1
|
Zhang Y, Su W, Niu Y, Zeng H, Liu L, Wang L, Xie W. Bif‑1 inhibits activation of inflammasome through autophagy regulatory mechanism. Mol Med Rep 2024; 29:67. [PMID: 38456519 PMCID: PMC10938286 DOI: 10.3892/mmr.2024.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Inflammasome activation is a crucial mechanism in inflammatory responses. Bax‑interacting factor 1 (Bif‑1) is required for the normal formation of autophagosomes, but its ability to exert an inflammatory regulatory effect remains unclear. The aim of the present study was to explore the role of Bif‑1 in inflammation, possibly mediated through autophagy regulation. Using a lipopolysaccharide (LPS)/adenosine triphosphate (ATP)‑induced inflammatory model in J774A.1 cells, the effect of Bif‑1 on inflammasome activation and the underlying mechanisms involving autophagy regulation were investigated. Elevated levels of NLR family pyrin domain containing protein 3 inflammasome and interleukin‑1β (IL‑1β) proteins were observed in J774A.1 cells after LPS/ATP induction. Furthermore, Bif‑1 and autophagy activity were significantly upregulated in inflammatory cells. Inhibition of autophagy resulted in inflammasome activation. Silencing Bif‑1 expression significantly upregulated IL‑1β levels and inhibited autophagy activity, suggesting a potential anti‑inflammatory role of Bif‑1 mediated by autophagy. Additionally, inhibition of the nuclear factor‑κB (NF‑κB) signaling pathway downregulated Bif‑1 and inhibited autophagy activity, highlighting the importance of NF‑κB in the regulation of Bif‑1 and autophagy. In summary, the current study revealed that Bif‑1 is a critical anti‑inflammatory factor against inflammasome activation mediated by a mechanism of autophagy regulation, indicating its potential as a therapeutic target for inflammatory regulation.
Collapse
Affiliation(s)
- Yuehui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, P.R. China
| | - Wenhui Su
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Yaoyun Niu
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Hongli Zeng
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Lu Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, P.R. China
| | - Lijun Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518101, P.R. China
- Department of Critical Care Medicine, Shenzhen FuYong People's Hospital, Shenzhen, Guangdong 518103, P.R. China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
2
|
Amniouel S, Jafri MS. High-accuracy prediction of colorectal cancer chemotherapy efficacy using machine learning applied to gene expression data. Front Physiol 2024; 14:1272206. [PMID: 38304289 PMCID: PMC10830836 DOI: 10.3389/fphys.2023.1272206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction: FOLFOX and FOLFIRI chemotherapy are considered standard first-line treatment options for colorectal cancer (CRC). However, the criteria for selecting the appropriate treatments have not been thoroughly analyzed. Methods: A newly developed machine learning model was applied on several gene expression data from the public repository GEO database to identify molecular signatures predictive of efficacy of 5-FU based combination chemotherapy (FOLFOX and FOLFIRI) in patients with CRC. The model was trained using 5-fold cross validation and multiple feature selection methods including LASSO and VarSelRF methods. Random Forest and support vector machine classifiers were applied to evaluate the performance of the models. Results and Discussion: For the CRC GEO dataset samples from patients who received either FOLFOX or FOLFIRI, validation and test sets were >90% correctly classified (accuracy), with specificity and sensitivity ranging between 85%-95%. In the datasets used from the GEO database, 28.6% of patients who failed the treatment therapy they received are predicted to benefit from the alternative treatment. Analysis of the gene signature suggests the mechanistic difference between colorectal cancers that respond and those that do not respond to FOLFOX and FOLFIRI. Application of this machine learning approach could lead to improvements in treatment outcomes for patients with CRC and other cancers after additional appropriate clinical validation.
Collapse
Affiliation(s)
- Soukaina Amniouel
- School of Systems Biology, George Mason University, Fairfax, VA, United States
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA, United States
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Yang LQ, Huang AF, Xu WD. Biology of endophilin and it's role in disease. Front Immunol 2023; 14:1297506. [PMID: 38116012 PMCID: PMC10728279 DOI: 10.3389/fimmu.2023.1297506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Endophilin is an evolutionarily conserved family of protein that involves in a range of intracellular membrane dynamics. This family consists of five isoforms, which are distributed in various tissues. Recent studies have shown that Endophilin regulates diseases pathogenesis, including neurodegenerative diseases, tumors, cardiovascular diseases, and autoimmune diseases. In vivo, it regulates different biological functions such as vesicle endocytosis, mitochondrial morphological changes, apoptosis and autophagosome formation. Functional studies confirmed the role of Endophilin in development and progression of these diseases. In this study, we have comprehensively discussed the complex function of Endophilin and how the family contributes to diseases development. It is hoped that this study will provide new ideas for targeting Endophilin in diseases.
Collapse
Affiliation(s)
- Lu-Qi Yang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Hou P, Guo Y, Jin H, Sun J, Bai Y, Li W, Li L, Cao Z, Wu F, Zhang H, Li Y, Yang S, Xia X, Huang P, Wang H. Bif-1c Attenuates Viral Proliferation by Regulating Autophagic Flux Blockade Induced by the Rabies Virus CVS-11 Strain in N2a Cells. Microbiol Spectr 2023; 11:e0307922. [PMID: 37014208 PMCID: PMC10269655 DOI: 10.1128/spectrum.03079-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Bax-interacting factor-1 (Bif-1) is a multifunctional protein involved in apoptosis, autophagy, and mitochondrial morphology. However, the associations between Bif-1 and viruses are poorly understood. As discrete Bif-1 isoforms are selectively expressed and exert corresponding effects, we evaluated the effects of neuron-specific/ubiquitous Bif-1 isoforms on rabies virus (RABV) proliferation. First, infection with the RABV CVS-11 strain significantly altered Bif-1 expression in mouse neuroblastoma (N2a) cells, and Bif-1 knockdown in turn promoted RABV replication. Overexpression of neuron-specific Bif-1 isoforms (Bif-1b/c/e) suppressed RABV replication. Moreover, our study showed that Bif-1c colocalized with LC3 and partially alleviated the incomplete autophagic flux induced by RABV. Taken together, our data reveal that neuron-specific Bif-1 isoforms impair the RABV replication process by abolishing autophagosome accumulation and blocking autophagic flux induced by the RABV CVS-11 strain in N2a cells. IMPORTANCE Autophagy can be triggered by viral infection and replication. Autophagosomes are generated and affect RABV replication, which differs by viral strain and infected cell type. Bax-interacting factor-1 (Bif-1) mainly has a proapoptotic function but is also involved in autophagosome formation. However, the association between Bif-1-involved autophagy and RABV infection remains unclear. In this study, our data reveal that a neuron-specific Bif-1 isoform, Bif-1c, impaired viral replication by unchoking autophagosome accumulation induced by RABV in N2a cells to a certain extent. Our study reveals for the first time that Bif-1 is involved in modulating autophagic flux and plays a crucial role in RABV replication, establishing Bif-1 as a potential therapeutic target for rabies.
Collapse
Affiliation(s)
- Pengfei Hou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yidi Guo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hongli Jin
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jingxuan Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yujie Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wujian Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ling Li
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Zengguo Cao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Fangfang Wu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haili Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Pei Huang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hualei Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
5
|
Liu L, Tang Y, Zhou Z, Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Membrane Curvature: The Inseparable Companion of Autophagy. Cells 2023; 12:1132. [PMID: 37190041 PMCID: PMC10136490 DOI: 10.3390/cells12081132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Autophagy is a highly conserved recycling process of eukaryotic cells that degrades protein aggregates or damaged organelles with the participation of autophagy-related proteins. Membrane bending is a key step in autophagosome membrane formation and nucleation. A variety of autophagy-related proteins (ATGs) are needed to sense and generate membrane curvature, which then complete the membrane remodeling process. The Atg1 complex, Atg2-Atg18 complex, Vps34 complex, Atg12-Atg5 conjugation system, Atg8-phosphatidylethanolamine conjugation system, and transmembrane protein Atg9 promote the production of autophagosomal membranes directly or indirectly through their specific structures to alter membrane curvature. There are three common mechanisms to explain the change in membrane curvature. For example, the BAR domain of Bif-1 senses and tethers Atg9 vesicles to change the membrane curvature of the isolation membrane (IM), and the Atg9 vesicles are reported as a source of the IM in the autophagy process. The amphiphilic helix of Bif-1 inserts directly into the phospholipid bilayer, causing membrane asymmetry, and thus changing the membrane curvature of the IM. Atg2 forms a pathway for lipid transport from the endoplasmic reticulum to the IM, and this pathway also contributes to the formation of the IM. In this review, we introduce the phenomena and causes of membrane curvature changes in the process of macroautophagy, and the mechanisms of ATGs in membrane curvature and autophagosome membrane formation.
Collapse
Affiliation(s)
- Lei Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yu Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Zijuan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Yuan Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
6
|
Wang Y, Fu Y, Cheng H, Zhao C, Huang Q, Chang M, Qiu W, Shen Y, Li D. lncR26319/miR-2834/EndophilinA axis regulates oogenesis of the silkworm, Bombyx mori. INSECT SCIENCE 2023; 30:65-80. [PMID: 35612298 PMCID: PMC10084222 DOI: 10.1111/1744-7917.13082] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 05/31/2023]
Abstract
Oocyte maturation is critical for insect reproduction. Vitellogenesis, the timely production and uptake of vitellogenin (Vg), is crucial for female fecundity. Vg is synthesized in fat body and absorbed by the oocytes through endocytosis during insect oogenesis. In the silkworm, Bombyx mori, we discovered that a nucleus-enriched long-noncoding RNA (lncRNA) lncR26319 regulates Endophilin A (EndoA) - a member of the endophilin family of endocytic proteins - through competitive binding to miR-2834. The lncR26319-miR-2834-EndoA axis was required for Vg endocytosis in the silkworm; loss of EndoA or overexpression of miR-2834 significantly reduced egg numbers in virgin moths. In addition, accumulation of miR-2834 resulted in pupal and adult deformation and reduced fecundity in females. The expression of Vg, 30-kDa (30K) protein, and egg-specific protein (Esp) decreased after knockdown of EndoA or overexpression of miR-2834, while knockdown of miR-2834 had an opposite effect on the expression of Vg, 30K protein gene, and Esp. These results suggest that the lncR26319-miR-2834-EndoA axis contributes to the endocytic activity in the Vg uptake and leads to the normal progression of oogenesis in the silkworm. Thus, miR-2834 and EndoA are crucial for female reproduction and could be potential targets for new pest management strategies in lepidopterans.
