1
|
Su S, Liu X, Zhu M, Liu W, Liu J, Yuan Y, Fu F, Rao Z, Liu J, Lu Y, Chen Y. Trehalose Ameliorates Nonalcoholic Fatty Liver Disease by Regulating IRE1α-TFEB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39680632 DOI: 10.1021/acs.jafc.4c08669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by hepatic lipid deposition, is one of the most prevalent chronic metabolic disorders globally, and its pharmaceutical treatments are still limited. Excessive lipid accumulation triggers endoplasmic reticulum (ER) stress and autophagy flux dysfunction, which are important mechanisms for NAFLD. Trehalose (Tre), a natural disaccharide, has been identified to reduce hepatic steatosis and glucose intolerance. However, its underlying mechanisms for NAFLD remain unclear. In this study, a high-fat-diet (HFD)-induced mouse NAFLD model and a saturated fatty acid palmitic acid (PA)-stimulated cell model were constructed. The results indicated that Tre supplementation ameliorated hepatocyte lipid deposition in vitro, as well as hepatic steatosis and hyperlipidemia in vivo. Mechanistically, Tre alleviated both autophagy flux dysfunction and endoplasmic reticulum (ER) stress. Under the stimulation of HFD or PA, Tre remarkably increased the expression and nucleic translocation of the lysosomal master protein transcription factor EB (TFEB), while decreasing the accumulation of p62 and also decreasing the ER stress markers (inositol-requiring enzyme 1 (IRE1α), XBP-1, CHOP, and BIP). Similar results were observed in an ER stressor tunicamycin (TM)-induced in vivo and in vitro models. In addition, the transcriptomic analysis of NAFLD patients revealed significant differences in ER stress-related and autophagy-related biomarkers, including TFEB, ATG7, IRE1α, and CHOP. Molecular docking results demonstrated a strong affinity between Tre and both IRE1α and TFEB. Overall, Tre protected hepatocytes from lipotoxicity-related ER stress and autophagy dysfunction, and its regulatory effect on the IRE1α-TFEB signaling pathway may be a critical mechanism. These findings suggest that Tre, as a bioactive substance with significant medicinal potential, holds considerable promise for drug development and clinical application in treating NAFLD.
Collapse
Affiliation(s)
- Shan Su
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, P. R. China
| | - Xiaohong Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Min Zhu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Wen Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jingyi Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yujia Yuan
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Fudong Fu
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, P. R. China
| | - Zhiyong Rao
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jingping Liu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yanrong Lu
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Younan Chen
- Department of Clinical Nutrition and National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610000, P. R. China
| |
Collapse
|
2
|
Xiao X, Liu Q, Zhang Q, Yan Z, Cai D, Li X. Exogenous Trehalose Assists Zygosaccharomyces rouxii in Resisting High-Temperature Stress Mainly by Activating Genes Rather than Entering Metabolism. J Fungi (Basel) 2024; 10:842. [PMID: 39728338 DOI: 10.3390/jof10120842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Zygosaccharomyces rouxii is a typical aroma-producing yeast in food brewing, but it has low heat resistance and poor proliferation ability at high temperature. Trehalose is generally considered to be a protective agent that helps stable yeast cells resist heat shock stress, but its functional mechanism for yeast cells in the adaptation period under heat stress is unclear. In this study, the physiological metabolism changes, specific gene transcription expression characteristics, and transcriptome differences of Z. rouxii under different carbon sources under high-temperature stress (40 °C) were compared to explore the mechanism of trehalose inducing Z. rouxii to recover and proliferate under high-temperature stress during the adaptation period. The results showed that high concentration of trehalose (20% Tre) could not be used as the main carbon source for the proliferation of Z. rouxii under long-term high-temperature stress, but it helped to maintain the stability of the cell population. The intracellular trehalose of Z. rouxii was mainly derived from the synthesis and metabolism of intracellular glucose, and the extracellular acetic acid concentration showed an upward trend with the improvement of yeast growth. A high concentration of trehalose (20% Tre) can promote the expression of high glucose receptor gene GRT2 (12.0-fold) and induce the up-regulation of HSF1 (27.1-fold), MSN4 (58.9-fold), HXK1 (8.3-fold), and other signal transduction protein genes, and the increase of trehalose concentration will maintain the temporal up-regulation of these genes. Transcriptome analysis showed that trehalose concentration and the presence of glucose had a significant effect on the gene expression of Z. rouxii under high-temperature stress. In summary, trehalose assists Z. rouxii in adapting to high temperature by changing gene expression levels, and assists Z. rouxii in absorbing glucose to achieve cell proliferation.
Collapse
Affiliation(s)
- Xiong Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Quan Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Qian Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Zhenzhen Yan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430068, China
| | - Xin Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
3
|
Zheng S, Liu C, Zhou Z, Xu L, Ruan B, Chen X. Genome-wide identification and characterization of circular RNAs for exogenous trehalose-mediated heat stress responses in tea plants ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2024; 15:1481169. [PMID: 39703553 PMCID: PMC11655237 DOI: 10.3389/fpls.2024.1481169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024]
Abstract
Background Heat stress is one of the main environmental factors limiting the growth, yield and quality of tea plants (Camellia sinensis). Trehalose involved in plant responses to multiple adverse environmental stresses, including heat stress. However, the roles of circular RNAs (circRNAs) and their involvement in the trehalose response to heat stress remain unknown. Methods In this study, circRNA-sequencing was performed to analyze the characteristics of circRNAs in trehalose-induced responses to heat stress in tea plants. Kyoto Encyclopedia of Genes and Genomes enrichment analysis was used to determine the potential function of circRNAs, and the expression of differentially expressed circRNAs (DECs) and their host genes related to Non-homologous end-joining (NHEJ) and Homologous recombination (HR) were analyzed. To further explore the effect of trehalose on DNA double strand breaks (DSBs), the reactive oxygen species (ROS) contents, specially hydrogen peroxide (H2O2) and superoxide anion (O2-), in heat-stressed tea plants were investigated. Results A total of 11402 circRNAs were detected from CK, T (heat stress) and TT (heat stress + trehalose) samples. Among these circRNAs, 573, 620 and 550 circRNAs were identified as differentially expressed in the T vs. CK, TT vs. CK and TT vs. T comparison groups, respectively. The host genes of DECs were enriched in NHEJ and HR pathways, implying a critical role of circRNAs in DSBs repair. The expression level of circKu70-1 and circKu70-3 showed positive correlations with their host gene, ATP-dependent DNA helicase II 70 kDa subunit (CsKu70), while circKu70-2 exhibited an opposite expression trend. Similarly, circRad50 displayed a negative correlation with its host gene, DNA repair protein RAD50 (CsRad50). Notably, the expression of CsKu70 and CsRad50, which are crucial for initiating DSB repair, was decreased in the trehalose-treated (TT) samples. This finding suggests that trehalose may play a role in modulating the expression of circRNAs and their host genes involved in NHEJ and HR pathways, ultimately contributing to reduced DSB damage during heat stress. Moreover, exogenous trehalose significantly reduced H2O2 and O2- contents in tea plants under heat stress, suggesting that trehalose could mitigate heat-induced damage resulting from ROS overproduction. Conclusion Our results indicated that circRNAs play a crucial role in maintaining genome integrity. Specifically, they may function as molecular hubs that respond to changes of the levels of H2O2 and O2- induced by trehalose, and subsequently regulate the DSBs mediated by their host genes. This, in turn, further impacts genome stability, ultimately enhancing heat tolerance in tea plants. Our findings provided new insight into the potential applications of trehalose as an agrochemical in tea plants and revealed the potential role of circRNAs in tea plants heat tolerance.
Collapse
Affiliation(s)
- Shizhong Zheng
- College of Biological Science and Engineering, Ningde Normal University, Ningde, China
| | - Chufei Liu
- College of Biological Science and Engineering, Ningde Normal University, Ningde, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziwei Zhou
- College of Biological Science and Engineering, Ningde Normal University, Ningde, China
| | - Liyi Xu
- College of Biological Science and Engineering, Ningde Normal University, Ningde, China
| | - Biyuan Ruan
- Agricultural Products Quality Safety Inspection and Testing Center, Ningde Agricultural and Rural Bureau, Ningde, China
| | - Xiaohui Chen
- College of Biological Science and Engineering, Ningde Normal University, Ningde, China
| |
Collapse
|
4
|
Sevriev B, Dimitrova S, Kehayova G, Dragomanova S. Trehalose: Neuroprotective Effects and Mechanisms-An Updated Review. NEUROSCI 2024; 5:429-444. [PMID: 39484301 PMCID: PMC11503274 DOI: 10.3390/neurosci5040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Trehalose is a naturally occurring disaccharide that has recently gained significant attention for its neuroprotective properties in various models of neurodegeneration. This review provides an overview of available experimental data on the beneficial properties of trehalose for central nervous system pathological conditions. Trehalose's impact on neuronal cell survival and function was also examined. As a result, we identified that trehalose's neuroprotection includes autophagy modulation as well as its capability to stabilize proteins and inhibit the formation of misfolded ones. Moreover, trehalose mitigates oxidative stress-induced neuronal damage by stabilizing cellular membranes and modulating mitochondrial function. Furthermore, trehalose attenuates excitotoxicity-induced neuroinflammation by suppressing pro-inflammatory cytokine release and inhibiting inflammasome activation. A possible connection of trehalose with the gut-brain axis was also examined. These findings highlight the potential therapeutic effects of trehalose in neurodegenerative diseases. According to the conclusions drawn from this study, trehalose is a promising neuroprotective agent as a result of its distinct mechanism of action, which makes this compound a candidate for further research and the development of therapeutic strategies to combat neuronal damage and promote neuroprotection in various neurological diseases.
Collapse
Affiliation(s)
- Borislav Sevriev
- Faculty of Pharmacy, Medical University of Varna "Prof. Dr. Paraskev Stoyanov", 9000 Varna, Bulgaria;
| | - Simeonka Dimitrova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna "Prof. Dr. Paraskev Stoyanov", 9000 Varna, Bulgaria; (S.D.); (G.K.)
| | - Gabriela Kehayova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna "Prof. Dr. Paraskev Stoyanov", 9000 Varna, Bulgaria; (S.D.); (G.K.)
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna "Prof. Dr. Paraskev Stoyanov", 9000 Varna, Bulgaria; (S.D.); (G.K.)
| |
Collapse
|
5
|
Popczyk P, Ghinet A, Bortolus C, Kamus L, Lensink MF, de Ruyck J, Sendid B, Dubar F. Antifungal and anti-biofilm effects of hydrazone derivatives on Candida spp. J Enzyme Inhib Med Chem 2024; 39:2429109. [PMID: 39589067 PMCID: PMC11600518 DOI: 10.1080/14756366.2024.2429109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
Worldwide, invasive candidiasis are a burden for the health system due to difficulties to manage patients, to the increasing of the resistance of the current therapeutics and the emergence of naturally resistant species of Candida. In this context, the development of innovative antifungal drugs is urgently needed. During invasive candidiasis, yeast is submitted to many stresses (oxidative, thermic, osmotic) in the human host. In order to resist in this context, yeast develops different strategy, especially the biosynthesis of trehalose. Starting from the 3D structural data of TPS2, an enzyme implicated in trehalose biosynthesis, we identified hydrazone as an interesting scaffold to design new antifungal drugs. Interestingly, our hydrazone derivatives which demonstrate antifungal and anti-biofilm effects on Candida spp., are non-toxic in in vitro and in vivo models (Galleria mellonella).
