1
|
A Elmihi K, Leonard KA, Nelson R, Thiesen A, Clugston RD, Jacobs RL. The emerging role of ethanolamine phosphate phospholyase in regulating hepatic phosphatidylethanolamine and plasma lipoprotein metabolism in mice. FASEB J 2024; 38:e70063. [PMID: 39312446 DOI: 10.1096/fj.202401321r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
Ethanolamine phosphate phospholyase (ETNPPL) is an enzyme that irreversibly degrades phospho-ethanolamine (p-ETN), an intermediate in the Kennedy pathway of phosphatidylethanolamine (PE) biosynthesis. PE is the second most abundant phospholipid in mammalian membranes. Disturbance of hepatic phospholipid homeostasis has been linked to the development of metabolic dysfunction-associated steatotic liver disease (MASLD). We generated whole-body Etnppl knockout mice to investigate the impact of genetic deletion of Etnppl on hepatic lipid metabolism. Primary hepatocytes isolated from Etnppl-/- mice showed increased conversion of [3H]ethanolamine to [3H]p-ETN and [3H]PE compared to Etnppl+/+ mice. Male and female Etnppl+/+ and Etnppl-/- mice were fed either a chow or a western-type diet (WTD). Irrespective of diet, Etnppl-/- mice had elevated fasting levels of total plasma cholesterol, triglyceride (TG) and apolipoprotein B100 (VLDL particles). Interestingly, hepatic TG secretion was unchanged between groups. Although hepatic lipids (phosphatidylcholine (PC), PE, TG, and cholesterol) were not different between mice, RNA sequencing analysis showed downregulation in genes related to cholesterol biosynthesis in Etnppl-/- mice. Furthermore, hepatic low-density lipoprotein receptor-related protein1 (LRP1) protein level was lower in female Etnppl-/- mice, which may indicate reduced uptake of remnant VLDL particles from circulation. Hepatic PE levels were only increased in WTD-fed female Etnppl-/- mice, not chow diet-fed mice. However, hepatic lipid accumulation and metabolic dysfunction-associated steatohepatitis (MASH) development were unchanged between Etnppl+/+ and Etnppl-/- mice. To conclude, ETNPPL has a role in regulating plasma lipoprotein metabolism independent of hepatic TG levels.
Collapse
Affiliation(s)
- Kholoud A Elmihi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Kelly-Ann Leonard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Randy Nelson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Robin D Clugston
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Lonardo A, Weiskirchen R. From Hypothalamic Obesity to Metabolic Dysfunction-Associated Steatotic Liver Disease: Physiology Meets the Clinics via Metabolomics. Metabolites 2024; 14:408. [PMID: 39195504 DOI: 10.3390/metabo14080408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic health is tightly regulated by neuro-hormonal control, and systemic metabolic dysfunction may arise from altered function of the hypothalamic-anterior pituitary axis (HAPA). Ancient experimental observations of hypothalamic obesity (HO) and liver cirrhosis occurring among animals subjected to hypothalamic injury can now be explained using the more recent concepts of lipotoxicity and metabolic dysfunction-associated steatotic liver disease (MASLD). Lipotoxicity, the range of abnormalities resulting from the harmful effects of fatty acids accumulated in organs outside of adipose tissue, is the common pathogenic factor underlying closely related conditions like hypothalamic syndrome, HO, and MASLD. The hormonal deficits and the array of metabolic and metabolomic disturbances that occur in cases of HO are discussed, along with the cellular and molecular mechanisms that lead, within the MASLD spectrum, from uncomplicated steatotic liver disease to steatohepatitis and cirrhosis. Emphasis is placed on knowledge gaps and how they can be addressed through novel studies. Future investigations should adopt precision medicine approaches by precisely defining the hormonal imbalances and metabolic dysfunctions involved in each individual patient with HO, thus paving the way for tailored management of MASLD that develops in the context of altered HAPA.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria of Modena (-2023), 41126 Modena, Italy
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH), University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Zhang Z, Zhou H, Gu W, Wei Y, Mou S, Wang Y, Zhang J, Zhong Q. CGI1746 targets σ 1R to modulate ferroptosis through mitochondria-associated membranes. Nat Chem Biol 2024; 20:699-709. [PMID: 38212578 DOI: 10.1038/s41589-023-01512-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 11/17/2023] [Indexed: 01/13/2024]