Collapse
Affiliation(s)
- Yi Wang
- Henan Key Laboratory of Insect Biology in Funiu MountainHenan International Joint Laboratory of Insect BiologyCollege of Life Science and Agricultural EngineeringNanyang Normal UniversityNanyangHenan ProvinceChina
| | - Yu Fu
- Henan Key Laboratory of Insect Biology in Funiu MountainHenan International Joint Laboratory of Insect BiologyCollege of Life Science and Agricultural EngineeringNanyang Normal UniversityNanyangHenan ProvinceChina
| | - Hao Cheng
- Henan Key Laboratory of Insect Biology in Funiu MountainHenan International Joint Laboratory of Insect BiologyCollege of Life Science and Agricultural EngineeringNanyang Normal UniversityNanyangHenan ProvinceChina
| | - Chenyue Zhao
- Henan Key Laboratory of Insect Biology in Funiu MountainHenan International Joint Laboratory of Insect BiologyCollege of Life Science and Agricultural EngineeringNanyang Normal UniversityNanyangHenan ProvinceChina
| | - Qunxia Huang
- Henan Key Laboratory of Insect Biology in Funiu MountainHenan International Joint Laboratory of Insect BiologyCollege of Life Science and Agricultural EngineeringNanyang Normal UniversityNanyangHenan ProvinceChina
| | - Meiling Chang
- Henan Key Laboratory of Insect Biology in Funiu MountainHenan International Joint Laboratory of Insect BiologyCollege of Life Science and Agricultural EngineeringNanyang Normal UniversityNanyangHenan ProvinceChina
| | - Wujie Qiu
- Henan Key Laboratory of Insect Biology in Funiu MountainHenan International Joint Laboratory of Insect BiologyCollege of Life Science and Agricultural EngineeringNanyang Normal UniversityNanyangHenan ProvinceChina
| | - Yawen Shen
- Henan Key Laboratory of Insect Biology in Funiu MountainHenan International Joint Laboratory of Insect BiologyCollege of Life Science and Agricultural EngineeringNanyang Normal UniversityNanyangHenan ProvinceChina
| | - Dandan Li
- Henan Key Laboratory of Insect Biology in Funiu MountainHenan International Joint Laboratory of Insect BiologyCollege of Life Science and Agricultural EngineeringNanyang Normal UniversityNanyangHenan ProvinceChina
| |
Collapse
|
7
|
Mohammadi K, Salimi M, Angaji SA, Saniotis A, Mahjoobi F. Association study of Bif-1 gene expression with histopathological characteristics and hormone receptors in breast cancer. BMC Womens Health 2022; 22:471. [PMID: 36434659 PMCID: PMC9701003 DOI: 10.1186/s12905-022-02075-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Breast cancer is a heterogeneous disease that has various clinical outcomes. Bax-interacting factor-1 (Bif-1) is a member of the endophilin B family that generates the pro-apoptotic BCL2-Associated X (BAX) protein in response to apoptotic signals. Lack of Bif-1 inhibits the intrinsic pathway of apoptosis and enhancements the risk of tumor genesis. The present study aimed to investigate the relationship between hormone receptors (ER, PR, and HER2) status and different levels of Bif-1 gene expression in breast cancer patients. METHODS Bif-1 gene expression was evaluated in 50 breast cancer tumors and 50 normal breast mammary tissues using the SYBR Green real-time RT-PCR technique. Multivariate and univariate analyses were used to appraise the relationship between the prognostic significance of the Bif-1 gene using SPSS software. In this study, the Bif-1 was selected as a candidate for a molecular biomarker and its expression status in breast cancer patients with hormone receptors (ER, RR, and HER2) compared to patients without these hormone receptors. RESULTS The study showed that the relative expression of the Bif-1 gene in tissues of patients with hormone receptors in breast cancer compared to those without hormone receptors was not statistically significant. The expression levels of the Bif-1 gene in different groups were evaluated for hormone receptor status. No significant relationship was found between the Bif-1 gene expression and hormone receptors (ER, PR, and HER2) (p > 0.05). CONCLUSION Bif-1 gene expression may be a useful prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Kazhaleh Mohammadi
- grid.513517.40000 0005 0233 0078Department of Pharmacy, College of Pharmacy, Knowledge University, Erbil, 44001 Iraq
| | - Mahdieh Salimi
- grid.419420.a0000 0000 8676 7464Department of Medical Genetic, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - S. Abdolhamid Angaji
- grid.412265.60000 0004 0406 5813Department of Cell and Molecular Biology Sciences, Kharazmi University, Tehran, Iran
| | - Arthur Saniotis
- Bachelors of Doctor Assistant Department, DDT College of Medicine, Gaborone, Botswana ,grid.1010.00000 0004 1936 7304Biological and Comparative Anatomy Research Unit, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Foroozandeh Mahjoobi
- grid.419420.a0000 0000 8676 7464Department of Medical Genetic, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
8
|
Gao A, Zou J, Mao Z, Zhou H, Zeng G. SUMO2-mediated SUMOylation of SH3GLB1 promotes ionizing radiation-induced hypertrophic cardiomyopathy through mitophagy activation. Eur J Pharmacol 2022; 924:174980. [PMID: 35487252 DOI: 10.1016/j.ejphar.2022.174980] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HC) is characterized by the enlargement of individual cardiomyocytes, which is a typical pathophysiological process that occurs in various cardiovascular diseases. Ionizing radiation (IR) is an important independent risk factor for hypertrophic cardiomyopathy, but the underlying molecular mechanism is still unclear. In the present study, we aimed to clarify the role of IR in promoting cardiac hypertrophy and investigate the mechanism by which the SUMO2-mediated SUMOylation of SH3GLB1 affects mitophagy in IR-induced cardiac hypertrophy. In vivo, IR promoted cardiac hypertrophy by activating mitophagy. In vitro, IR upregulated PINK1 and Parkin protein expression and damaged mitochondrial morphological structure. We further demonstrated that SH3GLB1 deficiency inhibited mitophagy activation and restored mitochondrial cristae, revealing a regulatory role of SH3GLB1 in cardiac hypertrophy. IR promoted interactions between SH3GLB1 and mitochondrial membrane proteins, such as MFN1/2, TOM20 and Drp1, further indicating that the mechanism by which SH3GLB1 functions in cardiac hypertrophy might involve mitophagy. A bioinformatics prediction found that SUMO2 could SUMOylate SH3GLB1 at position K82. Consistent with this finding, both co-IP assays and laser confocal microscopy showed that IR promoted the interaction and colocalization of SUMO2 and SH3GLB1. In summary, our study identifies IR as an important factor that promotes hypertrophic cardiomyopathy by accelerating the activation of mitophagy through the SUMO2-mediated SUMOylation of SH3GLB1; thus, IR exerts dual therapeutic effects in the treatment of thoracic tumours with long-term radiotherapy. Additionally, this study provides novel treatment strategies and targets for preventing the hypertrophic cardiomyopathy caused by thoracic tumour radiotherapy. Furthermore, SH3GLB1 may be a promising experimental target for the development of strategies for treating cardiovascular diseases caused by IR.
Collapse
Affiliation(s)
- Anbo Gao
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China; Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421002, Hunan, China
| | - Jin Zou
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Zhenjiang Mao
- Department of Gastroenterology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China
| | - Hong Zhou
- Department of Radiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.
| | - Gaofeng Zeng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, Hengyang, 421002, Hunan, China.
| |
Collapse
|
9
|
Talluri TR, Kumaresan A, Paul N, Sinha MK, Ebenezer Samuel King JP, Elango K, Sharma A, Raval K, Legha RA, Pal Y. High throughput deep proteomic analysis of seminal plasma from stallions with contrasting semen quality. Syst Biol Reprod Med 2022; 68:272-285. [PMID: 35484763 DOI: 10.1080/19396368.2022.2057257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Seminal plasma proteins and pathways associated with sperm motility have not been elucidated in stallions. Therefore, in the current study, using the high throughput LC/MS-MS approach, we profiled stallion seminal plasma proteins and identified the proteins and pathways associated with sperm motility. Seminal plasma from six stallions producing semen with contrasting sperm motility (n = 3 each high-and low-motile group) was utilized for proteomic analysis. We identified a total of 1687 proteins in stallion seminal plasma, of which 1627 and 1496 proteins were expressed in high- (HM) and low- motile (LM) sperm of stallions, respectively. A total number of 1436 proteins were co-expressed in both the groups; 191 (11%) and 60 (3.5%) proteins were exclusively detected in HM and LM groups, respectively. A total of 220 proteins were upregulated (>1-fold change) and 386 proteins were downregulated in SP from LM group stallions as compared to HM group stallions, while 830 proteins were neutrally expressed in both the groups. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed dysregulation of the important proteins related to mitochondrial function, acrosome, and sperm cytoskeleton in the seminal plasma of stallions producing ejaculates with low sperm motility. High abundance of peroxiredoxins and low abundance of seminal Chaperonin Containing TCP1 Complex (CCT) complex and Annexins indicate dysregulated oxidative metabolism, which might be the underlying etiology for poor sperm motility in LM group stallions. In conclusion, the current study identified the seminal plasma proteomic alterations associated with poor sperm motility in stallions; the results indicate that poor sperm motility in stallions could be associated with altered expression of seminal plasma proteins involved in oxidative metabolism.
Collapse
Affiliation(s)
- Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India.,ICAR-National Research Centre on Equines, Hisar, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Ankur Sharma
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kathan Raval
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
10
|
Cho C, Zeigler M, Mizuno S, Morrison RS, Totah RA, Barker-Haliski M. Reductions in Hydrogen Sulfide and Changes in Mitochondrial Quality Control Proteins Are Evident in the Early Phases of the Corneally Kindled Mouse Model of Epilepsy. Int J Mol Sci 2022; 23:ijms23031434. [PMID: 35163358 PMCID: PMC8835945 DOI: 10.3390/ijms23031434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is a heterogenous neurological disorder characterized by recurrent unprovoked seizures, mitochondrial stress, and neurodegeneration. Hydrogen sulfide (H2S) is a gasotransmitter that promotes mitochondrial function and biogenesis, elicits neuromodulation and neuroprotection, and may acutely suppress seizures. A major gap in knowledge remains in understanding the role of mitochondrial dysfunction and progressive changes in H2S levels following acute seizures or during epileptogenesis. We thus sought to quantify changes in H2S and its methylated metabolite (MeSH) via LC-MS/MS following acute maximal electroshock and 6 Hz 44 mA seizures in mice, as well as in the early phases of the corneally kindled mouse model of chronic seizures. Plasma H2S was acutely reduced after a maximal electroshock seizure. H2S or MeSH levels and expressions of related genes in whole brain homogenates from corneally kindled mice were not altered. However, plasma H2S levels were significantly lower during kindling, but not after established kindling. Moreover, we demonstrated a time-dependent increase in expression of mitochondrial membrane integrity-related proteins, OPA1, MFN2, Drp1, and Mff during kindling, which did not correlate with changes in gene expression. Taken together, short-term reductions in plasma H2S could be a novel biomarker for seizures. Future studies should further define the role of H2S and mitochondrial stress in epilepsy.