Collapse
Affiliation(s)
- Pierre Popczyk
- INSERM U1285, Université de Lille, CHU de Lille, UMR CNRS 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Alina Ghinet
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, Lille, France
- UMR 1167 – RID-AGE – Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
- Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - Clovis Bortolus
- INSERM U1285, Université de Lille, CHU de Lille, UMR CNRS 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Laure Kamus
- Department of Medical Biology, Félix-Guyon Hospital Center, Saint-Denis, France
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, France
| | - Marc F. Lensink
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jérôme de Ruyck
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Boualem Sendid
- INSERM U1285, Université de Lille, CHU de Lille, UMR CNRS 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Faustine Dubar
- INSERM U1285, Université de Lille, CHU de Lille, UMR CNRS 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
6
|
Rihacek M, Kosaristanova L, Fialova T, Rypar T, Sterbova DS, Adam V, Zurek L, Cihalova K. Metabolic adaptations of Escherichia coli to extended zinc exposure: insights into tricarboxylic acid cycle and trehalose synthesis. BMC Microbiol 2024; 24:384. [PMID: 39354342 PMCID: PMC11443826 DOI: 10.1186/s12866-024-03463-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024] Open
Abstract
Balanced bacterial metabolism is essential for cell homeostasis and growth and can be impacted by various stress factors. In particular, bacteria exposed to metals, including the nanoparticle form, can significantly alter their metabolic processes. It is known that the extensive and intensive use of food and feed supplements, including zinc, in human and animal nutrition alters the intestinal microbiota and this may negatively impact the health of the host. This study examines the effects of zinc (zinc oxide and zinc oxide nanoparticles) on key metabolic pathways of Escherichia coli. Transcriptomic and proteomic analyses along with quantification of intermediates of tricarboxylic acid (TCA) were employed to monitor and study the bacterial responses. Multi-omics analysis revealed that extended zinc exposure induced mainly oxidative stress and elevated expression/production of enzymes of carbohydrate metabolism, especially enzymes for synthesis of trehalose. After the zinc withdrawal, E. coli metabolism returned to a baseline state. These findings shed light on the alteration of TCA and on importance of trehalose synthesis in metal-induced stress and its broader implications for bacterial metabolism and defense and consequently for the balance and health of the human and animal microbiome.
Collapse
Affiliation(s)
- Martin Rihacek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tomas Rypar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Dagmar Skopalova Sterbova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic.
| |
Collapse
|
7
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans: A target for antifungals. Proc Natl Acad Sci U S A 2024; 121:e2314087121. [PMID: 39083421 PMCID: PMC11317593 DOI: 10.1073/pnas.2314087121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.
Collapse
Affiliation(s)
- Erica J. Washington
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC27708
| | - Allen L. Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Matthew Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
- Department of Computer Science, Duke University, Durham, NC27708
| | - Richard G. Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| |
Collapse
|
8
|
Sadowska-Bartosz I, Bartosz G. Antioxidant Defense in the Toughest Animals on the Earth: Its Contribution to the Extreme Resistance of Tardigrades. Int J Mol Sci 2024; 25:8393. [PMID: 39125965 PMCID: PMC11313143 DOI: 10.3390/ijms25158393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Tardigrades are unique among animals in their resistance to dehydration, mainly due to anhydrobiosis and tun formation. They are also very resistant to high-energy radiation, low and high temperatures, low and high pressure, and various chemical agents, Interestingly, they are resistant to ionizing radiation both in the hydrated and dehydrated states to a similar extent. They are able to survive in the cosmic space. Apparently, many mechanisms contribute to the resistance of tardigrades to harmful factors, including the presence of trehalose (though not common to all tardigrades), heat shock proteins, late embryogenesis-abundant proteins, tardigrade-unique proteins, DNA repair proteins, proteins directly protecting DNA (Dsup and TDR1), and efficient antioxidant system. Antioxidant enzymes and small-molecular-weight antioxidants are an important element in the tardigrade resistance. The levels and activities of many antioxidant proteins is elevated by anhydrobiosis and UV radiation; one explanation for their induction during dehydration is provided by the theory of "preparation for oxidative stress", which occurs during rehydration. Genes coding for some antioxidant proteins are expanded in tardigrades; some genes (especially those coding for catalases) were hypothesized to be of bacterial origin, acquired by horizontal gene transfer. An interesting antioxidant protein found in tardigrades is the new Mn-dependent peroxidase.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza Street, 35-601 Rzeszow, Poland;
| | | |
Collapse
|
9
|
Sahranavard M, Hosseinjani H, Emadzadeh M, Jamialahmadi T, Sahebkar A. Effect of trehalose on mortality and disease severity in ICU-admitted patients: Protocol for a triple-blind, randomized, placebo-controlled clinical trial. Contemp Clin Trials Commun 2024; 40:101324. [PMID: 39021672 PMCID: PMC11252791 DOI: 10.1016/j.conctc.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/04/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background Improvement in organ failure in intensive care unit (ICU) patients is accompanied by lower mortality rate. A disaccharide, trehalose is a candidate to improve organ failure and survival by autophagy induction and enhancing oxidative stress defense. The aim of this study is to assess the effectiveness of trehalose in improving clinical outcome and reducing mortality in ICU patients. Methods a triple-blind, randomized, placebo-controlled, two arm, parallel-group, superiority clinical trial will enroll 200 ICU-admitted patients at Imam Reza hospital, Mashhad, Iran. The patients will be randomly allocated to receive either a 100 ml solution of 15 % trehalose or normal saline intravenously. Primary outcomes include ICU mortality and 60-day mortality, while secondary outcomes focus on blood parameters on day 5 and length of hospital/ICU stay. Conclusion Trehalose has demonstrated beneficial effects in diverse patients; however, no study has evaluated its effect in all ICU-admitted patients. Consequently, this study provides an opportunity to investigate whether trehalose's anti-inflammatory effects, mediated by inducing autophagy and enhancing oxidative stress defense, can play a role in reducing mortality and improving clinical outcomes in the critically ill patients. If successful, trehalose could offer a potential therapeutic approach in the ICU setting.
Collapse
Affiliation(s)
- Mehrdad Sahranavard
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesamoddin Hosseinjani
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Emadzadeh
- Clinical Research Development Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Magalhães RSS, Monteiro Neto JR, Ribeiro GD, Paranhos LH, Eleutherio ECA. Trehalose Protects against Superoxide Dismutase 1 Proteinopathy in an Amyotrophic Lateral Sclerosis Model. Antioxidants (Basel) 2024; 13:807. [PMID: 39061876 PMCID: PMC11274086 DOI: 10.3390/antiox13070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This work aimed to study the effect of trehalose in protecting cells against Sod1 proteinopathy associated with amyotrophic lateral sclerosis (ALS). Humanized yeast cells in which native Sod1 was replaced by wild-type human Sod1 or an ALS mutant (WT-A4V Sod1 heterodimer) were used as the experimental model. Cells were treated with 10% trehalose (p/v) before or after the appearance of hSod1 proteinopathy induced by oxidative stress. In both conditions, trehalose reduced the number of cells with Sod1 inclusions, increased Sod1 activity, and decreased the levels of intracellular oxidation, demonstrating that trehalose avoids Sod1 misfolding and loss of function in response to oxidative stress. The survival rates of ALS Sod1 cells stressed in the presence of trehalose were 60% higher than in their absence. Treatment with trehalose after the appearance of Sod1 inclusions in cells expressing WT Sod1 doubled longevity; after 5 days, non-treated cells did not survive, but 15% of cells treated with sugar were still alive. Altogether, our results emphasize the potential of trehalose as a novel therapy, which might be applied preventively in ALS patients with a family history of the disease or after diagnosis in ALS patients who discover the disease following the first symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Elis C. A. Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (R.S.S.M.); (J.R.M.N.); (G.D.R.); (L.H.P.)
| |
Collapse
|
11
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans : a target for novel antifungals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.530545. [PMID: 36993618 PMCID: PMC10054996 DOI: 10.1101/2023.03.14.530545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of novel drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement towards the catalytic pocket by the N-terminus upon ligand binding and identifies residues required for substrate-binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved amongst Cryptococcal species and closely related Basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto , these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes. Significance Statement Fungal infections are responsible for over a million deaths worldwide each year. Biosynthesis of a disaccharide, trehalose, is required for multiple pathogenic fungi to transition from the environment to the human host. Enzymes in the trehalose biosynthesis pathway are absent in humans and, therefore, are potentially significant targets for novel antifungal therapeutics. One enzyme in the trehalose biosynthesis is trehalose-6-phosphate synthase (Tps1). Here, we describe the cryo-electron microscopy structures of the CnTps1 homo-tetramer in the unliganded form and in complex with a substrate and a product. These structures and subsequent biochemical analysis reveal key details of substrate-binding residues and substrate specificity. These structures should facilitate structure-guided design of inhibitors against CnTps1.
Collapse
|
12
|
Kurle-Tucholski P, Wiebeler C, Köhler L, Qin R, Zhao Z, Šimėnas M, Pöppl A, Matysik J. Red Shift in the Absorption Spectrum of Phototropin LOV1 upon the Formation of a Semiquinone Radical: Reconstructing the Orbital Architecture. J Phys Chem B 2024; 128:4344-4353. [PMID: 38688080 PMCID: PMC11089501 DOI: 10.1021/acs.jpcb.4c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Flavin mononucleotide (FMN) is a ubiquitous blue-light pigment due to its ability to drive one- and two-electron transfer reactions. In both light-oxygen-voltage (LOV) domains of phototropin from the green algae Chlamydomonas reinhardtii, FMN is noncovalently bound. In the LOV1 cysteine-to-serine mutant (C57S), light-induced electron transfer from a nearby tryptophan occurs, and a transient spin-correlated radical pair (SCRP) is formed. Within this photocycle, nuclear hyperpolarization is created by the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. In a side reaction, a stable protonated semiquinone radical (FMNH·) forms undergoing a significant bathochromic shift of the first electronic transition from 445 to 591 nm. The incorporation of phototropin LOV1-C57S into an amorphous trehalose matrix, stabilizing the radical, allows for application of various magnetic resonance experiments at ambient temperatures, which are combined with quantum-chemical calculations. As a result, the bathochromic shift of the first absorption band is explained by lifting the degeneracy of the molecular orbital energy levels for electrons with alpha and beta spins in FMNH· due to the additional electron.
Collapse
Affiliation(s)
- Patrick Kurle-Tucholski
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
- Institut
für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Lisa Köhler
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Ruonan Qin
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Ziyue Zhao
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| | - Mantas Šimėnas
- Faculty
of Physics, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Andreas Pöppl
- Felix
Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraße 5, D-04103, Leipzig, Germany
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstraße
3, D-04103 Leipzig, Germany
| |
Collapse
|
13
|
Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Intracellular Protective Functions and Therapeutical Potential of Trehalose. Molecules 2024; 29:2088. [PMID: 38731579 PMCID: PMC11085779 DOI: 10.3390/molecules29092088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.K.-W.); (K.S.-S.)
