1
|
Jensen AMG, Raska J, Fojtik P, Monti G, Lunding M, Bartova S, Pospisilova V, van der Lee SJ, Van Dongen J, Bossaerts L, Van Broeckhoven C, Dols-Icardo O, Lléo A, Bellini S, Ghidoni R, Hulsman M, Petsko GA, Sleegers K, Bohaciakova D, Holstege H, Andersen OM. The SORL1 p.Y1816C variant causes impaired endosomal dimerization and autosomal dominant Alzheimer's disease. Proc Natl Acad Sci U S A 2024; 121:e2408262121. [PMID: 39226352 PMCID: PMC11406263 DOI: 10.1073/pnas.2408262121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Truncating genetic variants of SORL1, encoding the endosome recycling receptor SORLA, have been accepted as causal of Alzheimer's disease (AD). However, most genetic variants observed in SORL1 are missense variants, for which it is complicated to determine the pathogenicity level because carriers come from pedigrees too small to be informative for penetrance estimations. Here, we describe three unrelated families in which the SORL1 coding missense variant rs772677709, that leads to a p.Y1816C substitution, segregates with Alzheimer's disease. Further, we investigate the effect of SORLA p.Y1816C on receptor maturation, cellular localization, and trafficking in cell-based assays. Under physiological circumstances, SORLA dimerizes within the endosome, allowing retromer-dependent trafficking from the endosome to the cell surface, where the luminal part is shed into the extracellular space (sSORLA). Our results showed that the p.Y1816C mutant impairs SORLA homodimerization in the endosome, leading to decreased trafficking to the cell surface and less sSORLA shedding. These trafficking defects of the mutant receptor can be rescued by the expression of the SORLA 3Fn-minireceptor. Finally, we find that iPSC-derived neurons with the engineered p.Y1816C mutation have enlarged endosomes, a defining cytopathology of AD. Our studies provide genetic as well as functional evidence that the SORL1 p.Y1816C variant is causal for AD. The partial penetrance of the mutation suggests this mutation should be considered in clinical genetic screening of multiplex early-onset AD families.
Collapse
Affiliation(s)
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Petr Fojtik
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Giulia Monti
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| | - Melanie Lunding
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| | - Simona Bartova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
| | - Liene Bossaerts
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
| | - Oriol Dols-Icardo
- Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona 08041, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED 28029, Madrid, Spain
| | - Alberto Lléo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, CIBERNED 28029, Madrid, Spain
- Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona 08025, Barcelona, Spain
| | - Sonia Bellini
- Molecular Markers Laboratory, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli 25125, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli 25125, Brescia, Italy
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Gregory A Petsko
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, Vlaams Instituut voor Biotechnologie (VIB) Center for Molecular Neurology, VIB 2000, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp 2000, Antwerp, Belgium
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno 60200, Brno, Czech Republic
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam University Medical Center 1081 HV, Amsterdam, The Netherlands
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Aarhus C DK8000, Denmark
| |
Collapse
|
2
|
Khan R, Laumet G, Leinninger GM. Hungry for relief: Potential for neurotensin to address comorbid obesity and pain. Appetite 2024; 200:107540. [PMID: 38852785 DOI: 10.1016/j.appet.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.
Collapse
Affiliation(s)
- Rabail Khan
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoffroy Laumet
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Mishra S, Morshed N, Kinoshita C, Stevens B, Jayadev S, Young JE. The Alzheimer's disease gene SORL1 regulates lysosome function in human microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600648. [PMID: 38979155 PMCID: PMC11230436 DOI: 10.1101/2024.06.25.600648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The SORL1 gene encodes the sortilin related receptor protein SORLA, a sorting receptor that regulates endo-lysosomal trafficking of various substrates. Loss of function variants in SORL1 are causative for Alzheimer's disease (AD) and decreased expression of SORLA has been repeatedly observed in human AD brains. SORL1 is highly expressed by microglia, the tissue resident immune cells of the brain. Loss of SORLA leads to enlarged lysosomes in hiPSC-derived microglia like cells (hMGLs). However, whether SORLA deficiency contributes to microglia dysfunction and how this is relevant to AD is not known. In this study, we show that loss of SORLA results in decreased lysosomal degradation and lysosomal enzyme activity due to altered trafficking of lysosomal enzymes in hMGLs. Furthermore, lysosomal exocytosis, an important process involved in immune responses and cellular signaling, is also impaired in SORL1 deficient microglia. Phagocytic uptake of fibrillar amyloid beta 1-42 and synaptosomes is increased in SORLA deficient hMGLs, but due to reduced lysosomal degradation, these substrates aberrantly accumulate in lysosomes. Overall, these data highlight the microglial endo-lysosomal network as a potential novel pathway through which SORL1 may increase AD risk and contribute to development of AD. Additionally, our findings may inform development of novel lysosome and microglia associated drug targets for AD.
Collapse
|
4
|
Cooper JM, Lathuiliere A, Su EJ, Song Y, Torrente D, Jo Y, Weinrich N, Sales JD, Migliorini M, Sisson TH, Lawrence DA, Hyman BT, Strickland DK. SORL1 is a receptor for tau that promotes tau seeding. J Biol Chem 2024; 300:107313. [PMID: 38657864 PMCID: PMC11145553 DOI: 10.1016/j.jbc.2024.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Sortilin-related receptor 1 (SORL1) is an intracellular sorting receptor genetically implicated in Alzheimer's disease (AD) that impacts amyloid precursor protein trafficking. The objective of these studies was to test the hypothesis that SORL1 binds tau, modulates its cellular trafficking and impacts the aggregation of cytoplasmic tau induced by pathological forms of tau. Using surface plasmon resonance measurements, we observed high-affinity binding of tau to SORL1 and the vacuolar protein sorting 10 domain of SORL1. Interestingly, unlike LDL receptor-related protein 1, SORL1 binds tau at both pH 7.4 and pH 5.5, revealing its ability to bind tau at endosomal pH. Immunofluorescence studies confirmed that exogenously added tau colocalized with SORL1 in H4 neuroglioma cells, while overexpression of SORL1 in LDL receptor-related protein 1-deficient Chinese hamster ovary (CHO) cells resulted in a marked increase in the internalization of tau, indicating that SORL1 can bind and mediate the internalization of monomeric forms of tau. We further demonstrated that SORL1 mediates tau seeding when tau RD P301S FRET biosensor cells expressing SORL1 were incubated with high molecular weight forms of tau isolated from the brains of patients with AD. Seeding in H4 neuroglioma cells is significantly reduced when SORL1 is knocked down with siRNA. Finally, we demonstrate that the N1358S mutant of SORL1 significantly increases tau seeding when compared to WT SORL1, identifying for the first time a potential mechanism that connects this specific SORL1 mutation to Alzheimer's disease. Together, these studies identify SORL1 as a receptor that contributes to trafficking and seeding of pathogenic tau.
Collapse
Affiliation(s)
- Joanna M Cooper
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aurelien Lathuiliere
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA; Department of Rehabilitation and Geriatrics, Memory Center, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Enming J Su
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Yuyu Song
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel Torrente
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York, USA
| | - Youhwa Jo
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nicholas Weinrich
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jennifer Diaz Sales
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mary Migliorini
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Thomas H Sisson
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Daniel A Lawrence
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA.
| | - Dudley K Strickland
- The Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
5
|
Fazeli E, Fazeli E, Fojtík P, Holstege H, Andersen OM. Functional characterization of SORL1 variants in cell-based assays to investigate variant pathogenicity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220377. [PMID: 38368933 PMCID: PMC10874698 DOI: 10.1098/rstb.2022.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 12/11/2023] [Indexed: 02/20/2024] Open
Abstract
SORLA, the protein encoded by the SORL1 gene, has an important role in recycling cargo proteins to the cell surface. While SORLA loss-of-function variants occur almost exclusively in Alzheimer's disease cases, the majority of SORL1 variants are missense variants that are individually rare and can have individual mechanisms how they impair SORLA function as well as have individual effect size on disease risk. However, since carriers mostly come from small pedigrees, it is challenging to determine variant penetrance, leaving clinical significance associated with most missense variants unclear. In this article, we present functional approaches to evaluate the pathogenicity of a SORL1 variant, p.D1105H. First, we generated our mutant receptor by inserting the D1105H variant into the full-length SORLA-WT receptor. Then using western blot analysis we quantified the effect of the mutation on maturation and shedding of the receptor for transfected cells, and finally applied a flow cytometry approach to quantify SORLA expression at the cell surface. The results showed decreased maturation, decreased shedding, and decreased cell surface expression of D1105H compared with wild-type SORLA. We propose how these approaches can be used to functionally assess the pathogenicity of SORL1 variants in the future. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Elnaz Fazeli
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus 8000, Denmark
| | - Elham Fazeli
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus 8000, Denmark
| | - Petr Fojtík
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus 8000, Denmark
| | - Henne Holstege
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam Neurosocience, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Olav M. Andersen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
6
|
Mishra S, Jayadev S, Young JE. Differential effects of SORL1 deficiency on the endo-lysosomal network in human neurons and microglia. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220389. [PMID: 38368935 PMCID: PMC10874699 DOI: 10.1098/rstb.2022.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/27/2023] [Indexed: 02/20/2024] Open
Abstract
The endosomal gene SORL1 is a strong Alzheimer's disease (AD) risk gene that harbours loss-of-function variants causative for developing AD. The SORL1 protein SORL1/SORLA is an endosomal receptor that interacts with the multi-protein sorting complex retromer to traffic various cargo through the endo-lysosomal network (ELN). Impairments in endo-lysosomal trafficking are an early cellular symptom in AD and a novel therapeutic target. However, the cell types of the central nervous system are diverse and use the ELN differently. If this pathway is to be effectively therapeutically targeted, understanding how key molecules in the ELN function in various cell types and how manipulating them affects cell-type specific responses relative to AD is essential. Here, we discuss an example where deficiency of SORL1 expression in a human model leads to stress on early endosomes and recycling endosomes in neurons, but preferentially leads to stress on lysosomes in microglia. The differences observed in these organelles could relate to the unique roles of these cells in the brain as neurons are professional secretory cells and microglia are professional phagocytic cells. Experiments to untangle these differences are fundamental to advancing the understanding of cell biology in AD and elucidating important pathways for therapeutic development. Human-induced pluripotent stem cell models are a valuable platform for such experiments. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Suman Jayadev
- Deparment of Neurology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Fazeli E, Child DD, Bucks SA, Stovarsky M, Edwards G, Rose SE, Yu CE, Latimer C, Kitago Y, Bird T, Jayadev S, Andersen OM, Young JE. A familial missense variant in the Alzheimer's disease gene SORL1 impairs its maturation and endosomal sorting. Acta Neuropathol 2024; 147:20. [PMID: 38244079 PMCID: PMC10799806 DOI: 10.1007/s00401-023-02670-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/11/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset > 75 years. All offspring were affected with AD with ages at onset ranging from 53 years to 74 years. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.