Abstract
Ferroptosis is iron-dependent oxidative cell death. Labile iron and polyunsaturated fatty acid (PUFA)-containing lipids are two critical factors for ferroptosis execution. Many processes regulating iron homeostasis and lipid synthesis are critically involved in ferroptosis. However, it remains unclear whether biological processes other than iron homeostasis and lipid synthesis are associated with ferroptosis. Using kinase inhibitor library screening, we discovered a small molecule named CGI1746 that potently blocks ferroptosis. Further studies demonstrate that CGI1746 acts through sigma-1 receptor (σ1R), a chaperone primarily located at mitochondria-associated membranes (MAMs), to inhibit ferroptosis. Suppression of σ1R protects mice from cisplatin-induced acute kidney injury hallmarked by ferroptosis. Mechanistically, CGI1746 treatment or genetic disruption of MAMs leads to defective Ca2+ transfer, mitochondrial reactive oxygen species (ROS) production and PUFA-containing triacylglycerol accumulation. Therefore, we propose a critical role for MAMs in ferroptosis execution.
Collapse
Affiliation(s)
- Zili Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjia Gu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuehan Wei
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Mou
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China.
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Jing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Castellano-Castillo D, Ramos-Molina B, Frutos MD, Arranz-Salas I, Reyes-Engel A, Queipo-Ortuño MI, Cardona F. RNA expression changes driven by altered epigenetics status related to NASH etiology. Biomed Pharmacother 2024; 174:116508. [PMID: 38579398 DOI: 10.1016/j.biopha.2024.116508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing health problem due to the increased obesity rates, among other factors. In its more severe stage (NASH), inflammation, hepatocellular ballooning and fibrosis are present in the liver, which can further evolve to total liver dysfunction or even hepatocarcinoma. As a metabolic disease, is associated to environmental factors such as diet and lifestyle conditions, which in turn can influence the epigenetic landscape of the cells, affecting to the gene expression profile and chromatin organization. In this study we performed ATAC-sequencing and RNA-sequencing to interrogate the chromatin status of liver biopsies in subjects with and without NASH and its effects on RNA transcription and NASH etiology. NASH subjects showed transcriptional downregulation for lipid and glucose metabolic pathways (e.g., ABC transporters, AMPK, FoxO or insulin pathways). A total of 229 genes were differentially enriched (ATAC and mRNA) in NASH, which were mainly related to lipid transport activity, nuclear receptor-binding, dicarboxylic acid transporter, and PPARA lipid regulation. Interpolation of ATAC data with known liver enhancer regions showed differential openness at 8 enhancers, some linked to genes involved in lipid metabolism, (i.e., FASN) and glucose homeostasis (i.e., GCGR). In conclusion, the chromatin landscape is altered in NASH patients compared to patients without this liver condition. This alteration might cause mRNA changes explaining, at least partially, the etiology and pathophysiology of the disease.
Collapse
Affiliation(s)
- Daniel Castellano-Castillo
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, Málaga 29010, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia 30120, Spain.
| | - María Dolores Frutos
- General and Digestive System Surgery Department, Virgen de la Arrixaca University Hospital, Murcia 31020, Spain
| | - Isabel Arranz-Salas
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA), Virgen de la Victoria University Hospital, Malaga University, 2ª Planta, Campus Teatinos S/N, Málaga 29010, Spain; Department of Human Physiology, Human Histology, Anatomical Pathology and Physical Education, Malaga University, Málaga 29010, Spain; 11 Department of Anatomical Pathology, Virgen de la Victoria Hospital, Málaga, Spain
| | - Armando Reyes-Engel
- Departamento de especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010, Spain
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, Málaga 29010, Spain; Departamento de especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010, Spain.