| |
Collapse
|
14
|
Sharma H, Dar TA, Wijayasinghe YS, Sahoo D, Poddar NK. Nano-Osmolyte Conjugation: Tailoring the Osmolyte-Protein Interactions at the Nanoscale. ACS OMEGA 2023; 8:47367-47379. [PMID: 38144115 PMCID: PMC10733987 DOI: 10.1021/acsomega.3c07248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/26/2023]
Abstract
Osmolytes are small organic compounds accumulated at higher concentrations in the cell under various stress conditions like high temperature, high salt, high pressure, etc. Osmolytes mainly include four major classes of compounds including sugars, polyols, methylamines, and amino acids and their derivatives. In addition to their ability to maintain protein stability and folding, these osmolytes, also termed as chemical chaperones, can prevent protein misfolding and aggregation. Although being efficient protein folders and stabilizers, these osmolytes exhibit certain unavoidable limitations such as nearly molar concentrations of osmolytes being required for their effect, which is quite difficult to achieve inside a cell or in the extracellular matrix due to nonspecificity and limited permeability of the blood-brain barrier system and reduced bioavailability. These limitations can be overcome to a certain extent by using smart delivery platforms for the targeted delivery of osmolytes to the site of action. In this context, osmolyte-functionalized nanoparticles, termed nano-osmolytes, enhance the protein stabilization and chaperone efficiency of osmolytes up to 105 times in certain cases. For example, sugars, polyols, and amino acid functionalized based nano-osmolytes have shown tremendous potential in preventing protein aggregation. The enhanced potential of nano-osmolytes can be attributed to their high specificity at low concentrations, high tunability, amphiphilicity, multivalent complex formation, and efficient drug delivery system. Keeping in view the promising potential of nano-osmolytes conjugation in tailoring the osmolyte-protein interactions, as compared to their molecular forms, the present review summarizes the recent advancements of the nano-osmolytes that enhance the protein stability/folding efficiency and ability to act as artificial chaperones with increased potential to prevent protein misfolding disorders. Some of the potential nano-osmolyte aggregation inhibitors have been highlighted for large-scale screening with future applications in aggregation disorders. The synthesis of nano-osmolytes by numerous approaches and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Hemlata Sharma
- Department
of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi
Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007, India
| | - Tanveer Ali Dar
- Department
of Clinical Biochemistry, University of
Kashmir, Srinagar 190006, Jammu and Kashmir India
| | | | - Dibakar Sahoo
- School
of Physics, Sambalpur University, Jyoti Vihar, Burla 768019, Odisha, India
| | - Nitesh Kumar Poddar
- Department
of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Dehmi
Kalan, Near GVK Toll Plaza, Jaipur, Rajasthan 303007, India
| |
Collapse
|
15
|
Bermúdez-Puga S, Dias M, Freire de Oliveira T, Mendonça CMN, Yokomizo de Almeida SR, Rozas EE, do Nascimento CAO, Mendes MA, Oliveira De Souza de Azevedo P, Almeida JR, Proaño-Bolaños C, Oliveira RPDS. Dual antibacterial mechanism of [K4K15]CZS-1 against Salmonella Typhimurium: a membrane active and intracellular-targeting antimicrobial peptide. Front Microbiol 2023; 14:1320154. [PMID: 38156004 PMCID: PMC10752938 DOI: 10.3389/fmicb.2023.1320154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023] Open
Abstract
Salmonella genus is a leading cause of food-borne infections with strong public health impact and economic ramifications. The development of antimicrobial resistance added complexity to this scenario and turned the antibiotic drug discovery into a highly important challenge. The screening of peptides has served as a successful discovery platform to design new antibiotic candidates. Motivated by this, the antimicrobial and cytotoxic properties of three cruzioseptins against Salmonella Typhimurium and RAW 264.7 murine macrophage cells, respectively, were investigated. [K4K15]CZS-1 was the most potent antimicrobial peptide identified in the screening step with a minimum inhibitory concentration (MIC) of 16 μg/mL (7.26 μM) and moderate cytotoxicity. From a structural point of view, in vitro and in silico techniques evidenced that [K4K15]CZS-1 is a α-helical cationic antimicrobial peptide. In order to capture mechanistic details and fully decipher their antibacterial action, we adopted a multidimensional approach, including spectroscopy, electron microscopy and omics analysis. In general lines, [K4K15]CZS-1 caused membrane damage, intracellular alterations in Salmonella and modulated metabolic pathways, such as the tricarboxylic acid (TCA) cycle, fatty acid biosynthesis, and lipid metabolism. Overall, these findings provide deeper insights into the antibacterial properties and multidimensional mode of action of [K4K15]CZS-1 against Salmonella Typhimurium. In summary, this study represents a first step toward the screening of membrane-acting and intracellular-targeting peptides as potential bio-preservatives to prevent foodborne outbreaks caused by Salmonella.
Collapse
Affiliation(s)
- Sebastián Bermúdez-Puga
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Meriellen Dias
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Taciana Freire de Oliveira
- Microbial Biomolecules Laboratory, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Enrique Eduardo Rozas
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, São Paulo, Brazil
| | | | - Maria Anita Mendes
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, São Paulo, Brazil
| | | | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | | | | |
Collapse
|
16
|
Morales-Carrizales DA, Gopar-Cuevas Y, Loera-Arias MDJ, Saucedo-Cardenas O, Montes de Oca-Luna R, Garcia-Garcia A, Rodriguez-Rocha H. A neuroprotective dose of trehalose is harmless to metabolic organs: comprehensive histopathological analysis of liver, pancreas, and kidney. Daru 2023; 31:135-144. [PMID: 37393413 PMCID: PMC10624785 DOI: 10.1007/s40199-023-00468-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/18/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Trehalose is a non-reducing disaccharide synthesized by lower organisms. It has recently received special attention because of its neuroprotective properties by stimulating autophagy in Parkinson's disease (PD) models. Therefore, evaluating whether trehalose affects metabolic organs is vital to determine its neurotherapeutic safety. METHODS We validated the trehalose neuroprotective dosage in a PD model induced with intraperitoneal paraquat administration twice weekly for 7 weeks. One week before paraquat administration, mice were treated with trehalose in the drinking water and continued along with paraquat treatment. Histological and morphometrical analyses were conducted on the organs involved in trehalose metabolism, including the liver, pancreas, and kidney. RESULTS Paraquat-induced dopaminergic neuronal loss was significantly decreased by trehalose. After trehalose treatment, the liver morphology, the mononucleated/binucleated hepatocytes percentage, and sinusoidal diameter remained unchanged in each liver lobes. Endocrine and exocrine pancreas's histology was not affected, nor was any fibrotic process observed. The islet of Langerhans's structure was preserved when analyzing the area, the largest and smallest diameter, and circularity. Renal morphology remained undamaged, and no changes were identified within the glomerular basement membrane. The renal corpuscle structure did not suffer alterations in the Bowman's space, area, diameter, circularity, perimeter, and cellularity. Besides, the renal tubular structures's luminal area and internal and external diameter were preserved. CONCLUSION Our study demonstrates that systemic trehalose administration preserved the typical histological architecture of the organs involved in its metabolism, supporting its safety as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Diego Armando Morales-Carrizales
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - Yareth Gopar-Cuevas
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - Maria de Jesus Loera-Arias
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - Roberto Montes de Oca-Luna
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico
| | - Aracely Garcia-Garcia
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico.
| | - Humberto Rodriguez-Rocha
- Departamento de Histologia, Universidad Autónoma de Nuevo Leon, Francisco I. Madero S/N, Mitras Centro, 64460, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
17
|
Jakowec NA, Finegan M, Finkel SE. Disruption of trehalose periplasmic recycling dysregulates cAMP-CRP signaling in Escherichia coli during stationary phase. J Bacteriol 2023; 205:e0029223. [PMID: 37916804 PMCID: PMC10662143 DOI: 10.1128/jb.00292-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Survival during starvation hinges on the ability to manage intracellular energy reserves and to initiate appropriate metabolic responses to perturbations of such reserves. How Escherichia coli manage carbon storage systems under starvation stress, as well as transpose changes in intracellular metabolite levels into regulatory signals, is not well understood. Endogenous trehalose metabolism may be at the center of these processes, coupling carbon storage with carbon starvation responses. The coupled transport to the periplasm and subsequent hydrolysis of trehalose back to glucose for transport to the cytoplasm may function as a crucial metabolic signaling pathway. Although trehalose has been characterized as a stress protectant in E. coli, the disaccharide also functions as both an energy storage compound and a regulator of carbohydrate metabolism in fungi, plants, and other bacteria. Our research explores the metabolic regulatory properties of trehalose in E. coli and a potential mechanism by which the intracellular carbon pool is interconnected with regulatory circuits, enabling long-term survival.
Collapse
Affiliation(s)
- Nicolaus A. Jakowec
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Melissa Finegan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Steven E. Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
18
|
Gao L, Meng J, Dai W, Zhang Z, Dong H, Yuan Q, Zhang W, Liu S, Wu X. Deciphering cell wall sensors enabling the construction of robust P. pastoris for single-cell protein production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:178. [PMID: 37978550 PMCID: PMC10655344 DOI: 10.1186/s13068-023-02428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Single-cell protein (SCP) production in the methylotrophic yeast Pichia pastoris has the potential to achieve a sustainable protein supply. However, improving the methanol fermentation efficiency and reducing carbon loss has been a long-standing challenge with far-reaching scientific and practical implications. Here, comparative transcriptomics revealed that PAS_0305, a gene directly associated with cell wall thickness under methanol stress, can be used as a target for unlocking cell wall sensors. Intracellular trehalose accumulation confirmed that cell wall sensors were activated after knocking out PAS_0305, which resulted in increased cell wall permeability. Genome-wide signal perturbations were transduced through the HOG module and the CWI pathway, which was confirmed to connected by Pbs2-Mkk. As a consequence of CWI pathway activation, ΔPAS_0305 elicited a rescue response of cell wall remodeling by increasing the β-1,3-glucan content and decreasing the chitin/mannose content. Remarkably, perturbations in global stress signals led to a fine-tuning of the metabolic network of ΔPAS_0305, resulting in a superior phenotype with highest crude protein and methanol conversion rate of 67.21% and 0.46 gDCW/g. Further genome-scale metabolic models were constructed to validate the experimental results, confirming that unlocking cell wall sensors resulted in maximized flux from methanol towards SCP and effectively addressing the issue of carbon loss in methanol fermentation. This work sheds new light on the potential of manipulating cellular signaling pathways to optimize metabolic networks and achieve exceptional phenotypic characteristics, providing new strategies for constructing versatile cell factories in P. pastoris.
Collapse
Affiliation(s)
- Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Jiao Meng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Wuling Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Zhaokun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Haofan Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Qianqian Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Shuguang Liu
- Beijing Chasing future Biotechnology Co., Ltd, Beijing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China.
| |
Collapse
|
19
|
Tocci G, Biondi-Zoccai G, Forte M, Gallo G, Nardoianni G, Fiori E, D'Ambrosio L, Di Pietro R, Stefanini G, Cannata F, Rocco E, Simeone B, Sarto G, Schirone L, D'Amico A, Peruzzi M, Nocella C, Volpe M, Rubattu S. Effects of two-month treatment with a mixture of natural activators of autophagy on oxidative stress and arterial stiffness in patients with essential hypertension: A pilot study. Nutr Metab Cardiovasc Dis 2023; 33:2287-2293. [PMID: 37580230 DOI: 10.1016/j.numecd.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND AND AIMS Trehalose, spermidine, nicotinamide, and polyphenols are natural substances that exert pro-autophagic and antioxidant properties. Their role in blood pressure (BP) regulation and preservation of vascular function in essential hypertension is unknown. The aim of this study was to evaluate the effect of a mixture of these agents on BP level, markers of oxidative stress, autophagy, endothelial function, and vascular stiffness in outpatients with grade 1 uncomplicated essential hypertension. METHODS AND RESULTS A single-centre, open-label, case-control, pilot study was conducted in adult outpatients (aged ≥18 years) receiving or not the mixture for two months along with the standard therapies. Both at baseline and at the end of the treatment the following clinical parameters were evaluated: brachial seated office BP level, central aortic pressure, pulse wave velocity, augmentation index (AI@75). Both at baseline and at the end of the treatment, a blood sample was drawn for the measurement of: H2O2, HBA%, levels of sNOX2-dp, Atg 5, P62, endothelin 1, and NO bioavailability. The mixture of nutraceuticals did not influence BP levels. Patients receiving the mixture showed a significant decrease of oxidative stress, stimulation of autophagy, increased NO bioavailability and no increase of the AI@75, in contrast to what observed in hypertensive patients not receiving the mixture. CONCLUSIONS The supplementation of the trehalose, spermidine, nicotinamide, and polyphenols mixture counteracted hypertension-related arterial stiffness through mechanisms likely dependent on oxidative stress downregulation and autophagy stimulation. These natural activators of autophagy may represent favourable adjuvants for prevention of the hypertensive cardiovascular damage.
