1
|
Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal 2025; 23:171. [PMID: 40197235 PMCID: PMC11977922 DOI: 10.1186/s12964-025-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a critical link between DNA sensing and innate immunity, and has tremendous potential to improve anti-tumor immunity by generating type I interferons. However, STING agonists have shown decreasing biotherapeutic efficacy in clinical trials. Tumor metabolism, characterized by aberrant nutrient utilization and energy production, is a fundamental hallmark of tumorigenesis. And modulating metabolic pathways in tumor cells has been discovered as a therapeutic strategy for tumors. As research concerning STING progressed, emerging evidence highlights its role in metabolic reprogramming, independent its immune function, indicating metabolic targets as a strategy for STING activation in cancers. In this review, we delve into the interplay between STING and multiple metabolic pathways. We also synthesize current knowledge on the antitumor functions of STING, and the metabolic targets within the tumor microenvironment (TME) that could be exploited for STING activation. This review highlights the necessity for future research to dissect the complex metabolic interactions with STING in various cancer types, emphasizing the potential for personalized therapeutic strategies based on metabolic profiling.
Collapse
Affiliation(s)
- Siwei Wang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology), Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
2
|
Li B, Liu S, Han W, Song P, Sun H, Cao X, Di G, Chen P. Aquaporin five deficiency suppresses fatty acid oxidation and delays liver regeneration through the transcription factor PPAR. J Biol Chem 2025; 301:108303. [PMID: 39947476 PMCID: PMC11930093 DOI: 10.1016/j.jbc.2025.108303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
After 70% partial hepatectomy (PHx), the metabolic pathways leading to hepatocyte lipid droplet accumulation during liver regeneration remain unclear. Aquaporin 5 (Aqp5) is an aquaporin that facilitates the transport of both water and hydrogen peroxide (H2O2). In this study, we observed delayed liver regeneration following PHx in Aqp5 knockout (Aqp5-/-) mice. Considering the role of Aqp5 in H2O2 transport, we hypothesized that deficiency in Aqp5 may induce oxidative stress and hepatocyte injury. Through the measurement of reactive oxygen species (ROS) and redox-related indices, we observed significant alterations in ROS levels as well as malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) concentrations in regenerating livers lacking Aqp5 compared to wild-type controls. Oil Red O and 4-hydroxynonenal (4-HNE) staining results indicated that Aqp5 deficiency caused lipid accumulation during liver regeneration. The transcriptome sequencing results showed that the PPAR pathway is inhibited during the liver regeneration process in Aqp5 gene-knockout mice. The administration of the WY-14643 agonist, which targets the PPAR pathway, significantly mitigated delayed liver regeneration by enhancing hepatocyte proliferation and reducing lipid accumulation caused by Aqp5 deficiency. Our findings highlight the crucial role of Aqp5 in regulating H2O2 levels and lipid metabolism through the PPAR pathway during liver regeneration.
Collapse
Affiliation(s)
- Bin Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shixu Liu
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Wenshuo Han
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Peirong Song
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Hetong Sun
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Xin Cao
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| | - Guohu Di
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| | - Peng Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, China.
| |
Collapse
|
3
|
Li W, Luo Y, Zhu S, Wang M, Zhao X, Ning Z. Integrated metabolome and transcriptome analysis reveals key genes and pathways associated with egg yolk percentage in chicken. Poult Sci 2025; 104:104815. [PMID: 39914020 PMCID: PMC11848451 DOI: 10.1016/j.psj.2025.104815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 02/27/2025] Open
Abstract
Yolk percentage is a critical index in the egg product industry, reflecting both nutritional value and economic benefits. To elucidate the underlying mechanisms that contribute to variations in egg yolk percentage, we performed integrated transcriptome and metabolome analyses on the liver, ovary, and magnum tissues of Rhode Island Red chickens with high and low yolk percentages. A total of 322 differentially expressed genes (DEGs) and 128 significantly differential metabolites (SDMs) (VIP>1, P < 0.05) were identified in the liver, whereas 419 DEGs and 215 SDMs were detected in the ovary, and 238 DEGs along with 47 SDMs were found in the magnum. In the liver, genes such as HMGCR, DHCR7, MSMO1, and CYP7A1 were linked to cholesterol metabolism, essential for steroid hormone synthesis and yolk formation, while ACACB, ACSL1, ACSL4, LPL, and SGPP2 were involved in fatty acid biosynthesis, a key process for supplying energy and structural components of the yolk. In the ovary, COL6A6, COMP, CHAD, ITGA7, THBS2, and TNC contributed to extracellular matrix-receptor interactions, which are fundamental for follicle development and oocyte maturation. In the magnum, UGT1A1, MAOB, and ALDH3B2 participated in drug metabolism-cytochrome P450 and amino acid metabolism, ensuring a proper environment for egg white formation and potentially influencing nutrient allocation to the yolk. Metabolic pathway enrichment revealed that steroid hormone biosynthesis, glycerophospholipid metabolism, and betaine metabolism were predominant in the liver; pyruvate, taurine, and hypotaurine metabolism in the ovary; and phenylalanine metabolism in the magnum. Moreover, integrated analysis highlighted key metabolites and genes potentially regulating yolk deposition, including 7,8-dihydroneopterin and Pg 38:4 in the liver (related to immune modulation and lipid metabolism, respectively), thalsimine in the ovary, as well as DL-glutamine in the magnum, all of which may be crucial for maintaining metabolic homeostasis and supporting egg formation. Collectively, these findings deepen our understanding of how distinct molecular and metabolic pathways in the liver, ovary, and magnum orchestrate yolk proportion and deposition. Such insights may advance future strategies to improve egg quality and productivity in poultry breeding programs.
Collapse
Affiliation(s)
- Wen Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuxing Luo
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shoujia Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengyuan Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuli Zhao
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Li S, Yuan H, Li L, Li Q, Lin P, Li K. Oxidative Stress and Reprogramming of Lipid Metabolism in Cancers. Antioxidants (Basel) 2025; 14:201. [PMID: 40002387 PMCID: PMC11851681 DOI: 10.3390/antiox14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress is a common event involved in cancer pathophysiology, frequently accompanied by unique lipid metabolic reprogramming phenomena. Oxidative stress is caused mainly by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant system in cancer cells. Emerging evidence has reported that oxidative stress regulates the expression and activity of lipid metabolism-related enzymes, leading to the alteration of cellular lipid metabolism; this involves a significant increase in fatty acid synthesis and a shift in the way in which lipids are taken up and utilized. The dysregulation of lipid metabolism provides abundant intermediates to synthesize biological macromolecules for the rapid proliferation of cancer cells; moreover, it contributes to the maintenance of intracellular redox homeostasis by producing a variety of reducing agents. Moreover, lipid derivatives and metabolites play critical roles in signal transduction within cancer cells and in the tumor microenvironment that evades immune destruction and facilitates tumor invasion and metastasis. These findings suggest a close relationship between oxidative stress and lipid metabolism during the malignant progression of cancers. This review focuses on the crosstalk between the redox system and lipid metabolic reprogramming, which provides an in-depth insight into the modulation of ROS on lipid metabolic reprogramming in cancers and discusses potential strategies for targeting lipid metabolism for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Ping Lin
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| | - Kai Li
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; (S.L.); (H.Y.); (L.L.); (Q.L.)
| |
Collapse
|
5
|
Zhao Y, Cui R, Du R, Song C, Xie F, Ren L, Li J. Platelet-Derived Microvesicles Mediate Cardiomyocyte Ferroptosis by Transferring ACSL1 During Acute Myocardial Infarction. Mol Biotechnol 2025; 67:790-804. [PMID: 38466505 DOI: 10.1007/s12033-024-01094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/21/2024] [Indexed: 03/13/2024]
Abstract
Acute myocardial infarction (AMI) is one of the critical health conditions often caused by the rupture of unstable coronary artery plaque, triggering a series of events, such as platelet activation, thrombus formation, coronary artery blockage, lasted severe ischemia, and hypoxia in cardiomyocytes, and culminating in cell death. Platelet-derived microvesicles (PMVs) act as intermediates for cellular communication. Nevertheless, the role of PMVs in myocardial infarction remains unclear. Initially, AMI-related messenger ribose nucleic acid (mRNA) and micro RNA (miRNA) datasets from the Gene Expression Omnibus (GEO) database were analyzed, specifically focusing on the expressed genes associated with Ferroptosis. Further, a miRNA-mRNA regulatory network specific to AMI was constructed. Then, the effect of PMVs on cardiomyocyte survival was further confirmed through in vitro experiments. High ACSL1 expression was observed in the platelets of AMI patients. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that ACSL1, located in the mitochondria, played a key role in the PPAR signaling pathway. The elevated ACSL1 expression in a co-culture model of PMVs and AC16 cardiomyocytes significantly increased the AC16 cell Ferroptosis. Further, we validated that the platelet ACSL1 expression could be regulated by hsa-miR-449a. Together, these findings suggested that platelet ACSL1 could trigger myocardial cell death via PMV transport. In addition, this research provided a theoretical framework for attenuating myocardial cell Ferroptosis in patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Rui Cui
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Ran Du
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Chunmei Song
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China
| | - Fei Xie
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, No.246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Lin Ren
- Department of Cardiology, First Hospital of Qinhuangdao, No. 258, Wenhua Road, Haigang District, Qinhuangdao, 066099, China.
| | - Junquan Li
- Department of Cardiac Surgery, The Second Hospital Affiliated to Harbin Medical University, No.246, Xuefu Road, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
6
|
Zheng ZG, Zhang YP, Zhang XY, Qin MY, Xu YY, Wu H, Liu RQ, Wu QY, Wang MS, Zhang C, Zheng YQ, Dai JY, Li P, Yang H. Ergosterol alleviates hepatic steatosis and insulin resistance via promoting fatty acid β-oxidation by activating mitochondrial ACSL1. Cell Rep 2025; 44:115203. [PMID: 39799570 DOI: 10.1016/j.celrep.2024.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/22/2024] [Accepted: 12/23/2024] [Indexed: 01/15/2025] Open
Abstract
Sterols target sterol-sensing domain (SSD) proteins to lower cholesterol and circulating and hepatic triglyceride levels, but the mechanism remains unclear. In this study, we identify acyl-coenzyme A (CoA) synthetase long-chain family member 1 (ACSL1) as a direct target of ergosterol (ES). The C-terminal domain of ACSL1 undergoes conformational changes from closed to open, and ES may target the drug-binding pocket in the acetyl-CoA synthetase-like domain 1 (ASLD1) of ACSL1 to stabilize the closed conformation and maintain its activity. Moreover, ES is mainly enriched in the mitochondria and promotes fatty acid β-oxidation through ACSL1 allosteric activation. Structure-activity relationship analysis reveals how different structural sterols interact with the sterol-sensing domain-containing protein (SCAP) and ACSL1, explaining their regulatory effects on lipid metabolism. Moreover, our findings reveal that the combination of SCAP inhibitor 25-hydroxycholesterol (25-HC) and ES has a stronger lipid-lowering effect than alone.
Collapse
Affiliation(s)
- Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Yi-Ping Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiao-Yu Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meng-Yao Qin
- Collaborative Innovation Center for Northwestern Chinese Medicine & School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Yin-Yue Xu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - He Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Run-Qing Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qiu-Yi Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming-Su Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chong Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yue-Qin Zheng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jian-Ye Dai
- Collaborative Innovation Center for Northwestern Chinese Medicine & School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
Barnhart S, Shimizu-Albergine M, Kedar E, Kothari V, Shao B, Krueger M, Hsu CC, Tang J, Kanter JE, Kramer F, Djukovic D, Pascua V, Loo YM, Colonna L, Van den Bogaerde SJ, An J, Gale M, Reue K, Fisher EA, Gharib SA, Elkon KB, Bornfeldt KE. Type I IFN induces long-chain acyl-CoA synthetase 1 to generate a phosphatidic acid reservoir for lipotoxic saturated fatty acids. J Lipid Res 2025; 66:100730. [PMID: 39675509 PMCID: PMC11786746 DOI: 10.1016/j.jlr.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024] Open
Abstract
Long-chain acyl-CoA synthetase 1 (ACSL1) catalyzes the conversion of long-chain fatty acids to acyl-CoAs. ACSL1 is required for β-oxidation in tissues that rely on fatty acids as fuel, but no consensus exists on why ACSL1 is induced by inflammatory mediators in immune cells. We used a comprehensive and unbiased approach to investigate the role of ACSL1 induction by interferon type I (IFN-I) in myeloid cells in vitro and in a mouse model of IFN-I overproduction. Our results show that IFN-I induces ACSL1 in macrophages via its interferon-α/β receptor, and consequently that expression of ACSL1 is increased in myeloid cells from individuals with systemic lupus erythematosus (SLE), an autoimmune condition characterized by increased IFN production. Taking advantage of a myeloid cell-targeted ACSL1-deficient mouse model and a series of lipidomics, proteomics, metabolomics and functional analyses, we show that IFN-I leverages induction of ACSL1 to increase accumulation of fully saturated phosphatidic acid species in macrophages. Conversely, ACSL1 induction is not needed for IFN-I's ability to induce the prototypical IFN-stimulated protein signature or to suppress proliferation or macrophage metabolism. Loss of ACSL1 in IFN-I stimulated myeloid cells enhances apoptosis and secondary necrosis in vitro, especially in the presence of increased saturated fatty acid load, and in a mouse model of atherosclerosis associated with IFN overproduction, resulting in larger lesion necrotic cores. We propose that ACSL1 induction is a mechanism used by IFN-I to increase phosphatidic acid saturation while protecting the cells from saturated fatty acid-induced cell death.
