1
|
Li T, Wu Z, Zhang Y, Xu S, Xiang J, Ding L, Teng N. An AP2/ERF member LlERF012 confers thermotolerance via activation of HSF pathway in lily. PLANT, CELL & ENVIRONMENT 2024; 47:4702-4719. [PMID: 39073746 DOI: 10.1111/pce.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Heat stress transcription factors (HSFs) are core factors of plants in response to heat stress (HS), but their regulatory network is complicated and remains elusive in a large part, especially HSFBs. In this study, we reported that the LlERF012-LlHSFA1 module participates in heat stress response (HSR) by directly regulating HSF pathway in lily (Lilium longiflorum). LlHSFB1 was confirmed as a positive regulator in lily thermotolerance and a heat-inducible AP2/ERF member LlERF012 (Ethylene Response Factor 012) was further identified to be a direct trans-activator of LlHSFB1. Overexpression of LlERF012 elevated the thermotolerance of transgenic Arabidopsis and lily, but silencing LlERF012 reduced thermotolerance in lily. Further analysis showed LlERF012 interacted with LlHSFA1, which led to enhanced transactivation activity and DNA-binding capability of LlERF012. In addition, LlERF012 also directly activated the expression of LlHSFA1 by binding its promoter. As expected, we found that LlERF012 bound the promoters of LlHSFA2, LlHSFA3A, and LlHSFA3B to stimulate their expression, and LlERF012-LlHSFA1 interaction enhanced these activation effects. Overall, our data suggested that LlERF012 was a key factor for lily thermotolerance and the LlERF012-LlHSFA1 interaction synergistically regulated the activity of the HSF pathway including the class A and B members, which might be of great significance for coordinating the functions of different HSFs.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Yinyi Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Jun Xiang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Liping Ding
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Jiangsu Graduate Workstation/Lily Science and Technology Backyard in Qixia of Jiangsu, Nanjing, China
| |
Collapse
|
2
|
Rosenkranz RE, Vraggalas S, Keller M, Sankaranarayanan S, McNicoll F, Löchli K, Bublak D, Benhamed M, Crespi M, Berberich T, Bazakos C, Feldbrügge M, Schleiff E, Müller-McNicoll M, Zarnack K, Fragkostefanakis S. A plant-specific clade of serine/arginine-rich proteins regulates RNA splicing homeostasis and thermotolerance in tomato. Nucleic Acids Res 2024; 52:11466-11480. [PMID: 39180404 PMCID: PMC11514476 DOI: 10.1093/nar/gkae730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Global warming poses a threat for crops, therefore, the identification of thermotolerance mechanisms is a priority. In plants, the core factors that regulate transcription under heat stress (HS) are well described and include several HS transcription factors (HSFs). Despite the relevance of alternative splicing in HS response and thermotolerance, the core regulators of HS-sensitive alternative splicing have not been identified. In tomato, alternative splicing of HSFA2 is important for acclimation to HS. Here, we show that several members of the serine/arginine-rich family of splicing factors (SRSFs) suppress HSFA2 intron splicing. Individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) combined with RNA-Seq revealed that RS2Z35 and RS2Z36, which make up a plant-specific clade of SR proteins, not only regulate HSFA2 but approximately 50% of RNAs that undergo HS-sensitive alternative splicing, with preferential binding to purine-rich RNA motifs. Single and double CRISPR rs2z mutant lines show a dysregulation of splicing and exhibit lower basal and acquired thermotolerance compared to wild type plants. Our results suggest that RS2Z35 and RS2Z36 have a central role in mitigation of the negative effects of HS on RNA splicing homeostasis, and their emergence might have contributed to the increased capacity of plants to acclimate to high temperatures.
Collapse
Affiliation(s)
- Remus R E Rosenkranz
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stavros Vraggalas
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Mario Keller
- Buchmann Institute of Molecular Life Sciences & Institute of Molecular Biosciences, Computational RNA Biology, Goethe University Frankfurt, Frankfurt, Germany
| | | | - François McNicoll
- Institute of Molecular Biosciences, RNA Regulation in Higher Eukaryotes, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniela Bublak
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay-CNRS, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay-CNRS, Orsay, France
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Frankfurt, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute of Plant Breeding and Genetic Resources, ELGO DEMETER, Thessaloniki, Greece
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Enrico Schleiff
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Institute of Molecular Biosciences, RNA Regulation in Higher Eukaryotes, Goethe University Frankfurt, Frankfurt, Germany
- Max-Planck Institute for Biophysics, Frankfurt, Germany
| | - Kathi Zarnack
- Buchmann Institute of Molecular Life Sciences & Institute of Molecular Biosciences, Computational RNA Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Ma G, Liu Z, Song S, Gao J, Liao S, Cao S, Xie Y, Cao L, Hu L, Jing H, Chen L. The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39422287 DOI: 10.1111/jipb.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Temperature sensitivity and tolerance play a key role in plant survival and production. Perennial ryegrass (Lolium perenne L.), widely cultivated in cool-season for forage supply and turfgrass, is extremely susceptible to high temperatures, therefore serving as an excellent grass for dissecting the genomic and genetic basis of high-temperature adaptation. In this study, expression analysis revealed that LpHsfA2, an important gene associated with high-temperature tolerance in perennial ryegrass, is rapidly and substantially induced under heat stress. Additionally, heat-tolerant varieties consistently display elevated expression levels of LpHsfA2 compared with heat-sensitive ones. Comparative haplotype analysis of the LpHsfA2 promoter indicated an uneven distribution of two haplotypes (HsfA2Hap1 and HsfA2Hap2) across varieties with differing heat tolerance. Specifically, the HsfA2Hap1 allele is predominantly present in heat-tolerant varieties, while the HsfA2Hap2 allele exhibits the opposite pattern. Overexpression of LpHsfA2 confers enhanced thermotolerance, whereas silencing of LpHsfA2 compromises heat tolerance. Furthermore, LpHsfA2 orchestrates its protective effects by directly binding to the promoters of LpHSP18.2 and LpAPX1 to activate their expression, preventing the non-specific misfolding of intracellular protein and the accumulation of reactive oxygen species in cells. Additionally, LpHsfA4 and LpHsfA5 were shown to engage directly with the promoter of LpHsfA2, upregulating its expression as well as the expression of LpHSP18.2 and LpAPX1, thus contributing to enhanced heat tolerance. Markedly, LpHsfA2 possesses autoregulatory ability by directly binding to its own promoter to modulate the self-transcription. Based on these findings, we propose a model for modulating the thermotolerance of perennial ryegrass by precisely regulating the expression of LpHsfA2. Collectively, these findings provide a scientific basis for the development of thermotolerant perennial ryegrass cultivars.
Collapse
Affiliation(s)
- Guangjing Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Liu
- Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China
| | - Shurui Song
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujie Liao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shilong Cao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Haichun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| |
Collapse
|
4
|
Pratx L, Crawford T, Bäurle I. Mechanisms of heat stress-induced transcriptional memory. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102590. [PMID: 38968911 DOI: 10.1016/j.pbi.2024.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
Transcriptional memory allows organisms to store information about transcriptional reprogramming in response to a stimulus. In plants, this often involves the response to an abiotic stress, which in nature may be cyclical or recurring. Such transcriptional memory confers sustained induction or enhanced re-activation in response to a recurrent stimulus, which may increase chances of survival and fitness. Heat stress (HS) has emerged as an excellent model system to study transcriptional memory in plants, and much progress has been made in elucidating the molecular mechanisms underlying this phenomenon. Here, we review how histone turnover and transcriptional co-regulator complexes contribute to reprogramming of transcriptional responses.
Collapse
Affiliation(s)
- Loris Pratx
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Tim Crawford
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Isabel Bäurle
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany.
| |
Collapse
|
5
|
Ma J, Wang Y, Hong Y, Zhao M, Ma X, Liu J, Chai W, Zhao W, Sun L, Yang R, Wang S, Huang H. SlWRKY55 coordinately acts with SlVQ11 to enhance tomato thermotolerance by activating SlHsfA2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2904-2918. [PMID: 39101617 DOI: 10.1111/tpj.16960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
High temperature (HT) severely restricts plant growth, development, and productivity. Plants have evolved a set of mechanisms to cope with HT, including the regulation of heat stress transcription factors (Hsfs) and heat shock proteins (Hsps). However, it is not clear how the transcriptional and translational levels of Hsfs and Hsps are controlled in tomato. Here, we reported that the HT-induced transcription factor SlWRKY55 recruited SlVQ11 to coordinately regulate defense against HT. SlWRKY55 directly bound to the promoter of SlHsfA2 and promoted its expression, which was increased by SlVQ11. Moreover, both SlWRKY55 and SlVQ11 physically interacted with SlHsfA2 to enhance the transcriptional activity of SlHsfA2. Thus, our results revealed a molecular mechanism that the SlWRKY55/SlVQ11-SlHsfA2 cascade enhanced thermotolerance and provided potential target genes for improving the adaptability of crops to HT.
Collapse
Affiliation(s)
- Jilin Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yingying Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yihan Hong
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Mingjie Zhao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuechun Ma
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Jiapeng Liu
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Weizhe Chai
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenchao Zhao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
6
|
Wu Z, Li T, Ding L, Wang C, Teng R, Xu S, Cao X, Teng N. Lily LlHSFC2 coordinates with HSFAs to balance heat stress response and improve thermotolerance. THE NEW PHYTOLOGIST 2024; 241:2124-2142. [PMID: 38185817 DOI: 10.1111/nph.19507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
Heat stress transcription factors (HSFs) are core regulators of plant heat stress response. Much research has focused on class A and B HSFs, leaving those of class C relatively understudied. Here, we reported a lily (Lilium longiflorum) heat-inducible HSFC2 homology involved in thermotolerance. LlHSFC2 was located in the nucleus and cytoplasm and exhibited a repression ability by binding heat stress element. Overexpression of LlHSFC2 in Arabidopsis, tobacco (Nicotiana benthamiana), and lily, all increased the thermotolerance. Conversely, silencing of LlHSFC2 in lily reduced its thermotolerance. LlHSFC2 could interact with itself, or interact with LlHSFA1, LlHSFA2, LlHSFA3A, and LlHSFA3B of lily, AtHSFA1e and AtHSFA2 of Arabidopsis, and NbHSFA2 of tobacco. LlHSFC2 interacted with HSFAs to accelerate their transactivation ability and act as a transcriptional coactivator. Notably, compared with the separate LlHSFA3A overexpression, co-overexpression of LlHSFC2/LlHSFA3A further enhanced thermotolerance of transgenic plants. In addition, after suffering HS, the homologous interaction of LlHSFC2 was repressed, but its heterologous interaction with the heat-inducible HSFAs was promoted, enabling it to exert its co-activation effect for thermotolerance establishment and maintenance. Taken together, we identified that LlHSFC2 plays an active role in the general balance and maintenance of heat stress response by cooperating with HSFAs, and provided an important candidate for the enhanced thermotolerance breeding of crops and horticulture plants.
