1
|
Phuong-Nguyen K, McGee SL, Aston-Mourney K, Mcneill BA, Mahmood MQ, Rivera LR. Yoyo Dieting, Post-Obesity Weight Loss, and Their Relationship with Gut Health. Nutrients 2024; 16:3170. [PMID: 39339770 PMCID: PMC11435324 DOI: 10.3390/nu16183170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Excessive body weight is associated with many chronic metabolic diseases and weight loss, so far, remains the gold standard treatment. However, despite tremendous efforts exploring optimal treatments for obesity, many individuals find losing weight and maintaining a healthy body weight difficult. Weight loss is often not sustainable resulting in weight regain and subsequent efforts to lose weight. This cyclic pattern of weight loss and regain is termed "yoyo dieting" and predisposes individuals to obesity and metabolic comorbidities. How yoyo dieting might worsen obesity complications during the weight recurrence phase remains unclear. In particular, there is limited data on the role of the gut microbiome in yoyo dieting. Gut health distress, especially gut inflammation and microbiome perturbation, is strongly associated with metabolic dysfunction and disturbance of energy homeostasis in obesity. In this review, we summarise current evidence of the crosstalk between the gastrointestinal system and energy balance, and the effects of yoyo dieting on gut inflammation and gut microbiota reshaping. Finally, we focus on the potential effects of post-dieting weight loss in improving gut health and identify current knowledge gaps within the field, including gut-derived peptide hormones and their potential suitability as targets to combat weight regain, and how yoyo dieting and associated changes in the microbiome affect the gut barrier and the enteric nervous system, which largely remain to be determined.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Kathryn Aston-Mourney
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Bryony A Mcneill
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Malik Q Mahmood
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Leni R Rivera
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
2
|
Nicoli F, Cabral-Piccin MP, Papagno L, Gallerani E, Fusaro M, Folcher V, Dubois M, Clave E, Vallet H, Frere JJ, Gostick E, Llewellyn-Lacey S, Price DA, Toubert A, Dupré L, Boddaert J, Caputo A, Gavioli R, Appay V. Altered Basal Lipid Metabolism Underlies the Functional Impairment of Naive CD8 + T Cells in Elderly Humans. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:562-570. [PMID: 35031578 PMCID: PMC7615155 DOI: 10.4049/jimmunol.2100194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/24/2021] [Indexed: 12/26/2022]
Abstract
Aging is associated with functional deficits in the naive T cell compartment, which compromise the generation of de novo immune responses against previously unencountered Ags. The mechanisms that underlie this phenomenon have nonetheless remained unclear. We found that naive CD8+ T cells in elderly humans were prone to apoptosis and proliferated suboptimally in response to stimulation via the TCR. These abnormalities were associated with dysregulated lipid metabolism under homeostatic conditions and enhanced levels of basal activation. Importantly, reversal of the bioenergetic anomalies with lipid-altering drugs, such as rosiglitazone, almost completely restored the Ag responsiveness of naive CD8+ T cells. Interventions that favor lipid catabolism may therefore find utility as adjunctive therapies in the elderly to promote vaccine-induced immunity against targetable cancers and emerging pathogens, such as seasonal influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Francesco Nicoli
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France;
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mariela P Cabral-Piccin
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Laura Papagno
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases, Université Toulouse III, INSERM UMR1291/CNRS UMR5051, Toulouse, France
| | - Victor Folcher
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Marion Dubois
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
| | - Emmanuel Clave
- Institut de Recherche Saint Louis, EMiLy, Université de Paris, INSERM U1160, Paris, France
| | - Hélène Vallet
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
- Service de Gériatrie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Justin J Frere
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine Tucson, Tucson, AZ
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Antoine Toubert
- Institut de Recherche Saint Louis, EMiLy, Université de Paris, INSERM U1160, Paris, France
- Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases, Université Toulouse III, INSERM UMR1291/CNRS UMR5051, Toulouse, France
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Jacques Boddaert
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France
- Service de Gériatrie, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Victor Appay
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Sorbonne Université, INSERM U1135, Paris, France;
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan; and
- Université de Bordeaux, CNRS UMR5164, INSERM ERL1303, ImmunoConcEpT, Bordeaux, France
| |
Collapse
|
3
|
Duffield GE, Robles-Murguia M, Hou TY, McDonald KA. Targeted Disruption of the Inhibitor of DNA Binding 4 ( Id4) Gene Alters Photic Entrainment of the Circadian Clock. Int J Mol Sci 2021; 22:9632. [PMID: 34502541 PMCID: PMC8431790 DOI: 10.3390/ijms22179632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022] Open
Abstract
Inhibitor of DNA binding (Id) genes comprise a family of four helix-loop-helix (HLH) transcriptional inhibitors. Our earlier studies revealed a role for ID2 within the circadian system, contributing to input, output, and core clock function through its interaction with CLOCK and BMAL1. Here, we explore the contribution of ID4 to the circadian system using a targeted disruption of the Id4 gene. Attributes of the circadian clock were assessed by monitoring the locomotor activity of Id4-/- mice, and they revealed disturbances in its operation. Id4-mutant mice expressed a shorter circadian period length, attenuated phase shifts in responses to continuous and discrete photic cues, and an advanced phase angle of entrainment under a 12:12 light:dark cycle and under short and long photoperiods. To understand the basis for these properties, suprachiasmatic nucleus (SCN) and retinal structures were examined. Anatomical analysis reveals a smaller Id4-/- SCN in the width dimension, which is a finding consistent with its smaller brain. As a result of this feature, anterograde tracing in Id4-/- mice revealed retinal afferents innovate a disproportionally larger SCN area. The Id4-/- photic entrainment responses are unlikely to be due to an impaired function of the retinal pathways since Id4-/- retinal anatomy and function tested by pupillometry were similar to wild-type mice. Furthermore, these circadian characteristics are opposite to those exhibited by the Id2-/- mouse, suggesting an opposing influence of the ID4 protein within the circadian system; or, the absence of ID4 results in changes in the expression or activity of other members of the Id gene family. Expression analysis of the Id genes within the Id4-/- SCN revealed a time-of-day specific elevated Id1. It is plausible that the increased Id1 and/or absence of ID4 result in changes in interactions with bHLH canonical clock components or with targets upstream and/or downstream of the clock, thereby resulting in abnormal properties of the circadian clock and its entrainment.