Collapse
Affiliation(s)
- Christi Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Maxwell Zeigler
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Stephanie Mizuno
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| | | | - Rheem A. Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA; (C.C.); (M.Z.); (R.A.T.)
| | - Melissa Barker-Haliski
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA;
- Correspondence: ; Tel.: +1-206-685-1783
| |
Collapse
|
11
|
A novel endoplasmic stress mediator, Kelch domain containing 7B (KLHDC7B), increased Harakiri (HRK) in the SubAB-induced apoptosis signaling pathway. Cell Death Discov 2021; 7:360. [PMID: 34799565 PMCID: PMC8605022 DOI: 10.1038/s41420-021-00753-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Locus for Enterocyte Effacement (LEE)-positive Shiga-toxigenic Escherichia coli (STEC) contributes to many global foodborne diseases, with infection characterized by severe gastrointestinal symptoms, including bloody diarrhea. The incidence of LEE-negative STEC-mediated disease is also increasing globally. Subtilase cytotoxin (SubAB) is released by some LEE-negative STEC strains. It cleaves BiP, which is a chaperone protein located in the endoplasmic reticulum (ER), thereby causing apoptosis induced by ER stress. To date, the apoptotic signaling pathway mediated by SubAB has not been identified. In the current study, RNA-seq analysis showed that SubAB significantly induced the expression of Kelch domain containing 7B (KLHDC7B). We explored the role of KLHDC7B in the SubAB-induced apoptotic pathway. SubAB-induced KLHDC7B mRNA expression was increased after 12 h of incubation of toxin with HeLa cells. KLHDC7B expression was downregulated by knockdown of PKR-like endoplasmic reticulum kinase (PERK), CEBP homologous protein (CHOP), activating transcription factor 4 (ATF4), and CEBP β (CEBPB). KLHDC7B knockdown suppressed SubAB-stimulated CHOP expression, poly(ADP-ribose) polymerase (PARP) cleavage, and cytotoxicity. The over-expressed KLHDC7B was localized to the nucleus and cytosolic fractions. Next, we used RNA-seq to analyze the effect of KLHDC7B knockdown on apoptosis induced by SubAB, and found that the gene encoding for the pro-apoptotic Bcl-2 family protein, Harakiri (HRK), was upregulated in SubAB-treated control cells. However, this effect was not observed in SubAB-treated KLHDC7B-knockdown cells. Therefore, we identified the pathway through which SubAB-induced KLHDC7B regulates HRK expression, which is essential for apoptosis in toxin-mediated ER stress.
Collapse
|
12
|
Robustelli J, Baumgart T. Membrane partitioning and lipid selectivity of the N-terminal amphipathic H0 helices of endophilin isoforms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183660. [PMID: 34090873 DOI: 10.1016/j.bbamem.2021.183660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Endophilin is an N-BAR protein, which is characterized by a crescent-shaped BAR domain and an amphipathic helix that contributes to the membrane binding of these proteins. The exact function of that H0 helix has been a topic of debate. In mammals, there are five different endophilin isoforms, grouped into A (three members) and B (two members) subclasses, which have been described to differ in their subcellular localization and function. We asked to what extent molecular properties of the H0 helices of these members affect their membrane targeting behavior. We found that all H0 helices of the endophilin isoforms display a two-state equilibrium between disordered and α-helical states in which the helical secondary structure can be stabilized through trifluoroethanol. The helicities in high TFE were strikingly different among the H0 peptides. We investigated H0-membrane partitioning by the monitoring of secondary structure changes via CD spectroscopy. We found that the presence of anionic phospholipids is critical for all H0 helices partitioning into membranes. Membrane partitioning is found to be sensitive to variations in membrane complexity. Overall, the H0 B subfamily displays stronger membrane partitioning than the H0 A subfamily. The H0 A peptide-membrane binding occurs predominantly through electrostatic interactions. Variation among the H0 A subfamily may be attributed to slight alterations in the amino acid sequence. Meanwhile, the H0 B subfamily displays greater specificity for certain membrane compositions, and this may link H0 B peptide binding to endophilin B's cellular function.
Collapse
Affiliation(s)
- Jaclyn Robustelli
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
13
|
Chang HC, Tao RN, Tan CT, Wu YJ, Bay BH, Yu VC. The BAX-binding protein MOAP1 associates with LC3 and promotes closure of the phagophore. Autophagy 2021; 17:3725-3739. [PMID: 33783314 PMCID: PMC8632279 DOI: 10.1080/15548627.2021.1896157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
MOAP1 (modulator of apoptosis 1) is a BAX-binding protein tightly regulated by the ubiquitin-proteasome system. Apoptotic stimuli stabilize MOAP1 protein and facilitate its interaction with BAX to promote apoptosis. Here we show that in contrast to being resistant to apoptotic stimuli, MOAP1-deficient cells are hypersensitive to cell death mediated by starvation rendered by EBSS treatment. MOAP1-deficient cells exhibited impairment in macroautophagy/autophagy signaling induced by EBSS. Mechanistic analysis revealed that MOAP1-deficient cells had no notable defect in the recruitment of the pre-autophagosomal phosphatidylinositol-3-phosphate (PtdIns3P)-binding proteins, ZFYVE1/DFCP1 and WIPI2, nor in the LC3 lipidation mechanism regulated by the ATG12-ATG5-ATG16L1 complex upon EBSS treatment. Interestingly, MOAP1 is required for facilitating efficient closure of phagophore in the EBSS-treated cells. Analysis of LC3-positive membrane structures using Halo-tagged LC3 autophagosome completion assay showed that predominantly unclosed phagophore rather than closed autophagosome was present in the EBSS-treated MOAP1-deficient cells. The autophagy substrate SQSTM1/p62, which is normally contained within the enclosed autophagosome under EBSS condition, was also highly sensitive to degradation by proteinase K in the absence of MOAP1. MOAP1 binds LC3 and the binding is critically dependent on a LC3-interacting region (LIR) motif detected at its N-terminal region. Re-expression of MOAP1, but not its LC3-binding defective mutant, MOAP1-LIR, in the MOAP1-deficient cells, restored EBSS-induced autophagy. Together, these observations suggest that MOAP1 serves a distinct role in facilitating autophagy through interacting with LC3 to promote efficient phagophore closure during starvation.Abbreviations CQ: Chloroquine; EBSS: Earle's Balanced Salt Solution; GABARAP: Gamma-Amino Butyric Acid Receptor Associated Protein; IF: Immunofluorescence; IP: Immunoprecipitation; LAMP1: Lysosomal-Associated Membrane Protein 1; LIR: LC3-Interacting Region; MAP1LC3/LC3: Microtubule Associated Protein 1 Light Chain 3; MEF: Mouse Embryonic Fibroblast; MOAP1: Modulator of Apoptosis 1; PE: Phosphatidylethanolamine; PtdIns3K: class III PtdIns3K complex I; PtdIns3P: Phosphatidylinositol-3-phosphate; STX17: Syntaxin 17; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Hao-Chun Chang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ran N Tao
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Chong Teik Tan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ya Jun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Victor C Yu
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Frangež Ž, Seyed Jafari SM, Hunger RE, Simon HU. Loss of Concurrent Regulation of the Expression of BIF-1, BAX, and Beclin-1 in Primary and Metastatic Melanoma. BIOCHEMISTRY (MOSCOW) 2021; 85:1227-1234. [PMID: 33202207 DOI: 10.1134/s0006297920100107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Melanoma is one of the most aggressive and drug-resistant cancers. Despite novel promising therapeutic strategies, the prognosis of metastatic melanoma patients remains poor and it is often associated with high relapse rates. Endophilin B1, also known as BIF-1, is a multifunctional protein involved in several biological processes such as autophagy and apoptosis. BIF-1 promotes apoptosis through binding to BAX and its translocation to the mitochondrial outer membrane. On the other hand, BIF-1 can interact with Beclin-1 through UVRAG to promote autophagy. Several reports suggest an ambiguous role of BIF-1 in cancer development and progression. For example, it has been demonstrated that the expression of BIF-1 is reduced in both primary and metastatic melanoma and that the reduction of BIF-1 expression is associated with reduced overall survival of melanoma patients. Here we show that the expression of Beclin-1 and active form of BAX are also reduced in the melanoma patients. However, while we observed strong positive correlations between the expression of BIF-1 and Beclin-1 as well as between BIF-1 and BAX in benign nevi, these correlations were lost in the primary and metastatic melanoma cells. These data indicate disruption in the proximal molecular mechanisms which regulate expression of BIF-1, Beclin-1, and BAX in the primary and metastatic melanoma.
Collapse
Affiliation(s)
- Ž Frangež
- Institute of Pharmacology, University of Bern, Bern, 3010, Switzerland
| | - S M Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland
| | - R E Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, 3010, Switzerland
| | - H-U Simon
- Institute of Pharmacology, University of Bern, Bern, 3010, Switzerland. .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, 119435, Russia
| |
Collapse
|
15
|
Verma AK, Bharti PS, Rafat S, Bhatt D, Goyal Y, Pandey KK, Ranjan S, Almatroodi SA, Alsahli MA, Rahmani AH, Almatroudi A, Dev K. Autophagy Paradox of Cancer: Role, Regulation, and Duality. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8832541. [PMID: 33628386 PMCID: PMC7892237 DOI: 10.1155/2021/8832541] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Autophagy, a catabolic process, degrades damaged and defective cellular materials through lysosomes, thus working as a recycling mechanism of the cell. It is an evolutionarily conserved and highly regulated process that plays an important role in maintaining cellular homeostasis. Autophagy is constitutively active at the basal level; however, it gets enhanced to meet cellular needs in various stress conditions. The process involves various autophagy-related genes that ultimately lead to the degradation of targeted cytosolic substrates. Many factors modulate both upstream and downstream autophagy pathways like nutritional status, energy level, growth factors, hypoxic conditions, and localization of p53. Any problem in executing autophagy can lead to various pathological conditions including neurodegeneration, aging, and cancer. In cancer, autophagy plays a contradictory role; it inhibits the formation of tumors, whereas, during advanced stages, autophagy promotes tumor progression. Besides, autophagy protects the tumor from various therapies by providing recycled nutrition and energy to the tumor cells. Autophagy is stimulated by tumor suppressor proteins, whereas it gets inhibited by oncogenes. Due to its dynamic and dual role in the pathogenesis of cancer, autophagy provides promising opportunities in developing novel and effective cancer therapies along with managing chemoresistant cancers. In this article, we summarize different strategies that can modulate autophagy in cancer to overcome the major obstacle, i.e., resistance developed in cancer to anticancer therapies.
Collapse
Affiliation(s)
- Amit Kumar Verma
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institutes of Medical Sciences, New Delhi, India
| | - Sahar Rafat
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Deepti Bhatt
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institutes of Medical Sciences, New Delhi, India
| | - Sanjeev Ranjan
- Institute of Biomedicine, Cell and Tissue Imaging Unit, Finland
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraidah, Saudi Arabia
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
16
|
Frangež Ž, Fernández-Marrero Y, Stojkov D, Seyed Jafari SM, Hunger RE, Djonov V, Riether C, Simon HU. BIF-1 inhibits both mitochondrial and glycolytic ATP production: its downregulation promotes melanoma growth. Oncogene 2020; 39:4944-4955. [PMID: 32493957 DOI: 10.1038/s41388-020-1339-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022]
Abstract
Endophilin B1, also known as BAX-interacting protein 1 (BIF-1), is part of the endophilin B protein family, and is a multifunctional protein involved in the regulation of apoptosis, autophagy, and mitochondrial morphology. The role of BIF-1 in cancer is controversial since previous reports indicated to both tumor-promoting and tumor-suppressive roles, perhaps depending on the cancer cell type. In the present study, we report that BIF-1 is significantly downregulated in both primary and metastatic melanomas, and that patients with high levels of BIF-1 expression exhibited a better overall survival. Depleting BIF-1 using CRISPR/Cas9 technology in melanoma cells resulted in higher proliferation rates both in vitro and in vivo, a finding that was associated with increased ATP production, metabolic acidification, and mitochondrial respiration. We also observed mitochondrial hyperpolarization, but no increase in the mitochondrial content of BIF-1-knockout melanoma cells. In contrast, such knockout melanoma cells were equally sensitive to anticancer drug- or UV irradiation-induced cell death, and exhibited similar autophagic activities as compared with control cells. Taken together, it appears that downregulation of BIF-1 contributes to tumorigenesis in cutaneous melanoma by upregulating mitochondrial respiration and metabolism, independent of its effect on apoptosis and autophagy.