Collapse
Affiliation(s)
- Ze Wu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ting Li
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Liping Ding
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Chengpeng Wang
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Renda Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Sujuan Xu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Xing Cao
- College of Architecture, Yantai University, Yantai, 264005, China
| | - Nianjun Teng
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| |
Collapse
|
7
|
Yang Y, Yin J, Zhu L, Xu L, Wu W, Lu Y, Chen J, Shi J, Hao Z. Genome-Wide Analysis of the Liriodendron chinense Hsf Gene Family under Abiotic Stress and Characterization of the LcHsfA2a Gene. Int J Mol Sci 2024; 25:2733. [PMID: 38473982 DOI: 10.3390/ijms25052733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Heat shock factors (Hsfs) play a crucial role in plant defense processes. However, the distribution and functional characteristics of Hsf genes in the relict plant Liriodendron chinense are still unclear. In this study, a total of 19 LcHsfs were identified and divided into three separate subgroups, comprising 10 LcHsfA, 7 LcHsfB, and 2 LcHsfC genes, respectively, based on their phylogenetic tree and the presence/absence of conserved protein domains. Whole-genome duplication and segmental duplication led to an expansion of the LhHsf gene family. The promoters of LcHsf genes are enriched for different types of cis-acting elements, including hormone responsive and abiotic-stress-responsive elements. The expression of LcHsfA3, LcHsfA4b, LcHsfA5, LcHsfB1b, and LcHsfB2b increased significantly as a result of both cold and drought treatments. LcHsfA2a, LcHsfA2b, and LcHsfA7 act as important genes whose expression levels correlate strongly with the expression of the LcHsp70, LcHsp110, and LcAPX genes under heat stress. In addition, we found that transiently transformed 35S:LcHsfA2a seedlings showed significantly lower levels of hydrogen peroxide (H2O2) after heat stress and showed a stronger thermotolerance. This study sheds light on the possible functions of LcHsf genes under abiotic stress and identifies potentially useful genes to target for molecular breeding, in order to develop more stress-resistant varieties.
Collapse
Affiliation(s)
- Yun Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jianchao Yin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Weihuang Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Lefa P, Samiotaki M, Farmaki T. Proteome Analysis of the ROF-FKBP Mutants Reveals Functional Relations among Heat Stress Responses, Plant Development, and Protein Quality Control during Heat Acclimation in Arabidopsis thaliana. ACS OMEGA 2024; 9:2391-2408. [PMID: 38250364 PMCID: PMC10795062 DOI: 10.1021/acsomega.3c06773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
In the present study, a differential screening following heat stress acclimation was performed in Arabidopsis thaliana WT and ROF-FKBP mutated plants using mass spectrometry, and the results were used to understand and analyze the effect of the ROF PPIases during thermotolerance acquisition in plants. Our data highlight the central role of these two PPIases in heat stress and point to their direct or indirect effect on other proteins participating in cellular functions such as protein folding and quality control, cell division, photosynthesis, and other metabolic and signaling processes. Specifically, the heat stress response, protein folding, and protein ER processing pathways are enhanced following a 37 °C acclimation period independent of the mutation state. However, at 37 °C, and in the double-mutated rof1-/2- plants, a higher accumulation of proteins belonging to the above pathways is observed compared with all other conditions (WT, single mutants, control, and heat-acclimated plants). Furthermore, the proteasomal pathway, involving the common member of both the protasomal and the lysosomal degradation pathway, CDC48, is over-represented in the extracts of both the untreated and heat-stressed rof1-/2- mutants compared with the other extracts. In contrast, in the single rof1- mutation, the heat acclimation pathway is suppressed at 37 °C when compared to the WT. Protein accumulation related to the heat stress and the protein quality control pathways points to a differential but also synergistic role of the two proteins. Protein complexes of other biochemical and developmental mechanisms, such as the light-harvesting complex of the photosynthetic pathway and the phosphoinositide binding proteins involved in membrane-trafficking events during cell plate formation and cytokinesis (patellin 1, 2, and 4), are negatively regulated in the rof1-/2- mutant. Our results suggest that ROF1 and ROF2 FKBPs regulate stress response, and developmental and metabolic pathways via a complex feedback mechanism involving partners that ensure protein quality control and plant survival during heat stress.
Collapse
Affiliation(s)
- Paraskevi Lefa
- Institute
of Applied Biosciences, Center for Research and Technology—Hellas, Sixth km Charilaou-Thermi rd., 57001 Thermi Thessaloniki, Greece
| | - Martina Samiotaki
- Biomedical
Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece
| | - Theodora Farmaki
- Institute
of Applied Biosciences, Center for Research and Technology—Hellas, Sixth km Charilaou-Thermi rd., 57001 Thermi Thessaloniki, Greece
| |
Collapse
|
9
|
Ma Z, Zhao B, Zhang H, Duan S, Liu Z, Guo X, Meng X, Li G. Upregulation of Wheat Heat Shock Transcription Factor TaHsfC3-4 by ABA Contributes to Drought Tolerance. Int J Mol Sci 2024; 25:977. [PMID: 38256051 PMCID: PMC10816066 DOI: 10.3390/ijms25020977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Drought stress can seriously affect the yield and quality of wheat (Triticum aestivum). So far, although few wheat heat shock transcription factors (Hsfs) have been found to be involved in the stress response, the biological functions of them, especially the members of the HsfC (heat shock transcription factor C) subclass, remain largely unknown. Here, we identified a class C encoding gene, TaHsfC3-4, based on our previous omics data and analyzed its biological function in transgenic plants. TaHsfC3-4 encodes a protein containing 274 amino acids and shows the basic characteristics of the HsfC class. Gene expression profiles revealed that TaHsfC3-4 was constitutively expressed in many tissues of wheat and was induced during seed maturation. TaHsfC3-4 could be upregulated by PEG and abscisic acid (ABA), suggesting that this Hsf may be involved in the regulation pathway depending on ABA in drought resistance. Further results represented that TaHsfC3-4 was localized in the nucleus but had no transcriptional activation activity. Notably, overexpression of TaHsfC3-4 in Arabidopsis thaliana pyr1pyl1pyl2pyl4 (pyr1pyl124) quadruple mutant plants complemented the ABA-hyposensitive phenotypes of the quadruple mutant including cotyledon greening, root elongation, seedling growth, and increased tolerance to drought, indicating positive roles of TaHsfC3-4 in the ABA signaling pathway and drought tolerance. Furthermore, we identified TaHsfA2-11 as a TaHsfC3-4-interacting protein by yeast two-hybrid (Y2H) screening. The experimental data show that TaHsfC3-4 can indeed interact with TaHsfA2-11 in vitro and in vivo. Moreover, transgenic Arabidopsis TaHsfA2-11 overexpression lines exhibited enhanced drought tolerance, too. In summary, our study confirmed the role of TaHsfC3-4 in response to drought stress and provided a target locus for marker-assisted selection breeding to improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Baihui Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (Z.M.); (B.Z.); (H.Z.); (S.D.); (Z.L.); (X.G.)
| |
Collapse
|
10
|
Seth P, Sebastian J. Plants and global warming: challenges and strategies for a warming world. PLANT CELL REPORTS 2024; 43:27. [PMID: 38163826 DOI: 10.1007/s00299-023-03083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
KEY MESSAGE In this review, we made an attempt to create a holistic picture of plant response to a rising temperature environment and its impact by covering all aspects from temperature perception to thermotolerance. This comprehensive account describing the molecular mechanisms orchestrating these responses and potential mitigation strategies will be helpful for understanding the impact of global warming on plant life. Organisms need to constantly recalibrate development and physiology in response to changes in their environment. Climate change-associated global warming is amplifying the intensity and periodicity of these changes. Being sessile, plants are particularly vulnerable to variations happening around them. These changes can cause structural, metabolomic, and physiological perturbations, leading to alterations in the growth program and in extreme cases, plant death. In general, plants have a remarkable ability to respond to these challenges, supported by an elaborate mechanism to sense and respond to external changes. Once perceived, plants integrate these signals into the growth program so that their development and physiology can be modulated befittingly. This multifaceted signaling network, which helps plants to establish acclimation and survival responses enabled their extensive geographical distribution. Temperature is one of the key environmental variables that affect all aspects of plant life. Over the years, our knowledge of how plants perceive temperature and how they respond to heat stress has improved significantly. However, a comprehensive mechanistic understanding of the process still largely elusive. This review explores how an increase in the global surface temperature detrimentally affects plant survival and productivity and discusses current understanding of plant responses to high temperature (HT) and underlying mechanisms. We also highlighted potential resilience attributes that can be utilized to mitigate the impact of global warming.
Collapse
Affiliation(s)
- Pratyay Seth
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India
| | - Jose Sebastian
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India.
| |
Collapse
|
11
|
Wang J, Chen C, Wu C, Meng Q, Zhuang K, Ma N. SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108106. [PMID: 37879127 DOI: 10.1016/j.plaphy.2023.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
High-temperature stress has become a major abiotic factor that dramatically limits plant growth and crop yield. Plants have evolved complex mechanisms to cope with high-temperature stress, but the factors that regulate plant thermotolerance remain to be discovered. Here, a high temperature-induced MYB transcription factor SlMYB41 was cloned from tomato (Solanum lycopersicum). Two individual SlMYB41-RNA interference (RNAi) lines (MR) and one CRISPR/Cas9 mediated myb41 mutant (MC) were obtained to investigate the function of SlMYB41 in tomato thermotolerance. Under high-temperature stress, we found that the MR and MC lines showed more wilting than the wild type (WT), with more ion leakage, more MDA accumulation, lower contents of osmotic adjustment substances, and more accumulation of reactive oxygen species (ROS) which was resulted from lower antioxidative enzyme activities. In addition, the photosynthetic capacity and complex of MR and MC lines were damaged more seriously than WT plants under high-temperature stress, mainly manifested in lower photosynthetic rate and Fv/Fm. Moreover, heat stress-related genes, such as SlHSP17.6, SlHSP17.7, and SlHSP90.3 were downregulated in MR and MC lines. Importantly, Y1H and LUC analysis indicated that SlMYB41 can directly activate the transcription of SlHSP90.3. Together, our study suggest that SlMYB41 positively regulates tomato thermotolerance by activating the expression of SlHSP90.3.
Collapse
Affiliation(s)
- Jieyu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chong Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Chuanzhao Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
12
|
Pardal R, Scheres B, Heidstra R. SCHIZORIZA domain-function analysis identifies requirements for its specific role in cell fate segregation. PLANT PHYSIOLOGY 2023; 193:1866-1879. [PMID: 37584278 PMCID: PMC10602604 DOI: 10.1093/plphys/kiad456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Plant development continues postembryonically with a lifelong ability to form new tissues and organs. Asymmetric cell division, coupled with fate segregation, is essential to create cellular diversity during tissue and organ formation. Arabidopsis (Arabidopsis thaliana) plants harboring mutations in the SCHIZORIZA (SCZ) gene display fate segregation defects in their roots, resulting in the presence of an additional layer of endodermis, production of root hairs from subepidermal tissue, and misexpression of several tissue identity markers. Some of these defects are observed in tissues where SCZ is not expressed, indicating that part of the SCZ function is nonautonomous. As a class B HEAT-SHOCK TRANSCRIPTION FACTOR (HSFB), the SCZ protein contains several conserved domains and motifs. However, which domain(s) discriminates SCZ from its family members to obtain a role in development remains unknown. Here, we investigate how each domain contributes to SCZ function in Arabidopsis root patterning by generating altered versions of SCZ by domain swapping and mutation. We show that the SCZ DNA-binding domain is the main factor for its developmental function, and that SCZ likely acts as a nonmotile transcriptional repressor. Our results demonstrate how members of the HSF family can evolve toward functions beyond stress response.