Collapse
Affiliation(s)
- Giles E. Duffield
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; (M.R.-M.); (T.Y.H.); (K.A.M.)
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maricela Robles-Murguia
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; (M.R.-M.); (T.Y.H.); (K.A.M.)
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tim Y. Hou
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; (M.R.-M.); (T.Y.H.); (K.A.M.)
| | - Kathleen A. McDonald
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; (M.R.-M.); (T.Y.H.); (K.A.M.)
| |
Collapse
|
4
|
Duffield GE, Han S, Hou TY, de la Iglesia HO, McDonald KA, Mecklenburg KL, Robles-Murguia M. Inhibitor of DNA binding 2 (Id2) Regulates Photic Entrainment Responses in Mice: Differential Responses of the Id2-/- Mouse Circadian System Are Dependent on Circadian Phase and on Duration and Intensity of Light. J Biol Rhythms 2020; 35:555-575. [PMID: 32981454 DOI: 10.1177/0748730420957504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ID2 is a rhythmically expressed helix-loop-helix transcriptional repressor, and its deletion results in abnormal properties of photoentrainment. By examining parametric and nonparametric models of entrainment, we have started to explore the mechanism underlying this circadian phenotype. Id2-/- mice were exposed to differing photoperiods, and the phase angle of entrainment under short days was delayed 2 h as compared with controls. When exposed to long durations of continuous light, enhanced entrainment responses were observed after a delay of the clock but not with phase advances. However, the magnitude of phase shifts was not different in Id2-/- mice tested in constant darkness using a discrete pulse of saturating light. No differences were observed in the speed of clock resetting when challenged by a series of discrete pulses interspaced by varying time intervals. A photic phase-response curve was constructed, although no genotypic differences were observed. Although phase shifts produced by discrete saturating light pulses at CT16 were similar, treatment with a subsaturating pulse revealed a ~2-fold increase in the magnitude of the Id2-/- shift. A corresponding elevation of light-induced per1 expression was observed in the Id2-/- suprachiasmatic nucleus (SCN). To test whether the phenotype is based on a sensitivity change at the level of the retina, pupil constriction responses were measured. No differences were observed in responses or in retinal histology, suggesting that the phenotype occurs downstream of the retina and retinal hypothalamic tract. To test whether the phenotype is due to a reduced amplitude of state variables of the clock, the expression of clock genes per1 and per2 was assessed in vivo and in SCN tissue explants. Amplitude, phase, and period length were normal in Id2-/- mice. These findings suggest that ID2 contributes to a photoregulatory mechanism at the level of the SCN central pacemaker through control of the photic induction of negative elements of the clock.
Collapse
Affiliation(s)
- Giles E Duffield
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
| | - Sung Han
- Department of Biology and Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| | - Tim Y Hou
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana
| | - Horacio O de la Iglesia
- Department of Biology and Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| | - Kathleen A McDonald
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana
| | - Kirk L Mecklenburg
- Department of Biology, Indiana University South Bend, South Bend, Indiana
| | - Maricela Robles-Murguia
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
5
|
Panebianco C, Villani A, Pazienza V. High Levels of Prebiotic Resistant Starch in Diet Modulate Gene Expression and Metabolomic Profile in Pancreatic Cancer Xenograft Mice. Nutrients 2019; 11:nu11040709. [PMID: 30934731 PMCID: PMC6521226 DOI: 10.3390/nu11040709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer initiation and protection mainly derives from a systemic metabolic environment regulated by dietary patterns. Less is known about the impact of nutritional interventions in people with a diagnosis of cancer. The aim of our study was to investigate the effect of a diet rich in resistant starch (RS) on cell pathways modulation and metabolomic phenotype in pancreatic cancer xenograft mice. RNA-Seq experiments on tumor tissue showed that 25 genes resulted in dysregulated pancreatic cancer in mice fed with an RS diet, as compared to those fed with control diet. Moreover, in these two different mice groups, six serum metabolites were deregulated as detected by LC–MS analysis. A bioinformatic prediction analysis showed the involvement of the differentially expressed genes on insulin receptor signaling, circadian rhythm signaling, and cancer drug resistance among the three top canonical pathways, whilst cell death and survival, gene expression, and neurological disease were among the three top disease and biological functions. These findings shed light on the genomic and metabolic phenotype, contributing to the knowledge of the mechanisms through which RS may act as a potential supportive approach for enhancing the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
6
|
Nicoli F, Papagno L, Frere JJ, Cabral-Piccin MP, Clave E, Gostick E, Toubert A, Price DA, Caputo A, Appay V. Naïve CD8 + T-Cells Engage a Versatile Metabolic Program Upon Activation in Humans and Differ Energetically From Memory CD8 + T-Cells. Front Immunol 2018; 9:2736. [PMID: 30619240 PMCID: PMC6308131 DOI: 10.3389/fimmu.2018.02736] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/06/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Characterization of the intracellular biochemical processes that regulate the generation and maintenance of effector and memory CD8+ T-cells from naïve precursors is essential for our understanding of adaptive immune responses and the development of immunotherapies. However, the metabolic determinants of antigen-driven activation and differentiation remain poorly defined, especially in humans. Methods: We used a variety of different approaches, including gene expression profiling and measurements of nutrient flux, to characterize the basal and activation-induced energetic requirements of naïve and phenotypically-defined subsets of human memory CD8+ T-cells. Findings: Profound metabolic differences were apparent as a function of differentiation status, both at rest and in response to stimulation via the T cell receptor (TCR). Of particular note, resting naïve CD8+ T cells were largely quiescent, but rapidly upregulated diverse energetic pathways after ligation of surface-expressed TCRs. Moreover, autophagy and the mechanistic target of rapamycin (mTOR)-dependent glycolytic pathway were identified as critical mediators of antigen-driven priming in the naïve CD8+ T cell pool, the efficiency of which was dampened by the presence of neutral lipids and fatty acids. Interpretation: These observations provide a metabolic roadmap of the CD8+ T-cell compartment in humans and reveal potentially selective targets for novel immunotherapies.