Collapse
Affiliation(s)
- Elnaz Fazeli
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Daniel D Child
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Stephanie A Bucks
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Miki Stovarsky
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
| | - Gabrielle Edwards
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Shannon E Rose
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Chang-En Yu
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System, Seattle, WA, 98108, USA
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Yu Kitago
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Thomas Bird
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System, Seattle, WA, 98108, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA.
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
8
|
Bauer C, Duplan E, Saint-George-Hyslop P, Checler F. Potentially Pathogenic SORL1 Mutations Observed in Autosomal-Dominant Cases of Alzheimer's Disease Do Not Modulate APP Physiopathological Processing. Cells 2023; 12:2802. [PMID: 38132122 PMCID: PMC10742224 DOI: 10.3390/cells12242802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The SORL1 gene encodes LR11/SorLA, a protein that binds β-amyloid precursor protein (APP) and drives its intracellular trafficking. SORL1 mutations, occurring frequently in a subset of familial cases of Alzheimer's disease (AD), have been documented, but their pathogenic potential is not yet clear and questions remain concerning their putative influence on the physiopathological processing of APP. We have assessed the influence of two SORL1 mutations that were described as likely disease-causing and that were associated with either benign (SorLA924) or severe (SorLA511) AD phenotypes. We examined the influence of wild-type and mutants SorLA in transiently transfected HEK293 cells expressing either wild-type or Swedish mutated APP on APP expression, secreted Aβ and sAPPα levels, intracellular Aβ 40 and Aβ42 peptides, APP-CTFs (C99 and C83) expressions, α-, β- and γ-secretases expressions and activities as well as Aβ and CTFs-degrading enzymes. These paradigms were studied in control conditions or after pharmacological proteasomal modulation. We also established stably transfected CHO cells expressing wild-type SorLA and established the colocalization of APP and either wild-type or mutant SorLA. SorLA mutations partially disrupt co-localization of wild-type sorLA with APP. Overall, although we mostly confirmed previous data concerning the influence of wild-type SorLA on APP processing, we were unable to evidence significant alterations triggered by our set of SorLA mutants, whatever the cells or pharmacological conditions examined. Our study , however, does not rule out the possibility that other AD-linked SORL1 mutations could indeed affect APP processing, and that pathogenic mutations examined in the present study could interfere with other cellular pathways/triggers in AD.
Collapse
Affiliation(s)
- Charlotte Bauer
- INSERM, CNRS, IPMC, Team Labeled “Laboratory of Excellence (LABEX) Distalz”, Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France; (C.B.); (E.D.)
| | - Eric Duplan
- INSERM, CNRS, IPMC, Team Labeled “Laboratory of Excellence (LABEX) Distalz”, Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France; (C.B.); (E.D.)
| | - Peter Saint-George-Hyslop
- Center for Research in Neurodegenerative Diseases, Department of Medicine, Toronto Western Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON M5G 1L7, Canada;
| | - Frédéric Checler
- INSERM, CNRS, IPMC, Team Labeled “Laboratory of Excellence (LABEX) Distalz”, Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France; (C.B.); (E.D.)
| |
Collapse
|
9
|
Bhuiyan NZ, Hasan MK, Mahmud Z, Hossain MS, Rahman A. Prevention of Alzheimer's disease through diet: An exploratory review. Metabol Open 2023; 20:100257. [PMID: 37781687 PMCID: PMC10539673 DOI: 10.1016/j.metop.2023.100257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction This exploratory review article describes about the genetic factors behind Alzheimer's disease (AD), their association with foods, and their relationships with cognitive impairment. It explores the dietary patterns and economic challenges in AD prevention. Methods Scopus, PubMed and Google Scholar were searched for articles that examined the relationships between Diets, Alzheimer's Disease (AD), and Socioeconomic conditions in preventative Alzheimer's disease studies. Graphs and Network analysis data were taken from Scopus under the MeSH search method, including words, Alzheimer's, APoE4, Tau protein, APP, Amyloid precursor protein, Beta-Amyloid, Aβ, Mediterranean Diet, MD, DASH diet, MIND diet, SES, Socioeconomic, Developed country, Underdeveloped country, Preventions. The network analysis was done through VOS viewer. Results Mediterranean diet (MD) accurately lowers AD (Alzheimer's Disease) risk to 53% and 35% for people who follow it moderately. MIND scores had a statistically significant reduction in AD rate compared to those in the lowest tertial (53% and 35% reduction, respectively). Subjects with the highest adherence to the MD and DASH had a 54% and 39% lower risk of developing AD, respectively, compared to those in the lowest tertial. Omega-6, PUFA, found in nuts and fish, can play most roles in the clearance of Aβ. Vitamin D inhibits induced fibrillar Aβ apoptosis. However, the high cost of these diet components rise doubt about the effectiveness of AD prevention through healthy diets. Conclusion The finding of this study revealed an association between diet and the effects of the chemical components of foods on AD biomarkers. More research is required to see if nutrition is a risk or a protective factor for Alzheimer's disease to encourage research to be translated into therapeutic practice and to clarify nutritional advice.
Collapse
Affiliation(s)
- Nusrat Zahan Bhuiyan
- Department of Biochemistry and Molecular Biology, National University Bangladesh, Gazipur, 1704, Bangladesh
| | - Md. Kamrul Hasan
- Department of Biochemistry and Molecular Biology, National University Bangladesh, Gazipur, 1704, Bangladesh
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md. Sabbir Hossain
- Department of Biochemistry and Molecular Biology, National University Bangladesh, Gazipur, 1704, Bangladesh
| | - Atiqur Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
10
|
Fazeli E, Child DD, Bucks SA, Stovarsky M, Edwards G, Rose SE, Yu CE, Latimer C, Kitago Y, Bird T, Jayadev S, Andersen OM, Young JE. A familial missense variant in the Alzheimer's Disease gene SORL1 impairs its maturation and endosomal sorting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.01.547348. [PMID: 37461597 PMCID: PMC10349966 DOI: 10.1101/2023.07.01.547348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset >75 years. All offspring were affected with AD with ages at onset ranging from 53yrs-74yrs. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.
Collapse
Affiliation(s)
- Elnaz Fazeli
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK8000 AarhusC, Denmark
| | - Daniel D. Child
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| | - Stephanie A. Bucks
- Department of Neurology, University of Washington, Seattle Washington USA
| | - Miki Stovarsky
- Department of Medicine, Division of Medical Genetics University of Washington, Seattle Washington USA
| | - Gabrielle Edwards
- Department of Neurology, University of Washington, Seattle Washington USA
| | - Shannon E. Rose
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| | - Chang-En Yu
- Department of Medicine, Division of Medical Genetics University of Washington, Seattle Washington USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| | - Yu Kitago
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Thomas Bird
- Department of Neurology, University of Washington, Seattle Washington USA
- Department of Medicine, Division of Medical Genetics University of Washington, Seattle Washington USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle Washington USA
| | - Olav M. Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK8000 AarhusC, Denmark
| | - Jessica E. Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle Washington USA
| |
Collapse
|
11
|
Klein M, Failla AV, Hermey G. Internally tagged Vps10p-domain receptors reveal uptake of the neurotrophin BDNF. J Biol Chem 2023; 299:105216. [PMID: 37660918 PMCID: PMC10540051 DOI: 10.1016/j.jbc.2023.105216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
The Vps10p-domain (Vps10p-D) receptor family consists of Sortilin, SorLA, SorCS1, SorCS2, and SorCS3. They mediate internalization and intracellular sorting of specific cargo in various cell types, but underlying molecular determinants are incompletely understood. Deciphering the dynamic intracellular itineraries of Vps10p-D receptors is crucial for understanding their role in physiological and cytopathological processes. However, studying their spatial and temporal dynamics by live imaging has been challenging so far, as terminal tagging with fluorophores presumably impedes several of their protein interactions and thus functions. Here, we addressed the lack of appropriate tools and developed functional versions of all family members internally tagged in their ectodomains. We predict folding of the newly designed receptors by bioinformatics and show their exit from the endoplasmic reticulum. We examined their subcellular localization in immortalized cells and primary cultured neurons by immunocytochemistry and live imaging. This was, as far as known, identical to that of wt counterparts. We observed homodimerization of fluorophore-tagged SorCS2 by coimmunoprecipitation and fluorescence lifetime imaging, suggesting functional leucine-rich domains. Through ligand uptake experiments, live imaging and fluorescence lifetime imaging, we show for the first time that all Vps10p-D receptors interact with the neurotrophin brain-derived neurotrophic factor and mediate its uptake, indicating functionality of the Vps10p-Ds. In summary, we developed versions of all Vps10p-D receptors, with internal fluorophore tags that preserve several functions of the cytoplasmic and extracellular domains. These newly developed fluorophore-tagged receptors are likely to serve as powerful functional tools for accurate live studies of the individual cellular functions of Vps10p-D receptors.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
12
|
Monti G, Vincke C, Lunding M, Jensen AMG, Madsen P, Muyldermans S, Kjolby M, Andersen OM. Epitope mapping of nanobodies binding the Alzheimer's disease receptor SORLA. J Biotechnol 2023; 375:17-27. [PMID: 37634829 DOI: 10.1016/j.jbiotec.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Reduced levels of the Sortilin-related receptor with A-type repeats (SORLA) in different brain regions as well as in the cerebrospinal fluid have been associated with Alzheimer's disease. Methods and reagents to develop reliable detection assays to quantify SORLA and its specific isoforms are therefore much needed. Nanobodies (Nbs) are unique biomolecules derived from the blood of camelids that display advantageous physicochemical and antigen affinity properties, making them attractive tools with great relevance to both diagnostic and therapeutic applications. Here, we purified and characterized eight Nbs that were isolated from the blood of an alpaca immunized with the recombinant extracellular domain of SORLA. The selected Nbs showed high affinity to SORLA in the low nanomolar range as observed by surface plasmon resonance. For mapping of the Nbs' epitopes within the antigen, we transiently transfected HEK293 cells with a panel of SORLA deletion constructs, and developed a protocol of immunostaining by applying fluorescent dye conjugated Nbs. With this method, we showed that the selected Nbs specifically recognize a part of SORLA containing Fibronectin-type III domains, representing promising tools not only for disease clarifying research, but also for translational medicine as candidates for clinical diagnostic purposes.