Collapse
Affiliation(s)
- Renan Pardal
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
13
|
Grimaldi-Olivas JC, Morales-Merida BE, Cruz-Mendívil A, Villicaña C, Heredia JB, López-Meyer M, León-Chan R, Lightbourn-Rojas LA, León-Félix J. Transcriptomic analysis of bell pepper (Capsicum annuum L.) revealing key mechanisms in response to low temperature stress. Mol Biol Rep 2023; 50:8431-8444. [PMID: 37624559 DOI: 10.1007/s11033-023-08744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Bell pepper (Capsicum annuum L.) is one of the most economically and nutritionally important vegetables worldwide. However, its production can be affected by various abiotic stresses, such as low temperature. This causes various biochemical, morphological and molecular changes affecting membrane lipid composition, photosynthetic pigments, accumulation of free sugars and proline, secondary metabolism, as well as a change in gene expression. However, the mechanism of molecular response to this type of stress has not yet been elucidated. METHODS AND RESULTS To further investigate the response mechanism to this abiotic stress, we performed an RNA-Seq transcriptomic analysis to obtain the transcriptomic profile of Capsicum annuum exposed to low temperature stress, where libraries were constructed from reads of control and low temperature stress samples, varying on average per treatment from 22,952,190.5-27,305,327 paired reads ranging in size from 30 to 150 bp. The number of differentially expressed genes (DEGs) for each treatment was 388, 417 and 664 at T-17 h, T-22 h and T-41 h, respectively, identifying 58 up-regulated genes and 169 down-regulated genes shared among the three exposure times. Likewise, 23 DEGs encoding TFs were identified at T-17 h, 30 DEGs at T-22 h and 47 DEGs at T-42 h, respectively. GO analysis revealed that DEGs were involved in catalytic activity, response to temperature stimulus, oxidoreductase activity, stress response, phosphate ion transport and response to abscisic acid. KEGG pathway analysis identified that DEGs were related to flavonoid biosynthesis, alkaloid biosynthesis and plant circadian rhythm pathways in the case of up-regulated genes, while in the case of down-regulated genes, they pertained to MAPK signaling and plant hormone signal transduction pathways, present at all the three time points of low temperature exposure. Validation of the transcriptomic method was performed by evaluation of five DEGs by quantitative polymerase chain reaction (q-PCR). CONCLUSIONS The data obtained in the present study provide new insights into the transcriptome profiles of Capsicum annuum stem in response to low temperature stress. The data generated may be useful for the identification of key candidate genes and molecular mechanisms involved in response to this type of stress.
Collapse
Affiliation(s)
- Jesús Christian Grimaldi-Olivas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - Brandon Estefano Morales-Merida
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - Abraham Cruz-Mendívil
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), CONAHCYT-Instituto Politécnico Nacional (IPN), Unidad Sinaloa. Blvd. Juan de Dios Bátiz Paredes #250 Col. San Joachin, C.P. 81049, Guasave, Sinaloa, Mexico
| | - Claudia Villicaña
- Laboratorio de Biología Molecular y Genómica Funcional, CONAHCYT-Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5, Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - J Basilio Heredia
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico
| | - Melina López-Meyer
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Instituto Politécnico Nacional (IPN), Unidad Sinaloa. Blvd. Juan de Dios Bátiz Paredes #250 Col. San Joachin, C.P. 81049, Guasave, Sinaloa, Mexico
| | - Rubén León-Chan
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A. C., C.P. 33981, Ciudad Jiménez, Chihuahua, Mexico
| | - Luis Alberto Lightbourn-Rojas
- Laboratorio de Genética, Instituto de Investigación Lightbourn, A. C., C.P. 33981, Ciudad Jiménez, Chihuahua, Mexico
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo (CIAD) A.C., Carretera Culiacán-Eldorado Km 5.5 Col. Campo el Diez, C.P. 80110, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
14
|
Li L, Ju Y, Zhang C, Tong B, Lu Y, Xie X, Li W. Genome-wide analysis of the heat shock transcription factor family reveals saline-alkali stress responses in Xanthoceras sorbifolium. PeerJ 2023; 11:e15929. [PMID: 37753174 PMCID: PMC10519200 DOI: 10.7717/peerj.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/30/2023] [Indexed: 09/28/2023] Open
Abstract
The heat shock transcription factor (HSF) family is involved in regulating growth, development, and abiotic stress. The characteristics and biological functions of HSF family member in X. sorbifolium, an important oil and ornamental plant, have never been reported. In this study, 21 XsHSF genes were identified from the genome of X. sorbifolium and named XsHSF1-XsHSF21 based on their chromosomal positions. Those genes were divided into three groups, A, B, and C, containing 12, one, and eight genes, respectively. Among them, 20 XsHSF genes are located on 11 chromosomes. Protein structure analysis suggested that XsHSF proteins were conserved, displaying typical DNA binding domains (DBD) and oligomerization domains (OD). Moreover, HSF proteins within the same group contain specific motifs, such as motif 5 in the HSFC group. All XsHSF genes have one intron in the CDS region, except XsHSF1 which has two introns. Promoter analysis revealed that in addition to defense and stress responsiveness elements, some promoters also contained a MYB binding site and elements involved in multiple hormones responsiveness and anaerobic induction. Duplication analysis revealed that XsHSF1 and XsHSF4 genes were segmentally duplicated while XsHSF2, XsHSF9, and XsHSF13 genes might have arisen from transposition. Expression pattern analysis of leaves and roots following salt-alkali treatment using qRT-PCR indicated that five XsHSF genes were upregulated and one XsHSF gene was downregulated in leaves upon NaCl treatment suggesting these genes may play important roles in salt response. Additionally, the expression levels of most XsHSFs were decreased in leaves and roots following alkali-induced stress, indicating that those XsHSFs may function as negative regulators in alkali tolerance. MicroRNA target site prediction indicated that 16 of the XsHSF genes may be regulated by multiple microRNAs, for example XsHSF2 might be regulated by miR156, miR394, miR395, miR408, miR7129, and miR854. And miR164 may effect the mRNA levels of XsHSF3 and XsHSF17, XsHSF9 gene may be regulated by miR172. The expression trends of miR172 and miR164 in leaves and roots on salt treatments were opposite to the expression trend of XsHSF9 and XsHSF3 genes, respectively. Promoter analysis showed that XsHSFs might be involved in light and hormone responses, plant development, as well as abiotic stress responses. Our results thus provide an overview of the HSF family in X. sorbifolium and lay a foundation for future functional studies to reveal its roles in saline-alkali response.
Collapse
Affiliation(s)
- Lulu Li
- Qingdao Agricultural University, Qingdao, China
| | - Yiqian Ju
- Qingdao Agricultural University, Qingdao, China
| | | | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Li
- Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Wen J, Qin Z, Sun L, Zhang Y, Wang D, Peng H, Yao Y, Hu Z, Ni Z, Sun Q, Xin M. Alternative splicing of TaHSFA6e modulates heat shock protein-mediated translational regulation in response to heat stress in wheat. THE NEW PHYTOLOGIST 2023; 239:2235-2247. [PMID: 37403528 DOI: 10.1111/nph.19100] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
Heat stress greatly threatens crop production. Plants have evolved multiple adaptive mechanisms, including alternative splicing, that allow them to withstand this stress. However, how alternative splicing contributes to heat stress responses in wheat (Triticum aestivum) is unclear. We reveal that the heat shock transcription factor gene TaHSFA6e is alternatively spliced in response to heat stress. TaHSFA6e generates two major functional transcripts: TaHSFA6e-II and TaHSFA6e-III. TaHSFA6e-III enhances the transcriptional activity of three downstream heat shock protein 70 (TaHSP70) genes to a greater extent than does TaHSFA6e-II. Further investigation reveals that the enhanced transcriptional activity of TaHSFA6e-III is due to a 14-amino acid peptide at its C-terminus, which arises from alternative splicing and is predicted to form an amphipathic helix. Results show that knockout of TaHSFA6e or TaHSP70s increases heat sensitivity in wheat. Moreover, TaHSP70s are localized in stress granule following exposure to heat stress and are involved in regulating stress granule disassembly and translation re-initiation upon stress relief. Polysome profiling analysis confirms that the translational efficiency of stress granule stored mRNAs is lower at the recovery stage in Tahsp70s mutants than in the wild types. Our finding provides insight into the molecular mechanisms by which alternative splicing improves the thermotolerance in wheat.
Collapse
Affiliation(s)
- Jingjing Wen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhen Qin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Lv Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yumei Zhang
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongli Wang
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Kappel C, Friedrich T, Oberkofler V, Jiang L, Crawford T, Lenhard M, Bäurle I. Genomic and epigenomic determinants of heat stress-induced transcriptional memory in Arabidopsis. Genome Biol 2023; 24:129. [PMID: 37254211 DOI: 10.1186/s13059-023-02970-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Transcriptional regulation is a key aspect of environmental stress responses. Heat stress induces transcriptional memory, i.e., sustained induction or enhanced re-induction of transcription, that allows plants to respond more efficiently to a recurrent HS. In light of more frequent temperature extremes due to climate change, improving heat tolerance in crop plants is an important breeding goal. However, not all heat stress-inducible genes show transcriptional memory, and it is unclear what distinguishes memory from non-memory genes. To address this issue and understand the genome and epigenome architecture of transcriptional memory after heat stress, we identify the global target genes of two key memory heat shock transcription factors, HSFA2 and HSFA3, using time course ChIP-seq. RESULTS HSFA2 and HSFA3 show near identical binding patterns. In vitro and in vivo binding strength is highly correlated, indicating the importance of DNA sequence elements. In particular, genes with transcriptional memory are strongly enriched for a tripartite heat shock element, and are hallmarked by several features: low expression levels in the absence of heat stress, accessible chromatin environment, and heat stress-induced enrichment of H3K4 trimethylation. These results are confirmed by an orthogonal transcriptomic data set using both de novo clustering and an established definition of memory genes. CONCLUSIONS Our findings provide an integrated view of HSF-dependent transcriptional memory and shed light on its sequence and chromatin determinants, enabling the prediction and engineering of genes with transcriptional memory behavior.
Collapse
Affiliation(s)
- Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Thomas Friedrich
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Vicky Oberkofler
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Li Jiang
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Tim Crawford
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|
17
|
Zhang X, Li L, He Y, Lang Z, Zhao Y, Tao H, Li Q, Hong G. The CsHSFA-CsJAZ6 module-mediated high temperature regulates flavonoid metabolism in Camellia sinensis. PLANT, CELL & ENVIRONMENT 2023. [PMID: 37190917 DOI: 10.1111/pce.14610] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023]
Abstract
High temperatures (HTs) seriously affect the yield and quality of tea. Catechins, derived from the flavonoid pathway, are characteristic compounds that contribute to the flavour of tea leaves. In this study, we first showed that the flavonoid content of tea leaves was significantly reduced under HT conditions via metabolic profiles; and then demonstrated that two transcription factors, CsHSFA1b and CsHSFA2 were activated by HT and negatively regulate flavonoid biosynthesis during HT treatment. Jasmonate (JA), a defensive hormone, plays a key role in plant adaption to environmental stress. However, little has been reported on its involvement in HT response in tea. Herein, we demonstrated that CsHSFA1b and CsHSFA2 activate CsJAZ6 expression through directly binding to heat shock elements in its promoter, and thereby repress the JA pathway. Most secondary metabolites are regulated by JA, including catechin in tea. Our study reported that CsJAZ6 directly interacts with CsEGL3 and CsTTG1 and thereby reduces catechin accumulation. From this, we proposed a CsHSFA-CsJAZ6-mediated HT regulation model of catechin biosynthesis. We also determined that negative regulation of the JA pathway by CsHSFAs and its homologues is conserved in Arabidopsis. These findings broaden the applicability of the regulation of JAZ by HSF transcription factors and further suggest the JA pathway as a valuable candidate for HT-resistant breeding and cultivation.