Collapse
Affiliation(s)
- Shelley Barnhart
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Masami Shimizu-Albergine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Eyal Kedar
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Vishal Kothari
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Baohai Shao
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Melissa Krueger
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Cheng-Chieh Hsu
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jingjing Tang
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Jenny E Kanter
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Farah Kramer
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA
| | - Danijel Djukovic
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA
| | - Vadim Pascua
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA
| | - Yueh-Ming Loo
- Department of Immunology, University of Washington, Seattle, WA
| | | | | | - Jie An
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Keith B Elkon
- Division of Rheumatology, University of Washington, Seattle, WA
| | - Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA; UW Medicine Diabetes Institute, University of Washington, Seattle, WA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA.
| |
Collapse
|
8
|
Odendaal C, Reijngoud DJ, Bakker BM. How lipid transfer proteins and the mitochondrial membrane shape the kinetics of β-oxidation the liver. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149519. [PMID: 39428049 DOI: 10.1016/j.bbabio.2024.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
The mitochondrial fatty acid β-oxidation (mFAO) is important for producing ATP under conditions of energetic stress, such as fasting and cold exposure. The regulation of this pathway is dependent on the kinetic properties of the enzymes involved. To better understand pathway behaviour, accurate enzyme kinetics is required. Setting up and interpreting such proper assays requires a good understanding of what influences the enzymes' kinetics. Often, knowing the buffer composition, pH, and temperature is considered to be sufficient. Many mFAO enzymes are membrane-bound, however, and their kinetic properties depend on the composition and curvature of the mitochondrial membranes. These properties are, in turn, affected by metabolite concentrations, but are rarely accounted for in kinetic assays. Especially for carnitine palmitoyltransferase 1 (CPT1), this has been shown to be of great consequence. Moreover, the enzymes of the mFAO metabolise water-insoluble acyl-CoA derivatives, which become toxic at high concentrations. In vivo, these are carried across the cytosol by intracellular lipid transfer proteins (iLTPs), such as the fatty-acid and acyl-CoA-binding proteins (FABP and ACBP, respectively). In vitro, this is often mimicked by using bovine serum albumin (BSA), which differs from the iLPTs in terms of its binding behaviour and subcellular localisation patterns. In this review, we argue that the iLTPs and membrane properties cannot be ignored when measuring or interpreting the kinetics of mFAO enzymes. They should be considered fundamental to the activity of mFAO enzymes just as pH, buffer composition, and temperature are.
Collapse
Affiliation(s)
- Christoff Odendaal
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands
| | - Barbara M Bakker
- Laboratory of Paediatrics, University Medical Centre Groningen, University of Groningen, the Netherlands.
| |
Collapse
|
9
|
Wang Y, Ma H, Zhang B, Li S, Lu B, Qi Y, Liu T, Wang H, Kang X, Liang Y, Kong E, Cao L, Zhou B. Protein palmitoylation in hepatic diseases: Functional insights and therapeutic strategies. J Adv Res 2024:S2090-1232(24)00619-2. [PMID: 39732335 DOI: 10.1016/j.jare.2024.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Liver pathologies represent a spectrum of conditions ranging from fatty liver to the aggressive hepatocellular carcinoma (HCC), as well as parasitic infections, which collectively pose substantial global health challenges. S-palmitoylation (commonly referred to as palmitoylation), a post-translational modification (PTM) characterized by the covalent linkage of a 16-carbon palmitic acid (PA) chain to specific cysteine residues on target proteins, plays a pivotal role in diverse cellular functions and is intimately associated with the liver's physiological and pathological states. AIM OF REVIEW This study aims to elucidate how protein palmitoylation affects liver disease pathophysiology and evaluates its potential as a target for diagnostic and therapeutic interventions. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent studies have identified the key role of protein palmitoylation in regulating the development and progression of liver diseases. This review summarizes the intricate mechanisms by which protein palmitoylation modulates the pathophysiological processes of liver diseases and explores the potential of targeting protein palmitoylation modifications or the enzymes regulating this modification as prospective diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Haoyuan Ma
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Bowen Zhang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Sainan Li
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Beijia Lu
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Yingcheng Qi
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Tingting Liu
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, Anhui, PR China.
| | - Xiaohong Kang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Yinming Liang
- Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Eryan Kong
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Liu Cao
- Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China.
| | - Binhui Zhou
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, PR China; Institute of Psychiatry and Neuroscience of Xinxiang Medical University, Xinxiang, Henan, PR China; Laboratory of Genetic Regulators in the Immune System, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, PR China.
| |
Collapse
|
10
|
Chen X, Yi J, Xie L, Liu T, Liu B, Yan M. Integration of transcriptomics and machine learning for insights into breast cancer: exploring lipid metabolism and immune interactions. Front Immunol 2024; 15:1470167. [PMID: 39524444 PMCID: PMC11543460 DOI: 10.3389/fimmu.2024.1470167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Breast cancer (BRCA) represents a substantial global health challenge marked by inadequate early detection rates. The complex interplay between the tumor immune microenvironment and fatty acid metabolism in BRCA requires further investigation to elucidate the specific role of lipid metabolism in this disease. Methods We systematically integrated nine machine learning algorithms into 184 unique combinations to develop a consensus model for lipid metabolism-related prognostic genes (LMPGS). Additionally, transcriptomics analysis provided a comprehensive understanding of this prognostic signature. Using the ESTIMATE method, we evaluated immune infiltration among different risk subgroups and assessed their responsiveness to immunotherapy. Tailored treatments were screened for specific risk subgroups. Finally, we verified the expression of key genes through in vitro experiments. Results We identified 259 differentially expressed genes (DEGs) related to lipid metabolism through analysis of the cancer genome atlas program (TCGA) database. Subsequently, via univariate Cox regression analysis and C-index analysis, we developed an optimal machine learning algorithm to construct a 21-gene LMPGS model. We used optimal cutoff values to divide the lipid metabolism prognostic gene scores into two groups according to high and low scores. Our study revealed distinct biological functions and mutation landscapes between high-scoring and low-scoring patients. The low-scoring group presented a greater immune score, whereas the high-scoring group presented enhanced responses to both immunotherapy and chemotherapy drugs. Single-cell analysis highlighted significant upregulation of CPNE3 in epithelial cells. Moreover, by employing molecular docking, we identified niclosamide as a potential targeted therapeutic drug. Finally, our experiments demonstrated high expression of MTMR9 and CPNE3 in BRCA and their significant correlation with prognosis. Conclusion By employing bioinformatics and diverse machine learning algorithms, we successfully identified genes associated with lipid metabolism in BRCA and uncovered potential therapeutic agents, thereby offering novel insights into the mechanisms and treatment strategies for BRCA.
Collapse
Affiliation(s)
- Xiaohan Chen
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Jinfeng Yi
- Department of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lili Xie
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Tong Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
- National Health Commission (NHC) Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baogang Liu
- Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Meisi Yan
- Department of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Faulconnier Y, Pawlowski K, Chambon C, Durand D, Pires J, Leroux C. Liver transcriptome and proteome are modulated by nutrient restriction in early lactation cows challenged with intramammary lipopolysaccharide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101326. [PMID: 39303391 DOI: 10.1016/j.cbd.2024.101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
The objective was to evaluate the effects of nutrient restriction on liver function 24 h after an intramammary lipopolysaccharide (LPS) challenge in early lactation cows using transcriptomic and proteomic analyses. Multiparous Holstein cows were fed a lactation diet (CONT, n = 8) throughout the study or were switched to a diet diluted with barley straw (48 % DM) for 96 h (REST, n = 8) starting at 24 (18 to 30) days in milk. At 72 h, a healthy rear mammary quarter was infused with 50 μg of LPS in all cows. Blood and liver biopsies were collected at 96 h, corresponding to 24 h after LPS challenge. Liver transcriptome was analyzed with a 44 K bovine microarray and proteome by LC MS/MS. Transcriptomic and proteomic data were analyzed using GeneSpring (moderated t-test with Westfall-Young correction) and the "between subject design", respectively. Data mining was performed using Panther and Pathway Studio software. By design, the negative energy balance was -68 and -37 MJ/d in REST and CONT, respectively. Plasma non-esterified FAs, and β-hydroxybutyrate were significantly greater in REST compared to CONT, which is consistent with 96 h of nutrient restriction in REST and ketosis induction. We detected 77 and 91 differentially expressed genes at mRNA and protein levels, respectively, between CONT and REST. Genes involved in fatty acid synthesis (e.g.: ACAT, FASN, SCD) were downregulated in REST, whereas those involved in fatty acid oxidation, detoxification, cholesterol synthesis, lipoprotein lipid secretion, and gluconeogenesis (e.g.: ACAD, CPT1A, CPT1B, CPT2) were upregulated. Differentially abundant mRNAs and proteins were consistent with negative energy balance and plasma metabolite concentrations, and reflected a state of intense lipomobilization, glucose deficit and ketogenesis in REST cows. Nutrient restriction did not change in deep liver expression of genes directly involved in immune function 24 h after an intramammary LPS challenge.
Collapse
Affiliation(s)
- Yannick Faulconnier
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Karol Pawlowski
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Warsaw University of Life Sciences, Faculty of Veterinary Medicine, Department of Pathology and Veterinary Diagnostics, Poland
| | - Christophe Chambon
- INRAE, Plateforme d'Exploration du Métabolisme, composante protéomique PFEMcp, F-63122 Saint-Genès Champanelle, France
| | - Denys Durand
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - José Pires
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France
| | - Christine Leroux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France; Department of Food Science and Technology, University of California, Davis, CA, USA.
| |
Collapse
|
12
|
Hari A, AbdulHameed MDM, Balik-Meisner MR, Mav D, Phadke DP, Scholl EH, Shah RR, Casey W, Auerbach SS, Wallqvist A, Pannala VR. Exposure to PFAS chemicals induces sex-dependent alterations in key rate-limiting steps of lipid metabolism in liver steatosis. FRONTIERS IN TOXICOLOGY 2024; 6:1390196. [PMID: 38903859 PMCID: PMC11188372 DOI: 10.3389/ftox.2024.1390196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
Toxicants with the potential to bioaccumulate in humans and animals have long been a cause for concern, particularly due to their association with multiple diseases and organ injuries. Per- and polyfluoro alkyl substances (PFAS) and polycyclic aromatic hydrocarbons (PAH) are two such classes of chemicals that bioaccumulate and have been associated with steatosis in the liver. Although PFAS and PAH are classified as chemicals of concern, their molecular mechanisms of toxicity remain to be explored in detail. In this study, we aimed to identify potential mechanisms by which an acute exposure to PFAS and PAH chemicals can induce lipid accumulation and whether the responses depend on chemical class, dose, and sex. To this end, we analyzed mechanisms beginning with the binding of the chemical to a molecular initiating event (MIE) and the consequent transcriptomic alterations. We collated potential MIEs using predictions from our previously developed ToxProfiler tool and from published steatosis adverse outcome pathways. Most of the MIEs are transcription factors, and we collected their target genes by mining the TRRUST database. To analyze the effects of PFAS and PAH on the steatosis mechanisms, we performed a computational MIE-target gene analysis on high-throughput transcriptomic measurements of liver tissue from male and female rats exposed to either a PFAS or PAH. The results showed peroxisome proliferator-activated receptor (PPAR)-α targets to be the most dysregulated, with most of the genes being upregulated. Furthermore, PFAS exposure disrupted several lipid metabolism genes, including upregulation of fatty acid oxidation genes (Acadm, Acox1, Cpt2, Cyp4a1-3) and downregulation of lipid transport genes (Apoa1, Apoa5, Pltp). We also identified multiple genes with sex-specific behavior. Notably, the rate-limiting genes of gluconeogenesis (Pck1) and bile acid synthesis (Cyp7a1) were specifically downregulated in male rats compared to female rats, while the rate-limiting gene of lipid synthesis (Scd) showed a PFAS-specific upregulation. The results suggest that the PPAR signaling pathway plays a major role in PFAS-induced lipid accumulation in rats. Together, these results show that PFAS exposure induces a sex-specific multi-factorial mechanism involving rate-limiting genes of gluconeogenesis and bile acid synthesis that could lead to activation of an adverse outcome pathway for steatosis.