Collapse
Affiliation(s)
- Giuliano Tocci
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | | | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Giulia Nardoianni
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Emiliano Fiori
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Italy
| | - Luca D'Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Giulio Stefanini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesco Cannata
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | | | | | - Leonardo Schirone
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Alessandra D'Amico
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Mariangela Peruzzi
- Mediterranea Cardiocentro, Napoli, Italy; Department of Clinical Internal, Anestesiological and Cardiovascular Science, Sapienza University of Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anestesiological and Cardiovascular Science, Sapienza University of Rome, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Italy; IRCCS S. Raffaele, Rome, Italy
| | - Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| |
Collapse
|
20
|
Pang A, Rutter A, Haack E, Zeeb B. Transcriptome analysis of a springtail, Folsomia candida, reveals energy constraint and oxidative stress during petroleum hydrocarbon exposure. CHEMOSPHERE 2023; 342:140185. [PMID: 37716568 DOI: 10.1016/j.chemosphere.2023.140185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Petroleum hydrocarbon (PHC) contamination in soil is ubiquitous and poses harmful consequences to many organisms. The toxicity of PHC-impacted soil is difficult to predict due to variations in mixture composition and the impacts of natural weathering processes. Hence, high-throughput methods to assess PHC-impacted soils is required to expedite land management decisions. Next-generation sequencing is a robust tool that allows researchers to investigate the effects of contaminants on the transcriptome of organisms and identify molecular biomarkers. In this study, the effects of PHCs on conventional endpoints (i.e., survival and reproduction) and gene expression rates of a model springtail species, Folsomia candida were investigated. Age-synchronized F. candida were exposed to ecologically-relevant concentrations of soils spiked with fresh crude oil to calculate the reproductive EC25 and EC50 values using conventional toxicity testing. Soils spiked to these concentrations were then used to evaluate effects on the F. candida transcriptome over a 7-day exposure period. RNA-seq analysis found 98 and 132 differentially expressed genes when compared to the control for the EC25 and EC50 treatment groups, respectively. The majority of up-regulated genes were related to xenobiotic biotransformation reactions and oxidative stress response, while down-regulated genes coded for carbohydrate and peptide metabolic processes. Promotion of the pentose phosphate pathway was also found. Results suggest that the decreased reproduction rates of F. candida exposed to PHCs is due to energy constraints caused by inhibition of carbohydrate metabolic processes and allocation of remaining energy to detoxify xenobiotics. These findings provide insights into the molecular effects in F. candida following exposure to crude oil for seven days and highlight their potential to be used as a high-throughput screening test for PHC-contaminated sites. Adverse molecular effects can be measured as early as 24 h following exposure, whereas conventional toxicity tests may require a minimum of four weeks.
Collapse
Affiliation(s)
- Adrian Pang
- School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
| | - Allison Rutter
- School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Elizabeth Haack
- Ecometrix Incorporated, 6800 Campobello Road, Mississauga, ON, L5N 2L8, Canada
| | - Barbara Zeeb
- Dept. of Chem. & Chem. Eng., Royal Military College of Canada, Kingston, ON, K7K 7B4, Canada
| |
Collapse
|
21
|
Wu C, Guo J, Jian H, Liu L, Zhang H, Yang N, Xu H, Lei H. Bioactive dipeptides enhance the tolerance of lager yeast to ethanol-oxidation cross-stress by regulating the multilevel defense system. Food Microbiol 2023; 114:104288. [PMID: 37290871 DOI: 10.1016/j.fm.2023.104288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 06/10/2023]
Abstract
Although high gravity brewing technology has been widely used for beer industries due to its economic benefits, yeast cells are subjected to multiple environmental stresses throughout the fermentation process. Eleven bioactive dipeptides (LH, HH, AY, LY, IY, AH, PW, TY, HL, VY, FC) were selected to evaluate their effects on cell proliferation, cell membrane defense system, antioxidant defense system and intracellular protective agents of lager yeast against ethanol-oxidation cross-stress. Results showed that the multiple stresses tolerance and fermentation performance of lager yeast were enhanced by bioactive dipeptides. Cell membrane integrity was improved by bioactive dipeptides through altering the structure of macromolecular compounds of the cell membrane. Intracellular reactive oxygen species (ROS) accumulation was significantly decreased by bioactive dipeptides, especially for FC, decreasing by 33.1%, compared with the control. The decrease of ROS was closely related to the increase of mitochondrial membrane potential, intracellular antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), and glycerol level. In addition, bioactive dipeptides could regulate the expression of key genes (GPD1, OLE1, SOD2, PEX11, CTT1, HSP12) to enhance the multilevel defense systems under ethanol-oxidation cross-stress. Therefore, bioactive dipeptides should be potentially efficient and feasible bioactive ingredients to improve the multiple stresses tolerance of lager yeast during high gravity fermentation.
Collapse
Affiliation(s)
- Caiyun Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Jiayu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Haoyu Jian
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Li Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Hexin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Nana Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| | - Hongjie Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
22
|
Zhang S, Qiu X, Zhang Y, Huang C, Lin D. Metabolomic Analysis of Trehalose Alleviating Oxidative Stress in Myoblasts. Int J Mol Sci 2023; 24:13346. [PMID: 37686153 PMCID: PMC10488301 DOI: 10.3390/ijms241713346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Trehalose, a naturally occurring non-toxic disaccharide, has attracted considerable attention for its potential in alleviating oxidative stress in skeletal muscle. In this study, our aim was to elucidate the metabolic mechanisms underlying the protective effects of trehalose against hydrogen peroxide (H2O2)-induced oxidative stress in C2C12 myoblasts. Our results show that both trehalose treatment and pretreatment effectively alleviate the H2O2-induced decrease in cell viability, reduce intracellular reactive oxygen species (ROS), and attenuate lipid peroxidation. Furthermore, using NMR-based metabolomics analysis, we observed that trehalose treatment and pretreatment modulate the metabolic profile of myoblasts, specifically regulating oxidant metabolism and amino acid metabolism, contributing to their protective effects against oxidative stress. Importantly, our results reveal that trehalose treatment and pretreatment upregulate the expression levels of P62 and Nrf2 proteins, thereby activating the Nrf2-NQO1 axis and effectively reducing oxidative stress. These significant findings highlight the potential of trehalose supplementation as a promising and effective strategy for alleviating oxidative stress in skeletal muscle and provide valuable insights into its potential therapeutic applications.
Collapse
Affiliation(s)
- Shuya Zhang
- Key Laboratory of Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (S.Z.); (X.Q.); (Y.Z.)
| | - Xu Qiu
- Key Laboratory of Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (S.Z.); (X.Q.); (Y.Z.)
| | - Yue Zhang
- Key Laboratory of Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (S.Z.); (X.Q.); (Y.Z.)
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China;
| | - Donghai Lin
- Key Laboratory of Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (S.Z.); (X.Q.); (Y.Z.)
| |
Collapse
|
23
|
Bu Z, Yang J, Zhang Y, Luo T, Fang C, Liang X, Peng Q, Wang D, Lin N, Zhang K, Tang W. Sequential Ubiquitination and Phosphorylation Epigenetics Reshaping by MG132-Loaded Fe-MOF Disarms Treatment Resistance to Repulse Metastatic Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301638. [PMID: 37303273 PMCID: PMC10427397 DOI: 10.1002/advs.202301638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Indexed: 06/13/2023]
Abstract
Abnormal epigenetic regulation is identified to correlate with cancer progression and renders tumor refractory and resistant to reactive oxygen species (ROS)-based anti-tumor actions. To address it, a sequential ubiquitination and phosphorylation epigenetics modulation strategy is developed and exemplified by the well-established Fe-metal-organic framework (Fe-MOF)-based chemodynamic therapy (CDT) nanoplatforms that load the 26S proteasome inhibitor (i.e., MG132). The encapsulated MG132 can blockade 26S proteasome, terminate ubiquitination, and further inhibit transcription factor phosphorylation (e.g., NF-κB p65), which can boost pro-apoptotic or misfolded protein accumulations, disrupt tumor homeostasis, and down-regulate driving genes expression of metastatic colorectal cancer (mCRC). Contributed by them, Fe-MOF-unlocked CDT is magnified to considerably elevate ROS content for repulsing mCRC, especially after combining with macrophage membrane coating-enabled tropism accumulation. Systematic experiments reveal the mechanism and signaling pathway of such a sequential ubiquitination and phosphorylation epigenetics modulation and explain how it could blockade ubiquitination and phosphorylation to liberate the therapy resistance to ROS and activate NF-κB-related acute immune responses. This unprecedented sequential epigenetics modulation lays a solid foundation to magnify oxidative stress and can serve as a general method to enhance other ROS-based anti-tumor methods.
Collapse
Affiliation(s)
- Zhaoting Bu
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Jianjun Yang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Yan Zhang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Tao Luo
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Chao Fang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Xiayi Liang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Qiuxia Peng
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Duo Wang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Ningjing Lin
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Kun Zhang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
- Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072P. R. China
| | - Weizhong Tang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| |
Collapse
|
24
|
Kurle-Tucholski P, Köhler L, Zhao Z, Link G, Wiebeler C, Matysik J. Stabilization of a flavoprotein for solid-state photo-CIDNP MAS NMR at room temperature by embedding in a glassy sugar matrix. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107497. [PMID: 37295281 DOI: 10.1016/j.jmr.2023.107497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Hyperpolarization via the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect can be detected in frozen solutions of electron transfer proteins generating a radical-pair upon illumination. The effect has been observed in various natural photosynthetic reaction centers and in light-oxygen-voltage (LOV) sensing domains incorporating a flavin mononucleotide (FMN) as chromophore. In LOV domains, where a highly conserved cysteine is mutated to a flavin to interrupt its natural photochemistry, a radical-pair is generated by electron transfer from a nearby tryptophan to the photoexcited triplet state of FMN. During the photocycle, both the LOV domain and the chromophore are photochemically degraded, e.g., by the formation of singlet oxygen. This limits the time for collection of hyperpolarized nuclear magnetic resonance (NMR) data. We show that embedding of the protein into a trehalose sugar glass matrix stabilizes the protein for 13C solid-state photo-CIDNP NMR experiments which can be conducted at room temperature in a powder sample. Additionally, this preparation allows for incorporation of high amounts of protein further boosting the intensity of the detected signals from FMN and tryptophan at natural abundance. Signal assignment is aided by quantum chemical calculations of absolute shieldings. The underlying mechanism for the surprising absorption-only signal pattern is not yet understood. Comparison to calculated isotropic hyperfine couplings imply that the enhancement is not due to the classical radical-pair mechanism (RPM). Analysis of the anisotropic hyperfine couplings associated with solid-state photo-CIDNP mechanisms also show no simple correlation, suggesting a more complex underlying mechanism.
Collapse
Affiliation(s)
- Patrick Kurle-Tucholski
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Ziyue Zhao
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Gerhard Link
- Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 21, D-79104 Freiburg, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany; Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstraße 2, D-04103 Leipzig, Germany; Institut für Physik, Universität Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
| |
Collapse
|
25
|
Maushe D, Ogi V, Divakaran K, Verdecia Mogena AM, Himmighofen PA, Machado RAR, Towbin BD, Ehlers RU, Molina C, Parisod C, Maud Robert CA. Stress tolerance in entomopathogenic nematodes: Engineering superior nematodes for precision agriculture. J Invertebr Pathol 2023:107953. [PMID: 37336478 DOI: 10.1016/j.jip.2023.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.