Collapse
Affiliation(s)
- Xueying Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Linying Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqing He
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhuoliang Lang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Han Tao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingsheng Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Gaojie Hong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
18
|
Qu R, Wang S, Wang X, Peng J, Guo J, Cui G, Chen M, Mu J, Lai C, Huang L, Wang S, Shen Y. Genome-Wide Characterization and Expression of the Hsf Gene Family in Salvia miltiorrhiza (Danshen) and the Potential Thermotolerance of SmHsf1 and SmHsf7 in Yeast. Int J Mol Sci 2023; 24:8461. [PMID: 37239808 PMCID: PMC10218652 DOI: 10.3390/ijms24108461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Salvia miltiorrhiza Bunge (Danshen) is a traditional Chinese herb with significant medicinal value. The yield and quality of Danshen are greatly affected by climatic conditions, in particular high temperatures. Heat shock factors (Hsfs) play important regulatory roles in plant response to heat and other environmental stresses. However, little is currently known about the role played by the Hsf gene family in S. miltiorrhiza. Here, we identified 35 SmHsf genes and classified them into three major groups: SmHsfA (n = 22), SmHsfB (n = 11), and SmHsfC (n = 2) using phylogenetic analysis. The gene structure and protein motifs were relatively conserved within subgroups but diverged among the different groups. The expansion of the SmHsf gene family was mainly driven by whole-genome/segmental and dispersed gene duplications. The expression profile of SmHsfs in four distinct organs revealed its members (23/35) are predominantly expressed in the root. The expression of a large number of SmHsfs was regulated by drought, ultraviolet, heat and exogenous hormones. Notably, the SmHsf1 and SmHsf7 genes in SmHsfB2 were the most responsive to heat and are conserved between dicots and monocots. Finally, heterologous expression analysis showed that SmHsf1 and SmHsf7 enhance thermotolerance in yeast. Our results provide a solid foundation for further functional investigation of SmHsfs in Danshen plants as a response to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
19
|
Li M, Zhang R, Zhou J, Du J, Li X, Zhang Y, Chen Q, Wang Y, Lin Y, Zhang Y, He W, Wang X, Xiong A, Luo Y, Tang H. Comprehensive analysis of HSF genes from celery ( Apium graveolens L.) and functional characterization of AgHSFa6-1 in response to heat stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1132307. [PMID: 37223803 PMCID: PMC10202177 DOI: 10.3389/fpls.2023.1132307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
High temperature stress is regarded as one of the significant abiotic stresses affecting the composition and distribution of natural habitats and the productivity of agriculturally significant plants worldwide. The HSF family is one of the most important transcription factors (TFs) families in plants and capable of responding rapidly to heat and other abiotic stresses. In this study, 29 AgHSFs were identified in celery and classified into three classes (A, B, and C) and 14 subgroups. The gene structures of AgHSFs in same subgroups were conserved, whereas in different classes were varied. AgHSF proteins were predicted to be involved in multiple biological processes by interacting with other proteins. Expression analysis revealed that AgHSF genes play a significant role in response to heat stress. Subsequently, AgHSFa6-1, which was significantly induced by high temperature, was selected for functional validation. AgHSFa6-1 was identified as a nuclear protein, and can upregulate the expression of certain downstream genes (HSP98.7, HSP70-1, BOB1, CPN60B, ADH2, APX1, GOLS1) in response to high-temperature treatment. Overexpression of AgHSFa6-1 in yeast and Arabidopsis displayed higher thermotolerance, both morphologically and physiologically. In response to heat stress, the transgenic plants produced considerably more proline, solute protein, antioxidant enzymes, and less MDA than wild-type (WT) plants. Overall, this study revealed that AgHSF family members perform a key role in response to high temperature, and AgHSFa6-1 acts as a positive regulator by augmenting the ROS-scavenging system to maintain membrane integrity, reducing stomatal apertures to control water loss, and upregulating the expression level of heat-stress sensitive genes to improve celery thermotolerance.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Ran Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jin Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Jiageng Du
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyan Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| | - Aisheng Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Long Y, Qin Q, Zhang J, Zhu Z, Liu Y, Gu L, Jiang H, Si W. Transcriptomic and weighted gene co-expression network analysis of tropic and temperate maize inbred lines recovering from heat stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111538. [PMID: 36423743 DOI: 10.1016/j.plantsci.2022.111538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Heat stress (HS) causes imbalance of cellular homeostasis, growth impairment and extensively yield loss in crop production. In the present study, the tropic maize inbred CIMBL55 showed more thermotolerance than the maize temperate inbred B73, with less leaf damage rate and ROS accumulation. Transcriptome profiling of CIMBL55 and B73 upon (exposing at 45 ℃ for 0, 1, and 6 h) and post (recovering at 28 ℃ for 1 and 6 h) HS were further assessed and a total of 20204 DEGs were identified. Functional annotation revealed that HS activated unfolded protein response in endoplasmic reticulum in both two inbreds. Moreover, in CIMBL55, far more primary and secondary metabolism pathways were transcriptional altered. Afterwards, weighted gene co-expression analysis grouped all expressed genes into eighteen co-expressed modules. Four HS responsive and four CIMBL55 recovery-related modules were subsequently identified. Highly connected genes (hub genes) in these modules were characterized as transcription factors, heat shock proteins, Ca2+ signaling related genes and various enzymes. Moreover, one hub gene, ZmHsftf13 was verified to positively regulate thermotolerance by heterologous expressing in Arabidopsis and its Mu insertion mutant. The present research provides promising genes related to HS response in maize and is of great significance for breeding.
Collapse
Affiliation(s)
- Yun Long
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Qianqian Qin
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Jiajun Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhan Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yin Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
21
|
Wang Y, Zhou Y, Wang R, Xu F, Tong S, Song C, Shao Y, Yi M, He J. Ethylene Response Factor LlERF110 Mediates Heat Stress Response via Regulation of LlHsfA3A Expression and Interaction with LlHsfA2 in Lilies ( Lilium longiflorum). Int J Mol Sci 2022; 23:16135. [PMID: 36555777 PMCID: PMC9781036 DOI: 10.3390/ijms232416135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stress seriously affects the quality of cut lily flowers. The ethylene response factors (ERFs) participate in heat stress response in many plants. In this study, heat treatment increased the production of ethylene in lily leaves, and exogenous ethylene treatment enhanced the heat resistance of lilies. LlERF110, an important transcription factor in the ethylene signaling pathway, was found in the high-temperature transcriptome. The coding region of LlERF110 (969 bp) encodes 322 amino acids and LlERF110 contains an AP2/ERF typical domain belonging to the ERF subfamily group X. LlERF110 was induced by ethylene and was expressed constitutively in all tissues. LlERF110 is localized in the nucleus and has transactivation activity. Virus-induced gene silencing of LlERF110 in lilies reduced the basal thermotolerance phenotypes and significantly decreased the expression of genes involved in the HSF-HSP pathway, such as LlHsfA2, LlHsfA3A, and LlHsfA5, which may activate other heat stress response genes; and LlHsp17.6 and LlHsp22, which may protect proteins under heat stress. LlERF110 could directly bind to the promoter of LlHsfA3A and activate its expression according to the yeast one hybrid and dual-luciferase reporter assays. LlERF110 interacts with LlHsfA2 in the nucleus according to BiFC and the yeast two-hybrid assays. In conclusion, these results indicate that LlERF110 plays an important role in the basal thermotolerance of lilies via regulation of the HSF-HSP pathway, which could be the junction of the heat stress response pathway and the ethylene signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Zhou Y, Xu F, Shao Y, He J. Regulatory Mechanisms of Heat Stress Response and Thermomorphogenesis in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:3410. [PMID: 36559522 PMCID: PMC9788449 DOI: 10.3390/plants11243410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As worldwide warming intensifies, the average temperature of the earth continues to increase. Temperature is a key factor for the growth and development of all organisms and governs the distribution and seasonal behavior of plants. High temperatures lead to various biochemical, physiological, and morphological changes in plants and threaten plant productivity. As sessile organisms, plants are subjected to various hostile environmental factors and forced to change their cellular state and morphological architecture to successfully deal with the damage they suffer. Therefore, plants have evolved multiple strategies to cope with an abnormal rise in temperature. There are two main mechanisms by which plants respond to elevated environmental temperatures. One is the heat stress response, which is activated under extremely high temperatures; the other is the thermomorphogenesis response, which is activated under moderately elevated temperatures, below the heat-stress range. In this review, we summarize recent progress in the study of these two important heat-responsive molecular regulatory pathways mediated, respectively, by the Heat Shock Transcription Factor (HSF)-Heat Shock Protein (HSP) pathway and PHYTOCHROME INTER-ACTING FACTOR 4 (PIF4) pathways in plants and elucidate the regulatory mechanisms of the genes involved in these pathways to provide comprehensive data for researchers studying the heat response. We also discuss future perspectives in this field.
Collapse
Affiliation(s)
| | | | | | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Lessons Learned from Two Decades of Modeling the Heat-Shock Response. Biomolecules 2022; 12:biom12111645. [DOI: 10.3390/biom12111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The Heat Shock Response (HSR) is a highly conserved genetic system charged with protecting the proteome in a wide range of organisms and species. Experiments since the early 1980s have elucidated key elements in these pathways and revealed a canonical mode of regulation, which relies on a titration feedback. This system has been subject to substantial modeling work, addressing questions about resilience, design and control. The compact core regulatory circuit, as well as its apparent conservation, make this system an ideal ‘hydrogen atom’ model for the regulation of stress response. Here we take a broad view of the models of the HSR, focusing on the different questions asked and the approaches taken. After 20 years of modeling work, we ask what lessons had been learned that would have been hard to discover without mathematical models. We find that while existing models lay strong foundations, many important questions that can benefit from quantitative modeling are still awaiting investigation.
Collapse
|
24
|
Singh AK, Mishra P, Kashyap SP, Karkute SG, Singh PM, Rai N, Bahadur A, Behera TK. Molecular insights into mechanisms underlying thermo-tolerance in tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1040532. [PMID: 36388532 PMCID: PMC9645296 DOI: 10.3389/fpls.2022.1040532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Plant productivity is being seriously compromised by climate-change-induced temperature extremities. Agriculture and food safety are threatened due to global warming, and in many cases the negative impacts have already begun. Heat stress leads to significant losses in yield due to changes in growth pattern, plant phonologies, sensitivity to pests, flowering, grain filling, maturity period shrinkage, and senescence. Tomato is the second most important vegetable crop. It is very sensitive to heat stress and thus, yield losses in tomato due to heat stress could affect food and nutritional security. Tomato plants respond to heat stress with a variety of cellular, physiological, and molecular responses, beginning with the early heat sensing, followed by signal transduction, antioxidant defense, osmolyte synthesis and regulated gene expression. Recent findings suggest that specific plant organs are extremely sensitive to heat compared to the entire plant, redirecting the research more towards generative tissues. This is because, during sexual reproduction, developing pollens are the most sensitive to heat. Often, just a few degrees of temperature elevation during pollen development can have a negative effect on crop production. Furthermore, recent research has discovered certain genetic and epigenetic mechanisms playing key role in thermo-tolerance and have defined new directions for tomato heat stress response (HSR). Present challenges are to increase the understanding of molecular mechanisms underlying HS, and to identify superior genotypes with more tolerance to extreme temperatures. Several metabolites, genes, heat shock factors (HSFs) and microRNAs work together to regulate the plant HSR. The present review provides an insight into molecular mechanisms of heat tolerance and current knowledge of genetic and epigenetic control of heat-tolerance in tomato for sustainable agriculture in the future. The information will significantly contribute to improve breeding programs for development of heat tolerant cultivars.