Collapse
Affiliation(s)
- Archana Hari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | | | - Deepak Mav
- Sciome LLC, Research Triangle Park, NC, United States
| | | | | | | | - Warren Casey
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Scott S. Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
13
|
Charital S, Shunmugam S, Dass S, Alazzi AM, Arnold CS, Katris NJ, Duley S, Quansah NA, Pierrel F, Govin J, Yamaryo-Botté Y, Botté CY. The acyl-CoA synthetase TgACS1 allows neutral lipid metabolism and extracellular motility in Toxoplasma gondii through relocation via its peroxisomal targeting sequence (PTS) under low nutrient conditions. mBio 2024; 15:e0042724. [PMID: 38501871 PMCID: PMC11005404 DOI: 10.1128/mbio.00427-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Apicomplexa parasites cause major diseases such as toxoplasmosis and malaria that have major health and economic burdens. These unicellular pathogens are obligate intracellular parasites that heavily depend on lipid metabolism for the survival within their hosts. Their lipid synthesis relies on an essential combination of fatty acids (FAs) obtained from both de novo synthesis and scavenging from the host. The constant flux of scavenged FA needs to be channeled toward parasite lipid storage, and these FA storages are timely mobilized during parasite division. In eukaryotes, the utilization of FA relies on their obligate metabolic activation mediated by acyl-co-enzyme A (CoA) synthases (ACSs), which catalyze the thioesterification of FA to a CoA. Besides the essential functions of FA for parasite survival, the presence and roles of ACS are yet to be determined in Apicomplexa. Here, we identified TgACS1 as a Toxoplasma gondii cytosolic ACS that is involved in FA mobilization in the parasite specifically during low host nutrient conditions, especially in extracellular stages where it adopts a different localization. Heterologous complementation of yeast ACS mutants confirmed TgACS1 as being an Acyl-CoA synthetase of the bubble gum family that is most likely involved in β-oxidation processes. We further demonstrate that TgACS1 is critical for gliding motility of extracellular parasite facing low nutrient conditions, by relocating to peroxisomal-like area.IMPORTANCEToxoplasma gondii, causing human toxoplasmosis, is an Apicomplexa parasite and model within this phylum that hosts major infectious agents, such as Plasmodium spp., responsible for malaria. The diseases caused by apicomplexans are responsible for major social and economic burdens affecting hundreds of millions of people, like toxoplasmosis chronically present in about one-third of the world's population. Lack of efficient vaccines, rapid emergence of resistance to existing treatments, and toxic side effects of current treatments all argue for the urgent need to develop new therapeutic tools to combat these diseases. Understanding the key metabolic pathways sustaining host-intracellular parasite interactions is pivotal to develop new efficient ways to kill these parasites. Current consensus supports parasite lipid synthesis and trafficking as pertinent target for novel treatments. Many processes of this essential lipid metabolism in the parasite are not fully understood. The capacity for the parasites to sense and metabolically adapt to the host physiological conditions has only recently been unraveled. Our results clearly indicate the role of acyl-co-enzyme A (CoA) synthetases for the essential metabolic activation of fatty acid (FA) used to maintain parasite propagation and survival. The significance of our research is (i) the identification of seven of these enzymes that localize at different cellular areas in T. gondii parasites; (ii) using lipidomic approaches, we show that TgACS1 mobilizes FA under low host nutrient content; (iii) yeast complementation showed that acyl-CoA synthase 1 (ACS1) is an ACS that is likely involved in peroxisomal β-oxidation; (iv) the importance of the peroxisomal targeting sequence for correct localization of TgACS1 to a peroxisomal-like compartment in extracellular parasites; and lastly, (v) that TgACS1 has a crucial role in energy production and extracellular parasite motility.
Collapse
Affiliation(s)
- Sarah Charital
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Anna Maria Alazzi
- Team Govin, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Samuel Duley
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Nyamekye A. Quansah
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Fabien Pierrel
- Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Grenoble, France
| | - Jérôme Govin
- Team Govin, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
14
|
Wright T, Turnis ME, Grace CR, Li X, Brakefield LA, Wang YD, Xu H, Kaminska E, Climer LK, Mukiza TO, Chang CL, Moldoveanu T, Opferman JT. Anti-apoptotic MCL-1 promotes long-chain fatty acid oxidation through interaction with ACSL1. Mol Cell 2024; 84:1338-1353.e8. [PMID: 38503284 PMCID: PMC11017322 DOI: 10.1016/j.molcel.2024.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/19/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
MCL-1 is essential for promoting the survival of many normal cell lineages and confers survival and chemoresistance in cancer. Beyond apoptosis regulation, MCL-1 has been linked to modulating mitochondrial metabolism, but the mechanism(s) by which it does so are unclear. Here, we show in tissues and cells that MCL-1 supports essential steps in long-chain (but not short-chain) fatty acid β-oxidation (FAO) through its binding to specific long-chain acyl-coenzyme A (CoA) synthetases of the ACSL family. ACSL1 binds to the BH3-binding hydrophobic groove of MCL-1 through a non-conventional BH3-domain. Perturbation of this interaction, via genetic loss of Mcl1, mutagenesis, or use of selective BH3-mimetic MCL-1 inhibitors, represses long-chain FAO in cells and in mouse livers and hearts. Our findings reveal how anti-apoptotic MCL-1 facilitates mitochondrial metabolism and indicate that disruption of this function may be associated with unanticipated cardiac toxicities of MCL-1 inhibitors in clinical trials.
Collapse
Affiliation(s)
- Tristen Wright
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Meghan E Turnis
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiao Li
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lauren A Brakefield
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haiyan Xu
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ewa Kaminska
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leslie K Climer
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tresor O Mukiza
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chi-Lun Chang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tudor Moldoveanu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
15
|
Zabielski P, Imierska M, Roszczyc-Owsiejczuk K, Kuźmicki M, Rogalski P, Daniluk J, Błachnio-Zabielska AU. The Role of Acyl-CoA Synthetase 1 in Bioactive Lipid Accumulation and the Development of Hepatic Insulin Resistance. Nutrients 2024; 16:1003. [PMID: 38613036 PMCID: PMC11013895 DOI: 10.3390/nu16071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The liver plays a crucial role in glucose metabolism. Obesity and a diet rich in fats (HFD) contribute to the accumulation of intracellular lipids. The aim of the study was to explore the involvement of acyl-CoA synthetase 1 (ACSL1) in bioactive lipid accumulation and the induction of liver insulin resistance (InsR) in animals fed an HFD. The experiments were performed on male C57BL/6 mice divided into the following experimental groups: 1. Animals fed a control diet; 2. animals fed HFD; and 3. HFD-fed animals with the hepatic ACSL1 gene silenced through a hydrodynamic gene delivery technique. Long-chain acyl-CoAs, sphingolipids, and diacylglycerols were measured by LC/MS/MS. Glycogen was measured by means of a commercially available kit. The protein expression and phosphorylation state of the insulin pathway was estimated by Western blot. HFD-fed mice developed InsR, manifested as an increase in fasting blood glucose levels (202.5 mg/dL vs. 130.5 mg/dL in the control group) and inhibition of the insulin pathway, which resulted in an increase in the rate of gluconeogenesis (0.420 vs. 0.208 in the control group) and a decrease in the hepatic glycogen content (1.17 μg/mg vs. 2.32 μg/mg in the control group). Hepatic ACSL1 silencing resulted in decreased lipid content and improved insulin sensitivity, accounting for the decreased rate of gluconeogenesis (0.348 vs. 0.420 in HFD(+/+)) and the increased glycogen content (4.3 μg/mg vs. 1.17 μg/mg in HFD(+/+)). The elevation of gluconeogenesis and the decrease in glycogenesis in the hepatic tissue of HFD-fed mice resulted from cellular lipid accumulation. Inhibition of lipid synthesis through silencing ACSL1 alleviated HFD-induced hepatic InsR.
Collapse
Affiliation(s)
- Piotr Zabielski
- Medical Biology Department, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Monika Imierska
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (M.I.); (K.R.-O.)
| | - Kamila Roszczyc-Owsiejczuk
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (M.I.); (K.R.-O.)
| | - Mariusz Kuźmicki
- Gynecology and Gynecological Oncology Department, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Paweł Rogalski
- Gastroenterology and Internal Medicine Department, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (J.D.)
| | - Jarosław Daniluk
- Gastroenterology and Internal Medicine Department, Medical University of Bialystok, 15-276 Bialystok, Poland; (P.R.); (J.D.)
| | - Agnieszka U. Błachnio-Zabielska
- Hygiene, Epidemiology and Metabolic Disorders Department, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland; (M.I.); (K.R.-O.)
| |
Collapse
|
16
|
Wang W, Wang P, Zhu L, Liu B, Wei Q, Hou Y, Li X, Hu Y, Li W, Wang Y, Jiang C, Yang G, Wang J. An optimized fluorescent biosensor for monitoring long-chain fatty acyl-CoAs metabolism in vivo. Biosens Bioelectron 2024; 247:115935. [PMID: 38128319 DOI: 10.1016/j.bios.2023.115935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Long-chain fatty acyl-CoAs (LCACoAs) are intermediates in lipid metabolism that exert a wide range of cellular functions. However, our knowledge about the subcellular distribution and regulatory impacts of LCACoAs is limited by a lack of methods for detecting LCACoAs in living cells and tissues. Here, we report our development of LACSerHR, a genetically encoded fluorescent biosensor that enables precise measurement of subtle fluctuations in the levels of endogenous LCACoAs in vivo. LACSerHR significantly improve the fluorescent brightness and analyte affinity, in vitro and in vivo testing showcased LACSerHR's large dynamic range. We demonstrate LACSerHR's capacity for real-time evaluation of LCACoA levels in specific subcellular compartments, for example in response to disruption of ACSL enzyme function in HEK293T cells. Moreover, we show the application of LACSerHR for sensitive measurement of elevated LCACoA levels in the livers of mouse models for two common metabolic diseases (NAFLD and type 2 diabetes). Thus, our LACSerHR sensor is a powerful, broadly applicable tool for studying LCACoAs metabolism and disease.
Collapse
Affiliation(s)
- Weibo Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China; National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, PR China
| | - Pengcheng Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, PR China
| | - Lixin Zhu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Bingjie Liu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Qingpeng Wei
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yongkang Hou
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Xi Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yufei Hu
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, PR China
| | - Guangfu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, PR China.
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs Department of Chemical Biology, School of Pharmaceutical Sciences Peking University, Beijing, 100191, PR China.
| |
Collapse
|
17
|
Zammit VA, Park SO. In Vivo Monitoring of Glycerolipid Metabolism in Animal Nutrition Biomodel-Fed Smart-Farm Eggs. Foods 2024; 13:722. [PMID: 38472835 DOI: 10.3390/foods13050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Although many studies have examined the biochemical metabolic pathways by which an egg (egg yolk) lowers blood lipid levels, data on the molecular biological mechanisms that regulate and induce the partitioning of hepatic glycerolipids are missing. The aim of this study was to investigate in vivo monitoring in four study groups using an animal nutrition biomodel fitted with a jugular-vein cannula after egg yolk intake: CON (control group, oral administration of 1.0 g of saline), T1 (oral administration of 1.0 g of pork belly fat), T2 (oral administration of 1.0 g of smart-farm egg yolk), and T3 (oral administration of T1 and T2 alternately every week). The eggs induced significant and reciprocal changes in incorporating 14C lipids into the total glycerolipids and releasing 14CO2, thereby regulating esterification and accelerating oxidation in vivo. The eggs increased phospholipid secretion from the liver into the blood and decreased triacylglycerol secretion by regulating the multiple cleavage of fatty acyl-CoA moieties' fluxes. In conclusion, the results of the current study reveal the novel fact that eggs can lower blood lipids by lowering triacylglycerol secretion in the biochemical metabolic pathway of hepatic glycerolipid partitioning while simultaneously increasing phospholipid secretion and 14CO2 emission.
Collapse
Affiliation(s)
- Victor A Zammit
- Metabolic Biochemistry, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Sang O Park
- Institute of Animal Life Science, Kangwon National University, Chuncheon-si 24341, Gangwon State, Republic of Korea
| |
Collapse
|
18
|
Suk FM, Hsu FY, Hsu MH, Chiu WC, Fang CC, Chen TL, Liao YJ. Treatment with a new barbituric acid derivative suppresses diet-induced metabolic dysfunction and non-alcoholic fatty liver disease in mice. Life Sci 2024; 336:122327. [PMID: 38061536 DOI: 10.1016/j.lfs.2023.122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, often accompanied by obesity, diabetes, and increased risks of depression and anxiety. Currently, there are no FDA-approved drugs to treat NAFLD and its related systemic symptoms. Previously, we identified a new barbituric acid derivative (BA-5) that expressed effectiveness against fibrosis and drug-resistant hepatocellular carcinoma. AIMS This study investigated the potential of BA-5 against high-fat diet (HFD)-induced NAFLD and mood disorders in mice. MAIN METHODS Six-weeks-old male C57BL/6 mice were fed with a 45 % HFD for 8 weeks to induce NAFLD and associated metabolic disorders. Mice were treated with a BA-5 and the therapeutic effects and the underlying molecular mechanisms were investigated. KEY FINDINGS Administration of BA-5 significantly reduced serum levels of alanine aminotransferase (ALT), low-density lipoprotein (LDL), fatty acids (FA), and triglycerides (TG) in HFD-fed mice. BA-5 treatment decreased expressions of hepatic lipogenesis-related markers (acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and ATP-citrate lyase (ACLY)), increased fatty acid oxidation markers (carnitine palmitoyltransferase 1A (CPT1A) and acyl-CoA oxidase 1 (ACOX1)), and attenuated hepatic fat accumulation in HFD-fed mice. Moreover, HFD-induced adipocyte size enlargement and activation of lipolysis markers such as phosphorylated (p)-hormone-sensitive lipase (HSL) 565, p-HSL 660, and perilipin were inhibited in BA-5-treated mice. Notably, HFD-induced anxiety- and depression-like behaviors significantly improved in the BA-5 treated group through enhanced anti-inflammatory responses in the hippocampus. SIGNIFICANCE This study provides new insights into clinical therapeutic strategies of barbituric acid derivatives for HFD-induced NAFLD and associated mood disturbances.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Fang-Yu Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Shuang-Ho Campus, New Taipei City 23561, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan; Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Cheng-Chieh Fang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Shuang-Ho Campus, New Taipei City 23561, Taiwan
| | - Tzu-Lang Chen
- Department of Medical Education, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Shuang-Ho Campus, New Taipei City 23561, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
19
|
Wang C, Chen Z, Yi Y, Ding Y, Xu F, Kang H, Lin K, Shu X, Zhong Z, Zhang Z, Liu J, Xu Z, Liu L, He X, Chang Y, Zhao Q. RBM45 reprograms lipid metabolism promoting hepatocellular carcinoma via Rictor and ACSL1/ACSL4. Oncogene 2024; 43:328-340. [PMID: 38040804 DOI: 10.1038/s41388-023-02902-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Reprogramming of lipid metabolism during hepatocarcinogenesis is not well elucidated. Here, we aimed to explore pivotal RNA-binding motif proteins (RBMs) in lipid metabolism and their therapeutic potential in hepatocellular carcinoma (HCC). Through bioinformatic analysis, we identified RBM45 as a critical gene of interest among differentially expressed RBMs in HCC, with significant prognostic relevance. RBM45 influenced the malignant biological phenotype and lipid metabolism of HCC cells. Mechanically, RBM45 promotes de novo lipogenesis in HCC by directly targeting two key enzymes involved in long-chain fatty acid synthesis, ACSL1 and ACSL4. RBM45 also targets Rictor, which has been demonstrated to modulate lipid metabolism profoundly. RBM45 also aided lipid degradation through activating a key fatty acid β oxidation enzyme, CPT1A. Thus, RBM45 boosted lipid synthesis and decomposition, indicating an enhanced utility of lipid fuels in HCC. Clinically, body mass index was positively correlated with RBM45 in human HCCs. The combination of a PI3K/AKT/mTOR pathway inhibitor in vitro or Sorafenib in orthotopic liver cancer mouse models with shRBM45 has a more significant therapeutic effect on liver cancer than the drug alone. In summary, our findings highlight the versatile roles of RBM45 in lipid metabolism reprogramming and its therapeutic potential in HCC. Lipids induced RBM45 expression. In turn, RBM45 promoted the utility of lipid in HCCs through accelerating both de novo lipogenesis and fatty acid β oxidation, which required the participation of Rictor, a core component of mTORC2 that has been demonstrated to modulate lipid metabolism potently, as well as ACSL1/ACSL4, two key enzymes of long-chain fatty acid synthesis. When the first-line chemotherapy drug sorafenib is combined with a PI3K/AKT/mTOR pathway inhibitor (MK2206 is an AKT inhibitor, rapamycin is a mTOR inhibitor, and inhibiting RBM45 can significantly inhibit Rictor), cell cycle, proliferation, lipid metabolism reprogramming, and hepatocarcinogenesis can be significantly inhibited, while apoptosis can be significantly enhanced.