Collapse
Affiliation(s)
- Francesco Nicoli
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France.,Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Laura Papagno
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France
| | - Justin J Frere
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine Tucson, Tucson, AZ, United States
| | | | - Emmanuel Clave
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM UMR 1160, Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Emma Gostick
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Antoine Toubert
- Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM UMR 1160, Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint-Louis, AP-HP, Paris, France
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Victor Appay
- INSERM, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Université, Paris, France.,International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Wang LH, Baker NE. E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease. Dev Cell 2016; 35:269-80. [PMID: 26555048 DOI: 10.1016/j.devcel.2015.10.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/18/2015] [Accepted: 10/23/2015] [Indexed: 01/12/2023]
Abstract
The basic Helix-Loop-Helix (bHLH) proteins represent a well-known class of transcriptional regulators. Many bHLH proteins act as heterodimers with members of a class of ubiquitous partners, the E proteins. A widely expressed class of inhibitory heterodimer partners-the Inhibitor of DNA-binding (ID) proteins-also exists. Genetic and molecular analyses in humans and in knockout mice implicate E proteins and ID proteins in a wide variety of diseases, belying the notion that they are non-specific partner proteins. Here, we explore relationships of E proteins and ID proteins to a variety of disease processes and highlight gaps in knowledge of disease mechanisms.
Collapse
Affiliation(s)
- Lan-Hsin Wang
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
8
|
Hamamura K, Matsunaga N, Ikeda E, Kondo H, Ikeyama H, Tokushige K, Itcho K, Furuichi Y, Yoshida Y, Matsuda M, Yasuda K, Doi A, Yokota Y, Amamoto T, Aramaki H, Irino Y, Koyanagi S, Ohdo S. Alterations of Hepatic Metabolism in Chronic Kidney Disease via D-box-binding Protein Aggravate the Renal Dysfunction. J Biol Chem 2016; 291:4913-27. [PMID: 26728457 DOI: 10.1074/jbc.m115.696930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Indexed: 11/06/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with an increase in serum retinol; however, the underlying mechanisms of this disorder are poorly characterized. Here, we found that the alteration of hepatic metabolism induced the accumulation of serum retinol in 5/6 nephrectomy (5/6Nx) mice. The liver is the major organ responsible for retinol metabolism; accordingly, microarray analysis revealed that the hepatic expression of most CYP genes was changed in 5/6Nx mice. In addition, D-box-binding protein (DBP), which controls the expression of several CYP genes, was significantly decreased in these mice. Cyp3a11 and Cyp26a1, encoding key proteins in retinol metabolism, showed the greatest decrease in expression in 5/6Nx mice, a process mediated by the decreased expression of DBP. Furthermore, an increase of plasma transforming growth factor-β1 (TGF-β1) in 5/6Nx mice led to the decreased expression of the Dbp gene. Consistent with these findings, the alterations of retinol metabolism and renal dysfunction in 5/6Nx mice were ameliorated by administration of an anti-TGF-β1 antibody. We also show that the accumulation of serum retinol induced renal apoptosis in 5/6Nx mice fed a normal diet, whereas renal dysfunction was reduced in mice fed a retinol-free diet. These findings indicate that constitutive Dbp expression plays an important role in mediating hepatic dysfunction under CKD. Thus, the aggravation of renal dysfunction in patients with CKD might be prevented by a recovery of hepatic function, potentially through therapies targeting DBP and retinol.