| | - Fernando Cardona
- Departamento de especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, 29010, Spain
| |
Collapse
|
5
|
Christen M, Oevermann A, Rupp S, Vaz FM, Wever EJM, Braus BK, Jagannathan V, Kehl A, Hytönen MK, Lohi H, Leeb T. PCYT2 deficiency in Saarlooswolfdogs with progressive retinal, central, and peripheral neurodegeneration. Mol Genet Metab 2024; 141:108149. [PMID: 38277988 DOI: 10.1016/j.ymgme.2024.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
We investigated a syndromic disease comprising blindness and neurodegeneration in 11 Saarlooswolfdogs. Clinical signs involved early adult onset retinal degeneration and adult-onset neurological deficits including gait abnormalities, hind limb weakness, tremors, ataxia, cognitive decline and behavioral changes such as aggression towards the owner. Histopathology in one affected dog demonstrated cataract, retinal degeneration, central and peripheral axonal degeneration, and severe astroglial hypertrophy and hyperplasia in the central nervous system. Pedigrees indicated autosomal recessive inheritance. We mapped the suspected genetic defect to a 15 Mb critical interval by combined linkage and autozygosity analysis. Whole genome sequencing revealed a private homozygous missense variant, PCYT2:c.4A>G, predicted to change the second amino acid of the encoded ethanolamine-phosphate cytidylyltransferase 2, XP_038402224.1:(p.Ile2Val). Genotyping of additional Saarlooswolfdogs confirmed the homozygous genotype in all eleven affected dogs and demonstrated an allele frequency of 9.9% in the population. This experiment also identified three additional homozygous mutant young dogs without overt clinical signs. Subsequent examination of one of these dogs revealed early-stage progressive retinal atrophy (PRA) and expansion of subarachnoid CSF spaces in MRI. Dogs homozygous for the pathogenic variant showed ether lipid accumulation, confirming a functional PCYT2 deficiency. The clinical and metabolic phenotype in affected dogs shows some parallels with human patients, in whom PCYT2 variants lead to a rare form of spastic paraplegia or axonal motor and sensory polyneuropathy. Our results demonstrate that PCYT2:c.4A>G in dogs cause PCYT2 deficiency. This canine model with histopathologically documented retinal, central, and peripheral neurodegeneration further deepens the knowledge of PCYT2 deficiency.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Stefan Rupp
- Neurology Department, Tierklinik Hofheim, IVC Evidensia, Hofheim am Taunus 65719, Germany
| | - Frédéric M Vaz
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Eric J M Wever
- Amsterdam UMC, University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of Metabolism, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Bioinformatics Laboratory, Department of Epidemiology & Data Science, Amsterdam Public Health Research Institute, University of Amsterdam, 1100 DE Amsterdam UMC, the Netherlands
| | - Barbara K Braus
- Ophthalmology Department, Tierklinik Hofheim, IVC Evidensia, Hofheim am Taunus 65719, Germany
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland
| | - Alexandra Kehl
- Laboklin GmbH & Co. KG, Steubenstraße 4, Bad Kissingen 97688, Germany; Comparative Experimental Pathology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki 00014, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland; Folkhälsan Research Center, Helsinki 00290, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki 00014, Finland; Department of Veterinary Biosciences, University of Helsinki, Helsinki 00014, Finland; Folkhälsan Research Center, Helsinki 00290, Finland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern 3001, Switzerland.