Collapse
Affiliation(s)
- Chun Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zhihang Chen
- Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yun Yi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Yang Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Hui Kang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Kun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Xiawen Shu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zibiao Zhong
- Transplant Center of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhonglin Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Zhong Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China
| | - Xingxing He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, 430071, China.
| |
Collapse
|
20
|
Li H, Seessle J, Staffer S, Tuma-Kellner S, Poschet G, Herrmann T, Chamulitrat W. FATP4 deletion in liver cells induces elevation of extracellular lipids via metabolic channeling towards triglycerides and lipolysis. Biochem Biophys Res Commun 2023; 687:149161. [PMID: 37931418 DOI: 10.1016/j.bbrc.2023.149161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Evidence from mice with global deletion of fatty-acid transport protein4 (FATP4) indicates its role on β-oxidation and triglycerides (TG) metabolism. We reported that plasma glycerol and free fatty acids (FA) were increased in liver-specific Fatp4 deficient (L-FATP4-/-) mice under dietary stress. We hypothesized that FATP4 may mediate hepatocellular TG lipolysis. Here, we demonstrated that L-FATP4-/- mice showed an increase in these blood lipids, liver TG, and subcutaneous fat weights. We therefore studied TG metabolism in response to oleate treatment in two experimental models using FATP4-knockout HepG2 (HepKO) cells and L-FATP4-/- hepatocytes. Both FATP4-deificient liver cells showed a significant decrease in β-oxidation products by ∼30-35% concomitant with marked upregulation of CD36, FATP2, and FATP5 as well as lipoprotein microsomal-triglyceride-transfer protein genes. By using 13C3D5-glycerol, HepKO cells displayed an increase in metabolically labelled TG species which were further increased with oleate treatment. This increase was concomitant with a step-wise elevation of TG in cells and supernatants as well as the secretion of cholesterol very low-density and high-density lipoproteins. Upon analyzing TG lipolytic enzymes, both mutant liver cells showed marked upregulated expression of hepatic lipase, while that of hormone-sensitive lipase and adipose-triglyceride lipase was downregulated. Lipolysis measured by extracellular glycerol and free FA was indeed increased in mutant cells, and this event was exacerbated by oleate treatment. Taken together, FATP4 deficiency in liver cells led to a metabolic shift from β-oxidation towards lipolysis-directed TG and lipoprotein secretion, which is in line with an association of FATP4 polymorphisms with blood lipids.
Collapse
Affiliation(s)
- Huili Li
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China
| | - Jessica Seessle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746, Heide, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Lan X, Ren J, Du X, Zhang L, Wang S, Yang X, Lu S. lnc-HC ameliorates steatosis by promoting miR-130b-3p biogenesis and the assembly of an RNA-induced silencing complex. Mol Cell Endocrinol 2023; 578:112061. [PMID: 37678604 DOI: 10.1016/j.mce.2023.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Hepatic lipid deposition is the main cause of non-alcoholic fatty liver disease (NAFLD). Our previous study identified that lnc-HC prevents NAFLD by increasing the expression of miR-130b-3p. In the present study, we show that lnc-HC, an lncRNA derived from hepatocytes, positively controls miR-130b-3p maturation at multiple levels and contributes to its action by enhancing the assembly of an RNA-induced silencing complex (RISC). lnc-HC negatively regulates the downstream target genes of miR-130b-3p, including peroxisome proliferator-activated receptor gamma (PPARγ) and acyl-CoA synthetase long-chain family member 1 and 4 (Acsl1 and Acsl4, respectively), thus suppressing hepatic lipid droplet accumulation. Mechanistically, lnc-HC enhanced the promoter activity of miR-130b-3p by positively regulating the expression of transcription factors MAF bZIP transcription factor B (Mafb) and Jun proto-oncogene (Jun). Then, lnc-HC contributed the processing step of primary (pri-) miR-130b and strengthened the interaction between Drosha enzyme and the 5'-flanking sequence of pri-miR-130b to produce more precursor transcripts. Through direct binding with the chaperone heat shock protein 90 alpha family class A member 1 (HSP90AA1), lnc-HC contributed to RISC assembly, which was composed of HSP90AA1, argonaute RISC catalytic component 2 (AGO2) and miR-130b-3p. In a high-fat, high-cholesterol-induced hepatic lipid disorder E3 model, we confirmed that the hepatic expression of lnc-HC/miR-130b-3p negatively correlated with that of the target genes and was closely associated with liver triglycerides concentration. These findings provide a deeper understanding of the regulatory roles of lnc-HC in hepatic lipid metabolism and NAFLD development.
Collapse
Affiliation(s)
- Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | - Jiajun Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | - Xiaojuan Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | - Lin Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China
| | | | - Xudong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China.
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Beijing, China.
| |
Collapse
|
22
|
Liu Z, Guo X, Zhang W, Wang J, Zhang L, Jing J, Han L, Gao A. Oxidative stress-affected ACSL1 hydroxymethylation triggered benzene hematopoietic toxicity by inflammation and senescence. Food Chem Toxicol 2023; 180:114030. [PMID: 37689099 DOI: 10.1016/j.fct.2023.114030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Long-term benzene exposure is harmful and causes hematopoietic dysfunction. However, the mechanism of benzene hematopoietic toxicity is still unclear. Acyl-CoA Synthetase Long-Chain Family Member 1 (ACSL1) has been found to participate in the progress of a variety of benign and malignant diseases, but there is no research about its effect on benzene-induced hematopoietic toxicity. Herein, We exposed C57BL/6J mice to benzene to construct an in vivo model. Human peripheral blood mononuclear cells (THP-1 cells) were treated with benzene metabolite 1, 4-BQ to construct an in vitro model. We observed that the ACSL1 expression was upregulated both in vivo and in vitro. Moreover, inhibition of ACSL1 relieved inflammation and senescence development in vitro, suggesting that ACSL1 mediates inflammation and senescence. As for the regulation mechanism of ACSL1 expression, it is closely related to hydroxymethylation modification. This was proved by hydroxymethylated DNA immunoprecipitation (hMeDIP) experiments. Furthermore, oxidative stress influenced the hydroxymethylation process. These results showed that benzene hematopoietic toxicity occurs through the induction of oxidative stress and thus the regulation of ACSL1 hydroxymethylation, which in turn mediates inflammation and senescence. Thus, this study might be of great significance in identifying and preventing benzene exposure in the early stage.
Collapse
Affiliation(s)
- Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoli Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jingyu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
23
|
Ramakrishnan S, Mooli RGR, Han Y, Fiorenza E, Kumar S, Bello F, Nallanagulagari A, Karra S, Teng L, Jurczak M. Hepatic ketogenesis regulates lipid homeostasis via ACSL1-mediated fatty acid partitioning. RESEARCH SQUARE 2023:rs.3.rs-3147009. [PMID: 37503004 PMCID: PMC10371136 DOI: 10.21203/rs.3.rs-3147009/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Liver-derived ketone bodies play a crucial role in fasting energy homeostasis by fueling the brain and peripheral tissues. Ketogenesis also acts as a conduit to remove excess acetyl-CoA generated from fatty acid oxidation and protects against diet-induced hepatic steatosis. Surprisingly, no study has examined the role of ketogenesis in fasting-associated hepatocellular lipid metabolism. Ketogenesis is driven by the rate-limiting mitochondrial enzyme 3-hydroxymethylglutaryl CoA synthase (HMGCS2) abundantly expressed in the liver. Here, we show that ketogenic insufficiency via disruption of hepatic HMGCS2 exacerbates liver steatosis in fasted chow and high-fat-fed mice. We found that the hepatic steatosis is driven by increased fatty acid partitioning to the endoplasmic reticulum (ER) for re-esterification via acyl-CoA synthetase long-chain family member 1 (ACSL1). Mechanistically, acetyl-CoA accumulation from impaired hepatic ketogenesis is responsible for the elevated translocation of ACSL1 to the ER. Moreover, we show increased ER-localized ACSL1 and re-esterification of lipids in human NASH displaying impaired hepatic ketogenesis. Finally, we show that L-carnitine, which buffers excess acetyl-CoA, decreases the ER-associated ACSL1 and alleviates hepatic steatosis. Thus, ketogenesis via controlling hepatocellular acetyl-CoA homeostasis regulates lipid partitioning and protects against hepatic steatosis.
Collapse
|
24
|
Guo P, Yao X, Jin X, Xv Y, Zhang J, Li Q, Yan C, Li X, Kim N. Interference with DGAT Gene Inhibited TAG Accumulation and Lipid Droplet Synthesis in Bovine Preadipocytes. Animals (Basel) 2023; 13:2223. [PMID: 37444021 DOI: 10.3390/ani13132223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Triacylglycerol (TGA) is the primary component of intramuscular fat. Expression of diacylglyceryl transferase (DGAT) determines the polyester differentiation ability of precursor adipocytes. The two DGAT isoforms (DGAT1 and DGAT2) play different roles in TAG metabolism. This study investigates the roles of DGAT1 and DGAT2 in signaling pathways related to differentiation and lipid metabolism in Yanbian bovine preadipocytes. sh-DGAT1 (sh-1), sh-DGAT2 (sh-2), and sh-DGAT1 + sh-DGAT2 (sh-1 + 2) were prepared using short interfering RNA (siRNA) interference technique targeting DGAT1 and DGAT2 genes and infected bovine preadipocytes. Molecular and transcriptomic techniques, including differentially expressed genes (DEGs) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis, were used to investigate the effects on the differentiation of Yanbian bovine preadipocytes. After interference with DGAT1 and DGAT2 genes, the contents of TAG and adiponectin were decreased. The TAG content in the sh-2 and sh-1 + 2 groups was significantly lower than that in the sh-NC group. RNA sequencing (RNA-seq) results showed 2070, 2242, and 2446 DEGs in the sh-1, sh-2, and sh-1 + 2 groups, respectively. The DEGs of the sh-2 group were mainly concentrated in the PPAR, AMPK, and Wnt signaling pathways associated with adipocyte proliferation and differentiation. These results demonstrated that at the mRNA level, DGAT2 plays a more important role in lipid metabolism than DGAT1.