Collapse
Affiliation(s)
- Živa Frangež
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - S Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert E Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Carsten Riether
- Tumor Immunology, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland. .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.
| |
Collapse
|
17
|
De Tito S, Hervás JH, van Vliet AR, Tooze SA. The Golgi as an Assembly Line to the Autophagosome. Trends Biochem Sci 2020; 45:484-496. [PMID: 32307224 DOI: 10.1016/j.tibs.2020.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Autophagy is traditionally depicted as a signaling cascade that culminates in the formation of an autophagosome that degrades cellular cargo. However, recent studies have identified myriad pathways and cellular organelles underlying the autophagy process, be it as signaling platforms or through the contribution of proteins and lipids. The Golgi complex is recognized as being a central transport hub in the cell, with a critical role in endocytic trafficking and endoplasmic reticulum (ER) to plasma membrane (PM) transport. However, the Golgi is also an important site of key autophagy regulators, including the protein autophagy-related (ATG)-9A and the lipid, phosphatidylinositol-4-phosphate [PI(4)P]. In this review, we highlight the central function of this organelle in autophagy as a transport hub supplying various components of autophagosome formation.
Collapse
Affiliation(s)
- Stefano De Tito
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Javier H Hervás
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Instituto Biofisika (CSIC, UPV/EHU), Departamento de Bioquímica y Biología Molecular, Universidad del País Vasco, Bilbao, Spain
| | - Alexander R van Vliet
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sharon A Tooze
- The Molecular Cell Biology of Autophagy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
18
|
Fairlie WD, Tran S, Lee EF. Crosstalk between apoptosis and autophagy signaling pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:115-158. [DOI: 10.1016/bs.ircmb.2020.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Touyama K, Khan M, Aoki K, Matsuda M, Hiura F, Takakura N, Matsubara T, Harada Y, Hirohashi Y, Tamura Y, Gao J, Mori K, Kokabu S, Yasuda H, Fujita Y, Watanabe K, Takahashi Y, Maki K, Jimi E. Bif‐1/Endophilin B1/SH3GLB1 regulates bone homeostasis. J Cell Biochem 2019; 120:18793-18804. [DOI: 10.1002/jcb.29193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/31/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Kenya Touyama
- Division of Molecular Signaling and Biochemistry, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
- Division of Developmental Stomatognathic Function Science, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Graduate School of Pharmaceutical SciencesKyushu University Fukuoka Japan
| | - Masud Khan
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental ScienceTokyo Medical and Dental University Tokyo Japan
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental ScienceTokyo Medical and Dental University Tokyo Japan
| | - Miho Matsuda
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Graduate School of Pharmaceutical SciencesKyushu University Fukuoka Japan
| | - Fumitaka Hiura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Graduate School of Pharmaceutical SciencesKyushu University Fukuoka Japan
| | - Nana Takakura
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Graduate School of Pharmaceutical SciencesKyushu University Fukuoka Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
| | - Yui Harada
- R&D Laboratory for Innovative Biotherapeutics Science, Graduate School of Pharmaceutical SciencesKyushu University Fukuoka Japan
| | - Yuna Hirohashi
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental ScienceTokyo Medical and Dental University Tokyo Japan
| | - Yukihiko Tamura
- Section of Pharmacology, Department of Bio‐Matrix, Graduate School of Medical and Dental ScienceTokyo Medical and Dental University Tokyo Japan
| | - Jing Gao
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Graduate School of Pharmaceutical SciencesKyushu University Fukuoka Japan
| | - Kayo Mori
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Graduate School of Pharmaceutical SciencesKyushu University Fukuoka Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical ScienceOriental Yeast Co, Ltd Shiga Japan
| | - Yuko Fujita
- Division of Developmental Stomatognathic Function Science, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
| | - Koji Watanabe
- Division of Developmental Stomatognathic Function Science, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
| | | | - Kenshi Maki
- Division of Developmental Stomatognathic Function Science, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
| | - Eijiro Jimi
- Division of Molecular Signaling and Biochemistry, Department of Health ImprovementKyushu Dental University Kitakyushu Japan
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science, Graduate School of Pharmaceutical SciencesKyushu University Fukuoka Japan
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental ScienceKyushu University Fukuoka Japan
| |
Collapse
|
20
|
Cho SG, Xiao X, Wang S, Gao H, Rafikov R, Black S, Huang S, Ding HF, Yoon Y, Kirken RA, Yin XM, Wang HG, Dong Z. Bif-1 Interacts with Prohibitin-2 to Regulate Mitochondrial Inner Membrane during Cell Stress and Apoptosis. J Am Soc Nephrol 2019; 30:1174-1191. [PMID: 31126972 DOI: 10.1681/asn.2018111117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/23/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Mitochondria are dynamic organelles that undergo fission and fusion. During cell stress, mitochondrial dynamics shift to fission, leading to mitochondrial fragmentation, membrane leakage, and apoptosis. Mitochondrial fragmentation requires the cleavage of both outer and inner membranes, but the mechanism of inner membrane cleavage is unclear. Bif-1 and prohibitin-2 may regulate mitochondrial dynamics. METHODS We used azide-induced ATP depletion to incite cell stress in mouse embryonic fibroblasts and renal proximal tubular cells, and renal ischemia-reperfusion to induce stress in mice. We also used knockout cells and mice to determine the role of Bif-1, and used multiple techniques to analyze the molecular interaction between Bif-1 and prohibitin-2. RESULTS Upon cell stress, Bif-1 translocated to mitochondria to bind prohibitin-2, resulting in the disruption of prohibitin complex and proteolytic inactivation of the inner membrane fusion protein OPA1. Bif-1-deficiency inhibited prohibitin complex disruption, OPA1 proteolysis, mitochondrial fragmentation, and apoptosis. Domain deletion analysis indicated that Bif-1 interacted with prohibitin-2 via its C-terminus. Notably, mutation of Bif-1 at its C-terminal tryptophan-344 not only prevented Bif-1/prohibitin-2 interaction but also reduced prohibitin complex disruption, OPA1 proteolysis, mitochondrial fragmentation, and apoptosis, supporting a pathogenic role of Bif-1/prohibitin-2 interaction. In mice, Bif-1 bound prohibitin-2 during renal ischemia/reperfusion injury, and Bif-1-deficiency protected against OPA1 proteolysis, mitochondrial fragmentation, apoptosis and kidney injury. CONCLUSIONS These findings suggest that during cell stress, Bif-1 regulates mitochondrial inner membrane by interacting with prohibitin-2 to disrupt prohibitin complexes and induce OPA1 proteolysis and inactivation.
Collapse
Affiliation(s)
| | - Xiao Xiao
- Department of Cellular Biology and Anatomy
| | | | - Hua Gao
- Department of Cellular Biology and Anatomy
| | | | | | - Shang Huang
- Department of Biochemistry and Molecular Biology
| | | | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Robert A Kirken
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Hong-Gang Wang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, .,Medical Research Line, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| |
Collapse
|
21
|
Hu A, Li X, He J, Gong X, Wu Z, Ning P. Classical swine fever virus-Shimen infection upregulates SH3GLB1 expression in porcine alveolar macrophages. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1552839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Aoxue Hu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, PR China
| | - Xuepeng Li
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, PR China
| | - Jun He
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, PR China
| | - Xiaocheng Gong
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, PR China
| | - Zhongxing Wu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, PR China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, PR China
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi’an, Shaanxi, PR China
| |
Collapse
|
22
|
Cushing KC, Mclean R, McDonald KG, Gustafsson JK, Knoop KA, Kulkarni DH, Sartor RB, Newberry RD. Predicting Risk of Postoperative Disease Recurrence in Crohn's Disease: Patients With Indolent Crohn's Disease Have Distinct Whole Transcriptome Profiles at the Time of First Surgery. Inflamm Bowel Dis 2019; 25:180-193. [PMID: 29982468 PMCID: PMC6354560 DOI: 10.1093/ibd/izy228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Assessing risk of Crohn's disease (CD) recurrence following ileocolic resection (ICR) is necessary to optimize medical management and prevent long-term complications. This study aimed to identify noninvasive markers that could predict postoperative disease activity. METHODS Inclusion criteria were a diagnosis of CD, first ICR, interval colonoscopy, and whole transcriptome array meeting quality control standards. Demographic and clinical data were obtained from the electronic medical record. RNA extraction and human transcriptome microarray were performed on noninflamed ileal margins from operative specimens. Clinical data and random forest were analyzed in R. Principal components analysis, hierarchical clustering, and pathway enrichment were performed in Partek. RESULTS Sixty-five patients completed the study, and 5 were excluded from analysis due to extreme variability on whole transcriptome analysis. Unsupervised hierarchical clustering revealed that patients with an i0 Rutgeerts score generally segregated from all others. In anti-TNF-naïve patients, unsupervised hierarchical clustering revealed complete segregation of patients with an i0 score. Reduced escalation in therapy and continued mucosal remission, consistent with indolent disease, were seen in the 4 years following surgery. Random forest identified 30 transcripts differentiating i0 patients from the other groups. Pathway enrichment highlighted toll-like receptor, NOD-like receptor, and TNF signaling. This transcriptome signature did not identify i0 anti-TNF-exposed patients. However, anti-TNF-exposed patients with indolent postoperative courses were found to have a transcriptome signature distinct from those with aggressive disease. CONCLUSIONS Anti-TNF-naïve and -exposed patients have unique expression profiles at the time of surgery, which may offer predictive value in assessing the risk of nonrecurrence. 10.1093/ibd/izy228_video1izy228.video15804852517001.
Collapse
Affiliation(s)
- Kelly C Cushing
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Richard Mclean
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Keely G McDonald
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jenny K Gustafsson
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kathryn A Knoop
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Devesha H Kulkarni
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - R Balfour Sartor
- Department of Medicine, Microbiology and Immunology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA,Address correspondence to: Rodney D. Newberry, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA, E-mail:
| |
Collapse
|
23
|
Mitochondrial Dynamics in Stem Cells and Differentiation. Int J Mol Sci 2018; 19:ijms19123893. [PMID: 30563106 PMCID: PMC6321186 DOI: 10.3390/ijms19123893] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
Mitochondria are highly dynamic organelles that continuously change their shape. Their main function is adenosine triphosphate (ATP) production; however, they are additionally involved in a variety of cellular phenomena, such as apoptosis, cell cycle, proliferation, differentiation, reprogramming, and aging. The change in mitochondrial morphology is closely related to the functionality of mitochondria. Normal mitochondrial dynamics are critical for cellular function, embryonic development, and tissue formation. Thus, defects in proteins involved in mitochondrial dynamics that control mitochondrial fusion and fission can affect cellular differentiation, proliferation, cellular reprogramming, and aging. Here, we review the processes and proteins involved in mitochondrial dynamics and their various associated cellular phenomena.