Collapse
Affiliation(s)
- Kengo Hamamura
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan, the Drug Innovation Research Center, Daiichi University of Pharmacy, Minami-ku, Fukuoka 815-8511, Japan
| | - Naoya Matsunaga
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Eriko Ikeda
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan, the Drug Innovation Research Center, Daiichi University of Pharmacy, Minami-ku, Fukuoka 815-8511, Japan
| | - Hideaki Kondo
- the Center for Sleep Medicine, Saiseikai Nagasaki Hospital, Katafuchi, Nagasaki 850-0003, Japan
| | - Hisako Ikeyama
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Kazutaka Tokushige
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Kazufumi Itcho
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Yoko Furuichi
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Yuya Yoshida
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Masaki Matsuda
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Kaori Yasuda
- Cell-Innovator Inc., EC Building, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Atsushi Doi
- Cell-Innovator Inc., EC Building, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Yoshifumi Yokota
- the Department of Molecular Genetics, School of Medicine, Fukui University, Matsuoka, Fukui 910-1193, Japan
| | - Toshiaki Amamoto
- Neues Corporation, Tenyamachi-cho, Hakata-ku, Fukuoka 812-0025, Japan, and
| | - Hironori Aramaki
- the Drug Innovation Research Center, Daiichi University of Pharmacy, Minami-ku, Fukuoka 815-8511, Japan, the Department of Molecular Biology, Daiichi University of Pharmacy, Minami-ku, Fukuoka 815-8511, Japan
| | - Yasuhiro Irino
- the Integrated Center for Mass Spectrometry, Division of Membrane Biology, and Department of Evidence-based Laboratory Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Satoru Koyanagi
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan
| | - Shigehiro Ohdo
- From the Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8512, Japan,
| |
Collapse
|
9
|
Zhou P, Robles-Murguia M, Mathew D, Duffield GE. Impaired Thermogenesis and a Molecular Signature for Brown Adipose Tissue in Id2 Null Mice. J Diabetes Res 2016; 2016:6785948. [PMID: 27144179 PMCID: PMC4842059 DOI: 10.1155/2016/6785948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/06/2016] [Accepted: 03/16/2016] [Indexed: 11/18/2022] Open
Abstract
Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have sex-specific elevated glucose uptake in brown adipose tissue (BAT). Here we further explored the role of Id2 in the regulation of core body temperature over the circadian cycle and the impact of Id2 deficiency on genes involved in insulin signaling and adipogenesis in BAT. We discovered a reduced core body temperature in Id2-/- mice. Moreover, in Id2-/- BAT, 30 genes including Irs1, PPARs, and PGC-1s were identified as differentially expressed in a sex-specific pattern. These data provide valuable insights into the impact of Id2 deficiency on energy homeostasis of mice in a sex-specific manner.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maricela Robles-Murguia
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Deepa Mathew
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Giles E. Duffield
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
- *Giles E. Duffield:
| |
Collapse
|
10
|
Correlation of X-ray computed tomography with quantitative nuclear magnetic resonance methods for pre-clinical measurement of adipose and lean tissues in living mice. SENSORS 2014; 14:18526-42. [PMID: 25299952 PMCID: PMC4239858 DOI: 10.3390/s141018526] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/30/2014] [Accepted: 08/15/2014] [Indexed: 12/16/2022]
Abstract
Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.
Collapse
|
11
|
Zhou P, Hummel AD, Pywell CM, Dong XC, Duffield GE. High fat diet rescues disturbances to metabolic homeostasis and survival in the Id2 null mouse in a sex-specific manner. Biochem Biophys Res Commun 2014; 451:374-81. [PMID: 25108156 DOI: 10.1016/j.bbrc.2014.07.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/24/2022]
Abstract
Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our previous studies have demonstrated that Id2 null mice have altered expression of circadian genes involved in lipid metabolism, altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. Here we further characterized the Id2-/- mouse metabolic phenotype in a sex-specific context and under low and high fat diets, and examined metabolic and endocrine parameters associated with lipid and glucose metabolism. Under the low-fat diet Id2-/- mice showed decreased weight gain, reduced gonadal fat mass, and a lower survival rate. Under the high-fat diet, body weight and gonadal fat gain of Id2-/- male mice was comparable to control mice and survival rate improved markedly. Furthermore, the high-fat diet treated Id2-/- male mice lost the enhanced glucose tolerance feature observed in the other Id2-/- groups, and there was a sex-specific difference in white adipose tissue storage of Id2-/- mice. Additionally, a distinct pattern of hepatic lipid accumulation was observed in Id2-/- males: low lipids on the low-fat diet and steatosis on the high-fat diet. In summary, these data provides valuable insights into the impact of Id2 deficiency on metabolic homeostasis of mice in a sex-specific manner.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alyssa D Hummel
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cameron M Pywell
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Giles E Duffield
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
12
|
Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci Rep 2014; 3:2494. [PMID: 23986098 PMCID: PMC3756343 DOI: 10.1038/srep02494] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/07/2013] [Indexed: 11/08/2022] Open
Abstract
We recently characterized 24-hr daily rhythmic patterns of gene expression in Anopheles gambiae mosquitoes. These include numerous odorant binding proteins (OBPs), soluble odorant carrying proteins enriched in olfactory organs. Here we demonstrate that multiple rhythmically expressed genes including OBPs and takeout proteins, involved in regulating blood feeding behavior, have corresponding rhythmic protein levels as measured by quantitative proteomics. This includes AgamOBP1, previously shown as important to An. gambiae odorant sensing. Further, electrophysiological investigations demonstrate time-of-day specific differences in olfactory sensitivity of antennae to major host-derived odorants. The pre-dusk/dusk peaks in OBPs and takeout gene expression correspond with peak protein abundance at night, and in turn coincide with the time of increased olfactory sensitivity to odorants requiring OBPs and times of increased blood-feeding behavior. This suggests an important role for OBPs in modulating temporal changes in odorant sensitivity, enabling the olfactory system to coordinate with the circadian niche of An. gambiae.