Collapse
Affiliation(s)
- Panpan Guo
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute, Jiangmen 529020, China
- Engineering Research Centre of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133002, China
| | - Xuerui Yao
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- International Healthcare Innovation Institute, Jiangmen 529020, China
| | - Xin Jin
- Engineering Research Centre of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133002, China
- Laboratory Animal Center, Yanbian University, Yanji 133002, China
| | - Yongnan Xv
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Junfang Zhang
- Engineering Research Centre of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133002, China
| | - Qiang Li
- Engineering Research Centre of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133002, China
| | - Changguo Yan
- Yanbian Hongchao Wisdom Animal Husbandry Co., Ltd., Yanji 133002, China
| | - Xiangzi Li
- Engineering Research Centre of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Department of Animal Science, College of Agriculture, Yanbian University, Yanji 133002, China
| | - Namhyung Kim
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
25
|
Yang Y, Fu X, Xia B, Zhou L, Zhang H, Li C, Ye X, Liu T. Glycyrrhizic acid glycosides reduces extensive tripterygium glycosides-induced lipid deposition in hepatocytes. Heliyon 2023; 9:e17891. [PMID: 37483744 PMCID: PMC10362073 DOI: 10.1016/j.heliyon.2023.e17891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Aim Tripterygium glycosides (TG) extracted from the plant Tripterygium wilfordii Hook F has been used to treat chronic kidney diseases for many years. However, hepatotoxicity limits its clinical application. Glycyrrhizic acid glycosides (GA) can reduce TG hepatotoxicity, however, further investigation into the underlying molecular mechanisms by which GA attenuates TG-induced hepatotoxicity is required. Methods Sprague‒Dawley rats were randomly divided into the control group, the TG groups (TG189 mg/kg group, TG472.5 mg/kg group), and the TG + GA groups (TG189 mg/kg + GA20.25 mg/kg group, TG472.5 mg/kg + GA20.25 mg/kg group). After 21 consecutive days of intragastric administration, structural and molecular changes in hepatocytes were detected. Results After 21 days of TG treatment, the serum level of the total bilirubin, triglyceride, total cholesterol, and low-density lipoprotein cholesterol increased in the TG189 mg/kg and TG472.5 mg/kg groups when compared to the control group. High-density lipoprotein cholesterol levels were reduced in both TG groups. The ultrastructure of hepatocytes and the structural integrity of the liver were compromised. In addition, the relevant molecular level of the peroxisome proliferators-activated receptor α (PPARα) and acyl-CoA synthetase long-chain family members (ACSLs) pathway was modulated. With the addition of 20.25 mg/kg GA, the serum biochemical indexes and liver tissue structure ultrastructure of hepatocytes were improved, and the PPARα-ACSLs pathway was corrected. Conclusion The combined application of GA and TG improved abnormal lipid metabolism, repaired liver structure, reduced lipid deposition in hepatocytes, and reduced TG-induced hepatotoxicity.
Collapse
|
26
|
Yang X, Zhang X, Yang Z, Zhang Q, Hao W, Pang Y, Zhang D, Liu D. Transcriptional Regulation Associated with Subcutaneous Adipogenesis in Porcine ACSL1 Gene. Biomolecules 2023; 13:1057. [PMID: 37509093 PMCID: PMC10377008 DOI: 10.3390/biom13071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Long-chain acyl-CoA synthetase 1 (ACSL1) plays an important role in fatty acid metabolism and fat deposition. The transcription of the ACSL1 gene is regulated specifically among cells and physiological processes, and transcriptional regulation of ACSL1 in adipogenesis remains elusive. Here, we characterize transcription factors (TFs) associated with adipogenesis in the porcine ACSL1 gene. CCAAT-enhancer binding protein (C/EBP)α, a well-known adipogenic marker, was found to enhance the expression of the ACSL1 gene via binding two tandem motifs in the promoter. Further, we demonstrate that ACSL1 mediates C/EBPα effects on adipogenesis in preadipocytes cultured from subcutaneous fat tissue of pigs via gain- and loss-of-function analyses. The cAMP-response element binding protein, another TF involved in adipogenesis, was also identified in the regulation of ACSL1 gene expression. Additionally, single nucleotide polymorphisms (SNPs) were screened in the promoter of ACSL1 among four breeds including the Chinese indigenous Min, and Duroc, Berkshire, and Yorkshire pigs through sequencing of PCR products. Two tightly linked SNPs, -517G>T and -311T>G, were found exclusively in Min pigs. The haplotype mutation decreases promoter activity in PK-15 and ST cells, and in vivo the expression of ACSL1, illustrating a possible role in adipogenesis regulated by C/EBPα/ACSL1 axis. Additionally, a total of 24 alternative splicing transcripts were identified, indicating the complexity of alternative splicing in the ACSL1 gene. The results will contribute to further revealing the regulatory mechanisms of ACSL1 during adipogenesis and to the characterization of molecular markers for selection of fat deposition in pigs.
Collapse
Affiliation(s)
- Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zewei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qian Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanjun Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yu Pang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Dongjie Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|
27
|
Uehara K, Santoleri D, Whitlock AEG, Titchenell PM. Insulin Regulation of Hepatic Lipid Homeostasis. Compr Physiol 2023; 13:4785-4809. [PMID: 37358513 PMCID: PMC10760932 DOI: 10.1002/cphy.c220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
The incidence of obesity, insulin resistance, and type II diabetes (T2DM) continues to rise worldwide. The liver is a central insulin-responsive metabolic organ that governs whole-body metabolic homeostasis. Therefore, defining the mechanisms underlying insulin action in the liver is essential to our understanding of the pathogenesis of insulin resistance. During periods of fasting, the liver catabolizes fatty acids and stored glycogen to meet the metabolic demands of the body. In postprandial conditions, insulin signals to the liver to store excess nutrients into triglycerides, cholesterol, and glycogen. In insulin-resistant states, such as T2DM, hepatic insulin signaling continues to promote lipid synthesis but fails to suppress glucose production, leading to hypertriglyceridemia and hyperglycemia. Insulin resistance is associated with the development of metabolic disorders such as cardiovascular and kidney disease, atherosclerosis, stroke, and cancer. Of note, nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases encompassing fatty liver, inflammation, fibrosis, and cirrhosis, is linked to abnormalities in insulin-mediated lipid metabolism. Therefore, understanding the role of insulin signaling under normal and pathologic states may provide insights into preventative and therapeutic opportunities for the treatment of metabolic diseases. Here, we provide a review of the field of hepatic insulin signaling and lipid regulation, including providing historical context, detailed molecular mechanisms, and address gaps in our understanding of hepatic lipid regulation and the derangements under insulin-resistant conditions. © 2023 American Physiological Society. Compr Physiol 13:4785-4809, 2023.
Collapse
Affiliation(s)
- Kahealani Uehara
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominic Santoleri
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anna E. Garcia Whitlock
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M. Titchenell
- Institute of Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Ma B, Ju A, Zhang S, An Q, Xu S, Liu J, Yu L, Fu Y, Luo Y. Albumosomes formed by cytoplasmic pre-folding albumin maintain mitochondrial homeostasis and inhibit nonalcoholic fatty liver disease. Signal Transduct Target Ther 2023; 8:229. [PMID: 37321990 PMCID: PMC10272166 DOI: 10.1038/s41392-023-01437-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 06/17/2023] Open
Abstract
Hepatic mitochondrial dysfunction contributes to the progression of nonalcoholic fatty liver disease (NAFLD). However, the factors that maintain mitochondrial homeostasis, especially in hepatocytes, are largely unknown. Hepatocytes synthesize various high-level plasma proteins, among which albumin is most abundant. In this study, we found that pre-folding albumin in the cytoplasm is completely different from folded albumin in the serum. Mechanistically, endogenous pre-folding albumin undergoes phase transition in the cytoplasm to form a shell-like spherical structure, which we call the "albumosome". Albumosomes interact with and trap pre-folding carnitine palmitoyltransferase 2 (CPT2) in the cytoplasm. Albumosomes control the excessive sorting of CPT2 to the mitochondria under high-fat-diet-induced stress conditions; in this way, albumosomes maintain mitochondrial homeostasis from exhaustion. Physiologically, albumosomes accumulate in hepatocytes during murine aging and protect the livers of aged mice from mitochondrial damage and fat deposition. Morphologically, mature albumosomes have a mean diameter of 4μm and are surrounded by heat shock protein Hsp90 and Hsp70 family proteins, forming a larger shell. The Hsp90 inhibitor 17-AAG promotes hepatic albumosomal accumulation in vitro and in vivo, through which suppressing the progression of NAFLD in mice.
Collapse
Affiliation(s)
- Boyuan Ma
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Anji Ju
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Shaosen Zhang
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Qi An
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Siran Xu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
| | - Jie Liu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China
- Immunogenetics Laboratory, Shenzhen Blood Center, 518025, Shenzhen, Guangdong, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yan Fu
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China.
| | - Yongzhang Luo
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- The National Engineering Research Center for Protein Technology, Tsinghua University, 100084, Beijing, China.
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
29
|
Ding Y, Yang Y, Xue L. Immune cells and their related genes provide a new perspective on the common pathogenesis of ankylosing spondylitis and inflammatory bowel diseases. Front Immunol 2023; 14:1137523. [PMID: 37063924 PMCID: PMC10101339 DOI: 10.3389/fimmu.2023.1137523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundThe close relationship between ankylosing spondylitis (AS) and inflammatory bowel diseases (IBD) has been supported by many aspects, including but not limited to clinical manifestations, epidemiology and pathogenesis. Some evidence suggests that immune cells actively participated in the pathogenesis of both diseases. However, information on which cells are primarily involved in this process and how these cells mobilize, migrate and interact is still limited.MethodsDatasets were downloaded from Gene Expression Omnibus (GEO) database. Common differentially expressed genes (coDEGs) were identified by package “limma”. The protein-protein interaction (PPI) network and Weighted Gene Co-Expression Network Analysis (WGCNA) were used to analyze the interactions between coDEGs. KEGG pathway enrichment analysis and inverse cumulative distribution function were applied to identify common differential pathways, while Gene Set Enrichment Analysis (GSEA) was used to confirm the significance. Correlation analysis between coDEGs and immune cells led to the identification of critical immune-cell-related coDEGs. The diagnostic models were established based on least absolute shrinkage and selection operator (LASSO) regression, while receiver operating characteristic (ROC) analysis was used to identify the ability of the model. Validation datasets were imported to demonstrate the significant association of coDEGs with specific immune cells and the capabilities of the diagnostic model.ResultsIn total, 67 genes were up-regulated and 185 genes were down-regulated in both diseases. Four down-regulated pathways and four up-regulated pathways were considered important. Up-regulated coDEGs were firmly associated with neutrophils, while down-regulated genes were significantly associated with CD8+ T−cells and CD4+ T−cells in both AS and IBD datasets. Five up-regulated and six down-regulated key immue-cell-related coDEGs were identified. Diagnostic models based on key immue-cell-related coDEGs were established and tested. Validation datasets confirmed the significance of the correlation between coDEGs and specific immune cells.ConclusionThis study provides fresh insights into the co-pathogenesis of AS and IBD. It is proposed that neutrophils and T cells may be actively involved in this process, however, in opposite ways. The immue-cell-related coDEGs, revealed in this study, may be relevant to their regulation, although relevant research is still lacking.
Collapse
|
30
|
Liu ZY, Liu F, Cao Y, Peng SL, Pan HW, Hong XQ, Zheng PF. ACSL1, CH25H, GPCPD1, and PLA2G12A as the potential lipid-related diagnostic biomarkers of acute myocardial infarction. Aging (Albany NY) 2023; 15:1394-1411. [PMID: 36863716 PMCID: PMC10042701 DOI: 10.18632/aging.204542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Lipid metabolism plays an essential role in the genesis and progress of acute myocardial infarction (AMI). Herein, we identified and verified latent lipid-related genes involved in AMI by bioinformatic analysis. Lipid-related differentially expressed genes (DEGs) involved in AMI were identified using the GSE66360 dataset from the Gene Expression Omnibus (GEO) database and R software packages. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to analyze lipid-related DEGs. Lipid-related genes were identified by two machine learning techniques: least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE). The receiver operating characteristic (ROC) curves were used to descript diagnostic accuracy. Furthermore, blood samples were collected from AMI patients and healthy individuals, and real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine the RNA levels of four lipid-related DEGs. Fifty lipid-related DEGs were identified, 28 upregulated and 22 downregulated. Several enrichment terms related to lipid metabolism were found by GO and KEGG enrichment analyses. After LASSO and SVM-RFE screening, four genes (ACSL1, CH25H, GPCPD1, and PLA2G12A) were identified as potential diagnostic biomarkers for AMI. Moreover, the RT-qPCR analysis indicated that the expression levels of four DEGs in AMI patients and healthy individuals were consistent with bioinformatics analysis results. The validation of clinical samples suggested that 4 lipid-related DEGs are expected to be diagnostic markers for AMI and provide new targets for lipid therapy of AMI.
Collapse
Affiliation(s)
- Zheng-Yu Liu
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha 410000, China
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
| | - Fen Liu
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410000, China
| | - Yan Cao
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
- Department of Emergency, Hunan Provincial People's Hospital, Changsha 410000, China
| | - Shao-Liang Peng
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Data Center, Hunan Provincial People's Hospital, Changsha 410000, China
| | - Hong-Wei Pan
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha 410000, China
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
| | - Xiu-Qin Hong
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha 410000, China
| | - Peng-Fei Zheng
- Department of Cardiology, Hunan Provincial People's Hospital, Changsha 410000, China
- Department of Epidemiology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, China
- Clinical Medicine Research Center of Heart Failure of Hunan Province, Changsha 410000, China
| |
Collapse
|
31
|
Role of ACSL5 in fatty acid metabolism. Heliyon 2023; 9:e13316. [PMID: 36816310 PMCID: PMC9932481 DOI: 10.1016/j.heliyon.2023.e13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/07/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Free fatty acids (FFAs) are essential energy sources for most body tissues. A fatty acid must be converted to fatty acyl-CoA to oxidize or be incorporated into new lipids. Acyl-CoA synthetase long-chain family member 5 (ACSL5) is localized in the endoplasmic reticulum and mitochondrial outer membrane, where it catalyzes the formation of fatty acyl-CoAs from long-chain fatty acids (C16-C20). Fatty acyl-CoAs are then used in lipid synthesis or β-oxidation mediated pathways. ACSL5 plays a pleiotropic role in lipid metabolism depending on substrate preferences, subcellular localization and tissue specificity. Here, we review the role of ACSL5 in fatty acid metabolism in multiple metabolic tissues, including the liver, small intestine, adipose tissue, and skeletal muscle. Given the increasing number of studies suggesting the role of ACSL5 in glucose and lipid metabolism, we also summarized the effects of ACSL5 on circulating lipids and insulin resistance.