Collapse
Affiliation(s)
- Dorothy Maushe
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vera Ogi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Keerthi Divakaran
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | - Paul Anton Himmighofen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Ricardo A R Machado
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Benjamin Daniel Towbin
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Ralf-Udo Ehlers
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Carlos Molina
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
26
|
Zahedi N, Pourajam S, Zaker E, Kouhpayeh S, Mirbod SM, Tavangar M, Boshtam M, Hatami Kahkesh K, Qian Q, Zhang F, Shariati L, Khanahmad H, Boshtam M. The potential therapeutic impacts of trehalose on cardiovascular diseases as the environmental-influenced disorders: An overview of contemporary findings. ENVIRONMENTAL RESEARCH 2023; 226:115674. [PMID: 36925035 DOI: 10.1016/j.envres.2023.115674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Cardiovascular diseases (CVDs) as environmental-influenced disorders, are a major concern and the leading cause of death worldwide. A range of therapeutic approaches has been proposed, including conventional and novel methods. Natural compounds offer a promising alternative for CVD treatment due to their ability to regulate molecular pathways with minimal adverse effects. Trehalose is natural compound and disaccharide with unique biological functions and cardio-protective properties. The cardio-protective effects of trehalose are generated through its ability to induce autophagy, which is mediated by the transcription factors TFEB and FOXO1. The stimulation of TFEB plays a significant role in regulating autophagy genes and autophagosome formation. Activation of FOXO1 through dephosphorylation of Foxo1 and blocking of p38 mitogen-activated protein kinase (p38 MAPK) also triggers autophagy dramatically. Trehalose has been shown to reduce CVD risk factors, including atherosclerosis, cardiac remodeling after a heart attack, cardiac dysfunction, high blood pressure, and stroke. It also reduces structural abnormalities of mitochondria, cytokine production, vascular inflammation, cardiomyocyte apoptosis, and pyroptosis. This review provides a molecular overview of trehalose's cardioprotective functions, including its mechanisms of autophagy and its potential to improve CVD symptoms based on clinical evidence.
Collapse
Affiliation(s)
- Noushin Zahedi
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samaneh Pourajam
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Zaker
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, Erythron Genetics and Pathobiology Laboratory, Isfahan, Iran
| | - Seyedeh Mahnaz Mirbod
- Department of Cardiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrsa Tavangar
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Kaveh Hatami Kahkesh
- Department of Basic Medical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, Zhejiang, China
| | - Feng Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang, China
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
27
|
Yu S, Park H, Kim W. Trehalose Inhibits Inflammatory Responses through Mitochondrial Reprogramming in RAW 264.7 Macrophages. Antioxidants (Basel) 2023; 12:1166. [PMID: 37371896 DOI: 10.3390/antiox12061166] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Studies reported the beneficial effects of trehalose on metabolic syndromes, hyperlipidemia, and autophagy, but its action mechanisms are still poorly understood. Even though trehalose is digested by disaccharidase and absorbed in the intestine, intact molecules encounter immune cells which form a solid balance between the allowance of nutritive substances and the removal of harmful pathogens. In this regard, the polarization of intestinal macrophages into an anti-inflammatory phenotype through metabolic regulation is emerging as a therapeutic strategy for the prevention of gastrointestinal inflammation. The current study investigated the effects of trehalose on immunological phenotypes, energy metabolism, and LPS-induced macrophage mitochondrial functioning. Results indicate that trehalose reduces prostaglandin E2 and nitric oxide, which are inflammatory mediators of LPS-induced macrophages. In addition, trehalose further significantly suppressed inflammatory cytokines and mediators via energy metabolism reprogramming towards M2-like status in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Seungmin Yu
- Personalized Diet Research Group, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea
| | - Hyejeong Park
- Department of Food Science and Biotechnology, Graduate School of Kyung Hee University, Yongin 17104, Republic of Korea
| | - Wooki Kim
- Department of Food Science and Biotechnology, Graduate School of Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
28
|
Zheng B, He S, Zhao L, Li J, Du Y, Li Y, Shi J, Wu Z. Does temperature favour the spread of Raphidiopsis raciborskii, an invasive bloom-forming cyanobacterium, by altering cellular trade-offs? HARMFUL ALGAE 2023; 124:102406. [PMID: 37164561 DOI: 10.1016/j.hal.2023.102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 05/12/2023]
Abstract
As a tropical filamentous cyanobacterium, Raphidiopsis raciborskii has attracted much attention due to its expansion and toxin production. However, the mechanisms of its expansion to temperate regions have not been studied in detail. To address the potential strategies, the physiological and metabolomic profiles of R. raciborskii FACHB 1096 isolated from a temperate lake in China were determined and measured at different temperatures (10 °C, 15 °C, 20 °C, 25 °C, and 32 °C). The results demonstrated that temperature significantly changed cell viability, chlorophyll a content, specific growth rate, Chl a fluorescence, and filamentous shape of R. raciborskii. Low temperature decreased cell viability, specific growth rate, and photosynthetic efficiency, while the proportion of akinete and carbon fixation per unit cell were significantly increased compared with high temperature (32 °C). A constructed unimodal model indicated that filament length, cell volume, and cell length/width of R. raciborskii were significantly reduced in both high and low temperature environments. Under low-temperature conditions, R. raciborskii suffered different degrees of oxidative damage and produced corresponding antioxidant substances to resist oxidative stress, suggesting that low temperature changes the metabolic level of the cells, causing the cells to gradually switch from development to defense. Metabolomic data further confirmed that temperature change induced shifts in metabolic pathways in R. raciborskii, including starch and sucrose metabolic pathways, glutathione metabolic pathways, and the pentose phosphate pathways (PPP), as well as metabolic pathways related to the tricarboxylic acid (TCA) cycle. Our results indicated that the trade-offs of R. raciborskii cells among the growth, cell size, and metabolites can be significantly regulated by temperature, with broad implications for its global expansion in temperate waterbodies.
Collapse
Affiliation(s)
- Baohai Zheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shuhan He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lu Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaxin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Du
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
29
|
Bietto F, Scardaci R, Brovia M, Kokalari I, Barbero F, Fenoglio I, Pessione E. Food-grade titanium dioxide can affect microbiota physiology, adhesion capability, and interbacterial interactions: A study onL. rhamnosus and E. faecium. Food Chem Toxicol 2023; 176:113760. [PMID: 37028743 DOI: 10.1016/j.fct.2023.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Food-grade titanium dioxide (TiO2-FG) is a widespread metal oxide used in the food industries. Recently, the European Food Safety Authority concluded that TiO2-FG cannot be considered safe for consumption due to its genotoxicity; however, its effect on the gut microbiota has not yet been completely unraveled. We studied the effects of TiO2-FG (0.125 mg/mL) on Lactobacillus rhamnosus GG (LGG) and Enterococcus faecium NCIMB10415 (Ent), in particular some physiological and phenotypic traits (growth kinetics, bile salts, and ampicillin resistance) and their interactions with the host (auto-aggregation, biofilm formation, and adhesion on Caco-2/TC7 monolayers) and other gut microorganisms (antimicrobial activity towards pathogens). The results obtained revealed that TiO2-FG alters both LGG and Ent growth and lowers bile resistance (62 and 34.5%, respectively) and adhesion on Caco-2/TC7 monolayers (34.8 and 14.16%, respectively). The other outcomes were strictly species-specific: Ent showed a lower ampicillin sensitivity (14.48%) and auto-aggregation (38.1%), while LGG showed a reduced biofilm formation (37%) and antimicrobial activity towards Staphylococcus aureus (35.73%). Overall, these results suggest an adverse effect of TiO2-FG on both the endogenous and exogenously administered probiotics, contributing to the argument against using TiO2-FG as a food additive.
Collapse
Affiliation(s)
- F Bietto
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - R Scardaci
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - M Brovia
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - I Kokalari
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Torino, Italy.
| | - F Barbero
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Torino, Italy.
| | - I Fenoglio
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Torino, Italy.
| | - E Pessione
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
30
|
A secondary function of trehalose-6-phosphate synthase is required for resistance to oxidative and desiccation stress in Fusarium verticillioides. Fungal Biol 2023; 127:918-926. [PMID: 36906382 DOI: 10.1016/j.funbio.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The disaccharide trehalose has long been recognized for its role as a stress solute, but in recent years some of the protective effects previously ascribed to trehalose have been suggested to arise from a function of the trehalose biosynthesis enzyme trehalose-6-phosphate (T6P) synthase that is distinct from its catalytic activity. In this study, we use the maize pathogenic fungus Fusarium verticillioides as a model to explore the relative contributions of trehalose itself and a putative secondary function of T6P synthase in protection against stress as well as to understand why, as shown in a previous study, deletion of the TPS1 gene coding for T6P synthase reduces pathogenicity against maize. We report that a TPS1-deletion mutant of F. verticillioides is compromised in its ability to withstand exposure to oxidative stress meant to simulate the oxidative burst phase of maize defense and experiences more ROS-induced lipid damage than the wild-type strain. Eliminating T6P synthase expression also reduces resistance to desiccation, but not resistance to phenolic acids. Expression of catalytically-inactive T6P synthase in the TPS1-deletion mutant leads to a partial rescue of the oxidative and desiccation stress-sensitive phenotypes, suggesting the importance of a T6P synthase function that is independent of its role in trehalose synthesis.
Collapse
|
31
|
Bonilla JO, Callegari EA, Paez MD, Gil RA, Villegas LB. Bivalent copper ions presence triggers removal and homeostatic mechanisms in the metal-resistant microorganism Apiotrichum loubieri M12. Res Microbiol 2023; 174:104013. [PMID: 36494018 DOI: 10.1016/j.resmic.2022.104013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/04/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Microorganisms, especially those habiting mining environments, are of great importance for the retention of toxic metals in the environment. This work aimed to isolate a copper removing-microorganism from sediments of an Acid Mine Drainage-affected environment and to study the cellular responses trigger by metal presence. Apiotrichum loubieri M12 was able to tolerate and remove Cu(II) from liquid culture media, reaching a 30-35% removal capacity when it was exposed to 40 μg mL-1 Cu(II) after 48 h. Analysis of the biomass exposed to the metal through SEM-EDS showed copper presence on the cell surface and variations in the proportion of other biomass constituent elements. Proteomics revealed that the presence of Cu(II) induces differential expression of intracellular proteins involved in a wide variety of metabolic processes. Interestingly, a specific response to the metal was detected in cell-free supernatants, in which copper binding proteins were identified. A large number of proteins with metal ion binding sites were detected both at intra and extracellular levels. The microorganism responds not only by adjusting intracellular protein expression, but also by adjusting expression of proteins in the extracellular space.