Collapse
|
24
|
Wang DB, Kinoshita C, Kinoshita Y, Sopher BL, Uo T, Lee RJ, Kim JK, Murphy SP, Dirk Keene C, Garden GA, Morrison RS. Neuronal susceptibility to beta-amyloid toxicity and ischemic injury involves histone deacetylase-2 regulation of endophilin-B1. Brain Pathol 2018; 29:164-175. [PMID: 30028551 DOI: 10.1111/bpa.12647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
Histone deacetylases (HDACs) catalyze acetyl group removal from histone proteins, leading to altered chromatin structure and gene expression. HDAC2 is highly expressed in adult brain, and HDAC2 levels are elevated in Alzheimer's disease (AD) brain. We previously reported that neuron-specific splice isoforms of Endophilin-B1 (Endo-B1) promote neuronal survival, but are reduced in human AD brain and mouse models of AD and stroke. Here, we demonstrate that HDAC2 suppresses Endo-B1 expression. HDAC2 knockdown or knockout enhances expression of Endo-B1. Conversely, HDAC2 overexpression decreases Endo-B1 expression. We also demonstrate that neurons exposed to beta-amyloid increase HDAC2 and reduce histone H3 acetylation while HDAC2 knockdown prevents Aβ induced loss of histone H3 acetylation, mitochondrial dysfunction, caspase-3 activation, and neuronal death. The protective effect of HDAC2 knockdown was abrogated by Endo-B1 shRNA and in Endo-B1-null neurons, suggesting that HDAC2-induced neurotoxicity is mediated through suppression of Endo-B1. HDAC2 overexpression also modulates neuronal expression of mitofusin2 (Mfn2) and mitochondrial fission factor (MFF), recapitulating the pattern of change observed in AD. HDAC2 knockout mice demonstrate reduced injury in the middle cerebral artery occlusion with reperfusion (MCAO/R) model of cerebral ischemia demonstrating enhanced neuronal survival, minimized loss of Endo-B1, and normalized expression of Mfn2. These findings support the hypothesis that HDAC2 represses Endo-B1, sensitizing neurons to mitochondrial dysfunction and cell death in stroke and AD.
Collapse
Affiliation(s)
- David B Wang
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195-6470
| | - Chizuru Kinoshita
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195-6470
| | - Yoshito Kinoshita
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195-6470
| | - Bryce L Sopher
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195-6465
| | - Takuma Uo
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195-6470.,Current Affiliation-Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195-6420
| | - Rona J Lee
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195-6470
| | - Joon Kyu Kim
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195-6470
| | - Sean P Murphy
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195-6470
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195-7470
| | - Gwenn A Garden
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98195-6465.,Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195-7470
| | - Richard S Morrison
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98195-6470
| |
Collapse
|
25
|
Chloroquine and amodiaquine enhance AMPK phosphorylation and improve mitochondrial fragmentation in diabetic tubulopathy. Sci Rep 2018; 8:8774. [PMID: 29884802 PMCID: PMC5993726 DOI: 10.1038/s41598-018-26858-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/18/2018] [Indexed: 12/04/2022] Open
Abstract
We investigated the effects of chloroquine (CQ) and amodiaquine (AQ) on AMPK phosphorylation in renal tubular cells in a diabetic environment in vivo and in vitro. We also examined whether CQ- or AQ-mediated AMPK activity restoration attenuated diabetic tubulopathy by normalizing mitochondrial fragmentation. Human renal proximal epithelial cells (HKC8) were incubated in high-glucose conditions. Diabetes was induced with streptozotocin in male C57/BL6J mice. Treatment with CQ or AQ abolished high-glucose-induced phospho-AMPK and phosph-PGC1α down-regulation in HKC8 cells. Improvements in functional mitochondrial mass and balanced fusion/fission protein expression were observed in HKC8 cells after treatment with CQ or AQ in high-glucose conditions. Moreover, decreased mitochondrial ROS production and reduced apoptotic and fibrotic protein expression were noted in HKC8 cells after treatment with CQ or AQ, even in high-glucose conditions. CQ and AQ treatment effectively mitigated albuminuria and renal histopathologic changes and increased AMPK activity in the kidneys of diabetic mice. Electron microscopy analysis showed that mitochondrial fragmentation was decreased, and 8-OHdG content was low in the renal tubular cells of the CQ and AQ treatment groups compared with those of the diabetic control group. Our results suggest that CQ and AQ may be useful treatments for patients with diabetic kidney disease.
Collapse
|
26
|
Gan Y, Li Y, Long Z, Lee AR, Xie N, Lovnicki JM, Tang Y, Chen X, Huang J, Dong X. Roles of Alternative RNA Splicing of the Bif-1 Gene by SRRM4 During the Development of Treatment-induced Neuroendocrine Prostate Cancer. EBioMedicine 2018; 31:267-275. [PMID: 29759485 PMCID: PMC6013970 DOI: 10.1016/j.ebiom.2018.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 02/02/2023] Open
Abstract
Treatment-induced neuroendocrine prostate cancer (t-NEPC) is an aggressive subtype of prostate cancer (PCa) that becomes more prevalent when hormonal therapy, chemotherapy, or radiation therapy is applied to patients with metastatic prostate adenocarcinoma (AdPC). How AdPC cells survive these anti-cancer therapies and progress into t-NEPC remains unclear. By comparing the whole transcriptomes between AdPC and t-NEPC, we identified Bif-1, an apoptosis-associated gene, which undergoes alternative RNA splicing in t-NEPC. We found that while Bif-1a is the predominant variant of the Bif-1 gene in AdPC, two neural-specific variants, Bif-1b and Bif-1c, are highly expressed in t-NEPC patients, patient derived xenografts, and cell models. The neural-specific RNA splicing factor, SRRM4, promotes Bif-1b and Bif-1c splicing, and the expression of SRRM4 in tumors is strongly associated with Bif-1b/-1c levels. Furthermore, we showed that Bif-1a is pro-apoptotic, while Bif-1b and Bif-1c are anti-apoptotic in PCa cells under camptothecin and UV light irritation treatments. Taken together, our data indicate that SRRM4 regulates alternative RNA splicing of the Bif-1 gene that enables PCa cells resistant to apoptotic stimuli under anti-cancer therapies, and may contribute to AdPC progression into t-NEPC. Alternative RNA splicing of the apoptosis-related gene, Bif-1, is associated with the development of t-NEPC. SRRM4 regulates alternative RNA splicing of the Bif-1 gene. Bif-1a in AdPC cells is pro-apoptotic, while neural Bif-1 variants, Bif-1b/-1c, enable tumor cells resistant to apoptosis.
Treatment-induced neuroendocrine prostate cancer (t-NEPC) is an aggressive subtype of castration-resistant prostate cancer. It becomes more prevalent when more potent androgen receptor inhibitors are applied to patients. However, mechanisms by which t-NEPC develops remain unclear. Here we report alternative RNA splicing of the apoptosis-related gene, Bif-1, may contribute to t-NEPC establishment. We show that the expression of neural Bif-1 variants is upregulated in t-NEPC, and confers tumor cells resistance to apoptotic stimuli. We propose that tumor cells have to first develop mechanisms to counteract therapy-induced cell death before they can undergo neuroendocrine differentiation for t-NEPC.
Collapse
Affiliation(s)
- Yu Gan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada; Department of Urology, Xiangya Hospital, Central South University, Changsha, China; Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Yinan Li
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada.
| | - Zhi Long
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada; Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada.
| | - Ning Xie
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada.
| | - Jessica M Lovnicki
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada.
| | - Yuxin Tang
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada.
| |
Collapse
|
27
|
Lee AR, Che N, Lovnicki JM, Dong X. Development of Neuroendocrine Prostate Cancers by the Ser/Arg Repetitive Matrix 4-Mediated RNA Splicing Network. Front Oncol 2018; 8:93. [PMID: 29666783 PMCID: PMC5891588 DOI: 10.3389/fonc.2018.00093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
While the use of next-generation androgen receptor pathway inhibition (ARPI) therapy has significantly increased the survival of patients with metastatic prostate adenocarcinoma (AdPC), several groups have reported a treatment-resistant mechanism, whereby cancer cells can become androgen receptor (AR) indifferent and gain a neuroendocrine (NE)-like phenotype. This subtype of castration-resistant prostate cancer has been termed "treatment-induced castration-resistant neuroendocrine prostate cancer" (CRPC-NE). Recent reports indicate that the overall genomic landscapes of castration-resistant tumors with AdPC phenotypes and CRPC-NE are not significantly altered. However, CRPC-NE tumors have been found to contain a NE-specific pattern throughout their epigenome and splicing transcriptome, which are significantly modified. The molecular mechanisms by which CRPC-NE develops remain unclear, but several factors have been implicated in the progression of the disease. Recently, Ser/Arg repetitive matrix 4 (SRRM4), a neuronal-specific RNA splicing factor that is upregulated in CRPC-NE tumors, has been shown to establish a CRPC-NE-unique splicing transcriptome, to induce a NE-like morphology in AdPC cells, and, most importantly, to transform AdPC cells into CRPC-NE xenografts under ARPI. Moreover, the SRRM4-targeted splicing genes are highly enriched in various neuronal processes, suggesting their roles in facilitating a CRPC-NE program. This article will address the importance of SRRM4-mediated alternative RNA splicing in reprogramming translated proteins to facilitate NE differentiation, survival, and proliferation of cells to establish CRPC-NE tumors. In addition, we will discuss the potential roles of SRRM4 in conjunction with other known pathways and factors important for CRPC-NE development, such as the AR pathway, TP53 and RB1 genes, the FOXA family of proteins, and environmental factors. This study aims to explore the multifaceted functions of SRRM4 and SRRM4-mediated splicing in driving a CRPC-NE program as a coping mechanism for therapy resistance, as well as define future SRRM4-targeted therapeutic approaches for treating CRPC-NE or mitigating its development.
Collapse
Affiliation(s)
- Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nicole Che
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Wechman SL, Pradhan AK, DeSalle R, Das SK, Emdad L, Sarkar D, Fisher PB. New Insights Into Beclin-1: Evolution and Pan-Malignancy Inhibitor Activity. Adv Cancer Res 2017; 137:77-114. [PMID: 29405978 DOI: 10.1016/bs.acr.2017.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a functionally conserved self-degradation process that facilitates the survival of eukaryotic life via the management of cellular bioenergetics and maintenance of the fidelity of genomic DNA. The first known autophagy inducer was Beclin-1. Beclin-1 is expressed in multicellular eukaryotes ranging throughout plants to animals, comprising a nonmonophyllic group, as shown in this report via aggressive BLAST searches. In humans, Beclin-1 is a haploinsuffient tumor suppressor as biallelic deletions have not been observed in patient tumors clinically. Therefore, Beclin-1 fails the Knudson hypothesis, implicating expression of at least one Beclin-1 allele is essential for cancer cell survival. However, Beclin-1 is frequently monoallelically deleted in advanced human cancers and the expression of two Beclin-1 allelles is associated with greater anticancer effects. Overall, experimental evidence suggests that Beclin-1 inhibits tumor formation, angiogenesis, and metastasis alone and in cooperation with the tumor suppressive molecules UVRAG, Bif-1, Ambra1, and MDA-7/IL-24 via diverse mechanisms of action. Conversely, Beclin-1 is upregulated in cancer stem cells (CSCs), portending a role in cancer recurrence, and highlighting this molecule as an intriguing molecular target for the treatment of CSCs. Many aspects of Beclin-1's biological effects remain to be studied. The consequences of these BLAST searches on the molecular evolution of Beclin-1, and the eukaryotic branches of the tree of life, are discussed here in greater detail with future inquiry focused upon protist taxa. Also in this review, the effects of Beclin-1 on tumor suppression and cancer malignancy are discussed. Beclin-1 holds significant promise for the development of novel targeted cancer therapeutics and is anticipated to lead to a many advances in our understanding of eukaryotic evolution, multicellularity, and even the treatment of CSCs in the coming decades.
