha4beta2 receptors. To study changes in alpha4beta2 receptor levels and assembly during this upregulation, we incorporated yellow and cyan fluorescent proteins (YFPs and CFPs) into the alpha4 or beta2 M3-M4 intracellular loops, and these subunits were coexpressed in human embryonic kidney (HEK) 293T cells and cultured ventral midbrain neurons. The fluorescent receptors resembled wild-type receptors in maximal responses to ACh, dose-response relations, ACh-induced Ca2+ influx, and somatic and dendritic distribution. Transfected midbrain neurons that were exposed to nicotine (1 d) displayed greater levels of fluorescent alpha4 and beta2 nicotinic ACh receptor (nAChR) subunits. As expected from the hetero-multimeric nature of alpha4beta2 receptors, coexpression of the alpha4-YFP and beta2-CFP subunits resulted in robust fluorescence resonance energy transfer (FRET), with a FRET efficiency of 22%. In midbrain neurons, dendritic alpha4beta2 nAChRs displayed greater FRET than receptors inside the soma, and in HEK293T cells, a similar increase was noted for receptors that were translocated to the surface during PKC stimulation. When cultured transfected midbrain neurons were incubated in 1 microm nicotine, there was increased FRET in the cell body, denoting increased assembly of alpha4beta2 receptors. Thus, changes in alpha4beta2 receptor assembly play a role in the regulation of alpha4beta2 levels and responses in both clonal cell lines and midbrain neurons, and the regulation may result from Ca2+-stimulated pathways.
Collapse
|
48
|
Abstract
An ion channel protein begins life as a nascent peptide inside a ribosome, moves to the endoplasmic reticulum where it becomes integrated into the lipid bilayer, and ultimately forms a functional unit that conducts ions in a well-regulated fashion. Here, I discuss the nascent peptide and its tasks as it wends its way through ribosomal tunnels and exit ports, through translocons, and into the bilayer. We are just beginning to explore the sequence of these events, mechanisms of ion channel structure formation, when biogenic decisions are made, and by which participants. These decisions include when to exit the endoplasmic reticulum and with whom to associate. Such issues govern the expression of ion channels at the cell surface and thus the electrical activity of a cell.
Collapse
Affiliation(s)
- Carol Deutsch
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Wanamaker CP, Christianson JC, Green WN. Regulation of nicotinic acetylcholine receptor assembly. Ann N Y Acad Sci 2003; 998:66-80. [PMID: 14592864 DOI: 10.1196/annals.1254.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The four muscle-type nicotinic acetylcholine receptor (AChR) subunits, alpha, beta, gamma, and delta, assemble into functional alpha(2)betagammadelta pentamers in the endoplasmic reticulum (ER) through a series of interdependent folding and oligomerization events. The first stable assembly intermediate is a trimer composed of alpha, beta, and gamma subunits. The formation of alphabetagamma trimers initiates a series of subunit folding and processing events that allow addition of delta subunits to form alphabetagammadelta tetramers. Subunit folding and processing continue with formation of the ligand-binding sites on the alpha subunit of alphabetagammadelta tetramers and the second alpha subunit added to assemble alpha(2)betagammadelta pentamers. AChR assembly is inefficient. Only 20-30% of synthesized subunits assemble into mature receptors in the ER, while the remaining unassembled subunits are degraded. However, the efficiency of subunit assembly can be regulated under certain conditions leading to higher AChR expression. Increased intracellular cAMP levels cause a 2- to 3-fold increase in AChR assembly efficiency and a comparable increase in surface expression. Additionally, block of ubiquitin-proteasome degradation appears to enhance AChR assembly and expression. Thus, the regulation of AChR assembly through posttranslational mechanisms is a potential therapeutic target for increasing AChR expression in diseases in which expression is compromised.
Collapse
Affiliation(s)
- Christian P Wanamaker
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
50
|
Abstract
The biosynthesis of secretory and membrane proteins in the endoplasmic reticulum (ER) yields mostly properly folded and assembled structures with full biological activity. Such fidelity is maintained by quality control (QC) mechanisms that avoid the production of nonnative structures. QC relies on chaperone systems in the ER that monitor and assist in the folding process. When folding promotion is not sufficient, proteins are retained in the ER and eventually retranslocated to the cytosol for degradation by the ubiquitin proteasome pathway. Retention of proteins that fail QC can sometimes occur beyond the ER, and degradation can take place in lysosomes. Several diseases are associated with proteins that do not pass QC, fail to be degraded efficiently, and accumulate as aggregates. In other cases, pathology arises from the downregulation of mutated but potentially functional proteins that are retained and degraded by the QC system.
Collapse
Affiliation(s)
- E Sergio Trombetta
- Department of Cell Biology, Yale University School of Medicine, PO Box 208002, New Haven, Connecticut 06520-8002, USA.
| | | |
Collapse
|