Collapse
|
13
|
Zhou P, Ross RA, Pywell CM, Liangpunsakul S, Duffield GE. Disturbances in the murine hepatic circadian clock in alcohol-induced hepatic steatosis. Sci Rep 2014; 4:3725. [PMID: 24430730 PMCID: PMC3893658 DOI: 10.1038/srep03725] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022] Open
Abstract
To investigate the role of the circadian clock in the development of alcohol-induced fatty liver disease we examined livers of mice chronically alcohol-fed over 4-weeks that resulted in steatosis. Here we show time-of-day specific changes in expression of clock genes and clock-controlled genes, including those associated with lipid and bile acid regulation. Such changes were not observed following a 1-week alcohol treatment with no hepatic lipid accumulation. Real-time bioluminescence reporting of PERIOD2 protein expression suggests that these changes occur independently of the suprachiasmatic nucleus pacemaker. Further, we find profound time-of-day specific changes to the rhythmic synthesis/accumulation of triglycerides, cholesterol and bile acid, and the NAD/NADH ratio, processes that are under clock control. These results highlight not only that the circadian timekeeping system is disturbed in the alcohol-induced hepatic steatosis state, but also that the effects of alcohol upon the clock itself may actually contribute to the development of hepatic steatosis.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Ruth A Ross
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Cameron M Pywell
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Suthat Liangpunsakul
- 1] Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 [2] Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202
| | - Giles E Duffield
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
14
|
Annayev Y, Adar S, Chiou YY, Lieb JD, Sancar A, Ye R. Gene model 129 (Gm129) encodes a novel transcriptional repressor that modulates circadian gene expression. J Biol Chem 2014; 289:5013-24. [PMID: 24385426 DOI: 10.1074/jbc.m113.534651] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The mammalian circadian clock is a molecular oscillator composed of a feedback loop that involves transcriptional activators CLOCK and BMAL1, and repressors Cryptochrome (CRY) and Period (PER). Here we show that a direct CLOCK·BMAL1 target gene, Gm129, is a novel regulator of the feedback loop. ChIP analysis revealed that the CLOCK·BMAL1·CRY1 complex strongly occupies the promoter region of Gm129. Both mRNA and protein levels of GM129 exhibit high amplitude circadian oscillations in mouse liver, and Gm129 gene encodes a nuclear-localized protein that directly interacts with BMAL1 and represses CLOCK·BMAL1 activity. In vitro and in vivo protein-DNA interaction results demonstrate that, like CRY1, GM129 functions as a repressor by binding to the CLOCK·BMAL1 complex on DNA. Although Gm129(-/-) or Cry1(-/-) Gm129(-/-) mice retain a robust circadian rhythm, the peaks of Nr1d1 and Dbp mRNAs in liver exhibit a significant phase delay compared with control. Our results suggest that, in addition to CRYs and PERs, the GM129 protein contributes to the transcriptional feedback loop by modulating CLOCK·BMAL1 activity as a transcriptional repressor.
Collapse
Affiliation(s)
- Yunus Annayev
- From the Departments of Biochemistry and Biophysics and
| | | | | | | | | | | |
Collapse
|
15
|
Gabás-Rivera C, Martínez-Beamonte R, Ríos JL, Navarro MA, Surra JC, Arnal C, Rodríguez-Yoldi MJ, Osada J. Dietary oleanolic acid mediates circadian clock gene expression in liver independently of diet and animal model but requires apolipoprotein A1. J Nutr Biochem 2013; 24:2100-9. [PMID: 24231102 DOI: 10.1016/j.jnutbio.2013.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 07/22/2013] [Accepted: 07/31/2013] [Indexed: 12/13/2022]
Abstract
Oleanolic acid is a triterpene widely distributed throughout the plant kingdom and present in virgin olive oil at a concentration of 57 mg/kg. To test the hypotheses that its long-term administration could modify hepatic gene expression in several animal models and that this could be influenced by the presence of APOA1-containing high-density lipoproteins (HDLs), diets including 0.01% oleanolic acid were provided to Apoe- and Apoa1-deficient mice and F344 rats. Hepatic transcriptome was analyzed in Apoe-deficient mice fed long-term semipurified Western diets differing in the oleanolic acid content. Gene expression changes, confirmed by reverse transcriptase quantitative polymerase chain reaction, were sought for their implication in hepatic steatosis. To establish the effect of oleanolic acid independently of diet and animal model, male rats were fed chow diet with or without oleanolic acid, and to test the influence of HDL, Apoa1-deficient mice consuming the latter diet were used. In Apoe-deficient mice, oleanolic acid intake increased hepatic area occupied by lipid droplets with no change in oxidative stress. Bmal1 and the other core component of the circadian clock, Clock, together with Elovl3, Tubb2a and Cldn1 expressions, were significantly increased, while Amy2a5, Usp2, Per3 and Thrsp were significantly decreased in mice receiving the compound. Bmal1 and Cldn1 expressions were positively associated with lipid droplets. Increased Clock and Bmal1 expressions were also observed in rats, but not in Apoa1-deficient mice. The core liver clock components Clock-Bmal1 are a target of oleanolic acid in two animal models independently of the diets provided, and this compound requires APOA1-HDL for its hepatic action.
Collapse
Affiliation(s)
- Clara Gabás-Rivera
- Departamento Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón (IIS), Universidad de Zaragoza, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jagannath A, Butler R, Godinho SIH, Couch Y, Brown LA, Vasudevan SR, Flanagan KC, Anthony D, Churchill GC, Wood MJA, Steiner G, Ebeling M, Hossbach M, Wettstein JG, Duffield GE, Gatti S, Hankins MW, Foster RG, Peirson SN. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell 2013; 154:1100-1111. [PMID: 23993098 PMCID: PMC3898689 DOI: 10.1016/j.cell.2013.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/24/2013] [Accepted: 07/29/2013] [Indexed: 11/09/2022]
Abstract
Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms. Nocturnal light induces widespread transcriptional changes in the SCN The CRTC1-SIK1 cascade regulates entrainment of the circadian clock Negative feedback by SIK1 limits the effects of light on the clock Homeostatic regulation of entrainment ensures gradual adaptation to a new time zone
Collapse
Affiliation(s)
- Aarti Jagannath
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Rachel Butler
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Sofia I H Godinho
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK; pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Yvonne Couch
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Laurence A Brown
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Sridhar R Vasudevan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Kevin C Flanagan
- Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Center, Notre Dame, IN 46556, USA
| | - Daniel Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Grant C Churchill
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Guido Steiner
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Martin Ebeling
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Markus Hossbach
- Axolabs GmbH Fritz-Hornschuch-Straße 9, 95326 Kulmbach, Germany
| | - Joseph G Wettstein
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Giles E Duffield
- Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Center, Notre Dame, IN 46556, USA
| | - Silvia Gatti
- pRED Pharma Research and Development F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Mark W Hankins
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Russell G Foster
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| | - Stuart N Peirson
- Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Levels 5-6 West Wing, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK.