| |
Collapse
|
6
|
Wong B, Bergeron A, Maznyi G, Ng K, Jirovec A, Birdi HK, Serrano D, Spinelli M, Thomson M, Taha Z, Alwithenani A, Chen A, Lorimer I, Vanderhyden B, Arulanandam R, Diallo JS. Pevonedistat, a first-in-class NEDD8-activating enzyme inhibitor, sensitizes cancer cells to VSVΔ51 oncolytic virotherapy. Mol Ther 2023; 31:3176-3192. [PMID: 37766429 PMCID: PMC10638453 DOI: 10.1016/j.ymthe.2023.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical efficacy of VSVΔ51 oncolytic virotherapy has been limited by tumor resistance to viral infection, so strategies to transiently repress antiviral defenses are warranted. Pevonedistat is a first-in-class NEDD8-activating enzyme (NAE) inhibitor currently being tested in clinical trials for its antitumor potential. In this study, we demonstrate that pevonedistat sensitizes human and murine cancer cells to increase oncolytic VSVΔ51 infection, increase tumor cell death, and improve therapeutic outcomes in resistant syngeneic murine cancer models. Increased VSVΔ51 infectivity was also observed in clinical human tumor samples. We further identify the mechanism of this effect to operate via blockade of the type 1 interferon (IFN-1) response through neddylation-dependent interferon-stimulated growth factor 3 (ISGF3) repression and neddylation-independent inhibition of NF-κB nuclear translocation. Together, our results identify a role for neddylation in regulating the innate immune response and demonstrate that pevonedistat can improve the therapeutic outcomes of strategies using oncolytic virotherapy.
Collapse
Affiliation(s)
- Boaz Wong
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Anabel Bergeron
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Glib Maznyi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Kristy Ng
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Anna Jirovec
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Harsimrat K Birdi
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Daniel Serrano
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Marcus Spinelli
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Max Thomson
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Akram Alwithenani
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ian Lorimer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Barbara Vanderhyden
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rozanne Arulanandam
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
7
|
Duncan RE. Deficiency of phosphatidylethanolamine synthesis: consequences for skeletal muscle. FUNCTION 2023; 4:zqad044. [PMID: 37772311 PMCID: PMC10533200 DOI: 10.1093/function/zqad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/30/2023] Open
Affiliation(s)
- Robin Elaine Duncan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
8
|
Basu S, Pawlowic MC, Hsu FF, Thomas G, Zhang K. Ethanolaminephosphate cytidylyltransferase is essential for survival, lipid homeostasis and stress tolerance in Leishmania major. PLoS Pathog 2023; 19:e1011112. [PMID: 37506172 PMCID: PMC10411802 DOI: 10.1371/journal.ppat.1011112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Glycerophospholipids including phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are vital components of biological membranes. Trypanosomatid parasites of the genus Leishmania can acquire PE and PC via de novo synthesis and the uptake/remodeling of host lipids. In this study, we investigated the ethanolaminephosphate cytidylyltransferase (EPCT) in Leishmania major, which is the causative agent for cutaneous leishmaniasis. EPCT is a key enzyme in the ethanolamine branch of the Kennedy pathway which is responsible for the de novo synthesis of PE. Our results demonstrate that L. major EPCT is a cytosolic protein capable of catalyzing the formation of CDP-ethanolamine from ethanolamine-phosphate and cytidine triphosphate. Genetic manipulation experiments indicate that EPCT is essential in both the promastigote and amastigote stages of L. major as the chromosomal null mutants cannot survive without the episomal expression of EPCT. This differs from our previous findings on the choline branch of the Kennedy pathway (responsible for PC synthesis) which is required only in promastigotes but not amastigotes. While episomal EPCT expression does not affect promastigote proliferation under normal conditions, it leads to reduced production of ethanolamine plasmalogen or plasmenylethanolamine, the dominant PE subtype in Leishmania. In addition, parasites with episomal EPCT exhibit heightened sensitivity to acidic pH and starvation stress, and significant reduction in virulence. In summary, our investigation demonstrates that proper regulation of EPCT expression is crucial for PE synthesis, stress response, and survival of Leishmania parasites throughout their life cycle.