Collapse
Affiliation(s)
- Giulia Monti
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Melanie Lunding
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Anne Mette G Jensen
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Peder Madsen
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark; Department of Clinical Pharmacology and Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Høegh‑Guldbergs Gade 10, 8000 Aarhus C, Denmark.
| |
Collapse
|
13
|
González-Gómez M, Reyes R, Damas-Hernández MDC, Plasencia-Cruz X, González-Marrero I, Alonso R, Bello AR. NTS, NTSR1 and ERs in the Pituitary-Gonadal Axis of Cycling and Postnatal Female Rats after BPA Treatment. Int J Mol Sci 2023; 24:ijms24087418. [PMID: 37108581 PMCID: PMC10138486 DOI: 10.3390/ijms24087418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The neuropeptide neurotensin (NTS) is involved in regulating the reproductive axis and is expressed at each level of this axis (hypothalamus-pituitary-gonads). This dependence on estrogen levels has been widely demonstrated in the hypothalamus and pituitary. We focused on confirming the relationship of NTS with estrogens and the gonadal axis, using a particularly important environmental estrogenic molecule, bisphenol-A (BPA). Based on the experimental models or in vitro cell studies, it has been shown that BPA can negatively affect reproductive function. We studied for the first time the action of an exogenous estrogenic substance on the expression of NTS and estrogen receptors in the pituitary-gonadal axis during prolonged in vivo exposure. The exposure to BPA at 0.5 and 2 mg/kg body weight per day during gestation and lactation was monitored through indirect immunohistochemical procedures applied to the pituitary and ovary sections. Our results demonstrate that BPA induces alterations in the reproductive axis of the offspring, mainly after the first postnatal week. The rat pups exposed to BPA exhibited accelerated sexual maturation to puberty. There was no effect on the number of rats born per litter, although the fewer primordial follicles suggest a shorter fertile life.
Collapse
Affiliation(s)
- Miriam González-Gómez
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Biología Celular, Facultad de Ciencias, Sección de Biología, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), 38296 La Laguna, Spain
| | | | - Xiomara Plasencia-Cruz
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ibrahim González-Marrero
- Departamento de Ciencias Médicas Básicas, Área de Anatomía Humana, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 La Laguna, Spain
| | - Rafael Alonso
- Instituto de Tecnologías Biomédicas (ITB), 38200 La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Área de Fisiología, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Aixa R Bello
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Área de Biología Celular, Facultad de Ciencias, Sección de Biología, Universidad de La Laguna, 38200 La Laguna, Spain
- Instituto de Enfermedades Tropicales y Salud Pública de Canarias (IUETSP), 38296 La Laguna, Spain
| |
Collapse
|
14
|
Kühl T, Georgieva MG, Hübner H, Lazarova M, Vogel M, Haas B, Peeva MI, Balacheva AA, Bogdanov IP, Milella L, Ponticelli M, Garev T, Faraone I, Detcheva R, Minchev B, Petkova-Kirova P, Tancheva L, Kalfin R, Atanasov AG, Antonov L, Pajpanova TI, Kirilov K, Gastreich M, Gmeiner P, Imhof D, Tzvetkov NT. Neurotensin(8-13) analogs as dual NTS1 and NTS2 receptor ligands with enhanced effects on a mouse model of Parkinson's disease. Eur J Med Chem 2023; 254:115386. [PMID: 37094450 DOI: 10.1016/j.ejmech.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
The modulatory interactions between neurotensin (NT) and the dopaminergic neurotransmitter system in the brain suggest that NT may be associated with the progression of Parkinson's disease (PD). NT exerts its neurophysiological effects by interactions with the human NT receptors type 1 (hNTS1) and 2 (hNTS2). Therefore, both receptor subtypes are promising targets for the development of novel NT-based analogs for the treatment of PD. In this study, we used a virtually guided molecular modeling approach to predict the activity of NT(8-13) analogs by investigating the docking models of ligands designed for binding to the human NTS1 and NTS2 receptors. The importance of the residues at positions 8 and/or 9 for hNTS1 and hNTS2 receptor binding affinity was experimentally confirmed by radioligand binding assays. Further in vitro ADME profiling and in vivo studies revealed that, compared to the parent peptide NT(8-13), compound 10 exhibited improved stability and BBB permeability combined with a significant enhancement of the motor function and memory in a mouse model of PD. The herein reported NTS1/NTS2 dual-specific NT(8-13) analogs represent an attractive tool for the development of therapeutic strategies against PD and potentially other CNS disorders.
Collapse
Affiliation(s)
- Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Maya G Georgieva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058, Erlangen, Germany
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Matthias Vogel
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Bodo Haas
- Federal Institute for Drugs and Medical Devices (BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Martina I Peeva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Aneliya A Balacheva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Ivan P Bogdanov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Luigi Milella
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Maria Ponticelli
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Tsvetomir Garev
- UMBALSM "N. I. Pirogov"-Hospital, 1606 Pette Kyosheta, Sofia, Bulgaria
| | - Immacolata Faraone
- Department of Science, University of Basilicata, V.le dell'Ateneo Lucano 10, 85100, Potenza, Italy; Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100, Potenza, Italy
| | - Roumyana Detcheva
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria; Weizmann Institute of Science, 234 Herzl St., Rehovot, 7610001, Israel
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria; Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552, Magdalenka, Poland
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, Blvd. Tsarigradsko Chaussee 72, 1784, Sofia, Bulgaria
| | - Tamara I Pajpanova
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria
| | - Kiril Kirilov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria; Department of Natural Sciences, New Bulgarian University, 21 Montevideo Str., Sofia, 1618, Bulgaria
| | - Marcus Gastreich
- BioSolveIT GmbH, An der Ziegelei 79, 53757 St. Augustin, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander- Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, D-91058, Erlangen, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121, Bonn, Germany
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, Sofia, 1113, Bulgaria.
| |
Collapse
|
15
|
Salasova A, Monti G, Andersen OM, Nykjaer A. Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol Neurodegener 2022; 17:74. [PMID: 36397124 PMCID: PMC9673319 DOI: 10.1186/s13024-022-00576-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
The family of VPS10p-Domain (D) receptors comprises five members named SorLA, Sortilin, SorCS1, SorCS2 and SorCS3. While their physiological roles remain incompletely resolved, they have been recognized for their signaling engagements and trafficking abilities, navigating a number of molecules between endosome, Golgi compartments, and the cell surface. Strikingly, recent studies connected all the VPS10p-D receptors to Alzheimer’s disease (AD) development. In addition, they have been also associated with diseases comorbid with AD such as diabetes mellitus and major depressive disorder. This systematic review elaborates on genetic, functional, and mechanistic insights into how dysfunction in VPS10p-D receptors may contribute to AD etiology, AD onset diversity, and AD comorbidities. Starting with their functions in controlling cellular trafficking of amyloid precursor protein and the metabolism of the amyloid beta peptide, we present and exemplify how these receptors, despite being structurally similar, regulate various and distinct cellular events involved in AD. This includes a plethora of signaling crosstalks that impact on neuronal survival, neuronal wiring, neuronal polarity, and synaptic plasticity. Signaling activities of the VPS10p-D receptors are especially linked, but not limited to, the regulation of neuronal fitness and apoptosis via their physical interaction with pro- and mature neurotrophins and their receptors. By compiling the functional versatility of VPS10p-D receptors and their interactions with AD-related pathways, we aim to further propel the AD research towards VPS10p-D receptor family, knowledge that may lead to new diagnostic markers and therapeutic strategies for AD patients.
Collapse
|
16
|
A genetically modified minipig model for Alzheimer’s disease with SORL1 haploinsufficiency. Cell Rep Med 2022; 3:100740. [PMID: 36099918 PMCID: PMC9512670 DOI: 10.1016/j.xcrm.2022.100740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/20/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022]
Abstract
The established causal genes in Alzheimer’s disease (AD), APP, PSEN1, and PSEN2, are functionally characterized using biomarkers, capturing an in vivo profile reflecting the disease’s initial preclinical phase. Mutations in SORL1, encoding the endosome recycling receptor SORLA, are found in 2%–3% of individuals with early-onset AD, and SORL1 haploinsufficiency appears to be causal for AD. To test whether SORL1 can function as an AD causal gene, we use CRISPR-Cas9-based gene editing to develop a model of SORL1 haploinsufficiency in Göttingen minipigs, taking advantage of porcine models for biomarker investigations. SORL1 haploinsufficiency in young adult minipigs is found to phenocopy the preclinical in vivo profile of AD observed with APP, PSEN1, and PSEN2, resulting in elevated levels of β-amyloid (Aβ) and tau preceding amyloid plaque formation and neurodegeneration, as observed in humans. Our study provides functional support for the theory that SORL1 haploinsufficiency leads to endosome cytopathology with biofluid hallmarks of autosomal dominant AD. Minipig model of Alzheimer’s disease by CRISPR knockout of the causal gene SORL1 Young SORL1 het minipigs phenocopy a preclinical CSF biomarker profile of individuals with AD SORL1 haploinsufficiency causes enlarged endosomes similar to neuronal AD pathology A minipig model bridging the translational gap between AD mouse models and affected individuals
Collapse
|
17
|
Majumder P, Edmison D, Rodger C, Patel S, Reid E, Gowrishankar S. AP-4 regulates neuronal lysosome composition, function, and transport via regulating export of critical lysosome receptor proteins at the trans-Golgi network. Mol Biol Cell 2022; 33:ar102. [PMID: 35976706 PMCID: PMC9635302 DOI: 10.1091/mbc.e21-09-0473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The adaptor protein complex-4 or AP-4 is known to mediate autophagosome maturation through regulating sorting of transmembrane cargo such as ATG9A at the Golgi. There is a need to understand AP-4 function in neurons, as mutations in any of its four subunits cause a complex form of hereditary spastic paraplegia (HSP) with intellectual disability. While AP-4 has been implicated in regulating trafficking and distribution of cargo such as ATG9A and APP, little is known about its effect on neuronal lysosomal protein traffic, lysosome biogenesis and function. In this study, we demonstrate that in human iPSC-derived neurons AP-4 regulates lysosome composition, function and transport via regulating export of critical lysosomal receptors, including Sortilin 1, from the trans-Golgi network to endo-lysosomes. Additionally, loss of AP-4 causes endo-lysosomes to stall and build up in axonal swellings potentially through reduced recruitment of retrograde transport machinery to the organelle. These findings of axonal lysosome build-up are highly reminiscent of those observed in Alzheimer's disease as well as in neurons modelling the most common form of HSP, caused by spastin mutations. Our findings implicate AP-4 as a critical regulator of neuronal lysosome biogenesis and altered lysosome function and axonal endo-lysosome transport as an underlying defect in AP-4 deficient HSP. Additionally, our results also demonstrate the utility of the human i3Neuronal model system in investigating neuronal phenotypes observed in AP-4 deficient mice and/or the human AP-4 deficiency syndrome. [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Piyali Majumder
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Daisy Edmison
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Catherine Rodger
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Sruchi Patel
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Evan Reid
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
19
|
Binkle L, Klein M, Borgmeyer U, Kuhl D, Hermey G. The adaptor protein PICK1 targets the sorting receptor SorLA. Mol Brain 2022; 15:18. [PMID: 35183222 PMCID: PMC8858569 DOI: 10.1186/s13041-022-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
SorLA is a member of the Vps10p-domain (Vps10p-D) receptor family of type-I transmembrane proteins conveying neuronal endosomal sorting. The extracellular/luminal moiety of SorLA has a unique mosaic domain composition and interacts with a large number of different and partially unrelated ligands, including the amyloid precursor protein as well as amyloid-β. Several studies support a strong association of SorLA with sporadic and familial forms of Alzheimer’s disease (AD). Although SorLA seems to be an important factor in AD, the large number of different ligands suggests a role as a neuronal multifunctional receptor with additional intracellular sorting capacities. Therefore, understanding the determinants of SorLA’s subcellular targeting might be pertinent for understanding neuronal endosomal sorting mechanisms in general. A number of cytosolic adaptor proteins have already been demonstrated to determine intracellular trafficking of SorLA. Most of these adaptors and several ligands of the extracellular/luminal moiety are shared with the Vps10p-D receptor Sortilin. Although SorLA and Sortilin show both a predominant intracellular and endosomal localization, they are targeted to different endosomal compartments. Thus, independent adaptor proteins may convey their differential endosomal targeting. Here, we hypothesized that Sortilin and SorLA interact with the cytosolic adaptors PSD95 and PICK1 which have been shown to bind the Vps10p-D receptor SorCS3. We observed only an interaction for SorLA and PICK1 in mammalian-two-hybrid, pull-down and cellular recruitment experiments. We demonstrate by mutational analysis that the C-terminal minimal PDZ domain binding motif VIA of SorLA mediates the interaction. Moreover, we show co-localization of SorLA and PICK1 at vesicular structures in primary neurons. Although the physiological role of the interaction between PICK1 and SorLA remains unsolved, our study suggests that PICK1 partakes in regulating SorLA’s intracellular itinerary.