| |
Collapse
|
17
|
Mathew D, Zhou P, Pywell CM, van der Veen DR, Shao J, Xi Y, Bonar NA, Hummel AD, Chapman S, Leevy WM, Duffield GE. Ablation of the ID2 gene results in altered circadian feeding behavior, and sex-specific enhancement of insulin sensitivity and elevated glucose uptake in skeletal muscle and brown adipose tissue. PLoS One 2013; 8:e73064. [PMID: 24023810 PMCID: PMC3759459 DOI: 10.1371/journal.pone.0073064] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022] Open
Abstract
Inhibitor of DNA binding 2 (ID2) is a helix-loop-helix transcriptional repressor rhythmically expressed in many adult tissues. Our earlier studies have demonstrated a role for ID2 in the input pathway, core clock function and output pathways of the mouse circadian system. We have also reported that Id2 null (Id2−/−) mice are lean with low gonadal white adipose tissue deposits and lower lipid content in the liver. These results coincided with altered or disrupted circadian expression profiles of liver genes including those involved in lipid metabolism. In the present phenotypic study we intended to decipher, on a sex-specific basis, the role of ID2 in glucose metabolism and in the circadian regulation of activity, important components of energy balance. We find that Id2−/− mice exhibited altered daily and circadian rhythms of feeding and locomotor activity; activity profiles extended further into the late night/dark phase of the 24-hr cycle, despite mice showing reduced total locomotor activity. Also, male Id2−/− mice consumed a greater amount of food relative to body mass, and displayed less weight gain. Id2−/− females had smaller adipocytes, suggesting sexual-dimorphic programing of adipogenesis. We observed increased glucose tolerance and insulin sensitivity in male Id2−/− mice, which was exacerbated in older animals. FDG-PET analysis revealed increased glucose uptake by skeletal muscle and brown adipose tissue of male Id2−/− mice, suggesting increased glucose metabolism and thermogenesis in these tissues. Reductions in intramuscular triacylglycerol and diacylglycerol were detected in male Id2−/− mice, highlighting its possible mechanistic role in enhanced insulin sensitivity in these mice. Our findings indicate a role for ID2 as a regulator of glucose and lipid metabolism, and in the circadian control of feeding/locomotor behavior; and contribute to the understanding of the development of obesity and diabetes, particularly in shift work personnel among whom incidence of such metabolic disorders is elevated.
Collapse
Affiliation(s)
- Deepa Mathew
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Peng Zhou
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cameron M. Pywell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Daan R. van der Veen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jinping Shao
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Yang Xi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Nicolle A. Bonar
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alyssa D. Hummel
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Sarah Chapman
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - W. Matthew Leevy
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Notre Dame Integrated Imaging Facility, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Giles E. Duffield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
18
|
Tang T, Thompson JC, Wilson PG, Nelson C, Williams KJ, Tannock LR. Decreased body fat, elevated plasma transforming growth factor-β levels, and impaired BMP4-like signaling in biglycan-deficient mice. Connect Tissue Res 2013; 54:5-13. [PMID: 22834985 PMCID: PMC4557867 DOI: 10.3109/03008207.2012.715700] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biglycan (BGN), a small leucine-rich proteoglycan, binds the pro-fibrotic cytokine transforming growth factor β (TGFβ) and inhibits its bioactivity in vitro. Nevertheless, it is controversial whether BGN plays an inhibitory role in vivo. Therefore, the purpose of this study was to evaluate the effect of BGN deficiency on TGFβ activity in vivo by studying 1-year-old Bgn null and wild-type (WT) mice on an Ldlr-null background. Phenotypic and metabolic characterization showed that the Bgn null mice had lower body weight, shorter body length, and shorter femur length (all p < 0.05). Surprisingly, the Bgn null mice also exhibited a striking reduction in percent body fat compared to WT mice (p == 0.006), but no changes were observed in plasma triglycerides, total cholesterol, or glycohemoglobin. Both total and bioactive TGFβ1 concentrations in plasma were markedly elevated in Bgn null mice compared to WT mice (4-fold and 11-fold increase, respectively, both p < 0.001), but no changes were found in hepatic levels of mRNA for Tgfβ1 or its receptors. Bgn null mice exhibited elevated expression of hepatic fibronectin protein (p = 0.034) without changes in hepatic or renal histology, and Bgn null mice had decreased urinary albumin/creatinine ratio (p = 0.01). Two key downstream targets of bone morphogenetic protein 4-like signaling, SMAD1/3/5 phosphorylation and Id2 gene expression, were found dramatically reduced in Bgn null livers (p = 0.034). Thus, BGN deficiency decreases body fat in this hyperlipidemic mouse model without changing liver or kidney histology. Overall, we propose that this unexpected phenotype arises from the effects of BGN deficiency in vivo to elevate TGFβ levels while decreasing bone morphogenetic protein 4-like signaling.