Collapse
Affiliation(s)
- Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Mattie C. Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- Wellcome Centre for Anti-Infectives Research (WCAIR), Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Geoff Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
9
|
Grapentine S, Singh RK, Bakovic M. Skeletal Muscle Consequences of Phosphatidylethanolamine Synthesis Deficiency. FUNCTION 2023; 4:zqad020. [PMID: 37342414 PMCID: PMC10278983 DOI: 10.1093/function/zqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/22/2023] Open
Abstract
The maintenance of phospholipid homeostasis is increasingly being implicated in metabolic health. Phosphatidylethanolamine (PE) is the most abundant phospholipid on the inner leaflet of cellular membranes, and we have previously shown that mice with a heterozygous ablation of the PE synthesizing enzyme, Pcyt2 (Pcyt2+/-), develop obesity, insulin resistance, and NASH. Skeletal muscle is a major determinant of systemic energy metabolism, making it a key player in metabolic disease development. Both the total PE levels and the ratio of PE to other membrane lipids in skeletal muscle are implicated in insulin resistance; however, the underlying mechanisms and the role of Pcyt2 regulation in this association remain unclear. Here, we show how reduced phospholipid synthesis due to Pcyt2 deficiency causes Pcyt2+/- skeletal muscle dysfunction and metabolic abnormalities. Pcyt2+/- skeletal muscle exhibits damage and degeneration, with skeletal muscle cell vacuolization, disordered sarcomeres, mitochondria ultrastructure irregularities and paucity, inflammation, and fibrosis. There is intramuscular adipose tissue accumulation, and major disturbances in lipid metabolism with impaired FA mobilization and oxidation, elevated lipogenesis, and long-chain fatty acyl-CoA, diacylglycerol, and triacylglycerol accumulation. Pcyt2+/- skeletal muscle exhibits perturbed glucose metabolism with elevated glycogen content, impaired insulin signaling, and reduced glucose uptake. Together, this study lends insight into the critical role of PE homeostasis in skeletal muscle metabolism and health with broad implications on metabolic disease development.
Collapse
Affiliation(s)
- Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Rathnesh K Singh
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
10
|
Green RE, Lord J, Scelsi MA, Xu J, Wong A, Naomi-James S, Handy A, Gilchrist L, Williams DM, Parker TD, Lane CA, Malone IB, Cash DM, Sudre CH, Coath W, Thomas DL, Keuss S, Dobson R, Legido-Quigley C, Fox NC, Schott JM, Richards M, Proitsi P. Investigating associations between blood metabolites, later life brain imaging measures, and genetic risk for Alzheimer's disease. Alzheimers Res Ther 2023; 15:38. [PMID: 36814324 PMCID: PMC9945600 DOI: 10.1186/s13195-023-01184-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Identifying blood-based signatures of brain health and preclinical pathology may offer insights into early disease mechanisms and highlight avenues for intervention. Here, we systematically profiled associations between blood metabolites and whole-brain volume, hippocampal volume, and amyloid-β status among participants of Insight 46-the neuroscience sub-study of the National Survey of Health and Development (NSHD). We additionally explored whether key metabolites were associated with polygenic risk for Alzheimer's disease (AD). METHODS Following quality control, levels of 1019 metabolites-detected with liquid chromatography-mass spectrometry-were available for 1740 participants at age 60-64. Metabolite data were subsequently clustered into modules of co-expressed metabolites using weighted coexpression network analysis. Accompanying MRI and amyloid-PET imaging data were present for 437 participants (age 69-71). Regression analyses tested relationships between metabolite measures-modules and hub metabolites-and imaging outcomes. Hub metabolites were defined as metabolites that were highly connected within significant (pFDR < 0.05) modules or were identified as a hub in a previous analysis on cognitive function in the same cohort. Regression models included adjustments for age, sex, APOE genotype, lipid medication use, childhood cognitive ability, and social factors. Finally, associations were tested between AD polygenic risk scores (PRS), including and excluding the APOE region, and metabolites and modules that significantly associated (pFDR < 0.05) with an imaging outcome (N = 1638). RESULTS In the fully adjusted model, three lipid modules were associated with a brain volume measure (pFDR < 0.05): one enriched in sphingolipids (hippocampal volume: ß = 0.14, 95% CI = [0.055,0.23]), one in several fatty acid pathways (whole-brain volume: ß = - 0.072, 95%CI = [- 0.12, - 0.026]), and another in diacylglycerols and phosphatidylethanolamines (whole-brain volume: ß = - 0.066, 95% CI = [- 0.11, - 0.020]). Twenty-two hub metabolites were associated (pFDR < 0.05) with an imaging outcome (whole-brain volume: 22; hippocampal volume: 4). Some nominal associations were reported for amyloid-β, and with an AD PRS in our genetic analysis, but none survived multiple testing correction. CONCLUSIONS Our findings highlight key metabolites, with functions in membrane integrity and cell signalling, that associated with structural brain measures in later life. Future research should focus on replicating this work and interrogating causality.