Collapse
Affiliation(s)
- Stephen L Wechman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Anjan K Pradhan
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
29
|
Li J, Barylko B, Eichorst JP, Mueller JD, Albanesi JP, Chen Y. Association of Endophilin B1 with Cytoplasmic Vesicles. Biophys J 2017; 111:565-576. [PMID: 27508440 DOI: 10.1016/j.bpj.2016.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023] Open
Abstract
Endophilins are SH3- and BAR domain-containing proteins implicated in membrane remodeling and vesicle formation. Endophilins A1 and A2 promote the budding of endocytic vesicles from the plasma membrane, whereas endophilin B1 has been implicated in vesicle budding from intracellular organelles, including the trans-Golgi network and late endosomes. We previously reported that endophilins A1 and A2 exist almost exclusively as soluble dimers in the cytosol. Here, we present results of fluorescence fluctuation spectroscopy analyses indicating that, in contrast, the majority of endophilin B1 is present in multiple copies on small, highly mobile cytoplasmic vesicles. Formation of these vesicles was enhanced by overexpression of wild-type dynamin 2, but suppressed by expression of a catalytically inactive dynamin 2 mutant. Using dual-color heterospecies partition analysis, we identified the epidermal growth factor receptor on endophilin B1 vesicles. Moreover, a proportion of endophilin B1 vesicles also contained caveolin, whereas clathrin was almost undetectable on those vesicles. These results raise the possibility that endophilin B1 participates in dynamin 2-dependent formation of a population of transport vesicles distinct from those generated by A-type endophilins.
Collapse
Affiliation(s)
- Jinhui Li
- Department of Physics, University of Minnesota, Minneapolis, Minnesota
| | | | - John P Eichorst
- Department of Physics, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | | | - Yan Chen
- Department of Physics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
30
|
Serfass JM, Takahashi Y, Zhou Z, Kawasawa YI, Liu Y, Tsotakos N, Young MM, Tang Z, Yang L, Atkinson JM, Chroneos ZC, Wang HG. Endophilin B2 facilitates endosome maturation in response to growth factor stimulation, autophagy induction, and influenza A virus infection. J Biol Chem 2017; 292:10097-10111. [PMID: 28455444 PMCID: PMC5473216 DOI: 10.1074/jbc.m117.792747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/27/2017] [Indexed: 12/19/2022] Open
Abstract
Endocytosis, and the subsequent trafficking of endosomes, requires dynamic physical alterations in membrane shape that are mediated in part by endophilin proteins. The endophilin B family of proteins contains an N-terminal Bin/amphiphysin/Rvs (N-BAR) domain that induces membrane curvature to regulate intracellular membrane dynamics. Whereas endophilin B1 (SH3GLB1/Bif-1) is known to be involved in a number of cellular processes, including apoptosis, autophagy, and endocytosis, the cellular function of endophilin B2 (SH3GLB2) is not well understood. In this study, we used genetic approaches that revealed that endophilin B2 is not required for embryonic development in vivo but that endophilin B2 deficiency impairs endosomal trafficking in vitro, as evidenced by suppressed endosome acidification, EGFR degradation, autophagic flux, and influenza A viral RNA nuclear entry and replication. Mechanistically, although the loss of endophilin B2 did not affect endocytic internalization and lysosomal function, endophilin B2 appeared to regulate the trafficking of endocytic vesicles and autophagosomes to late endosomes or lysosomes. Moreover, we also found that despite having an intracellular localization and tissue distribution similar to endophilin B1, endophilin B2 is dispensable for mitochondrial apoptosis. Taken together, our findings suggest that endophilin B2 positively regulates the endocytic pathway in response to growth factor signaling, autophagy induction, and viral entry.
Collapse
Affiliation(s)
| | | | - Zhixiang Zhou
- the Department of Pediatrics
- the College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Yuka Imamura Kawasawa
- From the Department of Pharmacology
- the Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, and
| | - Ying Liu
- From the Department of Pharmacology
| | | | | | | | | | | | - Zissis C Chroneos
- the Department of Pediatrics
- the Department of Microbiology & Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 and
| | - Hong-Gang Wang
- From the Department of Pharmacology,
- the Department of Pediatrics
| |
Collapse
|
31
|
Lima S, Milstien S, Spiegel S. Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking. J Biol Chem 2017; 292:3074-3088. [PMID: 28049734 DOI: 10.1074/jbc.m116.762377] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
The balance between cholesterol and sphingolipids within the plasma membrane has long been implicated in endocytic membrane trafficking. However, in contrast to cholesterol functions, little is still known about the roles of sphingolipids and their metabolites. Perturbing the cholesterol/sphingomyelin balance was shown to induce narrow tubular plasma membrane invaginations enriched with sphingosine kinase 1 (SphK1), the enzyme that converts the bioactive sphingolipid metabolite sphingosine to sphingosine-1-phosphate, and suggested a role for sphingosine phosphorylation in endocytic membrane trafficking. Here we show that sphingosine and sphingosine-like SphK1 inhibitors induced rapid and massive formation of vesicles in diverse cell types that accumulated as dilated late endosomes. However, much smaller vesicles were formed in SphK1-deficient cells. Moreover, inhibition or deletion of SphK1 prolonged the lifetime of sphingosine-induced vesicles. Perturbing the plasma membrane cholesterol/sphingomyelin balance abrogated vesicle formation. This massive endosomal influx was accompanied by dramatic recruitment of the intracellular SphK1 and Bin/Amphiphysin/Rvs domain-containing proteins endophilin-A2 and endophilin-B1 to enlarged endosomes and formation of highly dynamic filamentous networks containing endophilin-B1 and SphK1. Together, our results highlight the importance of sphingosine and its conversion to sphingosine-1-phosphate by SphK1 in endocytic membrane trafficking.
Collapse
Affiliation(s)
- Santiago Lima
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298.
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298.
| |
Collapse
|
32
|
Xu L, Wang Z, He SY, Zhang SF, Luo HJ, Zhou K, Li XF, Qiu SP, Cao KY. Bax-interacting factor-1 inhibits cell proliferation and promotes apoptosis in prostate cancer cells. Oncol Rep 2016; 36:3513-3521. [PMID: 27748942 DOI: 10.3892/or.2016.5172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 08/16/2016] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors and the second leading cause of cancer-related death among males. Bax-interacting factor-1 (Bif-1) is a member of Endophilin family, which binds to and activates the BAX protein in response to the apoptosis signaling pathway. Loss of Bif-1 may suppress the intrinsic pathway of apoptosis and promote tumorigenesis, but there is also converse evidence that Bif-1 could in part be responsible for the tumorigenesis and the role of Bif-1 in PCa development is not clear. In the present study, we aimed to understand the relationships between Bif-1 expression and PCa development. The mRNA and protein expression levels of Bif-1 in PCa cell lines, benign prostatic hyperplasia (BPH) (n=100) and PCa tissues (n=100, including low Gleason-scored PCa n=43 and high Gleason-scored PCa n=57) were detected and the effects of Bif-1 overexpression on the apoptosis, proliferation and migration in LNCaP cells were explored. Bif-1 mRNA levels of PCa cell lines were analyzed by real-time PCR and the protein levels were detected by western blotting. Bif-1 expression in BPH and PCa samples was detected by immunohistochemistry. To build Bif-1 overexpression PCa cells, Bif-1 gene was transfected into LNCaP cells by pcDNA3.1(+)‑Bif-1 vector. Cell apoptosis was detected by flow cytometric analysis, cell proliferation measured by 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay and cell migration was analyzed by wound‑healing assay. The results proved that Bif-1 is downregulated in both PCa cell lines (P<0.01) and clinical samples (P<0.05), and Bif-1 expression is suppressed with the cancer progression (BPH vs. PCa P<0.01, and low Gleason-scored PCa vs. high Gleason-scored PCa P<0.05). Overexpression of Bif-1 could significantly inhibit cell proliferation (P<0.05) and enhancing PCa cell apoptosis (P<0.05), but it did not affect the migration ability (P>0.05). Our findings give strong evidence that Bif-1 is involved in PCa tumorigenesis and acts as a suppressor in PCa progression, and may have significance in understanding the process of PCa development.
Collapse
Affiliation(s)
- Lin Xu
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Zhu Wang
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Shan-Yang He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P.R. China
| | - Su-Fen Zhang
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Hong-Jiao Luo
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Kai Zhou
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Xiao-Fei Li
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Shao-Peng Qiu
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Kai-Yuan Cao
- Research Center for Clinical Laboratory Standard, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P.R. China
| |
Collapse
|
33
|
Bif-1 promotes tumor cell migration and metastasis via Cdc42 expression and activity. Clin Exp Metastasis 2016; 34:11-23. [PMID: 27730394 DOI: 10.1007/s10585-016-9825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
Tumor metastasis is the process by which tumor cells disseminate from tumors and enter nearby and distant microenvironments for new colonization. Bif-1 (BAX-interacting factor 1), which has a BAR domain and an SH3 domain, has been reported to be involved in cell growth, apoptosis and autophagy. However, the influence of Bif-1 on metastasis has been less studied. To understand the role of Bif-1 in metastasis, we studied the expression levels of Bif-1 in human HCC specimens using immunohistochemistry, a tissue microarray and quantitative PCR. The function of Bif-1 was assessed in migration and translocation assays and the pulmonary metastatic animal model. The relationship between Bif-1 and the Rho family was determined using immunoblot analyses and chromatin immunoprecipitation. The results showed that the expression of Bif-1 was higher in hepatocellular carcinoma (HCC) than matched adjacent non-tumor liver tissues. Increased Bif-1 expression was associated with tumor size and the intercellular spread and metastasis of HCC. Analysis of the relationship between Bif-1 expression and patients' clinical characteristics revealed that patients with higher levels of Bif-1 had shorter disease-free and overall survival rates. Knockdown of Bif-1 with RNAi suppressed the migration of HCC cells and pulmonary metastasis and decreased the expression of Cdc42, a member of the Rho family. Bif-1 localized to the cytosol and nucleus and interacted with the promoter transcription region of Cdc42, which may regulate Cdc42 expression. Our results demonstrate a novel role of Bif-1 in HCC, in which Bif-1 promotes cell metastasis by regulating Cdc42 expression and activity.
Collapse
|
34
|
Bhowmik T, Gomes A. NKCT1 (purified Naja kaouthia protein toxin) conjugated gold nanoparticles induced Akt/mTOR inactivation mediated autophagic and caspase 3 activated apoptotic cell death in leukemic cell. Toxicon 2016; 121:86-97. [PMID: 27527270 DOI: 10.1016/j.toxicon.2016.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/04/2016] [Accepted: 08/11/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Gold nanoparticle (GNP) and snake venom protein toxin NKCT1 was conjugated as stated earlier (Bhowmik et al., 2013). The aim of this study was to explore the caspase dependent apoptotic pathway and autophagy inducing ability of gold nanoparticles tagged snake venom protein toxin NKCT1 (GNP-NKCT1) in human leukemic U937 and K562 cell line. METHODS GNP-NKCT1 induced apoptosis in U937 and K562 cell line were assessed through mitochondrial membrane potential assay, ROS generation assay, caspase 3 pathways and western blotting. GNP-NKCT1 induced autophagic pathway was detected through Akt, mTOR and PI3K expression by western blotting. Autophagic cell death also checked after addition of caspase 3 inhibitor and which also reconfirmed by western blotting of autophagic marker protein, lysosomal staining. RESULTS Loss of mitochondrial membrane potential was occurred in both the leukemic cell line after induction by GNP-NKCT1 and treatment of which also exhibited high ROS generation. Caspase 3 expression of cell was also increased. With caspase 3 inhibitor, GNP-NKCT1 downregulated PI3K/Akt and mTOR expression and thus undergoing autophagic cell death. Lysosomal staining confirmed lysosomal enzyme involvement in the autophagic response. Up regulation of Atg 3, Atg12, Beclin 1, LC3-II protein and BIF-1 and down regulation of Atg4B were also showed by blotting. CONCLUSION The results demonstrated that conjugation of Gold nanoparticles with NKCT1 could induce an alternate cell death pathway other than apoptosis in the form of autophagy in leukemic cell. GENERAL SIGNIFICANCE This study might provide the understanding area of chemotherapeutic drug development from natural resources like snake venoms.