Collapse
Affiliation(s)
- José Oscar Bonilla
- Instituto de Química San Luis (INQUISAL), CONICET, Chacabuco 917, 5700 San Luis, Argentina; Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina.
| | - Eduardo Alberto Callegari
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA.
| | - María Daniela Paez
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA.
| | - Raúl Andrés Gil
- Instituto de Química San Luis (INQUISAL), CONICET, Chacabuco 917, 5700 San Luis, Argentina; Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina.
| | - Liliana Beatriz Villegas
- Instituto de Química San Luis (INQUISAL), CONICET, Chacabuco 917, 5700 San Luis, Argentina; Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina.
| |
Collapse
|
32
|
Benoit JB, McCluney KE, DeGennaro MJ, Dow JAT. Dehydration Dynamics in Terrestrial Arthropods: From Water Sensing to Trophic Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:129-149. [PMID: 36270273 PMCID: PMC9936378 DOI: 10.1146/annurev-ento-120120-091609] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the transition from water to land, maintaining water balance has been a key challenge for terrestrial arthropods. We explore factors that allow terrestrial arthropods to survive within a variably dry world and how they shape ecological interactions. Detection of water and hydration is critical for maintaining water content. Efficient regulation of internal water content is accomplished by excretory and osmoregulatory systems that balance water intake and loss. Biochemical and physiological responses are necessary as water content declines to prevent and repair the damage that occurs during dehydration. Desiccation avoidance can occur seasonally or daily via a move to more favorable areas. Dehydration and its avoidance have ecological impacts that extend beyond a single species to alter trophic interactions. As climate changes, evolutionary and ecological processes will be critical to species survival during drought.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Kevin E McCluney
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA;
| | - Matthew J DeGennaro
- Department of Biological Sciences, Florida International University and Biomolecular Sciences Institute, Miami, Florida, USA;
| | - Julian A T Dow
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, United Kingdom;
| |
Collapse
|
33
|
Kumar R, Ghatak A, Goyal I, Sarkar NK, Weckwerth W, Grover A, Chaturvedi P. Heat-induced proteomic changes in anthers of contrasting rice genotypes under variable stress regimes. FRONTIERS IN PLANT SCIENCE 2023; 13:1083971. [PMID: 36756226 PMCID: PMC9901367 DOI: 10.3389/fpls.2022.1083971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Heat stress drastically affects anther tissues resulting in poor plant fertility, necessitating an urgent need to determine the key proteome regulation associated with mature anther in response to heat stress. We identified several genotype - specific protein alterations in rice anthers of Moroberekan (Japonica, heat sensitive), IR64 (Indica, moderately heat tolerant), and Nagina22 (Aus, heat tolerant) in the short-term (ST_HS; one cycle of 42°C, 4 hours before anthesis) and long-term (LT_HS; 6 cycles of 38°C, 6 hours before anthesis) heat stress. The proteins upregulated in long-term heat stress in Nagina22 were enriched in biological processes related to unfolded protein binding and carboxylic acid metabolism, including amino acid metabolism. In short-term heat stress, Nagina22 anthers were enriched in proteins associated with vitamin E biosynthesis and GTPase activator activity. In contrast, downregulated proteins were related to ribosomal proteins. The expression of different Hsp20 and DnaJ was genotype specific. Overall, the heat response in Nagina22 was associated with its capacity for adequate metabolic control and cellular homeostasis, which may be critical for its higher reproductive thermotolerance. This study improves our understanding of thermotolerance mechanisms in rice anthers during anthesis and lays a foundation for breeding thermotolerant varieties via molecular breeding.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Isha Goyal
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Neelam K. Sarkar
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Dirk LMA, Zhao T, May J, Li T, Han Q, Zhang Y, Sahib MR, Downie AB. Alterations in Carbohydrate Quantities in Freeze-Dried, Relative to Fresh or Frozen Maize Leaf Disks. Biomolecules 2023; 13:biom13010148. [PMID: 36671533 PMCID: PMC9855396 DOI: 10.3390/biom13010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
For various reasons, leaves are occasionally lyophilized prior to storage at -80 °C and preparing extracts. Soluble carbohydrate identity and quantity from maize leaf disks were ascertained in two separate years using anion exchange HPLC with pulsed electrochemical detection. Analyses were made from disks after freezing in liquid nitrogen with or without subsequent lyophilization (both years) or directly after removal from plants with or without lyophilization (only in the second year). By adding the lyophilizing step, galactose content consistently increased and, frequently, so did galactoglycerols. The source of the galactose increase with the added lyophilizing step was not due to metabolizing raffinose, as the raffinose synthase (rafs) null mutant leaves, which do not make that trisaccharide, also had a similar increase in galactose content with lyophilization. Apparently, the ester linkages attaching free fatty acids to galactoglycerolipids of the chloroplast are particularly sensitive to cleavage during lyophilization, resulting in increases in galactoglycerols. Regardless of the galactose source, a systematic error is introduced for carbohydrate (and, most likely, also chloroplast mono- or digalactosyldiacylglycerol) amounts when maize leaf samples are lyophilized prior to extraction. The recognition of lyophilization as a source of galactose increase provides a cautionary note for investigators of soluble carbohydrates.
Collapse
Affiliation(s)
- Lynnette M. A. Dirk
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - John May
- Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, N-222A Ag Science North, Lexington, KY 40546, USA
| | - Tao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
- Collaborative Innovation Center of Henan Grain Crops, State Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agriculture University, Zhengzhou 450002, China
| | - Qinghui Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yumin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Department of Biochemistry and Molecular Biology, College of Life Science, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China
| | - Mohammad R. Sahib
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
- College of Agriculture, Al-Qasim Green University, Babylon 00964, Iraq
| | - Allan Bruce Downie
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food and Environment, University of Kentucky, 1405 Veterans Drive, Lexington, KY 40546, USA
- Correspondence: ; Tel.: +1-(859)-257-5237
| |
Collapse
|
35
|
Kim C, Kim JG, Kim KY. Anti- Candida Potential of Sclareol in Inhibiting Growth, Biofilm Formation, and Yeast-Hyphal Transition. J Fungi (Basel) 2023; 9:jof9010098. [PMID: 36675919 PMCID: PMC9862543 DOI: 10.3390/jof9010098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Even though Candida albicans commonly colonizes on most mucosal surfaces including the vaginal and gastrointestinal tract, it can cause candidiasis as an opportunistic infectious fungus. The emergence of resistant Candida strains and the toxicity of anti-fungal agents have encouraged the development of new classes of potential anti-fungal agents. Sclareol, a labdane-type diterpene, showed anti-Candida activity with a minimum inhibitory concentration of 50 μg/mL in 24 h based on a microdilution anti-fungal susceptibility test. Cell membrane permeability with propidium iodide staining and mitochondrial membrane potential with JC-1 staining were increased in C. albicans by treatment of sclareol. Sclareol also suppressed the hyphal formation of C. albicans in both liquid and solid media, and reduced biofilm formation. Taken together, sclareol induces an apoptosis-like cell death against Candida spp. and suppressed biofilm and hyphal formation in C. albicans. Sclareol is of high interest as a novel anti-fungal agent and anti-virulence factor.
Collapse
Affiliation(s)
- Chaerim Kim
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Goo Kim
- Graduate School of Biotechnology, Kyung Hee University, Yingin 17104, Gyeonggi-do, Republic of Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Yingin 17104, Gyeonggi-do, Republic of Korea
- College of Life Science, Kyung Hee University, Yongin 17104, Gyeonggi-do, Republic of Korea
- Correspondence: ; Tel.: +82-312012633
| |
Collapse
|
36
|
Lu YP, Zheng PH, Zhang XX, Li JT, Zhang ZL, Xu JR, Meng YQ, Li JJ, Xian JA, Wang AL. New insights into the regulation mechanism of red claw crayfish (Cherax quadricarinatus) hepatopancreas under air exposure using transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108505. [PMID: 36581251 DOI: 10.1016/j.fsi.2022.108505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Red claw crayfish (Cherax quadricarinatus) is an important freshwater shrimp species worldwide with enormous economic value. Waterless transportation is an inherent feature of red claw crayfish transportation. However, the high mortality of red claw crayfish is a severe problem in the aquaculture of crayfish after waterless transportation. In this study, we investigated the responses of the hepatopancreas from the red claw crayfish undergoing air exposure stress and normal conditions on transcriptome levels. We used Illumina-based RNA sequencing (RNA-Seq) to perform a transcriptome analysis from the hepatopancreas of red claw crayfish challenged by air exposure. An average of 57,148,800 clean reads per library was obtained, and 33,567 unigenes could be predicted and classified according to their homology with matches in the National Center for Biotechnology Information (NCBI) non-redundant protein sequences (Nr), Gene Ontology (GO), a manually annotated and reviewed protein sequence database (Swiss-Prot), protein families (Pfam), Clusters of Orthologous Groups (COG) of proteins, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. 690 and 3407 differentially expressed genes (DEGs) were identified between the two stress stages of the red claw crayfish. More DEGs were identified in 12 h, indicating that gene expressions were largely changed at 12 h. Some immune-related pathways and genes were identified according to KEGG and GO enrichment analysis. A total of 12 DEGs involved in immune response and trehalose mechanism were verified by quantitative real-time-polymerase chain reaction (qRT-PCR). The results indicated that the red claw crayfish might counteract the stress of air exposure at the transcriptomic level by increasing expression levels of antioxidant-, immune-, and trehalose metabolism-related genes. These transcriptome results from the hepatopancreas provide significant insights into the influence mechanism of air exposure to the trehalose mechanism and immune response in the red claw crayfish.
Collapse
Affiliation(s)
- Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Institute of Modern Aquaculture Science and Engineering (IMASE), Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Institute of Modern Aquaculture Science and Engineering (IMASE), Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Jia-Rui Xu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Yong-Qi Meng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jia-Jun Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China.
| | - An-Li Wang
- Institute of Modern Aquaculture Science and Engineering (IMASE), Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
37
|
Wang J, Fan H, Li Y, Zhang TF, Liu YH. Trehalose-6-phosphate phosphatases are involved in trehalose synthesis and metamorphosis in Bactrocera minax. INSECT SCIENCE 2022; 29:1643-1658. [PMID: 35075784 DOI: 10.1111/1744-7917.13010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Trehalose is the principal sugar circulating in the hemolymph of insects, and trehalose synthesis is catalyzed by trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). Insect TPS is a fused enzyme containing both TPS domain and TPP domain. Thus, many insects do not possess TPP genes as TPSs have replaced the function of TPPs. However, TPPs are widely distributed across the dipteran insects, while the roles they play remain largely unknown. In this study, 3 TPP genes from notorious dipteran pest Bactrocera minax (BmiTPPB, BmiTPPC1, and BmiTPPC2) were identified and characterized. The different temporal-spatial expression patterns of 3 BmiTPPs implied that they exert different functions in B. minax. Recombinant BmiTPPs were heterologously expressed in yeast cells, and all purified proteins exhibited enzymatic activities, despite the remarkable disparity in performance between BmiTPPB and BmiTPPCs. RNA interference revealed that all BmiTPPs were successfully downregulated after double-stranded RNA injection, leading to decreased trehalose content and increased glucose content. Also, suppression of BmiTPPs significantly affected expression of downstream genes and increased the mortality and malformation rate. Collectively, these results indicated that all 3 BmiTPPs in B. minax are involved in trehalose synthesis and metamorphosis. Thus, these genes could be evaluated as insecticidal targets for managing B. minax, and even for other dipteran pests.
Collapse
Affiliation(s)
- Jia Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Huan Fan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Ying Li
- College of Plant Protection, Southwest University, Chongqing, China
| | - Tong-Fang Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Ying-Hong Liu
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
38
|
Johnston N, Cline G, Strobel SA. Cells Adapt to Resist Fluoride through Metabolic Deactivation and Intracellular Acidification. Chem Res Toxicol 2022; 35:2085-2096. [PMID: 36282204 PMCID: PMC9683101 DOI: 10.1021/acs.chemrestox.2c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 01/09/2023]
Abstract
Fluoride is highly abundant in the environment. Many organisms have adapted specific defense mechanisms against high concentrations of fluoride, including the expression of proteins capable of removing fluoride from cells. However, these fluoride transporters have not been identified in all organisms, and even organisms that express fluoride transporters vary in tolerance capabilities across species, individuals, and even tissue types. This suggests that alternative factors influence fluoride tolerance. We screened for adaptation against fluoride toxicity through an unbiased mutagenesis assay conducted on Saccharomyces cerevisiae lacking the fluoride exporter FEX, the primary mechanism of fluoride resistance. Over 80 independent fluoride-hardened strains were generated, with anywhere from 100- to 1200-fold increased fluoride tolerance compared to the original strain. The whole genome of each mutant strain was sequenced and compared to the wild type. The fluoride-hardened strains utilized a combination of phenotypes that individually conferred fluoride tolerance. These included intracellular acidification, cellular dormancy, nutrient storage, and a communal behavior reminiscent of flocculation. Of particular importance to fluoride resistance was intracellular acidification, which served to reverse the accumulation of fluoride and lead to its excretion from the cell as HF without the activity of a fluoride-specific protein transporter. This transport mechanism was also observed in wild-type yeast through a manual mutation to lower their cytoplasmic pH. The results demonstrate that the yeast developed a protein-free adaptation for removing an intracellular toxicant.