Collapse
Affiliation(s)
- Tao Tang
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Joel C. Thompson
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Patricia G. Wilson
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Christina Nelson
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Kevin Jon Williams
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, Temple University, Philadelphia, PA, USA
| | - Lisa R. Tannock
- Division of Endocrinology and Molecular Medicine, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA, Department of Veterans Affairs, Lexington, KY, USA,Correspondence to: Dr. Lisa R. Tannock, Associate Professor of Medicine, Chief, Division of Endocrinology and Molecular Medicine, Room 567, Wethington Building, 900 S. Limestone, University of Kentucky, Lexington, KY 40536-0200, Tel: 859-323-4933 ext 81415, Fax: 859-257-3646,
| |
Collapse
|
19
|
Xiong X, Tao R, DePinho RA, Dong XC. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem 2012; 287:39107-14. [PMID: 22992773 DOI: 10.1074/jbc.m112.412569] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Autophagy plays a critical role in cell survival from prolonged starvation and recycling of aggregated proteins and damaged organelles. One of the essential genes involved in the autophagic initiation is autophagy-related 14 (Atg14), also called Barkor for Beclin 1-associated autophagy-related key regulator. Although its crucial role in the autophagic process has been reported, the gene regulation of Atg14 and its metabolic functions remain unclear. In this work we have identified that the Atg14 gene is regulated by forkhead box O (FoxO) transcription factors and circadian rhythms in the mouse liver. Luciferase reporter analyses and chromatin immunoprecipitation assays have revealed well conserved cis-elements for FoxOs and Clock/Bmal1 in the proximal promoter of the Atg14 gene. To examine the functions of hepatic Atg14, we have performed the gene knockdown and overexpression in the mouse livers. Remarkably, knockdown of Atg14 leads to elevated levels of triglycerides in the liver and serum as well. Conversely, overexpression of Atg14 improves hypertriglyceridemia in both high fat diet-treated wild-type mice and FoxO1/3/4 liver-specific knock-out mice. In summary, our data suggest that Atg14 is a new target gene of FoxOs and the core clock machinery, and this gene plays an important role in hepatic lipid metabolism.
Collapse
Affiliation(s)
- Xiwen Xiong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
20
|
Mazzoccoli G, Pazienza V, Vinciguerra M. Clock genes and clock-controlled genes in the regulation of metabolic rhythms. Chronobiol Int 2012; 29:227-51. [PMID: 22390237 DOI: 10.3109/07420528.2012.658127] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Daily rotation of the Earth on its axis and yearly revolution around the Sun impose to living organisms adaptation to nyctohemeral and seasonal periodicity. Terrestrial life forms have developed endogenous molecular circadian clocks to synchronize their behavioral, biological, and metabolic rhythms to environmental cues, with the aim to perform at their best over a 24-h span. The coordinated circadian regulation of sleep/wake, rest/activity, fasting/feeding, and catabolic/anabolic cycles is crucial for optimal health. Circadian rhythms in gene expression synchronize biochemical processes and metabolic fluxes with the external environment, allowing the organism to function effectively in response to predictable physiological challenges. In mammals, this daily timekeeping is driven by the biological clocks of the circadian timing system, composed of master molecular oscillators within the suprachiasmatic nuclei of the hypothalamus, pacing self-sustained and cell-autonomous molecular oscillators in peripheral tissues through neural and humoral signals. Nutritional status is sensed by nuclear receptors and coreceptors, transcriptional regulatory proteins, and protein kinases, which synchronize metabolic gene expression and epigenetic modification, as well as energy production and expenditure, with behavioral and light-dark alternance. Physiological rhythmicity characterizes these biological processes and body functions, and multiple rhythms coexist presenting different phases, which may determine different ways of coordination among the circadian patterns, at both the cellular and whole-body levels. A complete loss of rhythmicity or a change of phase may alter the physiological array of rhythms, with the onset of chronodisruption or internal desynchronization, leading to metabolic derangement and disease, i.e., chronopathology.
Collapse
Affiliation(s)
- Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS Scientific Institute and Regional General Hospital Casa Sollievo della Sofferenza, Opera di Padre Pio da Pietrelcina, San Giovanni Rotondo (FG), Italy.
| | | | | |
Collapse
|
21
|
Peroxisome proliferator-activated receptorα agonists differentially regulate inhibitor of DNA binding expression in rodents and human cells. PPAR Res 2012; 2012:483536. [PMID: 22701468 PMCID: PMC3373159 DOI: 10.1155/2012/483536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 11/18/2022] Open
Abstract
Inhibitor of DNA binding (Id2) is a helix-loop-helix (HLH) transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR) gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY). WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2). MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V), the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans.
Collapse
|
22
|
Sahar S, Nin V, Barbosa MT, Chini EN, Sassone-Corsi P. Altered behavioral and metabolic circadian rhythms in mice with disrupted NAD+ oscillation. Aging (Albany NY) 2012; 3:794-802. [PMID: 21937766 PMCID: PMC3184980 DOI: 10.18632/aging.100368] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Intracellular levels of nicotinamide adenine dinucleotide (NAD(+)) are rhythmic and controlled by the circadian clock. However, whether NAD(+) oscillation in turn contributes to circadian physiology is not fully understood. To address this question we analyzed mice mutated for the NAD(+) hydrolase CD38. We found that rhythmicity of NAD(+) was altered in the CD38-deficient mice. The high, chronic levels of NAD(+) results in several anomalies in circadian behavior and metabolism. CD38-null mice display a shortened period length of locomotor activity and alteration in the rest-activity rhythm. Several clock genes and, interestingly, genes involved in amino acid metabolism were deregulated in CD38-null livers. Metabolomic analysis identified alterations in the circadian levels of several amino acids, specifically tryptophan levels were reduced in the CD38-null mice at a circadian time paralleling with elevated NAD(+) levels. Thus, CD38 contributes to behavioral and metabolic circadian rhythms and altered NAD(+) levels influence the circadian clock.