Collapse
Affiliation(s)
- Achuit K. Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Pallavi Mishra
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Suhas G. Karkute
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Nagendra Rai
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Anant Bahadur
- Division of Crop Production, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - Tusar K. Behera
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
25
|
Rao S, Gupta A, Bansal C, Sorin C, Crespi M, Mathur S. A conserved HSF:miR169:NF-YA loop involved in tomato and Arabidopsis heat stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:7-26. [PMID: 36050841 DOI: 10.1111/tpj.15963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Heat stress transcription factors (HSFs) and microRNAs (miRNAs) regulate different stress and developmental networks in plants. Regulatory feedback mechanisms are at the basis of these networks. Here, we report that plants improve their heat stress tolerance through HSF-mediated transcriptional regulation of MIR169 and post-transcriptional regulation of Nuclear Factor-YA (NF-YA) transcription factors. We show that HSFs recognize tomato (Solanum lycopersicum) and Arabidopsis MIR169 promoters using yeast one-hybrid/chromatin immunoprecipitation-quantitative PCR. Silencing tomato HSFs using virus-induced gene silencing (VIGS) reduced Sly-MIR169 levels and enhanced Sly-NF-YA9/A10 target expression. Further, Sly-NF-YA9/A10 VIGS knockdown tomato plants and Arabidopsis plants overexpressing At-MIR169d or At-nf-ya2 mutants showed a link with increased heat tolerance. In contrast, Arabidopsis plants overexpressing At-NF-YA2 and those expressing a non-cleavable At-NF-YA2 form (miR169d-resistant At-NF-YA2) as well as plants in which At-miR169d regulation is inhibited (miR169d mimic plants) were more sensitive to heat stress, highlighting NF-YA as a negative regulator of heat tolerance. Furthermore, post-transcriptional cleavage of NF-YA by elevated miR169 levels resulted in alleviation of the repression of the heat stress effector HSFA7 in tomato and Arabidopsis, revealing a retroactive control of HSFs by the miR169:NF-YA node. Hence, a regulatory feedback loop involving HSFs, miR169s and NF-YAs plays a critical role in the regulation of the heat stress response in tomato and Arabidopsis plants.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Apoorva Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Chandni Bansal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Celine Sorin
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ Evry, 91405, Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405, Orsay, France
| | - Martin Crespi
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ Evry, 91405, Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405, Orsay, France
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| |
Collapse
|
26
|
Qi C, Dong D, Li Y, Wang X, Guo L, Liu L, Dong X, Li X, Yuan X, Ren S, Zhang N, Guo YD. Heat shock-induced cold acclimation in cucumber through CsHSFA1d-activated JA biosynthesis and signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:85-102. [PMID: 35436390 DOI: 10.1111/tpj.15780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Cucumber (Cucumis sativus) originated in tropical areas and is very sensitive to low temperatures. Cold acclimation is a universal strategy that improves plant resistance to cold stress. In this study, we report that heat shock induces cold acclimation in cucumber seedlings, via a process involving the heat-shock transcription factor HSFA1d. CsHSFA1d expression was improved by both heat shock and cold treatment. Moreover, CsHSFA1d transcripts accumulated more under cold treatment after a heat-shock pre-treatment than with either heat shock or cold treatment alone. After exposure to cold, cucumber lines overexpressing CsHSFA1d displayed stronger tolerance for cold stress than the wild type, whereas CsHSFA1d knockdown lines obtained by RNA interference were more sensitive to cold stress. Furthermore, both the overexpression of CsHSFA1d and heat-shock pre-treatment increased the endogenous jasmonic acid (JA) content in cucumber seedlings after cold treatment. Exogenous application of JA rescued the cold-sensitive phenotype of CsHSFA1d knockdown lines, underscoring that JA biosynthesis is key for CsHSFA1d-mediated cold tolerance. Higher JA content is likely to lead to the degradation of CsJAZ5, a repressor protein of the JA pathway. We also established that CsJAZ5 interacts with CsICE1. JA-induced degradation of CsJAZ5 would be expected to release CsICE1, which would then activate the ICE-CBF-COR pathway. After cold treatment, the relative expression levels of ICE-CBF-COR signaling pathway genes, such as CsICE1, CsCBF1, CsCBF2 and CsCOR1, in CsHSFA1d overexpression lines were significantly higher than in the wild type and knockdown lines. Taken together, our results help to reveal the mechanism underlying heat shock-induced cold acclimation in cucumber.
Collapse
Affiliation(s)
- Chuandong Qi
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, Hubei Province, 430064, China
| | - Danhui Dong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yafei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuewei Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Luqin Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lun Liu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaonan Dong
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xingsheng Li
- Shandong Huasheng Agriculture Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Xiaowei Yuan
- Shandong Huasheng Agriculture Co. Ltd, Qingzhou, Shandong, 262500, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, VA, USA
| | - Na Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
27
|
Meng X, Zhao B, Li M, Liu R, Ren Q, Li G, Guo X. Characteristics and Regulating Roles of Wheat TaHsfA2-13 in Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:922561. [PMID: 35832224 PMCID: PMC9271894 DOI: 10.3389/fpls.2022.922561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Heat shock transcription factor (Hsf) exists widely in eukaryotes and responds to various abiotic stresses by regulating the expression of downstream transcription factors, functional enzymes, and molecular chaperones. In this study, TaHsfA2-13, a heat shock transcription factor belonging to A2 subclass, was cloned from wheat (Triticum aestivum) and its function was analyzed. TaHsfA2-13 encodes a protein containing 368 amino acids and has the basic characteristics of Hsfs. Multiple sequence alignment analysis showed that TaHsfA2-13 protein had the highest similarity with TdHsfA2c-like protein from Triticum dicoccoides, which reached 100%. The analysis of tissue expression characteristics revealed that TaHsfA2-13 was highly expressed in root, shoot, and leaf during the seedling stage of wheat. The expression of TaHsfA2-13 could be upregulated by heat stress, low temperature, H2O2, mannitol, salinity and multiple phytohormones. The TaHsfA2-13 protein was located in the nucleus under the normal growth conditions and showed a transcriptional activation activity in yeast. Further studies found that overexpression of TaHsfA2-13 in Arabidopsis thaliana Col-0 or athsfa2 mutant results in improved tolerance to heat stress, H2O2, SA and mannitol by regulating the expression of multiple heat shock protein (Hsp) genes. In summary, our study identified TaHsfA2-13 from wheat, revealed its regulatory function in varieties of abiotic stresses, and will provide a new target gene to improve stress tolerance for wheat breeding.
Collapse
Affiliation(s)
- Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Baihui Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mingyue Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ran Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qianqian Ren
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| |
Collapse
|
28
|
Perrella G, Bäurle I, van Zanten M. Epigenetic regulation of thermomorphogenesis and heat stress tolerance. THE NEW PHYTOLOGIST 2022; 234:1144-1160. [PMID: 35037247 DOI: 10.1111/nph.17970] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Many environmental conditions fluctuate and organisms need to respond effectively. This is especially true for temperature cues that can change in minutes to seasons and often follow a diurnal rhythm. Plants cannot migrate and most cannot regulate their temperature. Therefore, a broad array of responses have evolved to deal with temperature cues from freezing to heat stress. A particular response to mildly elevated temperatures is called thermomorphogenesis, a suite of morphological adaptations that includes thermonasty, formation of thin leaves and elongation growth of petioles and hypocotyl. Thermomorphogenesis allows for optimal performance in suboptimal temperature conditions by enhancing the cooling capacity. When temperatures rise further, heat stress tolerance mechanisms can be induced that enable the plant to survive the stressful temperature, which typically comprises cellular protection mechanisms and memory thereof. Induction of thermomorphogenesis, heat stress tolerance and stress memory depend on gene expression regulation, governed by diverse epigenetic processes. In this Tansley review we update on the current knowledge of epigenetic regulation of heat stress tolerance and elevated temperature signalling and response, with a focus on thermomorphogenesis regulation and heat stress memory. In particular we highlight the emerging role of H3K4 methylation marks in diverse temperature signalling pathways.
Collapse
Affiliation(s)
- Giorgio Perrella
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research Centre, S.S. Ionica, km 419.5, 75026, Rotondella (Matera), Italy
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
29
|
Zhao D, Qi X, Zhang Y, Zhang R, Wang C, Sun T, Zheng J, Lu Y. Genome-wide analysis of the heat shock transcription factor gene family in Sorbus pohuashanensis (Hance) Hedl identifies potential candidates for resistance to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 175:68-80. [PMID: 35180530 DOI: 10.1016/j.plaphy.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Heat shock transcription factors (Hsfs) are essential regulators of plant responses to abiotic stresses, growth, and development. However, all the Hsf family members have not been identified in Sorbus pohuashanensis. Therefore, the aim of this study was to identify the Hsf family members in S. pohuashanensis and examine their expression under abiotic stress conditions through the integration of gene structure, phylogenetic relationships, chromosome location, and expression patterns. Bioinformatics-based methods, identified 33 Hsfs in S. pohuashanensis. Phylogenetic analysis of Hsfs from S. pohuashanensis and other species revealed that they were more closely related to apples and white pears, followed by Populus trichocarpa, and most distantly related to Arabidopsis. Moreover, the Hsfs were clustered into three major groups: A, B, and C. Gene structure and conserved motif analysis revealed a high degree of conservation among members of the same class. Collinearity analysis revealed that segmental duplication played an essential role in increasing the size of the SpHsfs gene family in S. pohuashanensis. Additionally, several cis-acting elements associated with growth and development, hormone response, and stress were found in the promoter region of SpHsfs genes. Furthermore, expression analysis in various tissues of S. pohuashanensis showed that the genes were closely associated with heat, drought, salt stress, growth, and developmental processes. Overall, these results provide valuable information on the evolutionary relationships of the Hsf gene family. These genes stand as strong functional candidates for further studies on the resistance of S. pohuashanensis to abiotic stresses.
Collapse
Affiliation(s)
- Dongxue Zhao
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangyu Qi
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Ruili Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Cong Wang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China
| | - Tianxu Sun
- Shandong Institute of Territorial and Spatial Planning, Jinan, Shandong Province, 250000, China
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, Shandong Province, 250102, China.
| |
Collapse
|
30
|
HsfA7 coordinates the transition from mild to strong heat stress response by controlling the activity of the master regulator HsfA1a in tomato. Cell Rep 2022; 38:110224. [PMID: 35021091 DOI: 10.1016/j.celrep.2021.110224] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/18/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Plants respond to higher temperatures by the action of heat stress (HS) transcription factors (Hsfs), which control the onset, early response, and long-term acclimation to HS. Members of the HsfA1 subfamily, such as tomato HsfA1a, are the central regulators of HS response, and their activity is fine-tuned by other Hsfs. We identify tomato HsfA7 as capacitor of HsfA1a during the early HS response. Upon a mild temperature increase, HsfA7 is induced in an HsfA1a-dependent manner. The subsequent interaction of the two Hsfs prevents the stabilization of HsfA1a resulting in a negative feedback mechanism. Under prolonged or severe HS, HsfA1a and HsfA7 complexes stimulate the induction of genes required for thermotolerance. Therefore, HsfA7 exhibits a co-repressor mode at mild HS by regulating HsfA1a abundance to moderate the upregulation of HS-responsive genes. HsfA7 undergoes a temperature-dependent transition toward a co-activator of HsfA1a to enhance the acquired thermotolerance capacity of tomato plants.
Collapse
|
31
|
Singh G, Sarkar NK, Grover A. Hsp70, sHsps and ubiquitin proteins modulate HsfA6a-mediated Hsp101 transcript expression in rice (Oryza sativa L.). PHYSIOLOGIA PLANTARUM 2021; 173:2055-2067. [PMID: 34498290 DOI: 10.1111/ppl.13552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Hsp100 chaperones disaggregate the aggregated proteins and are vital for maintenance of protein homeostasis. The level of Hsp100 synthesised in the cells has a bearing on the survival of plants under heat stress. The Hsp100 transcription machinery is activated within minutes of the onset of heat stress. The heat shock factor HsfA6a plays a major role in the transcriptional regulation of the Hsp101 gene in rice plants. Through yeast-2-hybrid library screening, we identified small heat shock proteins (sHSPs), Hsp70 and ubiquitin as HsfA6a interacting proteins (HIPs). The bimolecular fluorescence complementation assays showed the physical interaction of HsfA6a with Hsp16.9A-CI and Hsp18.0-CII in the cytosolic region and with cHsp70-1 in the nucleus. With the Hsp101 promoter: reporter gene assays, using yeast cells and rice protoplasts, we show that CI-sHsps and CII-sHsps are negative regulators and Hsp70 positive regulator of the HsfA6a activity in modulation of Hsp101 transcription. We also noted that the HsfA6a interactors, Hsp70 and CI-sHsps and CII-sHsps, physically interact with each other. We noted that HsfA6a binds with the CI-sHsp and Hsp70 promoters, implying that HsfA6a has a role in transcriptional regulation of its interacting proteins. Furthermore, we noted that the mutation of the ubiquitin/sumoylation acceptor site lysine 10 to alanine (K10A) of HsfA6a enhanced its DNA binding potential on the Hsp101 promoter, implying that these modifiers are possibly involved in modulation of HsfA6a activity. Our work shows that Hsp70, CI-sHsps and CII-sHsp, and ubiquitin proteins coordinate with HsfA6a in mediating the Hsp101 transcription process in rice.