Collapse
Affiliation(s)
- Nichole
R. Johnston
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven 06477, Connecticut, United States
| | - Gary Cline
- Department
of Internal Medicine, Yale School of Medicine, New Haven 06510, Connecticut, United States
| | - Scott A. Strobel
- Department
of Molecular Biophysics and Biochemistry, Yale University, New Haven 06477, Connecticut, United States
- Department
of Chemistry, Yale University, New Haven 06477, Connecticut, United States
| |
Collapse
|
39
|
Wang Q, Fang K, Qi L, Wang X, Pan Y, Li Y, Xi J, Zhang J. Purification and Functional Characterization of a Soluble Trehalase in Lissorhoptrus oryzophilus (Coleoptera: Curculionidae). INSECTS 2022; 13:insects13100867. [PMID: 36292815 PMCID: PMC9604388 DOI: 10.3390/insects13100867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 05/16/2023]
Abstract
Trehalase is the only enzyme known for the irreversible splitting of trehalose and plays a major role in insect growth and development. In this report, we describe a basic study of the trehalase gene fragment encoding a soluble trehalase from Lissorhoptrus oryzophilus (LoTRE1). Sequence alignment and phylogenetic analysis suggested that LoTRE1 was similar to some known insect trehalases and belongs to the Coleoptera trehalase group. Additionally, LoTRE1 was expressed mainly in the fat body. Purified protein was obtained using heterologous expression of LoTRE1 in Escherichia coli, and the recombinant protein exhibited the ability to decompose trehalose. Enzyme-substrate docking indicated the potential involvement of other residues in the catalytic activity, in addition to Asp 333. Moreover, feeding of adults on LoTRE1 dsRNA silenced the transcription of LoTRE1 and thereby reduced the activity of trehalase and increased the trehalose content; it also led to a 12% death rate. This study reveals essential molecular features of trehalase and offers insights into the structural aspects of this enzyme, which might be related to its function. Taken together, the findings demonstrate that LoTRE1 is indispensable for adults of this pest and provide a new target for the control of L. oryzophilus.
Collapse
Affiliation(s)
- Qingtai Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Kui Fang
- Technical Center of Kunming Customs, Kunming 650228, China
| | - Lizhong Qi
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Yunshuo Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.X.); (J.Z.)
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
- Correspondence: (J.X.); (J.Z.)
| |
Collapse
|
40
|
Kokoreva AS, Isakova EP, Tereshina VM, Klein OI, Gessler NN, Deryabina YI. The Effect of Different Substrates on the Morphological Features and Polyols Production of Endomyces magnusii Yeast during Long-Lasting Cultivation. Microorganisms 2022; 10:microorganisms10091709. [PMID: 36144311 PMCID: PMC9506286 DOI: 10.3390/microorganisms10091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
The study on the influence of different glucose concentrations (2%, 0.5%, and 0.2%) and glycerol (1%) on the morphological and physiological features, as well as the composition of soluble carbohydrates, was performed using Endomyces magnusii yeast. Two-factor analysis of variance with repetitions to process the data of the cell size changes showed that the substrate type affected cell size the most. The cells with 2% glucose were 30–35% larger than those growing on glycerol. The decrease in the initial glucose concentration up to 0.5–0.2% slightly changed the cell length. However, even in the logarithmic growth phase pseudo-mycelium of two to four cells appeared in the cultures when using low glucose, unlike those using glycerol. Throughout the whole experiment, more than 90% of the populations remained viable on all of the substrates tested. The ability for colony formation decreased during aging. Nevertheless, at the three-week stage, upon substrate restriction (0.2% glucose), it was twice higher than those under the other conditions. The respiration rate also decreased and exceeded not more than 10% of that in the logarithmic phase. By the end of the experiment, the cyanide-sensitive respiration share decreased up to 40% for all types of substrates. The study of soluble cytosol carbohydrates showed that the cultures using 2% glucose and 1% glycerol contained mainly arabitol and mannitol, while at low glucose concentrations they were substituted for inositol. The formation of inositol is supposed to be related to pseudo-mycelium formation. The role of calorie restriction in the regulation of carbohydrate synthesis and the composition in the yeast and its biotechnological application is under consideration.
Collapse
Affiliation(s)
- Anastasia S. Kokoreva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-954-4008
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Prospekt 60-Letiya Oktyabrya, 7/2, 117312 Moscow, Russia
| | - Olga I. Klein
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
41
|
Lee J, Kim SJ, Choi GE, Yi E, Park HJ, Choi WS, Jang YJ, Kim HS. Sweet taste receptor agonists attenuate macrophage IL-1β expression and eosinophilic inflammation linked to autophagy deficiency in myeloid cells. Clin Transl Med 2022; 12:e1021. [PMID: 35988262 PMCID: PMC9393075 DOI: 10.1002/ctm2.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Eosinophilic inflammation is a hallmark of refractory chronic rhinosinusitis (CRS) and considered a major therapeutic target. Autophagy deficiency in myeloid cells plays a causal role in eosinophilic CRS (ECRS) via macrophage IL-1β overproduction, thereby suggesting autophagy regulation as a potential therapeutic modality. Trehalose is a disaccharide sugar with known pro-autophagy activity and effective in alleviating diverse inflammatory diseases. We sought to investigate the therapeutic potential of autophagy-enhancing agent, trehalose, or related sugar compounds, and the underlying mechanism focusing on macrophage IL-1β production in ECRS pathogenesis. METHODS We investigated the therapeutic effects of trehalose and saccharin on macrophage IL-1β production and eosinophilia in the mouse model of ECRS with myeloid cell-specific autophagy-related gene 7 (Atg7) deletion. The mechanisms underlying their anti-inflammatory effects were assessed using specific inhibitor, genetic knockdown or knockout, and overexpression of cognate receptors. RESULTS Unexpectedly, trehalose significantly attenuated eosinophilia and disease pathogenesis in ECRS mice caused by autophagy deficiency in myeloid cells. This autophagy-independent effect was associated with reduced macrophage IL-1β expression. Various sugars recapitulated the anti-inflammatory effect of trehalose, and saccharin was particularly effective amongst other sugars. The mechanistic study revealed an involvement of sweet taste receptor (STR), especially T1R3, in alleviating macrophage IL-1β production and eosinophilia in CRS, which was supported by genetic depletion of T1R3 or overexpression of T1R2/T1R3 in macrophages and treatment with the T1R3 antagonist gurmarin. CONCLUSION Our results revealed a previously unappreciated anti-inflammatory effect of STR agonists, particularly trehalose and saccharin, and may provide an alternative strategy to autophagy modulation in the ECRS treatment.
Collapse
Affiliation(s)
- Jinju Lee
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - So Jeong Kim
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Go Eun Choi
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of Clinical Laboratory ScienceCatholic University of PusanBusanKorea
| | - Eunbi Yi
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Hyo Jin Park
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Woo Seon Choi
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Yong Ju Jang
- Department of OtolaryngologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Hun Sik Kim
- Department of Biomedical SciencesAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Department of MicrobiologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
- Stem Cell Immunomodulation Research Center (SCIRC)Asan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| |
Collapse
|
42
|
Pupyshev AB, Klyushnik TP, Akopyan AA, Singh SK, Tikhonova MA. Disaccharide Trehalose in Experimental Therapies for Neurodegenerative Disorders: Molecular Targets and Translational Potential. Pharmacol Res 2022; 183:106373. [PMID: 35907433 DOI: 10.1016/j.phrs.2022.106373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Induction of autophagy is a prospective approach to the treatment of neurodegeneration. In the recent decade, trehalose attracted special attention. It is an autophagy inducer with negligible adverse effects and is approved for use in humans according to FDA requirements. Trehalose has a therapeutic effect in various experimental models of diseases. This glucose disaccharide with a flexible α-1-1'-glycosidic bond has unique properties: induction of mTOR-independent autophagy (with kinase AMPK as the main target) and a chaperone-like effect on proteins imparting them natural spatial structure. Thus, it can reduce the accumulation of neurotoxic aberrant/misfolded proteins. Trehalose has an anti-inflammatory effect and inhibits detrimental oxidative stress partially owing to the enhancement of endogenous antioxidant defense represented by the Nrf2 protein. The disaccharide activates lysosome and autophagosome biogenesis pathways through the protein factors TFEB and FOXO1. Here we review various mechanisms of the neuroprotective action of trehalose and touch on the possibility of pleiotropic effects. Current knowledge about specific features of trehalose pharmacodynamics is discussed. The neuroprotective effects of trehalose in animal models of major neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases are examined too. Attention is given to translational transition to clinical trials of this drug, especially oral and parenteral routes of administration. Besides, the possibility of enhancing the therapeutic benefit via a combination of mTOR-dependent and mTOR-independent autophagy inducers is analyzed. In general, trehalose appears to be a promising multitarget tool for the inhibition of experimental neurodegeneration and requires thorough investigation of its clinical capabilities.
Collapse
Affiliation(s)
- Alexander B Pupyshev
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Tatyana P Klyushnik
- Mental Health Research Center, Kashirskoye shosse 34, Moscow 115522, Russia.
| | - Anna A Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Krishna Bhawan, 594 Kha/123, Shahinoor Colony, Nilmatha, Uttar Pradesh, Lucknow 226002, India.
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
43
|
Chen A, Gibney PA. Intracellular trehalose accumulation via the Agt1 transporter promotes freeze-thaw tolerance in Saccharomyces cerevisiae. J Appl Microbiol 2022; 133:2390-2402. [PMID: 35801661 DOI: 10.1111/jam.15700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
AIM This study is to investigate the use of a constitutively expressed trehalose transport protein to directly control intracellular trehalose levels and protect baker's yeast (Saccharomyces cerevisiae) cells against freeze-thaw stress in vivo. METHODS AND RESULTS We used a constitutively overexpressed Agt1 transporter system to investigate the role of trehalose in the freeze-thaw tolerance of yeast cells by regulating intracellular trehalose concentrations independently of intracellular biosynthesis. Using this method, we found that increasing intracellular trehalose in yeast cells improved cell survival rate after 8 days of freezing at -80°C and -20°C. We also observed that freeze-thaw tolerance promoted by intracellular trehalose only occurs in highly concentrated cell pellets rather than cells in liquid suspension. CONCLUSIONS Trehalose is sufficient to provide freeze-thaw tolerance using our Agt1 overexpression system. Freeze-thaw tolerance can be further enhanced by deletion of genes encoding intracellular trehalose degradation enzymes. SIGNIFICANCE AND IMPACT OF STUDY These findings are relevant to improving the freeze-thaw tolerance of baker's yeast in the frozen baked goods industry through engineering strains that can accumulate intracellular trehalose via a constitutively expressed trehalose transporter and inclusion of trehalose into the growth medium.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Food Science, Cornell University, New York
| | | |
Collapse
|
44
|
Chandrasekar B, Wanke A, Wawra S, Saake P, Mahdi L, Charura N, Neidert M, Poschmann G, Malisic M, Thiele M, Stühler K, Dama M, Pauly M, Zuccaro A. Fungi hijack a ubiquitous plant apoplastic endoglucanase to release a ROS scavenging β-glucan decasaccharide to subvert immune responses. THE PLANT CELL 2022; 34:2765-2784. [PMID: 35441693 PMCID: PMC9252488 DOI: 10.1093/plcell/koac114] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/31/2022] [Indexed: 05/04/2023]
Abstract
Plant pathogenic and beneficial fungi have evolved several strategies to evade immunity and cope with host-derived hydrolytic enzymes and oxidative stress in the apoplast, the extracellular space of plant tissues. Fungal hyphae are surrounded by an inner insoluble cell wall layer and an outer soluble extracellular polysaccharide (EPS) matrix. Here, we show by proteomics and glycomics that these two layers have distinct protein and carbohydrate signatures, and hence likely have different biological functions. The barley (Hordeum vulgare) β-1,3-endoglucanase HvBGLUII, which belongs to the widely distributed apoplastic glycoside hydrolase 17 family (GH17), releases a conserved β-1,3;1,6-glucan decasaccharide (β-GD) from the EPS matrices of fungi with different lifestyles and taxonomic positions. This low molecular weight β-GD does not activate plant immunity, is resilient to further enzymatic hydrolysis by β-1,3-endoglucanases due to the presence of three β-1,6-linked glucose branches and can scavenge reactive oxygen species. Exogenous application of β-GD leads to enhanced fungal colonization in barley, confirming its role in the fungal counter-defensive strategy to subvert host immunity. Our data highlight the hitherto undescribed capacity of this often-overlooked EPS matrix from plant-associated fungi to act as an outer protective barrier important for fungal accommodation within the hostile environment at the apoplastic plant-microbe interface.