Collapse
|
20
|
Szabo MP, Mishra S, Knupp A, Young JE. The role of Alzheimer's disease risk genes in endolysosomal pathways. Neurobiol Dis 2022; 162:105576. [PMID: 34871734 PMCID: PMC9071255 DOI: 10.1016/j.nbd.2021.105576] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
There is ample pathological and biological evidence for endo-lysosomal dysfunction in Alzheimer's disease (AD) and emerging genetic studies repeatedly implicate endo-lysosomal genes as associated with increased AD risk. The endo-lysosomal network (ELN) is essential for all cell types of the central nervous system (CNS), yet each unique cell type utilizes cellular trafficking differently (see Fig. 1). Challenges ahead involve defining the role of AD associated genes in the functionality of the endo-lysosomal network (ELN) and understanding how this impacts the cellular dysfunction that occurs in AD. This is critical to the development of new therapeutics that will impact, and potentially reverse, early disease phenotypes. Here we review some early evidence of ELN dysfunction in AD pathogenesis and discuss the role of selected AD-associated risk genes in this pathway. In particular, we review genes that have been replicated in multiple genome-wide association studies(Andrews et al., 2020; Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Marioni et al., 2018) and reviewed in(Andrews et al., 2020) that have defined roles in the endo-lysosomal network. These genes include SORL1, an AD risk gene harboring both rare and common variants associated with AD risk and a role in trafficking cargo, including APP, through the ELN; BIN1, a regulator of clathrin-mediated endocytosis whose expression correlates with Tau pathology; CD2AP, an AD risk gene with roles in endosome morphology and recycling; PICALM, a clathrin-binding protein that mediates trafficking between the trans-Golgi network and endosomes; and Ephrin Receptors, a family of receptor tyrosine kinases with AD associations and interactions with other AD risk genes. Finally, we will discuss how human cellular models can elucidate cell-type specific differences in ELN dysfunction in AD and aid in therapeutic development.
Collapse
Affiliation(s)
- Marcell P Szabo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Swati Mishra
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, United States of America; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, United States of America.
| |
Collapse
|
21
|
Rovelet-Lecrux A, Feuillette S, Miguel L, Schramm C, Pernet S, Quenez O, Ségalas-Milazzo I, Guilhaudis L, Rousseau S, Riou G, Frébourg T, Campion D, Nicolas G, Lecourtois M. Impaired SorLA maturation and trafficking as a new mechanism for SORL1 missense variants in Alzheimer disease. Acta Neuropathol Commun 2021; 9:196. [PMID: 34922638 PMCID: PMC8684260 DOI: 10.1186/s40478-021-01294-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
The SorLA protein, encoded by the SORL1 gene, is a major player in Alzheimer’s disease (AD) pathophysiology. Functional and genetic studies demonstrated that SorLA deficiency results in increased production of Aβ peptides, and thus a higher risk of AD. A large number of SORL1 missense variants have been identified in AD patients, but their functional consequences remain largely undefined. Here, we identified a new pathophysiological mechanism, by which rare SORL1 missense variants identified in AD patients result in altered maturation and trafficking of the SorLA protein. An initial screening, based on the overexpression of 70 SorLA variants in HEK293 cells, revealed that 15 of them (S114R, R332W, G543E, S564G, S577P, R654W, R729W, D806N, Y934C, D1535N, D1545E, P1654L, Y1816C, W1862C, P1914S) induced a maturation and trafficking-deficient phenotype. Three of these variants (R332W, S577P, and R654W) and two maturation-competent variants (S124R and N371T) were further studied in details in CRISPR/Cas9-modified hiPSCs. When expressed at endogenous levels, the R332W, S577P, and R654W SorLA variants also showed a maturation defective profile. We further demonstrated that these variants were largely retained in the endoplasmic reticulum, resulting in a reduction in the delivery of SorLA mature protein to the plasma membrane and to the endosomal system. Importantly, expression of the R332W and R654W variants in hiPSCs was associated with a clear increase of Aβ secretion, demonstrating a loss-of-function effect of these SorLA variants regarding this ultimate readout, and a direct link with AD pathophysiology. Furthermore, structural analysis of the impact of missense variants on SorLA protein suggested that impaired cellular trafficking of SorLA protein could be due to subtle variations of the protein 3D structure resulting from changes in the interatomic interactions.
Collapse
|
22
|
Plasma lipidome is dysregulated in Alzheimer's disease and is associated with disease risk genes. Transl Psychiatry 2021; 11:344. [PMID: 34092785 PMCID: PMC8180517 DOI: 10.1038/s41398-021-01362-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/10/2021] [Accepted: 04/06/2021] [Indexed: 01/11/2023] Open
Abstract
Lipidomics research could provide insights of pathobiological mechanisms in Alzheimer's disease. This study explores a battery of plasma lipids that can differentiate Alzheimer's disease (AD) patients from healthy controls and determines whether lipid profiles correlate with genetic risk for AD. AD plasma samples were collected from the Sydney Memory and Ageing Study (MAS) Sydney, Australia (aged range 75-97 years; 51.2% male). Untargeted lipidomics analysis was performed by liquid chromatography coupled-mass spectrometry (LC-MS/MS). We found that several lipid species from nine lipid classes, particularly sphingomyelins (SMs), cholesterol esters (ChEs), phosphatidylcholines (PCs), phosphatidylethanolamines (PIs), phosphatidylinositols (PIs), and triglycerides (TGs) are dysregulated in AD patients and may help discriminate them from healthy controls. However, when the lipid species were grouped together into lipid subgroups, only the DG group was significantly higher in AD. ChEs, SMs, and TGs resulted in good classification accuracy using the Glmnet algorithm (elastic net penalization for the generalized linear model [glm]) with more than 80% AUC. In general, group lipids and the lipid subclasses LPC and PE had less classification accuracy compared to the other subclasses. We also found significant increases in SMs, PIs, and the LPE/PE ratio in human U251 astroglioma cell lines exposed to pathophysiological concentrations of oligomeric Aβ42. This suggests that oligomeric Aβ42 plays a contributory, if not causal role, in mediating changes in lipid profiles in AD that can be detected in the periphery. In addition, we evaluated the association of plasma lipid profiles with AD-related single nucleotide polymorphisms (SNPs) and polygenic risk scores (PRS) of AD. We found that FERMT2 and MS4A6A showed a significantly differential association with lipids in all lipid classes across disease and control groups. ABCA7 had a differential association with more than half of the DG lipids (52.63%) and PI lipids (57.14%), respectively. Additionally, 43.4% of lipids in the SM class were differentially associated with CLU. More than 30% of lipids in ChE, PE, and TG classes had differential associations with separate genes (ChE-PICALM, SLC24A4, and SORL1; PE-CLU and CR1; TG-BINI) between AD and control group. These data may provide renewed insights into the pathobiology of AD and the feasibility of identifying individuals with greater AD risk.
Collapse
|
23
|
Wölk E, Stengel A, Schaper SJ, Rose M, Hofmann T. Neurotensin and Xenin Show Positive Correlations With Perceived Stress, Anxiety, Depressiveness and Eating Disorder Symptoms in Female Obese Patients. Front Behav Neurosci 2021; 15:629729. [PMID: 33664656 PMCID: PMC7921165 DOI: 10.3389/fnbeh.2021.629729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Neurotensin and xenin are two closely related anorexigenic neuropeptides synthesized in the small intestine that exert diverse peripheral and central functions. Both act via the neurotensin-1-receptor. In animal models of obesity reduced central concentrations of these peptides have been found. Dysregulations of the acute and chronic stress response are associated with development and maintenance of obesity. Until now, associations of both peptides with stress, anxiety, depressiveness, and eating disorder symptoms have not been investigated. The aim of the present study was to examine associations of neurotensin and xenin with these psychological characteristics under conditions of obesity. Materials and Methods From 2010 to 2016 we consecutively enrolled 160 inpatients (63 men and 97 women), admitted due to obesity and its mental and somatic comorbidities. Blood withdrawal und psychometric tests (PSQ-20, GAD-7, PHQ-9, and EDI-2) occurred within one week after admission. We measured levels of neurotensin and xenin in plasma by ELISA. Results Mean body mass index was 47.2 ± 9.5 kg/m2. Concentrations of neurotensin and xenin positively correlated with each other (women: r = 0.788, p < 0.001; men: r = 0.731, p < 0.001) and did not significantly differ between sexes (p > 0.05). Women generally displayed higher psychometric values than men (PSQ-20: 58.2 ± 21.7 vs. 47.0 ± 20.8, p = 0.002; GAD-7: 9.7 ± 5.8 vs. 7.1 ± 5.3, p = 0.004; PHQ-9: 11.6 ± 6.6 vs. 8.8 ± 5.9, p = 0.008; EDI-2: 50.5 ± 12.8 vs. 39.7 ± 11.9, p < 0.001). Only women showed positive correlations of both neuropeptides with stress (neurotensin: r = 0.231, p = 0.023; xenin: r = 0.254, p = 0.013), anxiety (neurotensin: r = 0.265, p = 0.009; xenin: r = 0.257, p = 0.012), depressiveness (neurotensin: r = 0.281, p = 0.006; xenin: r = 0.241, p = 0.019) and eating disorder symptoms (neurotensin: r = 0.276, p = 0.007; xenin: r = 0.26, p = 0.011), whereas, men did not (p > 0.05). Conclusion Neurotensin and xenin plasma levels of female obese patients are positively correlated with perceived stress, anxiety, depressiveness, and eating disorder symptoms. These associations could be influenced by higher prevalence of mental disorders in women and by sex hormones. In men, no correlations were observed, which points toward a sex-dependent regulation.