Collapse
|
32
|
Molecular Mechanism for Hepatic Glycerolipid Partitioning of n-6/n-3 Fatty Acid Ratio in an Obese Animal Biomodels. Int J Mol Sci 2023; 24:ijms24021576. [PMID: 36675096 PMCID: PMC9864240 DOI: 10.3390/ijms24021576] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The n-6/n-3 metabolic pathway associated with hepatic glycerolipid portioning plays a key role in preventing obesity. In this nutrition metabolism study, we used in vivo monitoring techniques with 40 obese male Sprague-Dawley strain rats attached with jugular-vein cannula after obesity was induced by a high-fat diet to determine the molecular mechanism associated with hepatic glycerolipid partitioning involving the n-6/n-3 metabolic pathway. Rats were randomly assigned to four groups (10 animals per group), including one control group (CON, n-6/n-3 of 71:1) and three treatment groups (n-6/n-3 of 4:1, 15:1 and 30:1). They were fed with experimental diets for 60 days. Incorporation rates of [14C]-labeling lipid into glycerolipid in the liver were 28.87−37.03% in treatment groups fed with diets containing an n-6/n-3 ratio of 4:1, 15:1 and 30:1, which were significantly (p < 0.05) lower than that in the CON (40.01%). However, 14CO2 emission % of absorbed dose showed the opposite trend. It was significantly (p < 0.05) higher in a treatment groups (n-6/n-3 of 4:1, 15:1 and 30:1, 30.35−45.08%) than in CON (27.71%). Regarding the metabolic distribution of glycerolipid to blood from livers, phospholipid/total glycerolipid (%) was significantly (p < 0.05) lower in CON at 11.04% than in treatment groups at 18.15% to 25.15%. Moreover, 14CO2/[14C]-total glycerolipid (%) was significantly (p < 0.05) higher in treatment groups at 44.16−78.50% than in CON at 39.50%. Metabolic distribution of fatty acyl moieties flux for oxidation and glycerolipid synthesis in the liver were significantly (p < 0.05) better in order of 4:1 > 15:1 > 30:1 than in the CON. Our data demonstrate that n-6/n-3 of 4:1 could help prevent obesity by controlling the mechanism of hepatic partitioning through oxidation and esterification of glycerolipid in an obese animal biomodel.
Collapse
|
33
|
Li H, Sun X, Li Z, Zhao R, Li M, Hu T. Machine learning-based integration develops biomarkers initial the crosstalk between inflammation and immune in acute myocardial infarction patients. Front Cardiovasc Med 2023; 9:1059543. [PMID: 36684609 PMCID: PMC9846646 DOI: 10.3389/fcvm.2022.1059543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Great strides have been made in past years toward revealing the pathogenesis of acute myocardial infarction (AMI). However, the prognosis did not meet satisfactory expectations. Considering the importance of early diagnosis in AMI, biomarkers with high sensitivity and accuracy are urgently needed. On the other hand, the prevalence of AMI worldwide has rapidly increased over the last few years, especially after the outbreak of COVID-19. Thus, in addition to the classical risk factors for AMI, such as overwork, agitation, overeating, cold irritation, constipation, smoking, and alcohol addiction, viral infections triggers have been considered. Immune cells play pivotal roles in the innate immunosurveillance of viral infections. So, immunotherapies might serve as a potential preventive or therapeutic approach, sparking new hope for patients with AMI. An era of artificial intelligence has led to the development of numerous machine learning algorithms. In this study, we integrated multiple machine learning algorithms for the identification of novel diagnostic biomarkers for AMI. Then, the possible association between critical genes and immune cell infiltration status was characterized for improving the diagnosis and treatment of AMI patients.
Collapse
Affiliation(s)
- Hongyu Li
- Medical College of Soochow University, The People’s Liberation Army of China (PLA) Rocket Force Characteristic Medical Center, Beijing, China,Department of Cardiovascular Medicine, Baotou Central Hospital, Institute of Cardiovascular Diseases, Translational Medicine Center, Baotou, China
| | - Xinti Sun
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zesheng Li
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruiping Zhao
- Department of Cardiovascular Medicine, Baotou Central Hospital, Institute of Cardiovascular Diseases, Translational Medicine Center, Baotou, China
| | - Meng Li
- Department of Cardiovascular Medicine, Baotou Central Hospital, Institute of Cardiovascular Diseases, Translational Medicine Center, Baotou, China,*Correspondence: Meng Li,
| | - Taohong Hu
- Medical College of Soochow University, The People’s Liberation Army of China (PLA) Rocket Force Characteristic Medical Center, Beijing, China,Taohong Hu,
| |
Collapse
|
34
|
Easton ZJW, Luo X, Li L, Regnault TRH. The impact of hyperglycemia upon BeWo trophoblast cell metabolic function: A multi-OMICS and functional metabolic analysis. PLoS One 2023; 18:e0283118. [PMID: 36930661 PMCID: PMC10022812 DOI: 10.1371/journal.pone.0283118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Pre-existing and gestationally-developed diabetes mellitus have been linked with impairments in placental villous trophoblast cell metabolic function, that are thought to underlie the development of metabolic diseases early in the lives of the exposed offspring. Previous research using placental cell lines and ex vivo trophoblast preparations have highlighted hyperglycemia is an important independent regulator of placental function. However, it is poorly understood if hyperglycemia directly influences aspects of placental metabolic function, including nutrient storage and mitochondrial respiration, that are altered in term diabetic placentae. The current study examined metabolic and mitochondrial function as well as nutrient storage in both undifferentiated cytotrophoblast and differentiated syncytiotrophoblast BeWo cells cultured under hyperglycemia conditions (25 mM glucose) for 72 hours to further characterize the direct impacts of placental hyperglycemic exposure. Hyperglycemic-exposed BeWo trophoblasts displayed increased glycogen and triglyceride nutrient stores, but real-time functional readouts of metabolic enzyme activity and mitochondrial respiratory activity were not altered. However, specific investigation into mitochondrial dynamics highlighted increased expression of markers associated with mitochondrial fission that could indicate high glucose-exposed trophoblasts are transitioning towards mitochondrial dysfunction. To further characterize the impacts of independent hyperglycemia, the current study subsequently utilized a multi-omics approach and evaluated the transcriptomic and metabolomic signatures of BeWo cytotrophoblasts. BeWo cytotrophoblasts exposed to hyperglycemia displayed increased mRNA expression of ACSL1, HSD11B2, RPS6KA5, and LAP3 and reduced mRNA expression of CYP2F1, and HK2, concomitant with increased levels of: lactate, malonate, and riboflavin metabolites. These changes highlighted important underlying alterations to glucose, glutathione, fatty acid, and glucocorticoid metabolism in BeWo trophoblasts exposed to hyperglycemia. Overall, these results demonstrate that hyperglycemia is an important independent regulator of key areas of placental metabolism, nutrient storage, and mitochondrial function, and these data continue to expand our knowledge on mechanisms governing the development of placental dysfunction.
Collapse
Affiliation(s)
- Zachary J W Easton
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Xian Luo
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Liang Li
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Timothy R H Regnault
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London Health Science Centre-Victoria Hospital, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
35
|
Zhang YF, Gao Y, Yang J, Jiang YM, Huang M, Fan SC, Bi HC. Long-term treatment with the mPXR agonist PCN promotes hepatomegaly and lipid accumulation without hepatocyte proliferation in mice. Acta Pharmacol Sin 2023; 44:169-177. [PMID: 35773338 DOI: 10.1038/s41401-022-00925-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
Abstract
Pregnane X receptor (PXR) is highly expressed in the liver and plays a pivotal role in xenobiotic and endobiotic metabolism. We previously reported that PXR activation by its specific mouse agonist pregnenolone 16α-carbonitrile (PCN) significantly induces liver enlargement and lipid accumulation. However, the effect of long-term PCN treatment on PXR and mouse liver is still unknown. This study aimed to explore the influence of long-term administration of PCN on mouse liver and hepatic lipid homeostasis. Male C57BL/6 mice were injected intraperitoneally with PCN (100 mg/kg once a week) for 42 weeks. Serum and liver samples were collected for biochemical and histological analysis. PXR activation was investigated by Western blot. Ultra-high-performance liquid chromatography coupled with electrospray ionization high-resolution mass spectrometry (UHPLC-ESI-HRMS)-based lipidomics analysis was performed to explore the change in different lipid categories. The results showed that long-term treatment with PCN significantly promoted hepatomegaly without hepatocyte proliferation and enlargement. Long-term treatment with PCN did not upregulate PXR target proteins in mice, and there was no significant upregulation of CYP3A11, CYP2B10, UGT1A1, MRP2, or MRP4. Lipidomics analysis showed obvious hepatic lipid accumulation in the PCN-treated mice, and the most significant change was found in triglycerides (TGs). Additionally, long-term treatment with PCN had no risk for carcinogenesis. These findings demonstrated that long-term PCN treatment induces hepatomegaly and lipid accumulation without hepatocyte proliferation or enlargement.
Collapse
Affiliation(s)
- Yi-Fei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yi-Ming Jiang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Shi-Cheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hui-Chang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
36
|
Dong H, Zhong W, Zhang W, Hao L, Guo W, Yue R, Sun X, Sun Z, Bataller R, Zhou Z. Loss of long-chain acyl-CoA synthetase 1 promotes hepatocyte death in alcohol-induced steatohepatitis. Metabolism 2023; 138:155334. [PMID: 36349655 DOI: 10.1016/j.metabol.2022.155334] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Alcohol consumption has been shown to disrupt hepatic lipid homeostasis. Long-chain acyl-CoA synthetase 1 (ACSL1) critically regulates hepatic fatty acid metabolism and lipid homeostasis by channeling fatty acids to lipid metabolic pathways. However, it remains unclear how ACSL1 contributes to the development of alcohol-associated liver disease (ALD). METHODS We performed chronic alcohol feeding animal studies with hepatocyte-specific ACSL1 knockout (ACSL1Δhep) mice, hepatocyte-specific STAT5 knockout (STAT5Δhep) mice, and ACSL1Δhep based-STAT5B overexpression (Stat5b-OE) mice. Cell studies were conducted to define the causal role of ACSL1 deficiency in the pathogenesis of alcohol-induced liver injury. The clinical relevance of the STAT5-ACSL1 pathway was examined using liver tissues from patients with alcoholic hepatitis (AH) and normal subjects (Normal). RESULTS We found that chronic alcohol consumption reduced hepatic ACSL1 expression in AH patients and ALD mice. Hepatocyte-specific ACSL1 deletion exacerbated alcohol-induced liver injury by increasing free fatty acids (FFA) accumulation and cell death. Cell studies revealed that FFA elicited the translocation of BAX and p-MLKL to the lysosomal membrane, resulting in lysosomal membrane permeabilization (LMP) and thereby initiating lysosomal-mediated cell death pathway. Furthermore, we identified that the signal transducer and activator of transcription 5 (STAT5) is a novel transcriptional regulator of ACSL1. Deletion of STAT5 exacerbated alcohol-induced liver injury in association with downregulation of ACSL1, and reactivation of ACSL1 by STAT5 overexpression effectively ameliorated alcohol-induced liver injury. In addition, ACSL1 expression was positively correlated with STAT5 and negatively correlated with cell death was also validated in the liver of AH patients. CONCLUSIONS ACSL1 deficiency due to STAT5 inactivation critically mediates alcohol-induced lipotoxicity and cell death in the development of ALD. These findings provide insights into alcohol-induced liver injury.
Collapse
Affiliation(s)
- Haibo Dong
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA; Department of Nutrition, the University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Wenliang Zhang
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Liuyi Hao
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Wei Guo
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Ruichao Yue
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Xinguo Sun
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ramon Bataller
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, the University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA; Department of Nutrition, the University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
37
|
Nishikai-Shen T, Hosono-Fukao T, Ariga T, Hosono T, Seki T. Cinnamon extract improves abnormalities in glucose tolerance by decreasing Acyl-CoA synthetase long-chain family 1 expression in adipocytes. Sci Rep 2022; 12:12574. [PMID: 35869105 PMCID: PMC9307619 DOI: 10.1038/s41598-022-13421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe previously demonstrated that cinnamon extract (CE) alleviates streptozotocin-induced type 1 diabetes in rats. The present study aimed to elucidate the detailed molecular target of cinnamon in cultured adipocytes and epididymal adipose tissue of type 2 diabetes model mice. Two-dimensional gel electrophoresis was employed to determine the molecular target of cinnamon in adipocytes. The function of Acyl-CoA synthetase long-chain family-1 (ACSL1), a molecular target of cinnamon that was identified in this study, was further investigated in 3T3-L1 adipocytes using specific inhibitors. Type 2 diabetes model mice (KK-Ay/TaJcl) were used to investigate the effect of CE on glucose tolerance, ACSL1 expression, and related signal molecules in vivo. CE decreased ACSL1 mRNA and protein expression in 3T3-L1 adipocytes but increased glucose uptake and AMPK signaling activation; moreover, a similar effect was observed with an ACSL1 inhibitor. CE improved glucose tolerance and downregulated ACSL1 in mice adipose tissue in vivo. ACSL1 was demonstrated as a molecular target of CE in type 2 diabetes both in a cell culture system and diabetic mouse model.