Collapse
Affiliation(s)
- Tanmoy Bhowmik
- Lab of Toxinology and Exp. Pharmacodynamics, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700 009 India
| | - Antony Gomes
- Lab of Toxinology and Exp. Pharmacodynamics, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata, 700 009 India.
| |
Collapse
|
35
|
Song S, Yi Z, Zhang M, Mao M, Fu L, Zhao X, Liu Z, Gao J, Cao W, Liu Y, Shi H, Zhu D. Hypoxia inhibits pulmonary artery endothelial cell apoptosis via the e-selectin/biliverdin reductase pathway. Microvasc Res 2016; 106:44-56. [DOI: 10.1016/j.mvr.2016.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/20/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
|
36
|
Liu Y, Gao M, Ma MM, Tang YB, Zhou JG, Wang GL, Du YH, Guan YY. Endophilin A2 protects H2O2-induced apoptosis by blockade of Bax translocation in rat basilar artery smooth muscle cells. J Mol Cell Cardiol 2016; 92:122-33. [DOI: 10.1016/j.yjmcc.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/25/2016] [Accepted: 02/04/2016] [Indexed: 12/31/2022]
|
37
|
Gupta R, Ghosh S. Bax and Bif-1 proteins interact on Bilayer Lipid Membrane and form pore. Biochem Biophys Res Commun 2015; 463:751-5. [DOI: 10.1016/j.bbrc.2015.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
|
38
|
Yun Q, Jiang M, Wang J, Cao X, Liu X, Li S, Li B. Overexpression Bax interacting factor-1 protects cortical neurons against cerebral ischemia-reperfusion injury through regulation of ERK1/2 pathway. J Neurol Sci 2015; 357:183-91. [PMID: 26253702 DOI: 10.1016/j.jns.2015.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
Bax interacting factor-1 (Bif-1), a multifunctional protein, can regulate cell apoptosis and autophagy. Up-regulation of Bif-1 expression has been associated with neuronal survival. Moreover, several studies have reported that Bif-1 is involved in ischemic stroke. However, the specific function of Bif-1 in cerebral ischemia-reperfusion (I/R) injury is not well understood. The aim of this study is to expose the potential protective effect of Bif-1 against cerebral I/R injury and its related mechanism. In the current study, we showed that adenovirus-mediated Bif-1-overexpression promoted oxygen and glucose deprivation followed by reperfusion (OGD/R)-treated cortical neurons' survival and reduced the cell apoptotic rate. We found that caspase-3 activity was inhibited by Bif-1 overexpression. In addition, we observed that Bif-1 overexpression induces cell autophagy, and the autophagy-specific inhibitor 3-Methyladenine (3-MA) attenuates cell survival. Interestingly, knockdown of Bif-1 resulted in attenuation of neuron survival, promotion of cell apoptosis and suppression of cell autophagy in neurons. In addition, knockdown of Bif-1 inhibited ERK1/2 activation. Our observations implicated Bif-1 as a novel target of cerebral I/R injury and played a neuroprotective effect via promoting cell survival and reducing apoptosis.
Collapse
Affiliation(s)
- Qiang Yun
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China; Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot 010020, China
| | - Mingfang Jiang
- Department of Neurology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010059, China
| | - Jun Wang
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiangyu Cao
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinfeng Liu
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Sheng Li
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Baomin Li
- Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
39
|
Wang DB, Kinoshita Y, Kinoshita C, Uo T, Sopher BL, Cudaback E, Keene CD, Bilousova T, Gylys K, Case A, Jayadev S, Wang HG, Garden GA, Morrison RS. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain 2015; 138:2005-19. [PMID: 25981964 DOI: 10.1093/brain/awv128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/15/2015] [Indexed: 12/31/2022] Open
Abstract
Endophilin-B1, also known as Bax-interacting factor 1 (Bif-1, and encoded by SH3GLB1), is a multifunctional protein involved in apoptosis, autophagy and mitochondrial function. We recently described a unique neuroprotective role for neuron-specific alternatively spliced isoforms of endophilin-B1. To examine whether endophilin-B1-mediated neuroprotection could be a novel therapeutic target for Alzheimer's disease we used a double mutant amyloid precursor protein and presenilin 1 (APPswe/PSEN1dE9) mouse model of Alzheimer's disease and observed that expression of neuron-specific endophilin-B1 isoforms declined with disease progression. To determine if this reduction in endophilin-B1 has a functional role in Alzheimer's disease pathogenesis, we crossed endophilin-B1(-/-) mice with APPswe/PSEN1dE9 mice. Deletion of endophilin-B1 accelerated disease onset and progression in 6-month-old APPswe/PSEN1dE9/endophilin-B1(-/-) mice, which showed more plaques, astrogliosis, synaptic degeneration, cognitive impairment and mortality than APPswe/PSEN1dE9 mice. In mouse primary cortical neuron cultures, overexpression of neuron-specific endophilin-B1 isoforms protected against amyloid-β-induced apoptosis and mitochondrial dysfunction. Additionally, protein and mRNA levels of neuron-specific endophilin-B1 isoforms were also selectively decreased in the cerebral cortex and in the synaptic compartment of patients with Alzheimer's disease. Flow sorting of synaptosomes from patients with Alzheimer's disease demonstrated a negative correlation between amyloid-β and endophilin-B1 levels. The importance of endophilin-B1 in neuronal function was further underscored by the development of synaptic degeneration and cognitive and motor impairment in endophilin-B1(-/-) mice by 12 months. Our findings suggest that endophilin-B1 is a key mediator of a feed-forward mechanism of Alzheimer's disease pathogenesis where amyloid-β reduces neuron-specific endophilin-B1, which in turn enhances amyloid-β accumulation and neuronal vulnerability to stress.
Collapse
Affiliation(s)
- David B Wang
- 1 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Yoshito Kinoshita
- 1 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Chizuru Kinoshita
- 1 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Takuma Uo
- 1 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Bryce L Sopher
- 2 Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Eiron Cudaback
- 3 Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - C Dirk Keene
- 3 Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Tina Bilousova
- 4 School of Nursing, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Karen Gylys
- 4 School of Nursing, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda Case
- 2 Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Suman Jayadev
- 2 Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Hong-Gang Wang
- 5 Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 1703, USA
| | - Gwenn A Garden
- 2 Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA 3 Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| | - Richard S Morrison
- 1 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195-6470, USA
| |
Collapse
|
40
|
Hussain A, Sharma C, Khan S, Shah K, Haque S. Aloe vera Inhibits Proliferation of Human Breast and Cervical Cancer Cells and Acts Synergistically with Cisplatin. Asian Pac J Cancer Prev 2015; 16:2939-46. [DOI: 10.7314/apjcp.2015.16.7.2939] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Cell death and deubiquitinases: perspectives in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:435197. [PMID: 25121098 PMCID: PMC4119901 DOI: 10.1155/2014/435197] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 12/19/2022]
Abstract
The process of cell death has important physiological implications. At the organism level it is mostly involved in maintenance of tissue homeostasis. At the cellular level, the strategies of cell death may be categorized as either suicide or sabotage. The mere fact that many of these processes are programmed and that these are often deregulated in pathological conditions is seed to thought. The various players that are involved in these pathways are highly regulated. One of the modes of regulation is via post-translational modifications such as ubiquitination and deubiquitination. In this review, we have first dealt with the different modes and pathways involved in cell death and then we have focused on the regulation of several proteins in these signaling cascades by the different deubiquitinating enzymes, in the perspective of cancer. The study of deubiquitinases is currently in a rather nascent stage with limited knowledge both in vitro and in vivo, but the emerging roles of the deubiquitinases in various processes and their specificity have implicated them as potential targets from the therapeutic point of view. This review throws light on another aspect of cancer therapeutics by targeting the deubiquitinating enzymes.
Collapse
|
42
|
Tang Y, Chen R, Huang Y, Li G, Huang Y, Chen J, Duan L, Zhu BT, Thrasher JB, Zhang X, Li B. Natural compound Alternol induces oxidative stress-dependent apoptotic cell death preferentially in prostate cancer cells. Mol Cancer Ther 2014; 13:1526-36. [PMID: 24688053 DOI: 10.1158/1535-7163.mct-13-0981] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Prostate cancers at the late stage of castration resistance are not responding well to most of current therapies available in clinic, reflecting a desperate need of novel treatment for this life-threatening disease. In this study, we evaluated the anticancer effect of a recently isolated natural compound, Alternol, in multiple prostate cancer cell lines with the properties of advanced prostate cancers in comparison to prostate-derived nonmalignant cells. As assessed by trypan blue exclusion assay, significant cell death was observed in all prostate cancer cell lines except DU145 but not in nonmalignant (RWPE-1 and BPH1) cells. Further analyses revealed that Alternol-induced cell death was an apoptotic response in a dose- and time-dependent manner, as evidenced by the appearance of apoptosis hallmarks such as caspase-3 processing and PARP cleavage. Interestingly, Alternol-induced cell death was completely abolished by reactive oxygen species scavengers N-acetylcysteine and dihydrolipoic acid. We also demonstrated that the proapoptotic Bax protein was activated after Alternol treatment and was critical for Alternol-induced apoptosis. Animal xenograft experiments in nude mice showed that Alternol treatment largely suppressed tumor growth of PC-3 xenografts but not Bax-null DU-145 xenografts in vivo. These data suggest that Alternol might serve as a novel anticancer agent for patients with late-stage prostate cancer.