Collapse
Affiliation(s)
- Ellen Wölk
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Selina Johanna Schaper
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Rose
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Hofmann
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
24
|
Abstract
Introduction: Neurotensin is a gut-brain peptide hormone, a 13 amino acid neuropeptide found in the central nervous system and in the GI tract. The neurotensinergic system is implicated in various physiological and pathological processes related to neuropsychiatric and metabolic machineries, cancer growth, food, and drug intake. NT mediates its functions through its two G protein-coupled receptors: neurotensin receptor 1 (NTS1/NTSR1) and neurotensin receptor 2 (NTS2/NTSR2). Over the past decade, the role of NTS3/NTSR3/sortilin has also gained importance in human pathologies. Several approaches have appeared dealing with the discovery of compounds able to modulate the functions of this neuropeptide through its receptors for therapeutic gain.Areas covered: The article provides an overview of over four decades of research and details the drug discovery approaches and patented strategies targeting NTSR in the past decade.Expert opinion: Neurotensin is an important neurotransmitter that enables crosstalk with various neurotransmitter and neuroendocrine systems. While significant efforts have been made that have led to selective agonists and antagonists with promising in vitro and in vivo activities, the therapeutic potential of compounds targeting the neurotensinergic system is still to be fully harnessed for successful clinical translation of compounds for the treatment of several pathologies.
Collapse
Affiliation(s)
- Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
25
|
Monti G, Jensen ML, Mehmedbasic A, Jørgensen MM, Holm IE, Barkholt P, Zole E, Vægter CB, Vorum H, Nyengaard JR, Andersen OM. SORLA Expression in Synaptic Plexiform Layers of Mouse Retina. Mol Neurobiol 2020; 57:3106-3117. [PMID: 32472518 DOI: 10.1007/s12035-020-01946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/13/2020] [Indexed: 11/25/2022]
Abstract
Sorting protein-related receptor containing LDLR class A repeats (SORLA; also known as LR11) exerts intraneuronal trafficking functions in the central nervous system. Recently, involvement of SORLA in retinogenesis was proposed, but no studies have examined yet in detail the expression pattern of this sorting receptor in the retina. Here, we provide a spatio-temporal characterization of SORL1 mRNA and its translational product SORLA in the postnatal mouse retina. Using stereological analysis, we confirmed previous studies showing that receptor depletion in knockout mice significantly reduces the number of cells in the inner nuclear layer (INL), suggesting that functional SORLA expression is essential for the development of this retinal strata. qPCR and Western blot analyses showed that SORL1/SORLA expression peaks at postnatal day 15, just after eye opening. Interestingly, we found that transcripts are somatically located in several neuronal populations residing in the INL and the ganglion cell layer, whereas SORLA protein is also present in the synaptic plexiform layers. In line with receptor expression in dendritic terminals, we found delayed stratification of the inner plexiform layer in knockout mice, indicating an involvement of SORLA in neuronal connectivity. Altogether, these data suggest a novel role of SORLA in synaptogenesis. Receptor dysfunctions may be implicated in morphological and functional impairments of retinal inner layer formation associated with eye disorders.
Collapse
Affiliation(s)
- Giulia Monti
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Marianne L Jensen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Arnela Mehmedbasic
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Margarita Melnikova Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Ida E Holm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Pernille Barkholt
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Egija Zole
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Christian B Vægter
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Hobrovej 18-22, DK-9000, Aalborg, Denmark
| | - Jens R Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Olav M Andersen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
26
|
Barthelson K, Newman M, Lardelli M. Sorting Out the Role of the Sortilin-Related Receptor 1 in Alzheimer's Disease. J Alzheimers Dis Rep 2020; 4:123-140. [PMID: 32587946 PMCID: PMC7306921 DOI: 10.3233/adr-200177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Sortilin-related receptor 1 (SORL1) encodes a large, multi-domain containing, membrane-bound receptor involved in endosomal sorting of proteins between the trans-Golgi network, endosomes and the plasma membrane. It is genetically associated with Alzheimer's disease (AD), the most common form of dementia. SORL1 is a unique gene in AD, as it appears to show strong associations with the common, late-onset, sporadic form of AD and the rare, early-onset familial form of AD. Here, we review the genetics of SORL1 in AD and discuss potential roles it could play in AD pathogenesis.
Collapse
Affiliation(s)
- Karissa Barthelson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Morgan Newman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael Lardelli
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
27
|
Neurotensin in reward processes. Neuropharmacology 2020; 167:108005. [PMID: 32057800 DOI: 10.1016/j.neuropharm.2020.108005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Neurotensin (NTS) is a neuropeptide neurotransmitter expressed in the central and peripheral nervous systems. Many studies over the years have revealed a number of roles for this neuropeptide in body temperature regulation, feeding, analgesia, ethanol sensitivity, psychosis, substance use, and pain. This review provides a general survey of the role of neurotensin with a focus on modalities that we believe to be particularly relevant to the study of reward. We focus on NTS signaling in the ventral tegmental area, nucleus accumbens, lateral hypothalamus, bed nucleus of the stria terminalis, and central amygdala. Studies on the role of NTS outside of the ventral tegmental area are still in their relative infancy, yet they reveal a complex role for neurotensinergic signaling in reward-related behaviors that merits further study. This article is part of the special issue on 'Neuropeptides'.
Collapse
|
28
|
Beneficial Effects of Neurotensin in Murine Model of Hapten-Induced Asthma. Int J Mol Sci 2019; 20:ijms20205025. [PMID: 31614422 PMCID: PMC6834300 DOI: 10.3390/ijms20205025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023] Open
Abstract
Neurotensin (NT) demonstrates ambiguous activity on inflammatory processes. The present study was undertaken to test the potential anti-inflammatory activity of NT in a murine model of non-atopic asthma and to establish the contribution of NTR1 receptors. Asthma was induced in BALB/c mice by skin sensitization with dinitrofluorobenzene followed by intratracheal hapten provocation. The mice were treated intraperitoneally with NT, SR 142948 (NTR1 receptor antagonist) + NT or NaCl. Twenty-four hours after the challenge, airway responsiveness to nebulized methacholine was measured. Bronchoalveolar lavage fluid (BALF) and lungs were collected for biochemical and immunohistological analysis. NT alleviated airway hyperreactivity and reduced the number of inflammatory cells in BALF. These beneficial effects were inhibited by pretreatment with the NTR1 antagonist. Additionally, NT reduced levels of IL-13 and TNF-α in BALF and IL-17A, IL12p40, RANTES, mouse mast cell protease and malondialdehyde in lung homogenates. SR 142948 reverted only a post-NT TNF-α decrease. NT exhibited anti-inflammatory activity in the hapten-induced asthma. Reduced leukocyte accumulation and airway hyperresponsiveness indicate that this beneficial NT action is mediated through NTR1 receptors. A lack of effect by the NTR1 blockade on mast cell activation, oxidative stress marker and pro-inflammatory cytokine production suggests that other pathways can be involved, which requires further research.
Collapse
|
29
|
Pitchai A, Rajaretinam RK, Freeman JL. Zebrafish as an Emerging Model for Bioassay-Guided Natural Product Drug Discovery for Neurological Disorders. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E61. [PMID: 31151179 PMCID: PMC6631710 DOI: 10.3390/medicines6020061] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Most neurodegenerative diseases are currently incurable, with large social and economic impacts. Recently, there has been renewed interest in investigating natural products in the modern drug discovery paradigm as novel, bioactive small molecules. Moreover, the discovery of potential therapies for neurological disorders is challenging and involves developing optimized animal models for drug screening. In contemporary biomedicine, the growing need to develop experimental models to obtain a detailed understanding of malady conditions and to portray pioneering treatments has resulted in the application of zebrafish to close the gap between in vitro and in vivo assays. Zebrafish in pharmacogenetics and neuropharmacology are rapidly becoming a widely used organism. Brain function, dysfunction, genetic, and pharmacological modulation considerations are enhanced by both larval and adult zebrafish. Bioassay-guided identification of natural products using zebrafish presents as an attractive strategy for generating new lead compounds. Here, we see evidence that the zebrafish's central nervous system is suitable for modeling human neurological disease and we review and evaluate natural product research using zebrafish as a vertebrate model platform to systematically identify bioactive natural products. Finally, we review recently developed zebrafish models of neurological disorders that have the potential to be applied in this field of research.
Collapse
Affiliation(s)
- Arjun Pitchai
- Molecular and Nanomedicine Research Unit (MNRU), Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Rajesh Kannan Rajaretinam
- Molecular and Nanomedicine Research Unit (MNRU), Centre for Nanoscience and Nanotechnology (CNSNT), Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
30
|
Nagarajan S, Alkayed NJ, Kaul S, Barnes AP. Effect of thermostable mutations on the neurotensin receptor 1 (NTSR1) activation state. J Biomol Struct Dyn 2019; 38:340-353. [DOI: 10.1080/07391102.2019.1573705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shanthi Nagarajan
- The Knight Cardiovascular Institute, Oregon Health Science University, Portland, OR, USA
- Medicinal Chemistry Core, Oregon Health Science University, Portland, OR, USA
| | - Nabil J. Alkayed
- The Knight Cardiovascular Institute, Oregon Health Science University, Portland, OR, USA
- Department of Anesthesiology & Perioperative Medicine, Oregon Health Science University Portland, Portland, OR, USA
| | - Sanjiv Kaul
- The Knight Cardiovascular Institute, Oregon Health Science University, Portland, OR, USA
| | - Anthony P. Barnes
- The Knight Cardiovascular Institute, Oregon Health Science University, Portland, OR, USA
| |
Collapse
|
31
|
Talbot H, Saada S, Naves T, Gallet PF, Fauchais AL, Jauberteau MO. Regulatory Roles of Sortilin and SorLA in Immune-Related Processes. Front Pharmacol 2019; 9:1507. [PMID: 30666202 PMCID: PMC6330335 DOI: 10.3389/fphar.2018.01507] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Sortilin, also known as Neurotensin Receptor-3, and the sorting-related receptor with type-A repeats (SorLA) are both members of the Vps10p domain receptor family. Initially identified in CNS cells, they are expressed in various other cell types where they exert multiple functions. Although mostly studied for its involvement in Alzheimer’s disease, SorLA has recently been shown to be implicated in immune response by regulating IL-6-mediated signaling, as well as driving monocyte migration. Sortilin has been shown to act as a receptor, as a co-receptor and as an intra- and extracellular trafficking regulator. In the last two decades, deregulation of sortilin has been demonstrated to be involved in many human pathophysiologies, including neurodegenerative disorders (Alzheimer and Parkinson diseases), type 2 diabetes and obesity, cancer, and cardiovascular pathologies such as atherosclerosis. Several studies highlighted different functions of sortilin in the immune system, notably in microglia, pro-inflammatory cytokine regulation, phagosome fusion and pathogen clearance. In this review, we will analyze the multiple roles of sortilin and SorLA in the human immune system and how their deregulation may be involved in disease development.