Collapse
Affiliation(s)
- Rebecca E Green
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.,UK National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley Trust, London, UK
| | - Jodie Lord
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK
| | - Marzia A Scelsi
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London (UCL), London, UK
| | - Jin Xu
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.,Institute of Pharmaceutical Science, King's College London, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, Floor 5, MRC LHA at UCL, 1 - 19 Torrington Place, London, WC1E 7HB, UK
| | - Sarah Naomi-James
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, Floor 5, MRC LHA at UCL, 1 - 19 Torrington Place, London, WC1E 7HB, UK.,Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Alex Handy
- University College London, Institute of Health Informatics, London, UK
| | - Lachlan Gilchrist
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK
| | - Dylan M Williams
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, Floor 5, MRC LHA at UCL, 1 - 19 Torrington Place, London, WC1E 7HB, UK.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas D Parker
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.,Department of Brain Sciences, Imperial College London, London, W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London, W12 0BZ, UK
| | - Christopher A Lane
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Ian B Malone
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Carole H Sudre
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC), University College London (UCL), London, UK.,MRC Unit for Lifelong Health & Ageing at UCL, University College London, Floor 5, MRC LHA at UCL, 1 - 19 Torrington Place, London, WC1E 7HB, UK.,Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - William Coath
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - David L Thomas
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.,Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah Keuss
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK
| | - Richard Dobson
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.,UK National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre, South London and Maudsley Trust, London, UK.,University College London, Institute of Health Informatics, London, UK.,Health Data Research UK London, University College London, London, UK.,NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust, London, UK
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, King's College London, London, UK.,Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute at University College London, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, 8-11 Queen Square, London, WC1N 3BG, UK.
| | - Marcus Richards
- MRC Unit for Lifelong Health & Ageing at UCL, University College London, Floor 5, MRC LHA at UCL, 1 - 19 Torrington Place, London, WC1E 7HB, UK.
| | - Petroula Proitsi
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AB, UK.