Collapse
Affiliation(s)
- Garima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Neelam K Sarkar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
32
|
Bourgine B, Guihur A. Heat Shock Signaling in Land Plants: From Plasma Membrane Sensing to the Transcription of Small Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:710801. [PMID: 34434209 PMCID: PMC8381196 DOI: 10.3389/fpls.2021.710801] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 05/08/2023]
Abstract
Heat stress events are major factors limiting crop productivity. During summer days, land plants must anticipate in a timely manner upcoming mild and severe temperature. They respond by accumulating protective heat-shock proteins (HSPs), conferring acquired thermotolerance. All organisms synthetize HSPs; many of which are members of the conserved chaperones families. This review describes recent advances in plant temperature sensing, signaling, and response. We highlight the pathway from heat perception by the plasma membrane through calcium channels, such as cyclic nucleotide-gated channels, to the activation of the heat-shock transcription factors (HSFs). An unclear cellular signal activates HSFs, which act as essential regulators. In particular, the HSFA subfamily can bind heat shock elements in HSP promoters and could mediate the dissociation of bound histones, leading to HSPs transcription. Although plants can modulate their transcriptome, proteome, and metabolome to protect the cellular machinery, HSP chaperones prevent, use, and revert the formation of misfolded proteins, thereby avoiding heat-induced cell death. Remarkably, the HSP20 family is mostly tightly repressed at low temperature, suggesting that a costly mechanism can become detrimental under unnecessary conditions. Here, the role of HSP20s in response to HS and their possible deleterious expression at non-HS temperatures is discussed.
Collapse
Affiliation(s)
| | - Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
33
|
Guihur A, Fauvet B, Finka A, Quadroni M, Goloubinoff P. Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance. PLANT, CELL & ENVIRONMENT 2021; 44:2117-2133. [PMID: 33314263 PMCID: PMC8359368 DOI: 10.1111/pce.13975] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 05/08/2023]
Abstract
At dawn of a scorching summer day, land plants must anticipate upcoming extreme midday temperatures by timely establishing molecular defences that can keep heat-labile membranes and proteins functional. A gradual morning pre-exposure to increasing sub-damaging temperatures induces heat-shock proteins (HSPs) that are central to the onset of plant acquired thermotolerance (AT). To gain knowledge on the mechanisms of AT in the model land plant Physcomitrium patens, we used label-free LC-MS/MS proteomics to quantify the accumulated and depleted proteins before and following a mild heat-priming treatment. High protein crowding is thought to promote protein aggregation, whereas molecular chaperones prevent and actively revert aggregation. Yet, we found that heat priming (HP) did not accumulate HSP chaperones in chloroplasts, although protein crowding was six times higher than in the cytosol. In contrast, several HSP20s strongly accumulated in the cytosol, yet contributing merely 4% of the net mass increase of heat-accumulated proteins. This is in poor concordance with their presumed role at preventing the aggregation of heat-labile proteins. The data suggests that under mild HP unlikely to affect protein stability. Accumulating HSP20s leading to AT, regulate the activity of rare and specific signalling proteins, thereby preventing cell death under noxious heat stress.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and AquacultureUniversity of ZadarZadarCroatia
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
34
|
Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, Lämke J, Gorka M, Kappel C, Sokolowska E, Skirycz A, Graf A, Bäurle I. Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun 2021; 12:3426. [PMID: 34103516 PMCID: PMC8187452 DOI: 10.1038/s41467-021-23786-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Adaptive plasticity in stress responses is a key element of plant survival strategies. For instance, moderate heat stress (HS) primes a plant to acquire thermotolerance, which allows subsequent survival of more severe HS conditions. Acquired thermotolerance is actively maintained over several days (HS memory) and involves the sustained induction of memory-related genes. Here we show that FORGETTER3/ HEAT SHOCK TRANSCRIPTION FACTOR A3 (FGT3/HSFA3) is specifically required for physiological HS memory and maintaining high memory-gene expression during the days following a HS exposure. HSFA3 mediates HS memory by direct transcriptional activation of memory-related genes after return to normal growth temperatures. HSFA3 binds HSFA2, and in vivo both proteins form heteromeric complexes with additional HSFs. Our results indicate that only complexes containing both HSFA2 and HSFA3 efficiently promote transcriptional memory by positively influencing histone H3 lysine 4 (H3K4) hyper-methylation. In summary, our work defines the major HSF complex controlling transcriptional memory and elucidates the in vivo dynamics of HSF complexes during somatic stress memory.
Collapse
Affiliation(s)
- Thomas Friedrich
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Vicky Oberkofler
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Inês Trindade
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Simone Altmann
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany ,grid.8241.f0000 0004 0397 2876Present Address: School of Life Sciences, University of Dundee, Dundee, UK
| | - Krzysztof Brzezinka
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jörn Lämke
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michal Gorka
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Christian Kappel
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ewelina Sokolowska
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Aleksandra Skirycz
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Alexander Graf
- grid.418390.70000 0004 0491 976XMax-Planck-Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Isabel Bäurle
- grid.11348.3f0000 0001 0942 1117Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
35
|
Tan B, Yan L, Li H, Lian X, Cheng J, Wang W, Zheng X, Wang X, Li J, Ye X, Zhang L, Li Z, Feng J. Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development. PeerJ 2021; 9:e10961. [PMID: 33763299 PMCID: PMC7958895 DOI: 10.7717/peerj.10961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
Background Heat shock factors (HSFs) play important roles during normal plant growth and development and when plants respond to diverse stressors. Although most studies have focused on the involvement of HSFs in the response to abiotic stresses, especially in model plants, there is little research on their participation in plant growth and development or on the HSF (PpHSF) gene family in peach (Prunus persica). Methods DBD (PF00447), the HSF characteristic domain, was used to search the peach genome and identify PpHSFs. Phylogenetic, multiple alignment and motif analyses were conducted using MEGA 6.0, ClustalW and MEME, respectively. The function of PpHSF5 was confirmed by overexpression of PpHSF5 into Arabidopsis. Results Eighteen PpHSF genes were identified within the peach genome. The PpHSF genes were nonuniformly distributed on the peach chromosomes. Seventeen of the PpHSFs (94.4%) contained one or two introns, except PpHSF18, which contained three introns. The in silico-translated PpHSFs were classified into three classes (PpHSFA, PpHSFB and PpHSFC) based on multiple alignment, motif analysis and phylogenetic comparison with HSFs from Arabidopsis thaliana and Oryza sativa. Dispersed gene duplication (DSD at 67%) mainly contributed to HSF gene family expansion in peach. Promoter analysis showed that the most common cis-elements were the MYB (abiotic stress response), ABRE (ABA-responsive) and MYC (dehydration-responsive) elements. Transcript profiling of 18 PpHSFs showed that the expression trend of PpHSF5 was consistent with shoot length changes in the cultivar ‘Zhongyoutao 14’. Further analysis of the PpHSF5 was conducted in 5-year-old peach trees, Nicotiana benthamiana and Arabidopsis thaliana, respectively. Tissue-specific expression analysis showed that PpHSF5 was expressed predominantly in young vegetative organs (leaf and apex). Subcellular localization revealed that PpHSF5 was located in the nucleus in N. benthamiana cells. Two transgenic Arabidopsis lines were obtained that overexpressed PpHSF5. The root length and the number of lateral roots in the transgenic seedlings were significantly less than in WT seedlings and after cultivation for three weeks. The transgenic rosettes were smaller than those of the WT at 2–3 weeks. The two transgenic lines exhibited a dwarf phenotype three weeks after transplanting, although there was no significant difference in the number of internodes. Moreover, the PpHSF5-OE lines exhibited enhanced thermotolerance. These results indicated that PpHSF5 might be act as a suppresser of growth and development of root and aerial organs.
Collapse
Affiliation(s)
- Bin Tan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Liu Yan
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Huannan Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xiaodong Lian
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xiaobei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, China
| |
Collapse
|
36
|
Andrási N, Pettkó-Szandtner A, Szabados L. Diversity of plant heat shock factors: regulation, interactions, and functions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1558-1575. [PMID: 33277993 DOI: 10.1093/jxb/eraa576] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
Plants heat shock factors (HSFs) are encoded by large gene families with variable structure, expression, and function. HSFs are components of complex signaling systems that control responses not only to high temperatures but also to a number of abiotic stresses such as cold, drought, hypoxic conditions, soil salinity, toxic minerals, strong irradiation, and to pathogen threats. Here we provide an overview of the diverse world of plant HSFs through compilation and analysis of their functional versatility, diverse regulation, and interactions. Bioinformatic data on gene expression profiles of Arabidopsis HSF genes were re-analyzed to reveal their characteristic transcript patterns. While HSFs are regulated primarily at the transcript level, alternative splicing and post-translational modifications such as phosphorylation and sumoylation provides further variability. Plant HSFs are involved in an intricate web of protein-protein interactions which adds considerable complexity to their biological function. A list of such interactions was compiled from public databases and published data, and discussed to pinpoint their relevance in transcription control. Although most fundamental studies of plant HSFs have been conducted in the model plant, Arabidopsis, information on HSFs is accumulating in other plants such as tomato, rice, wheat, and sunflower. Understanding the function, interactions, and regulation of HSFs will facilitate the design of novel strategies to use engineered proteins to improve tolerance and adaptation of crops to adverse environmental conditions.
Collapse
Affiliation(s)
- Norbert Andrási
- Institute of Plant Biology, Biological Research Centre, Temesvári krt., Szeged, Hungary
| | | | - László Szabados
- Institute of Plant Biology, Biological Research Centre, Temesvári krt., Szeged, Hungary
| |
Collapse
|
37
|
Gai WX, Ma X, Li Y, Xiao JJ, Khan A, Li QH, Gong ZH. CaHsfA1d Improves Plant Thermotolerance via Regulating the Expression of Stress- and Antioxidant-Related Genes. Int J Mol Sci 2020; 21:E8374. [PMID: 33171626 PMCID: PMC7672572 DOI: 10.3390/ijms21218374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Heat shock transcription factor (Hsf) plays an important role in regulating plant thermotolerance. The function and regulatory mechanism of CaHsfA1d in heat stress tolerance of pepper have not been reported yet. In this study, phylogenetic tree and sequence analyses confirmed that CaHsfA1d is a class A Hsf. CaHsfA1d harbored transcriptional function and predicted the aromatic, hydrophobic, and acidic (AHA) motif mediated function of CaHsfA1d as a transcription activator. Subcellular localization assay showed that CaHsfA1d protein is localized in the nucleus. The CaHsfA1d was transcriptionally up-regulated at high temperatures and its expression in the thermotolerant pepper line R9 was more sensitive than that in thermosensitive pepper line B6. The function of CaHsfA1d under heat stress was characterized in CaHsfA1d-silenced pepper plants and CaHsfA1d-overexpression Arabidopsis plants. Silencing of the CaHsfA1d reduced the thermotolerance of the pepper, while CaHsfA1d-overexpression Arabidopsis plants exhibited an increased insensitivity to high temperatures. Moreover, the CaHsfA1d maintained the H2O2 dynamic balance under heat stress and increased the expression of Hsfs, Hsps (heat shock protein), and antioxidant gene AtGSTU5 (glutathione S-transferase class tau 5) in transgenic lines. Our findings clearly indicate that CaHsfA1d improved the plant thermotolerance via regulating the expression of stress- and antioxidant-related genes.