Collapse
Affiliation(s)
- Hugo Talbot
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Sofiane Saada
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Thomas Naves
- Faculty of Medicine, University of Limoges, Limoges, France
| | | | - Anne-Laure Fauchais
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Internal Medicine, University Hospital Limoges Dupuytren Hospital, Limoges, France
| | - Marie-Odile Jauberteau
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Immunology, University Hospital Limoges Dupuytren Hospital, Limoges, France
| |
Collapse
|
32
|
Moustafa AA, Hassan M, Hewedi DH, Hewedi I, Garami JK, Al Ashwal H, Zaki N, Seo SY, Cutsuridis V, Angulo SL, Natesh JY, Herzallah MM, Frydecka D, Misiak B, Salama M, Mohamed W, El Haj M, Hornberger M. Genetic underpinnings in Alzheimer's disease - a review. Rev Neurosci 2018; 29:21-38. [PMID: 28949931 DOI: 10.1515/revneuro-2017-0036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 06/10/2017] [Indexed: 12/13/2022]
Abstract
In this review, we discuss the genetic etiologies of Alzheimer's disease (AD). Furthermore, we review genetic links to protein signaling pathways as novel pharmacological targets to treat AD. Moreover, we also discuss the clumps of AD-m ediated genes according to their single nucleotide polymorphism mutations. Rigorous data mining approaches justified the significant role of genes in AD prevalence. Pedigree analysis and twin studies suggest that genetic components are part of the etiology, rather than only being risk factors for AD. The first autosomal dominant mutation in the amyloid precursor protein (APP) gene was described in 1991. Later, AD was also associated with mutated early-onset (presenilin 1/2, PSEN1/2 and APP) and late-onset (apolipoprotein E, ApoE) genes. Genome-wide association and linkage analysis studies with identified multiple genomic areas have implications for the treatment of AD. We conclude this review with future directions and clinical implications of genetic research in AD.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, 48 Martin Pl, Sydney, New South Wales 2000, Australia
| | - Mubashir Hassan
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea
| | - Doaa H Hewedi
- Psychogeriatric Research Center, Institute of Psychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman Hewedi
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Julia K Garami
- School of Social Sciences and Psychology, Western Sydney University, 48 Martin Pl, Sydney, New South Wales 2000, Australia
| | - Hany Al Ashwal
- College of Information Technology, Department of Computer Science and Software Eng-(CIT), United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Nazar Zaki
- College of Information Technology, Department of Computer Science and Software Eng-(CIT), United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sung-Yum Seo
- Department of Biology, College of Natural Sciences, Kongju National University, Gongju, Chungcheongnam 32588, Republic of Korea
| | - Vassilis Cutsuridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece
| | - Sergio L Angulo
- Departments of Physiology/Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Joman Y Natesh
- Center for Molecular and Behavioural Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Mohammad M Herzallah
- Center for Molecular and Behavioural Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Dorota Frydecka
- Wroclaw Medical University, Department and Clinic of Psychiatry, 50-367 Wrocław, Poland
| | - Błażej Misiak
- Wroclaw Medical University, Department of Genetics, 50-368 Wroclaw, Poland
| | - Mohamed Salama
- School of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Wael Mohamed
- International Islamic University Malaysia, Jalan Gombak, Selangor 53100, Malaysia
| | - Mohamad El Haj
- University of Lille, CNRS, CHU Lille, UMR 9193 - SCALab - Sciences Cognitive Sciences Affectives, F-59000 Lille, France
| | - Michael Hornberger
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
33
|
Biochemical and cognitive effects of docosahexaenoic acid differ in a developmental and SorLA dependent manner. Behav Brain Res 2018; 348:90-100. [PMID: 29660442 DOI: 10.1016/j.bbr.2018.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 11/23/2022]
Abstract
Beneficial effects of omega-3 fatty acid intake on cognition are under debate as some studies show beneficial effects while others show no effects of omega-3 supplementation. These inconsistencies may be a result of inter-individual response variations, potentially caused by gene and diet interactions. SorLA is a multifunctional receptor involved in ligand trafficking including lipoprotein lipase and amyloid precursor protein. Decreased SorLA levels have been correlated to Alzheimer's disease, and omega-3 fatty acid supplementation is known to increase SorLA expression in neuronal cell lines and mouse models. We therefore addressed potential correlations between Sorl1 and dietary omega-3 in SorLA deficient mice (Sorl1-/-) and controls exposed to diets supplemented with or deprived of omega-3 during their entire development and lifespan (lifelong) or solely from the time of weaning (post weaning). Observed diet-induced effects were only evident when exposed to lifelong omega-3 supplementation or deprivation as opposed to post weaning exposure only. Lifelong exposure to omega-3 supplementation resulted in impaired spatial learning in Sorl1-/- mice. The vitamin C antioxidant capacity in the brains of Sorl1-/- mice was reduced, but reduced glutathione and vitamin E levels were increased, leaving the overall antioxidant capacity of the brain inconclusive. No gross morphological differences of hippocampal neurons were found to account for the altered behavior. We found a significant adverse effect in cognitive performance by combining SorLA deficiency with lifelong exposure to omega-3. Our results stress the need for investigations of the underlying molecular mechanisms to clarify the precise circumstances under which omega-3 supplementation may be beneficial.
Collapse
|
34
|
Buttenschøn HN, Elfving B, Nielsen M, Skeldal S, Kaas M, Mors O, Glerup S. Exploring the sortilin related receptor, SorLA, in depression. J Affect Disord 2018; 232:260-267. [PMID: 29499509 DOI: 10.1016/j.jad.2018.02.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/29/2018] [Accepted: 02/16/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Studies of individual biomarkers for depression have shown insufficient sensitivity and specificity for clinical use, and most likely combinations of biomarkers may provide a better signature. The sorting-related receptor with A-type repeats (SorLA) is a well-studied pathogenic factor for Alzheimer's. SorLA belongs to the Vps10p domain receptor family, which also encompasses sortilin and SorCS1-3. All family members have been implicated in neurological and mental disorders. Notably, the SORCS3 gene is genome-wide significantly associated with depression and serum protein levels of sortilin are reduced in depressed individuals. SorLA regulates the activity of neurotrophic factors and cytokines and we hence speculated that SorLA might be implicated in depression. METHODS Serum SorLA levels were measured in two well-defined clinical samples using ELISA. Generalized linear models were used in the statistical analyses. RESULTS We identified a multivariate model to discriminate depressed individuals from healthy controls. Interestingly, the model consisted of serum SorLA levels and additional four predictors: previous depressive episode, stressful life events, serum levels of sortilin and VEGF. However, as an isolated factor, we observed no significant difference in SorLA levels between 140 depressed individuals and 140 healthy controls. Nevertheless, we observed a significant increase in SorLA levels following 12 weeks of treatment with nortriptyline, but not escitalopram. LIMITATIONS The number of biomarkers included in the multivariate model for depression and lack of replication limit our study. CONCLUSIONS Our results suggest SorLA as one of five factors that in combination may support the depression diagnosis, but not as an individual biomarker for depression or treatment response.
Collapse
Affiliation(s)
- Henriette N Buttenschøn
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Marit Nielsen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Sune Skeldal
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mathias Kaas
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; The Lundbeck Foundation Research Center, MIND, Aarhus University, Denmark
| |
Collapse
|
35
|
Apostolova LG, Risacher SL, Duran T, Stage EC, Goukasian N, West JD, Do TM, Grotts J, Wilhalme H, Nho K, Phillips M, Elashoff D, Saykin AJ. Associations of the Top 20 Alzheimer Disease Risk Variants With Brain Amyloidosis. JAMA Neurol 2018; 75:328-341. [PMID: 29340569 PMCID: PMC5885860 DOI: 10.1001/jamaneurol.2017.4198] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/19/2017] [Indexed: 01/28/2023]
Abstract
Importance Late-onset Alzheimer disease (AD) is highly heritable. Genome-wide association studies have identified more than 20 AD risk genes. The precise mechanism through which many of these genes are associated with AD remains unknown. Objective To investigate the association of the top 20 AD risk variants with brain amyloidosis. Design, Setting, and Participants This study analyzed the genetic and florbetapir F 18 data from 322 cognitively normal control individuals, 496 individuals with mild cognitive impairment, and 159 individuals with AD dementia who had genome-wide association studies and 18F-florbetapir positron emission tomographic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a prospective, observational, multisite tertiary center clinical and biomarker study. This ongoing study began in 2005. Main Outcomes and Measures The study tested the association of AD risk allele carrier status (exposure) with florbetapir mean standard uptake value ratio (outcome) using stepwise multivariable linear regression while controlling for age, sex, and apolipoprotein E ε4 genotype. The study also reports on an exploratory 3-dimensional stepwise regression model using an unbiased voxelwise approach in Statistical Parametric Mapping 8 with cluster and significance thresholds at 50 voxels and uncorrected P < .01. Results This study included 977 participants (mean [SD] age, 74 [7.5] years; 535 [54.8%] male and 442 [45.2%] female) from the ADNI-1, ADNI-2, and ADNI-Grand Opportunity. The adenosine triphosphate-binding cassette subfamily A member 7 (ABCA7) gene had the strongest association with amyloid deposition (χ2 = 8.38, false discovery rate-corrected P < .001), after apolioprotein E ε4. Significant associations were found between ABCA7 in the asymptomatic and early symptomatic disease stages, suggesting an association with rapid amyloid accumulation. The fermitin family homolog 2 (FERMT2) gene had a stage-dependent association with brain amyloidosis (FERMT2 × diagnosis χ2 = 3.53, false discovery rate-corrected P = .05), which was most pronounced in the mild cognitive impairment stage. Conclusions and Relevance This study found an association of several AD risk variants with brain amyloidosis. The data also suggest that AD genes might differentially regulate AD pathologic findings across the disease stages.