Collapse
Affiliation(s)
| | - Alan Wanke
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Stephan Wawra
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Pia Saake
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Lisa Mahdi
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Nyasha Charura
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Miriam Neidert
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Milena Malisic
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Meik Thiele
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Murali Dama
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, University of Cologne, 50679 Cologne, Germany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
45
|
Chen D, Guo H, Chen S, Yue Q, Wang P, Chen X. Receptor-like kinase HAESA-like 1 positively regulates seed longevity in Arabidopsis. PLANTA 2022; 256:21. [PMID: 35763091 DOI: 10.1007/s00425-022-03942-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Based on the phenotypic, physiological and transcriptomic analysis, receptor-like kinase HAESA-like 1 was demonstrated to positively affect seed longevity in Arabidopsis. Seed longevity is very important for both genetic resource conservation and crop production. Receptor-like kinases (RLKs) are widely involved in plant growth, development and stress responses. However, the role of most RLKs, especially in seed longevity, is largely unknown. In this study, we report that Arabidopsis HAESA-like 1 (AtHSL1) positively regulated seed longevity. Disruption of HSL1 significantly decreased the germination rate to 50% at 7 days after cold stratification (DAC), compared with that of the wild type (93.5% at 7 DAC), after accelerated aging treatment. Expression of the HSL1 gene in hsl1 basically restored the defective phenotype (86.3%), while HSL1-overexpressing lines (98.3%) displayed slower accelerated aging than WT (93.5%). GUS staining revealed HSL1 was highly expressed universally, especially in young seedlings, mature seeds and embryos of imbibed seeds, and its expression could be induced by accelerated aging. No difference in the dyeing color and area of mucilage were identified between WT and hsl1. The soluble pectin content also was not different, while the adherent pectin content was significantly increased in hsl1. Global transcriptomics revealed that disruption of HSL1 mainly downregulated genes involved in trehalose synthesis, nucleotide sugar metabolism and protection and repair mechanisms. Therefore, an increase in adherent pectin content and downregulation of genes involved in trehalose synthesis may be the main reasons for decreasing seed longevity owing to disruption of HSL1 in Arabidopsis. Our work provides valuable information for understanding the function and mechanism of a receptor-like kinase, AtHSL1, in seed longevity.
Collapse
Affiliation(s)
- Defu Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongye Guo
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuai Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qianying Yue
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Pei Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiwen Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
46
|
Sun JD, Sun Y, Qiao T, Zhang SE, Dyce PW, Geng YW, Wang P, Ge W, Shen W, Cheng SF. Cryopreservation of porcine skin-derived stem cells using melatonin or trehalose maintains their ability to self-renew and differentiate. Cryobiology 2022; 107:23-34. [PMID: 35716769 DOI: 10.1016/j.cryobiol.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Porcine skin-derived stem cells (pSDSCs) are a type of adult stem cells (ASCs) that retain the ability to self-renew and differentiate. Currently, pSDSCs research has entered an intense period of development; however there has been no research regarding methods of cryopreservation. In this paper, we explored an efficient cryopreservation method for pSDSCs. Our results demonstrated that cryopreserving 50 μm diameter pSDSCs aggregates resulted in a lower apoptosis rate and a greater ability to proliferate to form larger spherical cell aggregates than during single-cell cryopreservation. To further optimize the cryopreservation method, we added different concentrations of melatonin (N-acetyl-5-methoxytryptamine, MLT) and trehalose (d-trehalose anhydrous, TRE) to act as cryoprotectants (CPAs) for the pSDSCs. After comparative experiments, we found that the cryopreservation efficiency of 50 mM TRE was superior. Further experiments demonstrated that the reason why 50 mM TRE improved cryopreservation efficiency was that it reduced the intracellular oxidative stress and mitochondrial damage caused by cryopreservation. Taken together, our results suggest that cryopreserving 50 μm diameter pSDSCs aggregates in F12 medium with 10% dimethyl sulfoxide (DMSO) and 50 mM TRE promotes the long-term storage of pSDSCs.
Collapse
Affiliation(s)
- Jia-Dong Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tian Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yuan-Wei Geng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ping Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
47
|
Gupta H, Gupta P, Kairamkonda M, Poluri KM. Molecular investigations on Candida glabrata clinical isolates for pharmacological targeting. RSC Adv 2022; 12:17570-17584. [PMID: 35765448 PMCID: PMC9194923 DOI: 10.1039/d2ra02092k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Prevalence of drug resistant C. glabrata strains in hospitalized immune-compromised patients with invasive fungal infections has increased at an unexpected pace. This has greatly pushed researchers in identification of mutations/variations in clinical isolates for better assessment of the prevailing drug resistance trends and also for updating of antifungal therapy regime. In the present investigation, the clinical isolates of C. glabrata were comprehensively characterized at a molecular level using metabolic profiling and transcriptional expression analysis approaches in combination with biochemical, morphological and chemical profiling methods. Biochemically, significant variations in azole susceptibility, surface hydrophobicity, and oxidative stress generation were observed among the isolates as compared to wild-type. The 1H NMR profiling identified 18 differential metabolites in clinical strains compared to wild-type and were classified into five categories, that include: sugars (7), amino acids and their derivatives (7), nitrogen bases (3) and coenzymes (1). Transcriptional analysis of selective metabolic and regulatory enzymes established that the major differences were found in cell membrane stress, carbohydrate metabolism, amino acid biosynthesis, ergosterol pathway and turnover of nitrogen bases. This detailed molecular level/metabolic fingerprint study is a useful approach for differentiating pathogenic/clinical isolates to that of wild-type. This study comprehensively delineated the differential cellular pathways at a molecular level that have been re-wired by the pathogenic clinical isolates for enhanced pathogenicity and virulence traits.
Collapse
Affiliation(s)
- Hrishikesh Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India
| |
Collapse
|
48
|
Asada R, Watanabe T, Tanaka Y, Kishida M, Furuta M. Trehalose accumulation and radiation resistance due to prior heat stress in Saccharomyces cerevisiae. Arch Microbiol 2022; 204:275. [PMID: 35451658 DOI: 10.1007/s00203-022-02892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/20/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
In this study, we examined the accumulation of trehalose, a stress-responsive substance, upon gamma-ray irradiation by evaluating the cause of trehalose accumulation and the development of gamma-ray resistance through intracellular trehalose accumulation. Saccharomyces cerevisiae cells cultured to the logarithmic growth phase were irradiated with gamma rays, and the intracellular trehalose content was measured. However, trehalose was not detectable. The yeast cells with trehalose accumulation caused by pre-treatment at 40 °C were irradiated with gamma rays, and the resistance of these cells to gamma radiation was compared with that of cells without heat treatment. Trehalose accumulation resulted in gamma-ray resistance and suppressed the increase in reactive oxygen species, lipid peroxidation, and DNA double-strand break production in yeast cells. The tests were also performed with a trehalose-6-phosphate-synthase (TPS1)-deficient mutant strain (Δtps1) unable to synthesize trehalose, and the results revealed that TPS1 was involved in protection against oxidative stress.
Collapse
Affiliation(s)
- Ryoko Asada
- Department of Quantum and Radiation Technology, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan.
| | - Takeru Watanabe
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Yoshiharu Tanaka
- Department of Quantum and Radiation Technology, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Masao Kishida
- Department of Applied Life Science, Graduate School of Life and Environmental Science, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| | - Masakazu Furuta
- Department of Quantum and Radiation Technology, Graduate School of Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8570, Japan
| |
Collapse
|
49
|
High Resistance to Quinclorac in Multiple-Resistant Echinochloa colona Associated with Elevated Stress Tolerance Gene Expression and Enriched Xenobiotic Detoxification Pathway. Genes (Basel) 2022; 13:genes13030515. [PMID: 35328069 PMCID: PMC8949966 DOI: 10.3390/genes13030515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Echinochloa colona and other species in this genus are a threat to global rice production and food security. Quinclorac, an auxin mimic, is a common herbicide for grass weed control in rice, and Echinochloa spp. have evolved resistance to it. The complete mode of quinclorac action and subsequent evolution of resistance is not fully understood. We analyzed the de novo transcriptome of multiple-herbicide-resistant (ECO-R) and herbicide-susceptible genotypes in response to quinclorac. Several biological processes were constitutively upregulated in ECO-R, including carbon metabolism, photosynthesis, and ureide metabolism, indicating improved metabolic efficiency. The transcriptional change in ECO-R following quinclorac treatment indicates an efficient response, with upregulation of trehalose biosynthesis, which is also known for abiotic stress mitigation. Detoxification-related genes were induced in ECO-R, mainly the UDP-glycosyltransferase (UGT) family, most likely enhancing quinclorac metabolism. The transcriptome data also revealed that many antioxidant defense elements were uniquely elevated in ECO-R to protect against the auxin-mediated oxidative stress. We propose that upon quinclorac treatment, ECO-R detoxifies quinclorac utilizing UGT genes, which modify quinclorac using the sufficient supply of UDP-glucose from the elevated trehalose pathway. Thus, we present the first report of upregulation of trehalose synthesis and its association with the herbicide detoxification pathway as an adaptive mechanism to herbicide stress in Echinochloa, resulting in high resistance.
Collapse
|
50
|
What Worth the Garlic Peel. Int J Mol Sci 2022; 23:ijms23042126. [PMID: 35216242 PMCID: PMC8875005 DOI: 10.3390/ijms23042126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Plants have two types of reproduction: sexual, resulting in embryo production, and asexual, resulting in vegetative bodies commonly derived from stems and roots (e.g., bulb, tuber). Dead organs enclosing embryos (DOEEs, such as seed coat and pericarp) are emerging as central components of the dispersal unit acting to nurture the embryo and ensure its survival in the habitat. Here we wanted to investigate the properties of dead organs enclosing plant asexual reproductive bodies, focusing on the garlic (Allium sativum) bulb. We investigated the biochemical and biological properties of the outer peel enclosing the bulb and the inner peel enclosing the clove using various methodologies, including bioassays, proteomics, and metabolomics. The garlic peels differentially affected germination and post-germination growth, with the outer peel demonstrating a strong negative effect on seed germination of Sinapis alba and on post-germination growth of Brassica juncea. Proteome analysis showed that dead garlic peels possess 67 proteins, including chitinases and proteases, which retained their enzymatic activity. Among primary metabolites identified in garlic peels, the outer peel accumulated multiple sugars, including rhamnose, mannitol, sorbitol, and trehalose, as well as the modified amino acid 5-hydroxylysine, known as a major component of collagen, at a higher level compared to the clove and the inner peel. Growth of Escherichia coli and Staphylococcus aureus was promoted by garlic peel extracts but inhibited by clove extract. All extracts strongly inhibited spore germination of Fusarium oxysporum f.sp. melonis. Thus, the garlic peels not only provide physical protection to vegetative offspring but also appear to function as a refined arsenal of proteins and metabolites for enhancing growth and development, combating potential pathogens, and conferring tolerance to abiotic stresses.
Collapse
|