Collapse
Affiliation(s)
- Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Yang Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Jing-Jing Xiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan;
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (W.-X.G.); (X.M.); (Y.L.); (J.-J.X.)
| |
Collapse
|
38
|
Liu X, Meng P, Yang G, Zhang M, Peng S, Zhai MZ. Genome-wide identification and transcript profiles of walnut heat stress transcription factor involved in abiotic stress. BMC Genomics 2020; 21:474. [PMID: 32650719 PMCID: PMC7350716 DOI: 10.1186/s12864-020-06879-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Walnut (Juglans regia) is an important tree cultivated worldwide and is exposed to a series of both abiotic and biotic stress during their life-cycles. The heat stress transcription factors (HSFs) play a crucial role in plant response to various stresses by regulating the expression of stress-responsive genes. HSF genes are classified into 3 classes: HSFA, HSFB, and HSFC. HSFA gene has transcriptional activation function and is the main regulator of high temperature-induced gene expression. HSFB gene negatively regulates plant resistance to drought and NaCl. And HSFC gene may be involved in plant response to various stresses. There are some reports about the HSF family in herbaceous plants, however, there are no reports about the HSFs in walnut. RESULT In this study, based on the complete genome sequencing of walnut, the bioinformatics method was used and 29 HSF genes were identified. These HSFs covered 18 HSFA, 9 HSFB, and 2 HSFC genes. Phylogenetic analysis of these HSF proteins along with those from Arabidopsis thaliana showed that the HSFs in the two species are closely related to each other and have different evolutionary processes. The distribution of conserved motifs and the sequence analysis of HSF genes family indicated that the members of the walnut HSFs are highly conserved. Quantitative Real-Time PCR (qRT-PCR) analysis revealed that the most of walnut HSFs were expressed in the walnut varieties of 'Qingxiang' and 'Xiangling' under high temperature (HT), high salt and drought stress, and some JrHSFs expression pattern are different between the two varieties. CONCLUSION The complex HSF genes family from walnut was confirmed by genome-wide identification, evolutionary exploration, sequence characterization and expression analysis. This research provides useful information for future studies on the function of the HSF genes and molecular mechanism in plant stress response.
Collapse
Affiliation(s)
- Xuejiao Liu
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Panpan Meng
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Mengyan Zhang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Shaobing Peng
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| | - Mei Zhi Zhai
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
39
|
Zhang H, Li G, Fu C, Duan S, Hu D, Guo X. Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci Rep 2020; 10:8073. [PMID: 32415117 PMCID: PMC7229205 DOI: 10.1038/s41598-020-65068-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Heat shock transcription factor (Hsf) plays a transcriptional regulatory role in plants during heat stress and other abiotic stresses. 31 non-redundant ZmHsf genes from maize were identified and clustered in the reference genome sequenced by Single Molecule Real Time (SMRT). The amino acid length, chromosome location, and presence of functional domains and motifs of all ZmHsfs sequences were analyzed and determined. Phylogenetics and collinearity analyses reveal gene duplication events in Hsf family and collinearity blocks shared by maize, rice and sorghum. The results of RNA-Seq analysis of anthesis and post-anthesis periods in maize show different expression patterns of ZmHsf family members. Specially, ZmHsf26 of A2 subclass and ZmHsf23 of A6 subclass were distinctly up-regulated after heat shock (HS) at post-anthesis stage. Nanopore transcriptome sequencing of maize seedlings showed that alternative splicing (AS) events occur in ZmHsf04 and ZmHsf17 which belong to subclass A2 after heat shock. Through sequence alignment, semi-quantitative and quantitative RT-PCR, we found that intron retention events occur in response to heat shock, and newly splice isoforms, ZmHsf04-II and ZmHsf17-II, were transcribed. Both new isoforms contain several premature termination codons in their introns which may lead to early termination of translation. The ZmHsf04 expression was highly increased than that of ZmHsf17, and the up-regulation of ZmHsf04-I transcription level were significantly higher than that of ZmHsf04-II after HS.
Collapse
Affiliation(s)
- Huaning Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Guoliang Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Cai Fu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Shuonan Duan
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Dong Hu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China.
| | - Xiulin Guo
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China.
| |
Collapse
|
40
|
Hu S, Ding Y, Zhu C. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:375. [PMID: 32300353 PMCID: PMC7142257 DOI: 10.3389/fpls.2020.00375] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Increased temperatures caused by global warming threaten agricultural production, as warmer conditions can inhibit plant growth and development or even destroy crops in extreme circumstances. Extensive research over the past several decades has revealed that chloroplasts, the photosynthetic organelles of plants, are highly sensitive to heat stress, which affects a variety of photosynthetic processes including chlorophyll biosynthesis, photochemical reactions, electron transport, and CO2 assimilation. Important mechanisms by which plant cells respond to heat stress to protect these photosynthetic organelles have been identified and analyzed. More recent studies have made it clear that chloroplasts play an important role in inducing the expression of nuclear heat-response genes during the heat stress response. In this review, we summarize these important advances in plant-based research and discuss how the sensitivity, responses, and signaling roles of chloroplasts contribute to plant heat sensitivity and tolerance.
Collapse
Affiliation(s)
| | | | - Cheng Zhu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
41
|
Xu P, Guo Q, Pang X, Zhang P, Kong D, Liu J. New Insights into Evolution of Plant Heat Shock Factors (Hsfs) and Expression Analysis of Tea Genes in Response to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2020; 9:E311. [PMID: 32131389 PMCID: PMC7154843 DOI: 10.3390/plants9030311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 11/17/2022]
Abstract
Heat shock transcription factor (Hsf) is one of key regulators in plant abotic stress response. Although the Hsf gene family has been identified from several plant species, original and evolution relationship have been fragmented. In addition, tea, an important crop, genome sequences have been completed and function of the Hsf family genes in response to abiotic stresses was not illuminated. In this study, a total of 4208 Hsf proteins were identified within 163 plant species from green algae (Gonium pectorale) to angiosperm (monocots and dicots), which were distributed unevenly into each of plant species tested. The result indicated that Hsf originated during the early evolutionary history of chlorophytae algae and genome-wide genetic varies had occurred during the course of evolution in plant species. Phylogenetic classification of Hsf genes from the representative nine plant species into ten subfamilies, each of which contained members from different plant species, imply that gene duplication had occurred during the course of evolution. In addition, based on RNA-seq data, the member of the Hsfs showed different expression levels in the different organs and at the different developmental stages in tea. Expression patterns also showed clear differences among Camellia species, indicating that regulation of Hsf genes expression varied between organs in a species-specific manner. Furthermore, expression of most Hsfs in response to drought, cold and salt stresses, imply a possible positive regulatory role under abiotic stresses. Expression profiles of nineteen Hsf genes in response to heat stress were also analyzed by quantitative real-time RT-PCR. Several stress-responsive Hsf genes were highly regulated by heat stress treatment. In conclusion, these results lay a solid foundation for us to elucidate the evolutionary origin of plant Hsfs and Hsf functions in tea response to abiotic stresses in the future.
Collapse
Affiliation(s)
- Ping Xu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China;
| | - Qinwei Guo
- Quzhou Academy of Agricultural Sciences, Quzhou 324000, Zhejiang, China;
| | - Xin Pang
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, China;
| | - Peng Zhang
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu 012000, Inner Mongolia, China; (P.Z.); (D.K.)
| | - Dejuan Kong
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu 012000, Inner Mongolia, China; (P.Z.); (D.K.)
| | - Jia Liu
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu 012000, Inner Mongolia, China; (P.Z.); (D.K.)
| |
Collapse
|
42
|
Hu Y, Mesihovic A, Jiménez-Gómez JM, Röth S, Gebhardt P, Bublak D, Bovy A, Scharf KD, Schleiff E, Fragkostefanakis S. Natural variation in HsfA2 pre-mRNA splicing is associated with changes in thermotolerance during tomato domestication. THE NEW PHYTOLOGIST 2020; 225:1297-1310. [PMID: 31556121 DOI: 10.1111/nph.16221] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/18/2019] [Indexed: 05/22/2023]
Abstract
Wild relatives of crops thrive in habitats where environmental conditions can be restrictive for productivity and survival of cultivated species. The genetic basis of this variability, particularly for tolerance to high temperatures, is not well understood. We examined the capacity of wild and cultivated accessions to acclimate to rapid temperature elevations that cause heat stress (HS). We investigated genotypic variation in thermotolerance of seedlings of wild and cultivated accessions. The contribution of polymorphisms associated with thermotolerance variation was examined regarding alterations in function of the identified gene. We show that tomato germplasm underwent a progressive loss of acclimation to strong temperature elevations. Sensitivity is associated with intronic polymorphisms in the HS transcription factor HsfA2 which affect the splicing efficiency of its pre-mRNA. Intron splicing in wild species results in increased synthesis of isoform HsfA2-II, implicated in the early stress response, at the expense of HsfA2-I which is involved in establishing short-term acclimation and thermotolerance. We propose that the selection for modern HsfA2 haplotypes reduced the ability of cultivated tomatoes to rapidly acclimate to temperature elevations, but enhanced their short-term acclimation capacity. Hence, we provide evidence that alternative splicing has a central role in the definition of plant fitness plasticity to stressful conditions.
Collapse
Affiliation(s)
- Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - José M Jiménez-Gómez
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Philipp Gebhardt
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Arnaud Bovy
- Plant Breeding, Wageningen University, Wageningen, 6708PB, the Netherlands
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
- Cluster of Excellence Frankfurt, Goethe University, D-60438, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, D-60438, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), D-60438, Frankfurt am Main, Germany
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Wu Z, Liang J, Wang C, Ding L, Zhao X, Cao X, Xu S, Teng N, Yi M. Alternative Splicing Provides a Mechanism to Regulate LlHSFA3 Function in Response to Heat Stress in Lily. PLANT PHYSIOLOGY 2019; 181:1651-1667. [PMID: 31611422 PMCID: PMC6878004 DOI: 10.1104/pp.19.00839] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/02/2019] [Indexed: 05/12/2023]
Abstract
Heat stress transcription factors (HSFs) are central regulators of plant responses to heat stress. Their heat-induced transcriptional regulation has been extensively studied; however, their posttranscriptional and posttranslational regulation is poorly understood. In a previous study, we established that there were at least two HSFA3 homologs, LlHSFA3A and LlHSFA3B, in lily (Lilium spp.) and that these genes played distinct roles in thermotolerance. Here, we demonstrate that LlHSFA3B is alternatively spliced under heat stress to produce the heat-inducible splice variant LlHSFA3B-III We further show that LlHSFA3B-III protein localizes in the cytoplasm and nucleus, has no transcriptional activity, and specifically disturbs the protein interactions of intact HSFA3 orthologs LlHSFA3A-I and LlHSFA3B-I. Heterologous expression of LlHSFA3B-III in Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana increased plant tolerance of salt and prolonged heat at 40°C, yet reduced plant tolerance of acute heat shock at 45°C. Conversely, heterologous expression of LlHSFA3A-I caused opposing phenotypes, which were substantially ameliorated by coexpression of LlHSFA3B-III LlHSFA3B-III interacted with LlHSFA3A-I to limit its transactivation function and temper the function of LlHSFA3A-I, thus reducing the adverse effects of excessive LlHSFA3A-I accumulation. Based on these observations, we propose a regulatory mechanism of HSFs involving heat-inducible alternative splicing and protein interaction, which might be used in strategies to promote thermotolerance and attenuate the heat stress response in crop plants.