Collapse
|
38
|
Sun Q, Wang X, Xin X, An Z, Hu Y, Feng Q. Qushi Huayu decoction attenuated hepatic lipid accumulation via JAK2/STAT3/CPT-1A-related fatty acid β-oxidation in mice with non-alcoholic steatohepatitis. PHARMACEUTICAL BIOLOGY 2022; 60:2124-2133. [PMID: 36308318 PMCID: PMC9629123 DOI: 10.1080/13880209.2022.2134898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Qushi Huayu decoction (QHD) has been clinically used for treating non-alcoholic steatohepatits (NASH). However, little is known about the effect of QHD on fatty acid β-oxidation (FAO)-dependent lipid consumption. OBJECTIVE To investigate the mechanism of QHD on FAO-related hepatic lipid accumulation. MATERIALS AND METHODS Male C57BL/6J mice were randomly divided into 5 groups (n = 8): normal diet and drinking water (CON), high-fat and high-carbohydrate diet (HFHC), QHD-L (2.875 g/kg), QHD-H (11.5 g/kg) and obeticholic acid (OCA) (10 mg/kg/day) groups. All mice freely consumed an appropriate diet for 18 weeks, and QHD was orally administered in the last 6 weeks. Measurements of general condition, hepatic histopathology, and JAK2/STAT3 signalling pathway were taken. RESULTS QHD significantly improved NASH in mice, as reflected by improving serum glucolipid metabolism, decreasing enzymes activities, reducing hepatic triglyceride (HFHC: 70.07 ± 2.81 mg/g; QHD-H: 34.06 ± 5.74 mg/g) and ameliorating hepatic steatosis, inflammation in pathology. Further, both the mRNA and protein level of hepatic CPT-1A (p < 0.05), a rate-limiting enzyme of FAO, increased drastically following QHD treatment. Meanwhile, the content of hepatic ATP (p < 0.05) increased significantly after treatment with QHD. Further mechanistic results revealed that both the total protein and nuclear p-STAT3 in the liver were significantly down-regulated after QHD treatment. The protein level of hepatic p-JAK2 was significantly inhibited by QHD (p < 0.05 or p < 0.01). CONCLUSIONS QHD could attenuate lipid accumulation by increasing JAK2/STAT3/CPT-1A-related FAO, which provides a scientific basis for the clinical application of QHD in treating NASH.
Collapse
Affiliation(s)
- QinMei Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Xin
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - ZiMing An
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - YiYang Hu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| | - Qin Feng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, China
| |
Collapse
|
39
|
Yang J, Fan S, Zhang Y, Huang M, Gao Y, Bi H. Chronic Treatment With WY-14643 Induces Tumorigenesis and Triglyceride Accumulation in Mouse Livers. Drug Metab Dispos 2022; 50:1464-1471. [PMID: 36184081 DOI: 10.1124/dmd.122.000908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is closely related to lipid metabolism and various liver diseases. Previous study has shown that chronic treatment with PPARα agonist WY-14643 can induce liver tumors in rodents, but the implications of this process on lipid metabolism in the liver remain unclear. Thus, this study aimed to explore the influences of chronic treatment with WY-14643 on the liver and hepatic lipid metabolism. Wild-type C57BL/6 mice were treated with WY-14643 (100 mg/kg/week, i.p.) or corn oil, and liver and serum samples were collected for testing after 42 weeks of WY-14643 treatment. The results showed that hepatomegaly, liver tumors with mild liver injury, and hepatocyte proliferation were induced in mice treated with WY-14643. The mRNA and protein expression levels of PPARα downstream targets acyl-CoA oxidase 1 and cytochrome P450 4A were significantly upregulated in the WY-14643-treated group. Lipidomic analysis revealed that chronic treatment with WY-14643 disturbed lipid homeostasis, especially triglycerides (TGs), which were significantly elevated after WY-14643 treatment. Moreover, TG homeostasis-related genes were significantly increased in the WY-14643-treated group. In conclusion, these findings demonstrated that hepatomegaly and liver tumors induced by chronic treatment with WY-14643 in mice are accompanied by hepatocyte proliferation and TG accumulation. SIGNIFICANCE STATEMENT: The present study clearly demonstrated that sustained peroxisome proliferator-activated receptor α (PPARα) activation by chronic treatment with WY-14643 induces hepatomegaly and liver tumors with triglyceride accumulation by regulating lipid homeostasis-related genes in mice. These findings may help to clarify the influences of sustained PPARα activation on liver lipid homeostasis and provide data for the clinically rational use of drugs that can activate PPARα.
Collapse
Affiliation(s)
- Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (J.Y., S.F., Y.Z., M.H., Y.G., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (S.F., H.B.)
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (J.Y., S.F., Y.Z., M.H., Y.G., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (S.F., H.B.)
| | - Yifei Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (J.Y., S.F., Y.Z., M.H., Y.G., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (S.F., H.B.)
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (J.Y., S.F., Y.Z., M.H., Y.G., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (S.F., H.B.)
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (J.Y., S.F., Y.Z., M.H., Y.G., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (S.F., H.B.)
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China (J.Y., S.F., Y.Z., M.H., Y.G., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (S.F., H.B.)
| |
Collapse
|
40
|
Bojarczuk A, Boulygina EA, Dzitkowska-Zabielska M, Łubkowska B, Leońska-Duniec A, Egorova ES, Semenova EA, Andryushchenko LB, Larin AK, Generozov EV, Cięszczyk P, Ahmetov II. Genome-Wide Association Study of Exercise-Induced Fat Loss Efficiency. Genes (Basel) 2022; 13:1975. [PMID: 36360211 PMCID: PMC9690053 DOI: 10.3390/genes13111975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 04/21/2024] Open
Abstract
There is a wide range of individual variability in the change of body weight in response to exercise, and this variability partly depends on genetic factors. The study aimed to determine DNA polymorphisms associated with fat loss efficiency in untrained women with normal weight in response to a 12-week aerobic training program using the GWAS approach, followed by a cross-sectional study in athletes. The study involved 126 untrained young Polish women (age 21.4 ± 1.7 years; body mass index (BMI): 21.7 (2.4) kg/m2) and 550 Russian athletes (229 women, age 23.0 ± 4.1; 321 men, age 23.9 ± 4.7). We identified one genome-wide significant polymorphism (rs116143768) located in the ACSL1 gene (acyl-CoA synthetase long-chain family member 1, implicated in fatty acid oxidation), with a rare T allele associated with higher fat loss efficiency in Polish women (fat mass decrease: CC genotype (n = 122) -3.8%; CT genotype (n = 4) -31.4%; p = 1.18 × 10-9). Furthermore, male athletes with the T allele (n = 7) had significantly lower BMI (22.1 (3.1) vs. 25.3 (4.2) kg/m2, p = 0.046) than subjects with the CC genotype (n = 314). In conclusion, we have shown that the rs116143768 T allele of the ACSL1 gene is associated with higher fat loss efficiency in response to aerobic training in untrained women and lower BMI in physically active men.
Collapse
Affiliation(s)
- Aleksandra Bojarczuk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | | | | | - Beata Łubkowska
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Agata Leońska-Duniec
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Emiliya S. Egorova
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Liliya B. Andryushchenko
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Pawel Cięszczyk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
41
|
Li X, Bai Y, Li J, Chen Z, Ma Y, Shi B, Han X, Luo Y, Hu J, Wang J, Liu X, Li S, Zhao Z. Transcriptional analysis of microRNAs related to unsaturated fatty acid synthesis by interfering bovine adipocyte ACSL1 gene. Front Genet 2022; 13:994806. [PMID: 36226194 PMCID: PMC9548527 DOI: 10.3389/fgene.2022.994806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Long-chain fatty acyl-CoA synthase 1 (ACSL1) plays a vital role in the synthesis and metabolism of fatty acids. The proportion of highly unsaturated fatty acids in beef not only affects the flavor and improves the meat’s nutritional value. In this study, si-ACSL1 and NC-ACSL1 were transfected in bovine preadipocytes, respectively, collected cells were isolated on the fourth day of induction, and then RNA-Seq technology was used to screen miRNAs related to unsaturated fatty acid synthesis. A total of 1,075 miRNAs were characterized as differentially expressed miRNAs (DE-miRNAs), of which the expressions of 16 miRNAs were upregulated, and that of 12 were downregulated. Gene ontology analysis indicated that the target genes of DE-miRNAs were mainly involved in biological regulation and metabolic processes. Additionally, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis identified that the target genes of DE-miRNAs were mainly enriched in metabolic pathways, fatty acid metabolism, PI3K-Akt signaling pathway, glycerophospholipid metabolism, fatty acid elongation, and glucagon signaling pathway. Combined with the previous mRNA sequencing results, several key miRNA-mRNA targeting relationship pairs, i.e., novel-m0035-5p—ACSL1, novel-m0035-5p—ELOVL4, miR-9-X—ACSL1, bta-miR-677—ACSL1, miR-129-X—ELOVL4, and bta-miR-485—FADS2 were screened via the miRNA-mRNA interaction network. Thus, the results of this study provide a theoretical basis for further research on miRNA regulation of unsaturated fatty acid synthesis in bovine adipocytes.
Collapse
|
42
|
Liraglutide Exerts Protective Effects by Downregulation of PPARγ, ACSL1 and SREBP-1c in Huh7 Cell Culture Models of Non-Alcoholic Steatosis and Drug-Induced Steatosis. Curr Issues Mol Biol 2022; 44:3465-3480. [PMID: 36005135 PMCID: PMC9406665 DOI: 10.3390/cimb44080239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
(1) Background: With the aging of the population and polypharmacy encountered in the elderly, drug-induced steatosis (DIS) has become frequent cause of non-alcoholic steatosis (NAS). Indeed, NAS and DIS may co-exist, making the ability to distinguish between the entities ever more important. The aim of our study was to study cell culture models of NAS and DIS and determine the effects of liraglutide (LIRA) in those models. (2) Methods: Huh7 cells were treated with oleic acid (OA), or amiodarone (AMD) to establish models of NAS and DIS, respectively. Cells were treated with LIRA and cell viability was assessed by MTT, lipid accumulation by Oil-Red-O staining and triglyceride assay, and intracellular signals involved in hepatosteatosis were quantitated by RT-PCR. (3) Results: After exposure to various OA and AMD concentrations, those that achieved 80% of cells viabilities were used in further experiments to establish NAS and DIS models using 0.5 mM OA and 20 µM AMD, respectively. In both models, LIRA increased cell viability (p < 0.01). Lipid accumulation was increased in both models, with microsteatotic pattern in DIS, and macrosteatotic pattern in NAS which corresponds to greater triglyceride accumulation in latter. LIRA ameliorated these changes (p < 0.001), and downregulated expression of lipogenic ACSL1, PPARγ, and SREBP-1c pathways in the liver (p < 0.01) (4) Conclusions: LIRA ameliorates hepatocyte steatosis in Huh7 cell culture models of NAS and DIS.
Collapse
|
43
|
Li H, Herrmann T, Seeßle J, Liebisch G, Merle U, Stremmel W, Chamulitrat W. Role of fatty acid transport protein 4 in metabolic tissues: insights into obesity and fatty liver disease. Biosci Rep 2022; 42:BSR20211854. [PMID: 35583196 PMCID: PMC9160530 DOI: 10.1042/bsr20211854] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Fatty acid (FA) metabolism is a series of processes that provide structural substances, signalling molecules and energy. Ample evidence has shown that FA uptake is mediated by plasma membrane transporters including FA transport proteins (FATPs), caveolin-1, fatty-acid translocase (FAT)/CD36, and fatty-acid binding proteins. Unlike other FA transporters, the functions of FATPs have been controversial because they contain both motifs of FA transport and fatty acyl-CoA synthetase (ACS). The widely distributed FATP4 is not a direct FA transporter but plays a predominant function as an ACS. FATP4 deficiency causes ichthyosis premature syndrome in mice and humans associated with suppression of polar lipids but an increase in neutral lipids including triglycerides (TGs). Such a shift has been extensively characterized in enterocyte-, hepatocyte-, and adipocyte-specific Fatp4-deficient mice. The mutants under obese and non-obese fatty livers induced by different diets persistently show an increase in blood non-esterified free fatty acids and glycerol indicating the lipolysis of TGs. This review also focuses on FATP4 role on regulatory networks and factors that modulate FATP4 expression in metabolic tissues including intestine, liver, muscle, and adipose tissues. Metabolic disorders especially regarding blood lipids by FATP4 deficiency in different cell types are herein discussed. Our results may be applicable to not only patients with FATP4 mutations but also represent a model of dysregulated lipid homeostasis, thus providing mechanistic insights into obesity and development of fatty liver disease.