Collapse
Affiliation(s)
- Liana G. Apostolova
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis
| | - Shannon L. Risacher
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
| | - Tugce Duran
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
| | - Eddie C. Stage
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
| | - Naira Goukasian
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - John D. West
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
| | - Triet M. Do
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jonathan Grotts
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Holly Wilhalme
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
| | - Meredith Phillips
- Department of Neurology, School of Medicine, Indiana University, Indianapolis
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis
| |
Collapse
|
36
|
Tschumi CW, Beckstead MJ. Diverse actions of the modulatory peptide neurotensin on central synaptic transmission. Eur J Neurosci 2018; 49:784-793. [PMID: 29405480 DOI: 10.1111/ejn.13858] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/27/2022]
Abstract
Neurotensin (NT) is a 13 amino acid neuropeptide that is expressed throughout the central nervous system and is implicated in the etiology of multiple diseases and disorders. Many primary investigations of NT-induced modulation of neuronal excitability at the level of the synapse have been conducted, but they have not been summarized in review form in nearly 30 years. Therefore, the goal of this review is to discuss the many actions of NT on neuronal excitability across brain regions as well as NT circuit architecture. In the basal ganglia as well as other brain nuclei, NT can act through diverse intracellular signaling cascades to enhance or depress neuronal activity by modulating activity of ion channels, ionotropic and metabotropic neurotransmitter receptors, and presynaptic release of neurotransmitters. Further, NT can produce indirect effects by evoking endocannabinoid release, and recently has itself been identified as a putative retrograde messenger. In the basal ganglia, the diverse actions and circuit architecture of NT signaling allow for input-specific control of reward-related behaviors.
Collapse
Affiliation(s)
- Christopher W Tschumi
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104-5005, USA
| |
Collapse
|
37
|
Lénárd L, László K, Kertes E, Ollmann T, Péczely L, Kovács A, Kállai V, Zagorácz O, Gálosi R, Karádi Z. Substance P and neurotensin in the limbic system: Their roles in reinforcement and memory consolidation. Neurosci Biobehav Rev 2018; 85:1-20. [DOI: 10.1016/j.neubiorev.2017.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
|
38
|
Gautam M, Bhattacharya I, Rai U, Majumdar SS. Hormone induced differential transcriptome analysis of Sertoli cells during postnatal maturation of rat testes. PLoS One 2018; 13:e0191201. [PMID: 29342173 PMCID: PMC5771609 DOI: 10.1371/journal.pone.0191201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/30/2017] [Indexed: 11/18/2022] Open
Abstract
Sertoli cells (Sc) are unique somatic cells of testis that are the target of both FSH and testosterone (T) and regulate spermatogenesis. Although Sc of neonatal rat testes are exposed to high levels of FSH and T, robust differentiation of spermatogonial cells becomes conspicuous only after 11-days of postnatal age. We have demonstrated earlier that a developmental switch in terms of hormonal responsiveness occurs in rat Sc at around 12 days of postnatal age during the rapid transition of spermatogonia A to B. Therefore, such “functional maturation” of Sc, during pubertal development becomes prerequisite for the onset of spermatogenesis. However, a conspicuous difference in robust hormone (both T and FSH) induced gene expression during the different phases of Sc maturation restricts our understanding about molecular events necessary for the spermatogenic onset and maintenance. Here, using microarray technology, we for the first time have compared the differential transcriptional profile of Sc isolated and cultured from immature (5 days old), maturing (12 days old) and mature (60 days old) rat testes. Our data revealed that immature Sc express genes involved in cellular growth, metabolism, chemokines, cell division, MAPK and Wnt pathways, while mature Sc are more specialized expressing genes involved in glucose metabolism, phagocytosis, insulin signaling and cytoskeleton structuring. Taken together, this differential transcriptome data provide an important resource to reveal the molecular network of Sc maturation which is necessary to govern male germ cell differentiation, hence, will improve our current understanding of the etiology of some forms of idiopathic male infertility.
Collapse
Affiliation(s)
- Mukesh Gautam
- Department of Zoology, University of Delhi, Delhi, India
| | | | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi, India
| | - Subeer S. Majumdar
- Cellular Endocrinology Laboratory, National Institute of Immunology, New Delhi, India
- National Institute of Animal Biotechnology, Hyderabad, India
- * E-mail:
| |
Collapse
|
39
|
Trafficking in Alzheimer's Disease: Modulation of APP Transport and Processing by the Transmembrane Proteins LRP1, SorLA, SorCS1c, Sortilin, and Calsyntenin. Mol Neurobiol 2017; 55:5809-5829. [PMID: 29079999 DOI: 10.1007/s12035-017-0806-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
The amyloid precursor protein (APP), one key player in Alzheimer's disease (AD), is extensively processed by different proteases. This leads to the generation of diverging fragments including the amyloid β (Aβ) peptide, which accumulates in brains of AD patients. Subcellular trafficking of APP is an important aspect for its proteolytic conversion, since the various secretases which cleave APP are located in different cellular compartments. As a consequence, altered subcellular targeting of APP is thought to directly affect the degree to which Aβ is generated. The mechanisms underlying intracellular APP transport are critical to understand AD pathogenesis and can serve as a target for future pharmacological interventions. In the recent years, a number of APP interacting proteins were identified which are implicated in sorting of APP, thereby influencing APP processing at different angles of the secretory or endocytic pathway. This review provides an update on the proteolytic processing of APP and the interplay of the transmembrane proteins low-density lipoprotein receptor-related protein 1, sortilin-receptor with A-type repeats, SorCS1c, sortilin, and calsyntenin. We discuss the specific interactions with APP, the capacity to modulate the intracellular itinerary and the proteolytic conversion of APP, a possible involvement in the clearance of Aβ, and the implications of these transmembrane proteins in AD and other neurodegenerative diseases.
Collapse
|
40
|
The common variants implicated in microstructural abnormality of first episode and drug-naïve patients with schizophrenia. Sci Rep 2017; 7:11750. [PMID: 28924203 PMCID: PMC5603592 DOI: 10.1038/s41598-017-10507-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/09/2017] [Indexed: 02/05/2023] Open
Abstract
Both post-mortem and neuroimaging studies have identified abnormal white matter (WM) microstructure in patients with schizophrenia. However, its genetic underpinnings and relevant biological pathways remain unclear. In order to unravel the genes and the pathways associated with abnormal WM microstructure in schizophrenia, we recruited 100 first-episode, drug-naïve patients with schizophrenia and 140 matched healthy controls to conduct genome-wide association analysis of fractional anisotropy (FA) value measured using diffusing tensor imaging (DTI), followed by multivariate association study and pathway enrichment analysis. The results showed that one intergenic SNP (rs11901793), which is 20 kb upstream of CXCR7 gene on chromosome 2, was associated with the total mean FA values with genome-wide significance (p = 4.37 × 10−8), and multivariate association analysis identified a strong association between one region-specific SNP (rs10509852), 400 kb upstream of SORCS1 gene on chromosome 10, and the global trait of abnormal WM microstructure (p = 1.89 × 10−7). Furthermore, one pathway that is involved in cell cycle regulation, REACTOME_CHROMOSOME _MAINTENANCE, was significantly enriched by the genes that were identified in our study (p = 1.54 × 10−17). In summary, our study provides suggestive evidence that abnormal WM microstructure in schizophrenia is associated with genes that are likely involved in diverse biological signals and cell-cycle regulation although further replication in a larger independent sample is needed.
Collapse
|
41
|
Giri M, Shah A, Upreti B, Rai JC. Unraveling the genes implicated in Alzheimer's disease. Biomed Rep 2017; 7:105-114. [PMID: 28781776 DOI: 10.3892/br.2017.927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/29/2017] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous neurodegenerative disorder and it is the most common form of dementia in the elderly. Early onset AD is caused by mutations in three genes: Amyloid-β precursor protein, presenilin 1 (PSEN1) and PSEN2. Late onset AD (LOAD) is complex and apolipoprotein E is the only unanimously accepted genetic risk factor for its development. Various genes implicated in AD have been identified using advanced genetic technologies, however, there are many additional genes that remain unidentified. The present review highlights the genetics of early and LOAD and summarizes the genes involved in different signaling pathways. This may provide insight into neurodegenerative disease research and will facilitate the development of effective strategies to combat AD.
Collapse
Affiliation(s)
- Mohan Giri
- National Center for Rheumatic Diseases, Ratopul, Kathmandu 44600, Nepal
| | - Abhilasha Shah
- National Center for Rheumatic Diseases, Ratopul, Kathmandu 44600, Nepal
| | - Bibhuti Upreti
- National Center for Rheumatic Diseases, Ratopul, Kathmandu 44600, Nepal
| | | |
Collapse
|
42
|
SorLA in Interleukin-6 Signaling and Turnover. Mol Cell Biol 2017; 37:MCB.00641-16. [PMID: 28265003 PMCID: PMC5440653 DOI: 10.1128/mcb.00641-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine with important functions in various physiologic processes. Mice lacking IL-6 exhibit multiple phenotypic abnormalities, such as an inadequate immune and acute-phase response, and elevated levels of circulating IL-6 have been found to accompany several pathological conditions. IL-6 binds the nonsignaling IL-6 receptor (IL-6R), which is expressed as a transmembrane, as well as a secreted circulating protein, before it engages homodimeric gp130 for signaling. Complex formation between IL-6 and the membrane-bound IL-6 receptor gives rise to classic cis signaling, whereas complex formation between IL-6 and the soluble IL-6R results in trans signaling. Here, we report that the endocytic receptor SorLA targets IL-6 and IL-6R. We present evidence that SorLA mediates efficient cellular uptake of both IL-6 and the circulating IL-6R in astrocytes. We further show that SorLA interacts with the membrane-bound IL-6R at the cell surface and thereby downregulates IL-6 cis signaling. Finally, we find that the SorLA ectodomain, released from the cell membrane upon enzymatic cleavage of full-length SorLA, may act as an IL-6 carrier protein that stabilizes IL-6 and its capacity for trans signaling.
Collapse
|
43
|
Smith LM, Strittmatter SM. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a024075. [PMID: 27940601 DOI: 10.1101/cshperspect.a024075] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Alzheimer's disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis.
Collapse
Affiliation(s)
- Levi M Smith
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06536
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06536
| |
Collapse
|
44
|
Cuccaro ML, Carney RM, Zhang Y, Bohm C, Kunkle BW, Vardarajan BN, Whitehead PL, Cukier HN, Mayeux R, St George-Hyslop P, Pericak-Vance MA. SORL1 mutations in early- and late-onset Alzheimer disease. Neurol Genet 2016; 2:e116. [PMID: 27822510 PMCID: PMC5082932 DOI: 10.1212/nxg.0000000000000116] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/23/2016] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To characterize the clinical and molecular effect of mutations in the sortilin-related receptor (SORL1) gene. METHODS We performed whole-exome sequencing in early-onset Alzheimer disease (EOAD) and late-onset Alzheimer disease (LOAD) families followed by functional studies of select variants. The phenotypic consequences associated with SORL1 mutations were characterized based on clinical reviews of medical records. Functional studies were completed to evaluate β-amyloid (Aβ) production and amyloid precursor protein (APP) trafficking associated with SORL1 mutations. RESULTS SORL1 alterations were present in 2 EOAD families. In one, a SORL1 T588I change was identified in 4 individuals with AD, 2 of whom had parkinsonian features. In the second, an SORL1 T2134 alteration was found in 3 of 4 AD cases, one of whom had postmortem Lewy bodies. Among LOAD cases, 4 individuals with either SORL1 A528T or T947M alterations had parkinsonian features. Functionally, the variants weaken the interaction of the SORL1 protein with full-length APP, altering levels of Aβ and interfering with APP trafficking. CONCLUSIONS The findings from this study support an important role for SORL1 mutations in AD pathogenesis by way of altering Aβ levels and interfering with APP trafficking. In addition, the presence of parkinsonian features among select individuals with AD and SORL1 mutations merits further investigation.