Collapse
Affiliation(s)
- Yuzhe Tang
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, KansasAuthors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Ruibao Chen
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Yan Huang
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Guodong Li
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Yiling Huang
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, KansasAuthors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Jiepeng Chen
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Lili Duan
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Bao-Ting Zhu
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| | - J Brantley Thrasher
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Xu Zhang
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Benyi Li
- Authors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, KansasAuthors' Affiliations: Department of Urology, Military Postgraduate Medical College, Chinese People's Liberation Army General Hospital, Beijing, China; Department of Urology, The University of Kansas Medical Center, Kansas City, Kansas; Department of Pharmacology, Three Gorges University College of Medicine, Yichang, China; Strand Biotechnology Institute of Research, Shantou, China; Department of Pharmacology & Toxicology, The University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
43
|
Wang DB, Uo T, Kinoshita C, Sopher BL, Lee RJ, Murphy SP, Kinoshita Y, Garden GA, Wang HG, Morrison RS. Bax interacting factor-1 promotes survival and mitochondrial elongation in neurons. J Neurosci 2014; 34:2674-83. [PMID: 24523556 PMCID: PMC3921432 DOI: 10.1523/jneurosci.4074-13.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/16/2013] [Accepted: 01/11/2014] [Indexed: 01/04/2023] Open
Abstract
Bax-interacting factor 1 (Bif-1, also known as endophilin B1) is a multifunctional protein involved in the regulation of apoptosis, mitochondrial morphology, and autophagy. Previous studies in non-neuronal cells have shown that Bif-1 is proapoptotic and promotes mitochondrial fragmentation. However, the role of Bif-1 in postmitotic neurons has not been investigated. In contrast to non-neuronal cells, we now report that in neurons Bif-1 promotes viability and mitochondrial elongation. In mouse primary cortical neurons, Bif-1 knockdown exacerbated apoptosis induced by the DNA-damaging agent camptothecin. Neurons from Bif-1-deficient mice contained fragmented mitochondria and Bif-1 knockdown in wild-type neurons also resulted in fragmented mitochondria which were more depolarized, suggesting mitochondrial dysfunction. During ischemic stroke, Bif-1 expression was downregulated in the penumbra of wild-type mice. Consistent with Bif-1 being required for neuronal viability, Bif-1-deficient mice developed larger infarcts and an exaggerated astrogliosis response following ischemic stroke. Together, these data suggest that, in contrast to non-neuronal cells, Bif-1 is essential for the maintenance of mitochondrial morphology and function in neurons, and that loss of Bif-1 renders neurons more susceptible to apoptotic stress. These unique actions may relate to the presence of longer, neuron-specific Bif-1 isoforms, because only these forms of Bif-1 were able to rescue deficiencies caused by Bif-1 suppression. This finding not only demonstrates an unexpected role for Bif-1 in the nervous system but this work also establishes Bif-1 as a potential therapeutic target for the treatment of neurological diseases, especially degenerative disorders characterized by alterations in mitochondrial dynamics.
Collapse
Affiliation(s)
| | - Takuma Uo
- Departments of Neurological Surgery and
| | | | - Bryce L. Sopher
- Neurology, University of Washington School of Medicine, Seattle, Washington 98195-6470, and
| | | | | | | | - Gwenn A. Garden
- Neurology, University of Washington School of Medicine, Seattle, Washington 98195-6470, and
| | - Hong-Gang Wang
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | | |
Collapse
|
44
|
Ethanolic Neem (Azadirachta indica) Leaf Extract Prevents Growth of MCF-7 and HeLa Cells and Potentiates the Therapeutic Index of Cisplatin. JOURNAL OF ONCOLOGY 2014; 2014:321754. [PMID: 24624140 PMCID: PMC3929266 DOI: 10.1155/2014/321754] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 11/17/2022]
Abstract
The present study was designed to gain insight into the antiproliferative activity of ethanolic neem leaves extract (ENLE) alone or in combination with cisplatin by cell viability assay on human breast (MCF-7) and cervical (HeLa) cancer cells. Nuclear morphological examination and cell cycle analysis were performed to determine the mode of cell death. Further, to identify its molecular targets, the expression of genes involved in apoptosis, cell cycle progression, and drug metabolism was analyzed by RT-PCR. Treatment of MCF-7, HeLa, and normal cells with ENLE differentially suppressed the growth of cancer cells in a dose- and time-dependent manner through apoptosis. Additionally, lower dose combinations of ENLE with cisplatin resulted in synergistic growth inhibition of these cells compared to the individual drugs (combination index <1). ENLE significantly modulated the expression of bax, cyclin D1, and cytochrome P450 monooxygenases (CYP 1A1 and CYP 1A2) in a time-dependent manner in these cells. Conclusively, these results emphasize the chemopreventive ability of neem alone or in combination with chemotherapeutic treatment to reduce the cytotoxic effects on normal cells, while potentiating their efficacy at lower doses. Thus, neem may be a prospective therapeutic agent to combat gynecological cancers.
Collapse
|
45
|
Roberts ER, Thomas KJ. The role of mitochondria in the development and progression of lung cancer. Comput Struct Biotechnol J 2013; 6:e201303019. [PMID: 24688727 PMCID: PMC3962144 DOI: 10.5936/csbj.201303019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 12/13/2022] Open
Abstract
The influence of mitochondria in human health and disease is a rapidly expanding topic in the scientific literature due to their integral roles in cellular death and survival. Mitochondrial biology and alterations in function were first linked to cancer in the 1920s with the discovery of the Warburg effect. The utilization of aerobic glycolysis in ATP synthesis was the first of many observations of metabolic reprogramming in cancer. Mitochondrial dysfunction in cancer has expanded to include defects in mitochondrial genomics and biogenesis, apoptotic signaling and mitochondrial dynamics. This review will focus on the role of mitochondria and their influence on cancer initiation, progression and treatment in the lung.
Collapse
Affiliation(s)
- Emily R Roberts
- Colorado Mesa University, Biological Sciences Department, 1100 North Ave, Grand Junction, CO 81501, USA
| | - Kelly Jean Thomas
- Colorado Mesa University, Biological Sciences Department, 1100 North Ave, Grand Junction, CO 81501, USA
| |
Collapse
|
46
|
Lu H, Li G, Liu L, Feng L, Wang X, Jin H. Regulation and function of mitophagy in development and cancer. Autophagy 2013; 9:1720-36. [PMID: 24091872 DOI: 10.4161/auto.26550] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Beyond its role in recycling intracellular components nonselectively to sustain survival in response to metabolic stresses, autophagy can also selectively degrade specific cargoes such as damaged or dysfunctional organelles to maintain cellular homeostasis. Mitochondria, known as the power plant of cells, are the critical and dynamic organelles playing a fundamental role in cellular metabolism. Mitophagy, the selective autophagic elimination of mitochondria, has been identified both in yeast and in mammalian cells. Moreover, defects in mitophagy may contribute to a variety of human disorders such as neurodegeneration and myopathies. However, the role of mitophagy in development and cancer remains largely unclear. In this review, we summarize our current knowledge of the regulation and function of mitophagy in development and cancer.
Collapse
Affiliation(s)
- Haiqi Lu
- Laboratory of Cancer Biology; Institute of Clinical Science; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou, Zhejiang China; Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou; Zhejiang China
| | | | | | | | | | | |
Collapse
|
47
|
Stage-stratified analysis of prognostic significance of Bax-interacting factor-1 expression in resected colorectal cancer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:329839. [PMID: 24175288 PMCID: PMC3794616 DOI: 10.1155/2013/329839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/03/2023]
Abstract
Background/Aim. Bax-interacting factor-1 (Bif-1) plays a crucial role in apoptosis and autophagy. The aim of this study was to evaluate Bif-1 protein expression and its prognostic significance in colorectal cancer (CRC). Methods. We analyzed Bif-1 protein expression in 251 resected specimens from patients with CRC by immunohistochemistry using tissue microarray. Results. Low Bif-1 expression was observed in 131 patients (52.2%) and high Bif-1 expression in 120 patients (47.8%). No significant differences were observed in clinicopathological parameters between patients with high and low Bif-1 expression. Kaplan-Meier survival analysis showed no difference in survival between patients with high and low Bif-1 expression. Stratified analysis of Bif-1 according to TNM stage demonstrated that low Bif-1 expression was significantly associated with a poor outcome in patients with stages I and II (P = 0.034). Stratified multivariate analysis demonstrated that low Bif-1 expression was an independent indicator of poor prognosis (hazard ratio, 0.459; 95% confidence interval, 0.285–0.739; P = 0.001). Conclusion. Patients with low levels of Bif-1 expression have shortened survival rates in CRC of stages I and II. This suggests that Bif-1 protein expression may be a useful prognostic marker in early-stage CRC.
Collapse
|
48
|
Vannier C, Pesty A, San-Roman MJ, Schmidt AA. The Bin/amphiphysin/Rvs (BAR) domain protein endophilin B2 interacts with plectin and controls perinuclear cytoskeletal architecture. J Biol Chem 2013; 288:27619-27637. [PMID: 23921385 DOI: 10.1074/jbc.m113.485482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins of the Bin/amphiphysin/Rvs (BAR) domain superfamily are essential in controlling the shape and dynamics of intracellular membranes. Here, we present evidence for the unconventional function of a member of the endophilin family of BAR and Src homology 3 domain-containing proteins, namely endophilin B2, in the perinuclear organization of intermediate filaments. Using mass spectrometry analysis based on capturing endophilin B2 partners in in situ pre-established complexes in cells, we unravel the interaction of endophilin B2 with plectin 1, a variant of the cytoskeleton linker protein plectin as well as with vimentin. Endophilin B2 directly binds the N-terminal region of plectin 1 via Src homology 3-mediated interaction and vimentin indirectly via plectin-mediated interaction. The relevance of these interactions is strengthened by the selective and drastic reorganization of vimentin around nuclei upon overexpression of endophilin B2 and by the extensive colocalization of both proteins in a meshwork of perinuclear filamentous structures. By generating mutants of the endophilin B2 BAR domain, we show that this phenotype requires the BAR-mediated membrane binding activity of endophilin B2. Plectin 1 or endophilin B2 knockdown using RNA interference disturbed the perinuclear organization of vimentin. Altogether, these data suggest that the endophilin B2-plectin 1 complex functions as a membrane-anchoring device organizing and stabilizing the perinuclear network of vimentin filaments. Finally, we present evidence for the involvement of endophilin B2 and plectin 1 in nuclear positioning in individual cells. This points to the potential importance of the endophilin B2-plectin complex in the biological functions depending on nuclear migration and positioning.
Collapse
Affiliation(s)
- Christian Vannier
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Arlette Pesty
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Mabel Jouve San-Roman
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Anne A Schmidt
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France.
| |
Collapse
|
49
|
Otera H, Ishihara N, Mihara K. New insights into the function and regulation of mitochondrial fission. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1256-68. [PMID: 23434681 DOI: 10.1016/j.bbamcr.2013.02.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/18/2022]
Abstract
Mitochondrial morphology changes dynamically by coordinated fusion and fission and cytoskeleton-based transport. Cycles of outer and inner membrane fusion and fission are required for the exchange of damaged mitochondrial genome DNA, proteins, and lipids with those of healthy mitochondria to maintain robust mitochondrial structure and function. These dynamics are crucial for cellular life and death, because they are essential for cellular development and homeostasis, as well as apoptosis. Disruption of these functions leads to cellular dysfunction, resulting in neurologic disorders and metabolic diseases. The cytoplasmic dynamin-related GTPase Drp1 plays a key role in mitochondrial fission, while Mfn1, Mfn2 and Opa1 are involved in fusion reaction. Here, we review current knowledge regarding the regulation and physiologic relevance of Drp1-dependent mitochondrial fission: the initial recruitment and assembly of Drp1 on the mitochondrial fission foci, regulation of Drp1 activity by post-translational modifications, and the role of mitochondrial fission in cell pathophysiology.
Collapse
Affiliation(s)
- Hidenori Otera
- Department of Molecular Biology, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
50
|
Zhan M, Brooks C, Liu F, Sun L, Dong Z. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int 2013; 83:568-81. [PMID: 23325082 PMCID: PMC3612360 DOI: 10.1038/ki.2012.441] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are a class of dynamic organelles that constantly undergo fission and fusion. Mitochondrial dynamics is governed by a complex molecular machinery and finely tuned by regulatory proteins. During cell injury or stress, the dynamics is shifted to fission, resulting in mitochondrial fragmentation, which contributes to mitochondrial damage and consequent cell injury and death. Emerging evidence has suggested a role of mitochondrial fragmentation in the pathogenesis of renal diseases including acute kidney injury and diabetic nephropathy. A better understanding of the regulation of mitochondrial dynamics and its pathogenic changes may unveil novel therapeutic strategies.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | |
Collapse
|