Collapse
Affiliation(s)
- Huili Li
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Thomas Herrmann
- Westkuesten Hospital, Esmarchstraße 50, 25746 Heide, Germany
| | - Jessica Seeßle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Li T, Jin M, Fei X, Yuan Z, Wang Y, Quan K, Wang T, Yang J, He M, Wei C. Transcriptome Comparison Reveals the Difference in Liver Fat Metabolism between Different Sheep Breeds. Animals (Basel) 2022; 12:ani12131650. [PMID: 35804549 PMCID: PMC9265030 DOI: 10.3390/ani12131650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hu sheep and Tibetan sheep are two commonly raised local sheep breeds in China, and they have different morphological characteristics, such as tail type and adaptability to extreme environments. A fat tail in sheep is the main adipose depot in sheep, whereas the liver is an important organ for fat metabolism, with the uptake, esterification, oxidation, and secretion of fatty acids (FAs). Meanwhile, adaptations to high-altitude and arid environments also affect liver metabolism. Therefore, in this study, RNA-sequencing (RNA-seq) technology was used to characterize the difference in liver fat metabolism between Hu sheep and Tibetan sheep. We identified 1179 differentially expressed genes (DEGs) (Q-value < 0.05) between the two sheep breeds, including 25 fat-metabolism-related genes. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, 16 pathways were significantly enriched (Q-value < 0.05), such as the proteasome, glutamatergic synapse, and oxidative phosphorylation pathways. In particular, one of these pathways was enriched to be associated with fat metabolism, namely the thermogenesis pathway, to which fat-metabolism-related genes such as ACSL1, ACSL4, ACSL5, CPT1A, CPT1C, SLC25A20, and FGF21 were enriched. Then, the expression levels of ACSL1, CPT1A, and FGF21 were verified in mRNA and protein levels via qRT-PCR and Western blot analysis between the two sheep breeds. The results showed that the mRNA and protein expression levels of these three genes were higher in the livers of Tibetan sheep than those of Hu sheep. The above genes are mainly related to FAs oxidation, involved in regulating the oxidation of liver FAs. So, this study suggested that Tibetan sheep liver has a greater FAs oxidation level than Hu sheep liver. In addition, the significant enrichment of fat-metabolism-related genes in the thermogenesis pathway appears to be related to plateau-adaptive thermogenesis in Tibetan sheep, which may indicate that liver- and fat-metabolism-related genes have an impact on adaptive thermogenesis.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Meilin Jin
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Xiaojuan Fei
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China;
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China;
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Tingpu Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741000, China;
| | - Junxiang Yang
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang 744000, China; (J.Y.); (M.H.)
| | - Maochang He
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang 744000, China; (J.Y.); (M.H.)
| | - Caihong Wei
- Key Laboratory of Animal Genetics and Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.L.); (M.J.); (X.F.)
- Correspondence:
| |
Collapse
|
45
|
Novel Insight into the Potential Role of Acylglycerophosphate Acyltransferases Family Members on Triacylglycerols Synthesis in Buffalo. Int J Mol Sci 2022; 23:ijms23126561. [PMID: 35743005 PMCID: PMC9224252 DOI: 10.3390/ijms23126561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
Acylglycerophosphate acyltransferases (AGPATs) are the rate-limiting enzymes for the de novo pathway of triacylglycerols (TAG) synthesis. Although AGPATs have been extensively explored by evolution, expression and functional studies, little is known on functional characterization of how many members of the AGPAT family are involved in TAG synthesis and their impact on the cell proliferation and apoptosis. Here, 13 AGPAT genes in buffalo were identified, of which 12 AGPAT gene pairs were orthologous between buffalo and cattle. Comparative transcriptomic analysis and real-time quantitative reverse transcription PCR (qRT-PCR) further showed that both AGPAT1 and AGPAT6 were highly expressed in milk samples of buffalo and cattle during lactation. Knockdown of AGPAT1 or AGPAT6 significantly decreased the TAG content of buffalo mammary epithelial cells (BuMECs) and bovine mammary epithelial cells (BoMECs) by regulating lipogenic gene expression (p < 0.05). Knockdown of AGPAT1 or AGPAT6 inhibited proliferation and apoptosis of BuMECs through the expression of marker genes associated with the proliferation and apoptosis (p < 0.05). Our data confirmed that both AGPAT1 and AGPAT6 could regulate TAG synthesis and growth of mammary epithelial cells in buffalo. These findings will have important implications for understanding the role of the AGPAT gene in buffalo milk performance.
Collapse
|
46
|
Molecular Characterization, Tissue Distribution Profile, and Nutritional Regulation of acsl Gene Family in Golden Pompano ( Trachinotus ovatus). Int J Mol Sci 2022; 23:ijms23126437. [PMID: 35742881 PMCID: PMC9224283 DOI: 10.3390/ijms23126437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Long chain acyl-coA synthase (acsl) family genes activate the conversion of long chain fatty acids into acyl-coA to regulate fatty acid metabolism. However, the evolutionary characteristics, tissue expression and nutritional regulation of the acsl gene family are poorly understood in fish. The present study investigated the molecular characterization, tissue expression and nutritional regulation of the acsl gene family in golden pompano (Trachinotus ovatus). The results showed that the coding regions of acsl1, acsl3, acsl4, acsl5 and acsl6 cDNA were 2091 bp, 2142 bp, 2136 bp, 1977 bp and 2007 bp, encoding 697, 714, 712, 659 and 669 amino acids, respectively. Five acsl isoforms divided into two branches, namely, acsl1, acsl5 and acsl6, as well as acsl3 and acsl4. The tissue expression distribution of acsl genes showed that acsl1 and acsl3 are widely expressed in the detected tissues, while acsl4, acsl5 and acsl6 are mainly expressed in the brain. Compared to the fish fed with lard oil diets, the fish fed with soybean oil exhibited high muscular C18 PUFA contents and acsl1 and acsl3 mRNA levels, as well as low muscular SFA contents and acsl4 mRNA levels. High muscular n-3 LC-PUFA contents, and acsl3, acsl4 and acsl6 mRNA levels were observed in the fish fed with fish oil diets compared with those of fish fed with lard oil or soybean oil diets. High n-3 LC-PUFA levels and DHA contents, as well as the acsl3, acsl4 and acsl6 mRNA levels were exhibited in the muscle of fish fed diets with high dietary n-3 LC-PUFA levels. Additionally, the muscular acsl3, acsl4 and acsl6 mRNA expression levels, n-3 LC-PUFA and DHA levels were significantly up-regulated by the increase of dietary DHA proportions. Collectively, the positive relationship among dietary fatty acids, muscular fatty acids and acsl mRNA, indicated that T. ovatus Acsl1 and Acsl3 are beneficial for the C18 PUFA enrichment, and Acsl3, Acsl4 and Acsl6 are for n-3 LC-PUFA and DHA enrichment. The acquisition of fish Acsl potential function in the present study will play the foundation for ameliorating the fatty acids nutrition in farmed fish products.
Collapse
|
47
|
Zeng S, Wu F, Chen M, Li Y, You M, Zhang Y, Yang P, Wei L, Ruan XZ, Zhao L, Chen Y. Inhibition of Fatty Acid Translocase (FAT/CD36) Palmitoylation Enhances Hepatic Fatty Acid β-Oxidation by Increasing Its Localization to Mitochondria and Interaction with Long-Chain Acyl-CoA Synthetase 1. Antioxid Redox Signal 2022; 36:1081-1100. [PMID: 35044230 DOI: 10.1089/ars.2021.0157] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Impaired fatty acid oxidation (FAO) in mitochondria of hepatocytes causes lipid accumulation and excessive production of reactive oxygen species (ROS) and oxidative damage, leading to nonalcoholic fatty liver disease (NAFLD). Fatty acid translocase (FAT/cluster of differentiation 36 [CD36]), a transmembrane protein that facilitates the uptake of long-chain fatty acids (LCFAs), is recently found to be involved in FAO. The function of FAT/CD36 is associated with its subcellular localization. Palmitoylation, one of the most common lipid modifications, is generally thought to regulate FAT/CD36 subcellular localization. Here, we aimed to investigate the role of palmitoylation in FAT/CD36 localization to mitochondria and its influence on FAO in hepatocytes. Results: We demonstrated that FAT/CD36 exists on the mitochondria of hepatocytes. Palmitoylation of FAT/CD36 was significantly upregulated in NAFLD. Inhibition of FAT/CD36 palmitoylation resulted in an obvious increase in the distribution of FAT/CD36 to mitochondria of hepatocytes. Depalmitoylated FAT/CD36 on the mitochondrial membrane continues functioning by facilitating fatty acid trafficking to mitochondria. Abundant mitochondrial FAT/CD36 interacted with long-chain acyl-CoA synthetase 1 (ACSL1), and thus, more LCFAs were transported to ACSL1. This led to an increase in the generation of long-chain acyl-CoA, contributing to the enhancement of FAO and alleviating NAFLD. Innovation and Conclusion: This work revealed that inhibiting FAT/CD36 palmitoylation alleviates NAFLD by promoting FAT/CD36 localization to the mitochondria of hepatocytes. Mitochondrial FAT/CD36 functions as a molecular bridge between LCFAs and ACSL1 to increase the production of long-chain acyl-CoA, thus promoting FAO, thereby avoiding lipid accumulation and overproduction of ROS in hepatocytes. Antioxid. Redox Signal. 36, 1081-1100.
Collapse
Affiliation(s)
- Shu Zeng
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fan Wu
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mengyue Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yun Li
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Mengyue You
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ping Yang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Wei
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| | - Lei Zhao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
48
|
Tang S, Li J, Chang YF, Lin W. Avian Leucosis Virus-Host Interaction: The Involvement of Host Factors in Viral Replication. Front Immunol 2022; 13:907287. [PMID: 35693802 PMCID: PMC9178239 DOI: 10.3389/fimmu.2022.907287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis virus (ALV) causes various diseases associated with tumor formation and decreased fertility. Moreover, ALV induces severe immunosuppression, increasing susceptibility to other microbial infections and the risk of failure in subsequent vaccination against other diseases. There is growing evidence showing the interaction between ALV and the host. In this review, we will survey the present knowledge of the involvement of host factors in the important molecular events during ALV infection and discuss the futuristic perspectives from this angle.
Collapse
Affiliation(s)
- Shuang Tang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jie Li
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Wencheng Lin
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction of Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
49
|
Pei Y, Song Y, Wang B, Lin C, Yang Y, Li H, Feng Z. Integrated lipidomics and RNA sequencing analysis reveal novel changes during 3T3-L1 cell adipogenesis. PeerJ 2022; 10:e13417. [PMID: 35529487 PMCID: PMC9074861 DOI: 10.7717/peerj.13417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
After adipogenic differentiation, key regulators of adipogenesis are stimulated and cells begin to accumulate lipids. To identify specific changes in lipid composition and gene expression patterns during 3T3-L1 cell adipogenesis, we carried out lipidomics and RNA sequencing analysis of undifferentiated and differentiated 3T3-L1 cells. The analysis revealed significant changes in lipid content and gene expression patterns during adipogenesis. Slc2a4 was up-regulated, which may enhance glucose transport; Gpat3, Agpat2, Lipin1 and Dgat were also up-regulated, potentially to enrich intracellular triacylglycerol (TG). Increased expression levels of Pnpla2, Lipe, Acsl1 and Lpl likely increase intracellular free fatty acids, which can then be used for subsequent synthesis of other lipids, such as sphingomyelin (SM) and ceramide (Cer). Enriched intracellular diacylglycerol (DG) can also provide more raw materials for the synthesis of phosphatidylinositol (PI), phosphatidylcholine (PC), phosphatidylethanolamine (PE), ether-PE, and ether-PC, whereas high expression of Pla3 may enhance the formation of lysophophatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Therefore, in the process of adipogenesis of 3T3-L1 cells, a series of genes are activated, resulting in large changes in the contents of various lipid metabolites in the cells, especially TG, DG, SM, Cer, PI, PC, PE, etherPE, etherPC, LPC and LPE. These findings provide a theoretical basis for our understanding the pathophysiology of obesity.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuxin Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Bingyuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
50
|
Adoptive transfer of metabolically reprogrammed macrophages for atherosclerosis treatment in diabetic ApoE−/- mice. Bioact Mater 2022; 16:82-94. [PMID: 35386323 PMCID: PMC8958426 DOI: 10.1016/j.bioactmat.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 01/02/2023] Open
Abstract
Atherosclerosis is characterized by inflammation in the arterial wall, which is known to be exacerbated by diabetes. Therapeutic repression of inflammation is a promising strategy for treating atherosclerosis. In this study, we showed that diabetes aggravated atherosclerosis in apolipoproteinE knockout (ApoE−/-) mice, in which increased expression of long-chain acyl-CoA synthetase 1 (Acsl1) in macrophages played an important role. Knockdown of Acsl1 in macrophages (MφshAcsl1) reprogrammed macrophages to an anti-inflammatory phenotype, especially under hyperglycemic conditions. Injection of MφshAcsl1 reprogrammed macrophages into streptozotocin (STZ)-induced diabetic ApoE−/- mice (ApoE−/-+ STZ) alleviated inflammation locally in the plaque, liver and spleen. Consistent with the reduction in inflammation, plaques became smaller and more stable after the adoptive transfer of reprogrammed macrophages. Taken together, our findings indicate that increased Acsl1 expression in macrophages play a key role in aggravated atherosclerosis of diabetic mice, possibly by promoting inflammation. Adoptive transfer of Acsl1 silenced macrophages may serve as a potential therapeutic strategy for atherosclerosis. Increased Acsl1 in macrophages is responsible for the exacerbated inflammation in diabetes MφshAcsl1 is characterized as anti-inflammatory phenotype Adoptive transfer of MφshAcsl1 alleviates atherosclerosis in diabetic ApoE−/- mice MφshAcsl1 inhibits both local and systemic inflammation in vivo
Collapse
|