Collapse
Affiliation(s)
- Ze Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
- Department of Fruit Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chengpeng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liping Ding
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xing Cao
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
44
|
Maleckova E, Brilhaus D, Wrobel TJ, Weber APM. Transcript and metabolite changes during the early phase of abscisic acid-mediated induction of crassulacean acid metabolism in Talinum triangulare. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6581-6596. [PMID: 31111894 PMCID: PMC6883267 DOI: 10.1093/jxb/erz189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/04/2019] [Indexed: 05/31/2023]
Abstract
Crassulacean acid metabolism (CAM) has evolved as a water-saving strategy, and its engineering into crops offers an opportunity to improve their water use efficiency. This requires a comprehensive understanding of the regulation of the CAM pathway. Here, we use the facultative CAM species Talinum triangulare as a model in which CAM can be induced rapidly by exogenous abscisic acid. RNA sequencing and metabolite measurements were employed to analyse the changes underlying CAM induction and identify potential CAM regulators. Non-negative matrix factorization followed by k-means clustering identified an early CAM-specific cluster and a late one, which was specific for the early light phase. Enrichment analysis revealed abscisic acid metabolism, WRKY-regulated transcription, sugar and nutrient transport, and protein degradation in these clusters. Activation of the CAM pathway was supported by up-regulation of phosphoenolpyruvate carboxylase, cytosolic and chloroplastic malic enzymes, and several transport proteins, as well as by increased end-of-night titratable acidity and malate accumulation. The transcription factors HSFA2, NF-YA9, and JMJ27 were identified as candidate regulators of CAM induction. With this study we promote the model species T. triangulare, in which CAM can be induced in a controlled way, enabling further deciphering of CAM regulation.
Collapse
Affiliation(s)
- Eva Maleckova
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Düsseldorf, Germany
| | - Dominik Brilhaus
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas J Wrobel
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
45
|
Integration of Transcriptomics and Metabolomics for Pepper ( Capsicum annuum L.) in Response to Heat Stress. Int J Mol Sci 2019; 20:ijms20205042. [PMID: 31614571 PMCID: PMC6829368 DOI: 10.3390/ijms20205042] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 01/26/2023] Open
Abstract
Heat stress (HS), caused by extremely high temperatures, is one of the most severe forms of abiotic stress in pepper. In the present study, we studied the transcriptome and metabolome of a heat-tolerant cultivar (17CL30) and a heat-sensitive cultivar (05S180) under HS. Briefly, we identified 5754 and 5756 differentially expressed genes (DEGs) in 17CL30 and 05S180, respectively. Moreover, we also identified 94 and 108 differentially accumulated metabolites (DAMs) in 17CL30 and 05S180, respectively. Interestingly, there were many common HS-responsive genes (approximately 30%) in both pepper cultivars, despite the expression patterns of these HS-responsive genes being different in both cultivars. Notably, the expression changes of the most common HS-responsive genes were typically much more significant in 17CL30, which might explain why 17CL30 was more heat tolerant. Similar results were also obtained from metabolome data, especially amino acids, organic acids, flavonoids, and sugars. The changes in numerous genes and metabolites emphasized the complex response mechanisms involved in HS in pepper. Collectively, our study suggested that the glutathione metabolic pathway played a critical role in pepper response to HS and the higher accumulation ability of related genes and metabolites might be one of the primary reasons contributing to the heat resistance.
Collapse
|
46
|
Functional diversification of tomato HsfA1 factors is based on DNA binding domain properties. Gene 2019; 714:143985. [PMID: 31330236 DOI: 10.1016/j.gene.2019.143985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
In all eukaryotes, the response to heat stress (HS) is dependent on the activity of HS transcription factors (Hsfs). Plants contain a large number of Hsfs, however, only members of the HsfA1 subfamily are considered as master regulators of stress response and thermotolerance. In Solanum lycopersicum, among the four HsfA1 members, only HsfA1a has been proposed to possess a master regulator function. We performed a comparative analysis of HsfA1a, HsfA1b, HsfA1c and HsfA1e at different levels of regulation and function. HsfA1a is constitutively expressed under control and stress conditions, while the other members are induced in specific tissues and stages of HS response. Despite that all members are localized in the nucleus when expressed in protoplasts, only HsfA1a shows a wide range of basal activity on several HS-induced genes. In contrast, HsfA1b, HsfA1c, and HsfA1e show only high activity for specific subsets of genes. Domain swapping mutants between HsfA1a and HsfA1c revealed that the variation in that transcriptional transactivation activity is due to differences in the DNA binding domain (DBD). Specifically, we identified a conserved arginine (R107) residue in the turn of β3 and β4 sheet in the C-terminus of the DBD of HsfA1a that is highly conserved in plant HsfA1 proteins, but is replaced by leucine and cysteine in tomato HsfA1c and HsfA1e, respectively. Although not directly involved in DNA interaction, R107 contributes to DNA binding and consequently the activity of HsfA1a. Thus, we demonstrate that this variation in DBD in part explains the functional diversification of tomato HsfA1 members.
Collapse
|
47
|
Marko D, El-Shershaby A, Carriero F, Summerer S, Petrozza A, Iannacone R, Schleiff E, Fragkostefanakis S. Identification and Characterization of a Thermotolerant TILLING Allele of Heat Shock Binding Protein 1 in Tomato. Genes (Basel) 2019; 10:genes10070516. [PMID: 31284688 PMCID: PMC6678839 DOI: 10.3390/genes10070516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/30/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022] Open
Abstract
The identification of heat stress (HS)-resilient germplasm is important to ensure food security under less favorable environmental conditions. For that, germplasm with an altered activity of factors regulating the HS response is an important genetic tool for crop improvement. Heat shock binding protein (HSBP) is one of the main negative regulators of HS response, acting as a repressor of the activity of HS transcription factors. We identified a TILLING allele of Solanum lycopersicum (tomato) HSBP1. We examined the effects of the mutation on the functionality of the protein in tomato protoplasts, and compared the thermotolerance capacity of lines carrying the wild-type and mutant alleles of HSBP1. The methionine-to-isoleucine mutation in the central heptad repeats of HSBP1 leads to a partial loss of protein function, thereby reducing the inhibitory effect on Hsf activity. Mutant seedlings show enhanced basal thermotolerance, while mature plants exhibit increased resilience in repeated HS treatments, as shown by several physiological parameters. Importantly, plants that are homozygous for the wild-type or mutant HSBP1 alleles showed no significant differences under non-stressed conditions. Altogether, these results indicate that the identified mutant HSBP1 allele can be used as a genetic tool in breeding, aiming to improve the thermotolerance of tomato varieties.
Collapse
Affiliation(s)
- Dominik Marko
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448,2 -75100 Matera, Italy
| | - Asmaa El-Shershaby
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany
- Department of Molecular Biology, Genetic Engineering and Biotechnology Division, National Research Centre, 12311 Dokki, Giza, Egypt
| | - Filomena Carriero
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448,2 -75100 Matera, Italy
| | - Stephan Summerer
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448,2 -75100 Matera, Italy
| | - Angelo Petrozza
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448,2 -75100 Matera, Italy
| | - Rina Iannacone
- ALSIA Research Center Metapontum Agrobios S.S. Jonica 106 Km 448,2 -75100 Matera, Italy
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany.
- Frankfurt Institute of Advanced Studies (FIAS), D-60438 Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, D-60438 Frankfurt am Main, Germany.
| | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
48
|
Fragkostefanakis S, Simm S, El-Shershaby A, Hu Y, Bublak D, Mesihovic A, Darm K, Mishra SK, Tschiersch B, Theres K, Scharf C, Schleiff E, Scharf KD. The repressor and co-activator HsfB1 regulates the major heat stress transcription factors in tomato. PLANT, CELL & ENVIRONMENT 2019; 42:874-890. [PMID: 30187931 DOI: 10.1111/pce.13434] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/23/2018] [Indexed: 05/08/2023]
Abstract
Plants code for a multitude of heat stress transcription factors (Hsfs). Three of them act as central regulators of heat stress (HS) response in tomato (Solanum lycopersicum). HsfA1a regulates the initial response, and HsfA2 controls acquired thermotolerance. HsfB1 is a transcriptional repressor but can also act as co-activator of HsfA1a. Currently, the mode of action and the relevance of the dual function of HsfB1 remain elusive. We examined this in HsfB1 overexpression or suppression transgenic tomato lines. Proteome analysis revealed that HsfB1 overexpression stimulates the co-activator function of HsfB1 and consequently the accumulation of HS-related proteins under non-stress conditions. Plants with enhanced levels of HsfB1 show aberrant growth and development but enhanced thermotolerance. HsfB1 suppression has no significant effect prior to stress. Upon HS, HsfB1 suppression strongly enhances the induction of heat shock proteins due to the higher activity of other HS-induced Hsfs, resulting in increased thermotolerance compared with wild-type. Thereby, HsfB1 acts as co-activator of HsfA1a for several Hsps, but as a transcriptional repressor on other Hsfs, including HsfA1b and HsfA2. The dual function explains the activation of chaperones to enhance protection and regulate the balance between growth and stress response upon deviations from the homeostatic levels of HsfB1.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), Frankfurt am Main, Germany
| | - Asmaa El-Shershaby
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Yangjie Hu
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Daniela Bublak
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Anida Mesihovic
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | - Katrin Darm
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine, Greifswald, Germany
| | - Shravan Kumar Mishra
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| | | | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christian Scharf
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medicine, Greifswald, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
- Frankfurt Institute of Advanced Studies (FIAS), Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
49
|
Novel DnaJ Protein Facilitates Thermotolerance of Transgenic Tomatoes. Int J Mol Sci 2019; 20:ijms20020367. [PMID: 30654548 PMCID: PMC6359579 DOI: 10.3390/ijms20020367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 11/16/2022] Open
Abstract
DnaJ proteins, which are molecular chaperones that are widely present in plants, can respond to various environmental stresses. At present, the function of DnaJ proteins was studied in many plant species, but only a few studies were conducted in tomato. Here, we examined the functions of a novel tomato (Solanum lycopersicum) DnaJ protein (SlDnaJ20) in heat tolerance using sense and antisense transgenic tomatoes. Transient conversion assays of Arabidopsis protoplasts showed that SlDnaJ20 was targeted to chloroplasts. Expression analysis showed that SlDnaJ20 expression was induced by chilling, NaCl, polyethylene glycol, and H₂O₂, especially via heat stress. Under heat stress, sense plants showed higher fresh weights, chlorophyll content, fluorescence (Fv/Fm), and D1 protein levels, and a lower accumulation of reactive oxygen species (ROS) than antisense plants. These results suggest that SlDnaJ20 overexpression can reduce the photoinhibition of photosystem II (PSII) by relieving ROS accumulation. Moreover, higher expression levels of HsfA1 and HsfB1 were observed under heat stress in sense plants, indicating that SlDnaJ20 overexpression contributes to HSF expression. The yeast two-hybrid system proved that SlDnaJ20 can interact with the chloroplast heat-shock protein 70. Our results indicate that SlDnaJ20 overexpression enhances the thermotolerance of transgenic tomatoes, whereas suppression of SlDnaJ20 increases the heat sensitivity of transgenic tomatoes.
Collapse
|
50
|
Heat Shock-Induced Resistance Against Pseudomonas syringae pv. tomato (Okabe) Young et al. via Heat Shock Transcription Factors in Tomato. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy9010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
*Abstract: We investigated the role of heat shock transcription factors (Hsfs) during induction of defense response by heat-shock treatment (HST) in tomato. Leaf disease symptoms were significantly reduced at 12 and 24 h after HST, consistent with upregulation of pathogenesis-related (PR) genes PR1a2 and PR1b1 peaking at 24 h after treatment. These genes were upregulated at the treatment application site, but not in untreated leaves. In contrast to HST, inoculation of the first leaf induced systemic upregulation of acidic PR genes in uninoculated second leaves. Furthermore, heat shock element motifs were found in upstream regions of PR1a2, PR1b1, Chitinase 3, Chitinase 9, Glucanase A, and Glucanase B genes. Upregulation of HsfA2 and HsfB1 peaked at 6 h after HST, 6 h earlier than salicylic acid accumulation. Foliar spray of heat shock protein 90 (Hsp90) inhibitor geldanamycin (GDA) induced PR gene expression comparable to that after HST. PR gene expression and defense response against Pseudomonas syringae pv. tomato (Pst) decreased when combining HST with Hsfs inhibitor KRIBB11. The Hsfs and PR gene expression induced by heat or GDA, together with the suppression of heat shock-induced resistance (HSIR) against Pst by KRIBB11, suggested a direct contribution of Hsfs to HSIR regulation in tomato.
Collapse
|