Collapse
Affiliation(s)
- Michael L Cuccaro
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| | - Regina M Carney
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| | - Yalun Zhang
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| | - Christopher Bohm
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| | - Brian W Kunkle
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| | - Badri N Vardarajan
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| | - Patrice L Whitehead
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| | - Holly N Cukier
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| | - Richard Mayeux
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| | - Peter St George-Hyslop
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics (M.L.C., R.M.C., B.W.K., P.L.W., H.N.C., M.A.P.-V.), University of Miami Miller School of Medicine, FL; Mental Health & Behavioral Science Service (R.M.C.), Bruce W. Carter VA Medical Center, Miami, FL; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain (B.N.V., R.M.), Gertrude H. Sergievsky Center, Departments of Neurology, Psychiatry, and Epidemiology, College of Physicians and Surgeons, Columbia University, New York, NY; Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine (Y.Z., C.B., P.S.G.-H.), University of Toronto, Ontario, Canada; Cambridge Institute for Medical Research (P.S.G.-H.), Department of Clinical Neurosciences, University of Cambridge, United Kingdom; and Dr. John T. Macdonald Foundation Department of Human Genetics (M.L.C., M.A.P.-V.), Miller School of Medicine, University of Miami, FL
| |
Collapse
|
45
|
Schmidt V, Subkhangulova A, Willnow TE. Sorting receptor SORLA: cellular mechanisms and implications for disease. Cell Mol Life Sci 2016; 74:1475-1483. [PMID: 27832290 PMCID: PMC5357279 DOI: 10.1007/s00018-016-2410-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/21/2022]
Abstract
Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor that directs cargo proteins, such as kinases, phosphatases, and signaling receptors, to their correct location within the cell. The activity of SORLA assures proper function of cells and tissues, and receptor dysfunction is the underlying cause of common human malignancies, including Alzheimer’s disease, atherosclerosis, and obesity. Here, we discuss the molecular mechanisms that govern sorting of SORLA and its cargo in multiple cell types, and why genetic defects in this receptor results in devastating diseases.
Collapse
Affiliation(s)
- Vanessa Schmidt
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany.
| | - Aygul Subkhangulova
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Str. 10, 13125, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
46
|
Andersen OM, Rudolph IM, Willnow TE. Risk factor SORL1: from genetic association to functional validation in Alzheimer's disease. Acta Neuropathol 2016; 132:653-665. [PMID: 27638701 PMCID: PMC5073117 DOI: 10.1007/s00401-016-1615-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/12/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) represents one of the most dramatic threats to healthy aging and devising effective treatments for this devastating condition remains a major challenge in biomedical research. Much has been learned about the molecular concepts that govern proteolytic processing of the amyloid precursor protein to amyloid-β peptides (Aβ), and how accelerated accumulation of neurotoxic Aβ peptides underlies neuronal cell death in rare familial but also common sporadic forms of this disease. Out of a plethora of proposed modulators of amyloidogenic processing, one protein emerged as a key factor in AD pathology, a neuronal sorting receptor termed SORLA. Independent approaches using human genetics, clinical pathology, or exploratory studies in animal models all converge on this receptor that is now considered a central player in AD-related processes by many. This review will provide a comprehensive overview of the evidence implicating SORLA-mediated protein sorting in neurodegenerative processes, and how receptor gene variants in the human population impair functional receptor expression in sporadic but possibly also in autosomal-dominant forms of AD.
Collapse
Affiliation(s)
- Olav M Andersen
- Department of Biomedicine, Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Aarhus, Denmark.
| | - Ina-Maria Rudolph
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125, Berlin, Germany
| | - Thomas E Willnow
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
47
|
Lee J, Peterson SM, Freeman JL. Sex-specific characterization and evaluation of the Alzheimer's disease genetic risk factor sorl1 in zebrafish during aging and in the adult brain following a 100 ppb embryonic lead exposure. J Appl Toxicol 2016; 37:400-407. [PMID: 27535807 DOI: 10.1002/jat.3372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 01/02/2023]
Abstract
Developmental lead (Pb) exposure is suggested in laboratory studies to be a trigger for neurodegenerative diseases such as Alzheimer's disease (AD). Sortilin-related receptor, L (DLR class) A repeats-containing (SORL1) is a recently identified AD genetic risk factor. SORL1 has limited characterization in vertebrate models in comparison to other AD genetic risk factors. To characterize SORL1 further, protein sequence homology between humans, mice and zebrafish was analyzed and showed conservation of functional repeats and domain orientation. Next, spatial expression of sorl1 in zebrafish larvae was completed and diffuse expression in neural tissue that was not restricted to the brain was observed. Influences of sex and age on quantitative expression of sorl1 in the brain of adult zebrafish were then assessed. Sex-specific alteration of sorl1 expression transpired during the aging process in females. The zebrafish was then utilized to investigate the impacts of a 100 ppb embryonic Pb exposure on sorl1 expression and other known AD genetic risk factors. Sex-specific quantitative gene expression analysis was completed with adult zebrafish brain to compare those developmentally exposed to Pb or a control treatment, but no significant difference in sorl1 expression or other AD genetic risk factors was observed. Overall, this study provided characterization of sorl1 with changes in brain expression during aging being female-specific. This finding is in agreement with females being more prone to the onset of AD, but analysis of additional AD genetic risk factors is needed to facilitate our understanding of the impact of a 100 ppb embryonic Pb exposure. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jinyoung Lee
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Samuel M Peterson
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
48
|
Klinger SC, Højland A, Jain S, Kjolby M, Madsen P, Svendsen AD, Olivecrona G, Bonifacino JS, Nielsen MS. Polarized trafficking of the sorting receptor SorLA in neurons and MDCK cells. FEBS J 2016; 283:2476-93. [PMID: 27192064 DOI: 10.1111/febs.13758] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/03/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
The sorting receptor SorLA is highly expressed in neurons and is also found in other polarized cells. The receptor has been reported to participate in the trafficking of several ligands, some of which are linked to human diseases, including the amyloid precursor protein, TrkB, and Lipoprotein Lipase (LpL). Despite this, only the trafficking in nonpolarized cells has been described so far. Due to the many differences between polarized and nonpolarized cells, we examined the localization and trafficking of SorLA in epithelial Madin-Darby canine kidney (MDCK) cells and rat hippocampal neurons. We show that SorLA is mainly found in sorting endosomes and on the basolateral surface of MDCK cells and in the somatodendritic domain of neurons. This polarized distribution of SorLA respectively depends on an acidic cluster and an extended version of this cluster and involves the cellular adaptor complex AP-1. Furthermore, we show that SorLA can mediate transcytosis across a tight cell layer.
Collapse
Affiliation(s)
- Stine C Klinger
- Department of Biomedicine, The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Aarhus University, Denmark.,Department of Biomedicine, The MIND Centre, Aarhus University, Denmark.,Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne Højland
- Department of Biomedicine, The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Aarhus University, Denmark.,Department of Biomedicine, The MIND Centre, Aarhus University, Denmark
| | - Shweta Jain
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mads Kjolby
- Department of Biomedicine, The MIND Centre, Aarhus University, Denmark.,Department of Biomedicine, The Danish Diabetes Academy, Aarhus University, Denmark
| | - Peder Madsen
- Department of Biomedicine, The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Aarhus University, Denmark.,Department of Biomedicine, The MIND Centre, Aarhus University, Denmark
| | - Anna Dorst Svendsen
- Department of Biomedicine, The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Aarhus University, Denmark.,Department of Biomedicine, The MIND Centre, Aarhus University, Denmark
| | - Gunilla Olivecrona
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Sweden
| | - Juan S Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Morten S Nielsen
- Department of Biomedicine, The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Aarhus University, Denmark.,Department of Biomedicine, The MIND Centre, Aarhus University, Denmark
| |
Collapse
|
49
|
Smith AR, Mill J, Smith RG, Lunnon K. Elucidating novel dysfunctional pathways in Alzheimer's disease by integrating loci identified in genetic and epigenetic studies. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.nepig.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Tóth F, Mallareddy JR, Tourwé D, Lipkowski AW, Bujalska-Zadrozny M, Benyhe S, Ballet S, Tóth G, Kleczkowska P. Synthesis and binding characteristics of [(3)H]neuromedin N, a NTS2 receptor ligand. Neuropeptides 2016; 57:15-20. [PMID: 26707235 DOI: 10.1016/j.npep.2015.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Neurotensin (NT) and its analog neuromedin N (NN) are formed by the processing of a common precursor in mammalian brain tissue and intestines. The biological effects mediated by NT and NN (e.g. analgesia, hypothermia) result from the interaction with G protein-coupled receptors. The goal of this study consisted of the synthesis and radiolabeling of NN, as well as the determination of the binding characteristics of [(3)H]NN and G protein activation by the cold ligand. In homologous displacement studies a weak affinity was determined for NN, with IC50 values of 454nM in rat brain and 425nM in rat spinal cord membranes. In saturation binding experiments the Kd value proved to be 264.8±30.18nM, while the Bmax value corresponded to 3.8±0.2pmol/mg protein in rat brain membranes. The specific binding of [(3)H]NN was saturable, interacting with a single set of homogenous binding sites. In sodium sensitivity experiments, a very weak inhibitory effect of Na(+) ions was observed on the binding of [(3)H]NN, resulting in an IC50 of 150.6mM. In [(35)S]GTPγS binding experiments the Emax value was 112.3±1.4% in rat brain and 112.9±2.4% in rat spinal cord membranes and EC50 values of 0.7nM and 0.79nM were determined, respectively. NN showed moderate agonist activities in stimulating G proteins. The stimulatory effect of NN could be maximally inhibited via use of the NTS2 receptor antagonist levocabastine, but not by the opioid receptor specific antagonist naloxone, nor by the NTS1 antagonist SR48692. These observations allow us to conclude that [(3)H]NN labels NTS2 receptors in rat brain membranes.
Collapse
Affiliation(s)
- Fanni Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Jayapal Reddy Mallareddy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Department of Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Andrzej W Lipkowski
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02106 Warsaw, Poland
| | - Magdalena Bujalska-Zadrozny
- Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha Str., 02-106 Warsaw, Poland
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Steven Ballet
- Research Group of Organic Chemistry, Department of Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Géza Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt 62, 6726 Szeged, Hungary
| | - Patrycja Kleczkowska
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02106 Warsaw, Poland; Department of Pharmacodynamics, Centre for Preclinical Research and Technology, Medical University of Warsaw, 1B Banacha Str., 02-106 Warsaw, Poland.
| |
Collapse
|