Collapse
Affiliation(s)
- Saurabh Sahar
- Department of Pharmacology, University of California, Irvine, 92697, USA
| | | | | | | | | |
Collapse
|
23
|
Ward SM, Fernando SJ, Hou TY, Duffield GE. The transcriptional repressor ID2 can interact with the canonical clock components CLOCK and BMAL1 and mediate inhibitory effects on mPer1 expression. J Biol Chem 2010; 285:38987-9000. [PMID: 20861012 PMCID: PMC2998095 DOI: 10.1074/jbc.m110.175182] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/21/2010] [Indexed: 01/15/2023] Open
Abstract
ID2 is a rhythmically expressed HLH transcriptional repressor. Deletion of Id2 in mice results in circadian phenotypes, highlighted by disrupted locomotor activity rhythms and an enhanced photoentrainment response. ID2 can suppress the transactivation potential of the positive elements of the clock, CLOCK-BMAL1, on mPer1 and clock-controlled gene (CCG) activity. Misregulation of CCGs is observed in Id2(-/-) liver, and mutant mice exhibit associated alterations in lipid homeostasis. These data suggest that ID2 contributes to both input and output components of the clock and that this may be via interaction with the bHLH clock proteins CLOCK and BMAL1. The aim of the present study was to explore this potential interaction. Coimmunoprecipitation analysis revealed the capability of ID2 to complex with both CLOCK and BMAL1, and mammalian two-hybrid analysis revealed direct interactions of ID2, ID1 and ID3 with CLOCK and BMAL1. Deletion of the ID2 HLH domain rendered ID2 ineffective at inhibiting CLOCK-BMAL1 transactivation, suggesting that interaction between the proteins is via the HLH region. Immunofluorescence analysis revealed overlapping localization of ID2 with CLOCK and BMAL1 in the cytoplasm. Overexpression of CLOCK and BMAL1 in the presence of ID2 resulted in a significant reduction in their nuclear localization, revealing that ID2 can sequester CLOCK and BMAL1 to the cytoplasm. Serum stimulation of Id2(-/-) mouse embryonic fibroblasts resulted in an enhanced induction of mPer1 expression. These data provide the basis for a molecular mechanism through which ID2 could regulate aspects of both clock input and output through a time-of-day specific interaction with CLOCK and BMAL1.
Collapse
Affiliation(s)
- Sarah M. Ward
- From the Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana 46556
| | - Shanik J. Fernando
- From the Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana 46556
| | - Tim Y. Hou
- From the Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana 46556
| | - Giles E. Duffield
- From the Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
24
|
Murad JM, Place CS, Ran C, Hekmatyar SKN, Watson NP, Kauppinen RA, Israel MA. Inhibitor of DNA binding 4 (ID4) regulation of adipocyte differentiation and adipose tissue formation in mice. J Biol Chem 2010; 285:24164-73. [PMID: 20460371 DOI: 10.1074/jbc.m110.128744] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inhibitor of DNA binding 4 (ID4) is a helix-loop-helix protein that heterodimerizes with basic helix-loop-helix transcription factors inhibiting their function. ID4 expression is important for adipogenic differentiation of the 3T3-L1 cell line, and inhibition of ID4 is associated with a concomitant decrease in CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma mRNA and protein expression. Mice with a homozygous deletion of Id4 (Id4(-/-)) have reduced body fat and gain much less weight compared with wild-type littermates when placed on diets with high fat content. Mouse embryonic fibroblasts (MEFs) isolated from Id4(-/-) mice have reduced adipogenic potential when compared with wild-type MEFs. In agreement with changes in morphological differentiation, the levels of CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma were also reduced in MEFs from Id4(-/-) mice. Our results demonstrate the importance of ID4 in adipocyte differentiation and the implications of this regulation for adipose tissue formation.
Collapse
Affiliation(s)
- Joana M Murad
- Norris Cotton Cancer Center and Department of Pediatrics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
In mammals, many physiological processes present diurnal variations, and most of these rhythms persist even in absence of environmental timing cues. These endogenous circadian rhythms are generated by intracellular timing mechanisms termed circadian clocks. In mammals, the master clock is located in the suprachiasmatic nuclei (SCN), but other brain regions and most peripheral tissues contain circadian clocks. These clocks are responsive to environmental cues, in particular light/dark and feeding/fasting cycles. In the last few years, tissue-specific knock-out and transgenic mouse models have helped to define the physiological roles of specific clocks. Recent reports indicate that the clock-physiology connection is bi-directional, and physiological cues, in particular the energetic status of the cell, can feed into the clockwork. This effect was discovered unexpectedly in molecular analyses of clock protein modifications. Beyond the positive and negative transcription/translation feedback loops of the molecular oscillator lies another level of complexity. Post-translational modifications of clock proteins are both critical for the timing of the clock feedback mechanism and to provide regulatory fine-tuning. This review summarizes recent advances in our understanding of the roles of peripheral clocks and of post-translational modifications occurring on clock proteins. These two matters are at the intersection of physiology, metabolism, and the circadian system.
Collapse
Affiliation(s)
- David Duguay
- Laboratory of Molecular Chronobiology, Douglas Mental Health University Institute, 6875 LaSalle Blvd., Montreal, QC, Canada
| | | |
Collapse
|