| | | |
Collapse
|
11
|
Basu S, Pawlowic M, Hsu FF, Thomas G, Zhang K. Ethanolaminephosphate cytidyltransferase is essential for survival, lipid homeostasis and stress tolerance in Leishmania major. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523530. [PMID: 36712124 PMCID: PMC9882048 DOI: 10.1101/2023.01.10.523530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glycerophospholipids including phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are vital components of biological membranes. Trypanosomatid parasites of the genus Leishmania can acquire PE and PC via de novo synthesis and the uptake/remodeling of host lipids. In this study, we investigated the ethanolaminephosphate cytidyltransferase (EPCT) in Leishmania major , which is the causative agent for cutaneous leishmaniasis. EPCT is a key enzyme in the ethanolamine branch of the Kennedy pathway which is responsible for the de novo synthesis of PE. Our results demonstrate that L. major EPCT is a cytosolic protein capable of catalyzing the formation of CDP-ethanolamine from ethanolamine-phosphate and cytidine triphosphate. Genetic manipulation experiments indicate that EPCT is essential in both the promastigote and amastigote stages of L. major as the chromosomal null mutants cannot survive without the episomal expression of EPCT. This differs from our previous findings on the choline branch of the Kennedy pathway (responsible for PC synthesis) which is required only in promastigotes but not amastigotes. While episomal EPCT expression does not affect promastigote proliferation under normal conditions, it leads to reduced production of ethanolamine plasmalogen or plasmenylethanolamine, the dominant PE subtype in Leishmania . In addition, parasites with epsiomal EPCT exhibit heightened sensitivity to acidic pH and starvation stress, and significant reduction in virulence. In summary, our investigation demonstrates that proper regulation of EPCT expression is crucial for PE synthesis, stress response, and survival of Leishmania parasites throughout their life cycle. AUTHOR SUMMARY In nature, Leishmania parasites alternate between fast replicating, extracellular promastigotes in sand fly gut and slow growing, intracellular amastigotes in macrophages. Previous studies suggest that promastigotes acquire most of their lipids via de novo synthesis whereas amastigotes rely on the uptake and remodeling of host lipids. Here we investigated the function of ethanolaminephosphate cytidyltransferase (EPCT) which catalyzes a key step in the de novo synthesis of phosphatidylethanolamine (PE) in Leishmania major . Results showed that EPCT is indispensable for both promastigotes and amastigotes, indicating that de novo PE synthesis is still needed at certain capacity for the intracellular form of Leishmania parasites. In addition, elevated EPCT expression alters overall PE synthesis and compromises parasite’s tolerance to adverse conditions and is deleterious to the growth of intracellular amastigotes. These findings provide new insight into how Leishmania acquire essential phospholipids and how disturbance of lipid metabolism can impact parasite fitness.
Collapse
Affiliation(s)
- Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mattie Pawlowic
- Wellcome Centre for Anti-Infectives Research (WCAIR), Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, 660S. Euclid Ave., Saint Louis, MO 63110, USA
| | - Geoff Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
12
|
St Germain M, Iraji R, Bakovic M. Phosphatidylethanolamine homeostasis under conditions of impaired CDP-ethanolamine pathway or phosphatidylserine decarboxylation. Front Nutr 2023; 9:1094273. [PMID: 36687696 PMCID: PMC9849821 DOI: 10.3389/fnut.2022.1094273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Phosphatidylethanolamine is the major inner-membrane lipid in the plasma and mitochondrial membranes. It is synthesized in the endoplasmic reticulum from ethanolamine and diacylglycerol (DAG) by the CDP-ethanolamine pathway and from phosphatidylserine by decarboxylation in the mitochondria. Recently, multiple genetic disorders that impact these pathways have been identified, including hereditary spastic paraplegia 81 and 82, Liberfarb syndrome, and a new type of childhood-onset neurodegeneration-CONATOC. Individuals with these diseases suffer from multisystem disorders mainly affecting neuronal function. This indicates the importance of maintaining proper phospholipid homeostasis when major biosynthetic pathways are impaired. This study summarizes the current knowledge of phosphatidylethanolamine metabolism in order to identify areas of future research that might lead to the development of treatment options.
Collapse
|
13
|
Jansakun C, Chunglok W, Altamura S, Muckenthaler M, Staffer S, Tuma-Kellner S, Merle U, Chamulitrat W. Myeloid- and hepatocyte-specific deletion of group VIA calcium-independent phospholipase A2 leads to dichotomous opposing phenotypes during MCD diet-induced NASH. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166590. [PMID: 36334837 DOI: 10.1016/j.bbadis.2022.166590] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Polymorphisms of phospholipase A2VIA (iPLA2β or PLA2G6) are associated with body weights and blood C-reactive protein. The role of iPLA2β/PLA2G6 in non-alcoholic steatohepatitis (NASH) is still elusive because female iPla2β-null mice showed attenuated hepatic steatosis but exacerbated hepatic fibrosis after feeding with methionine- and choline-deficient diet (MCDD). Herein, female mice with myeloid- (MPla2g6-/-) and hepatocyte- (LPla2g6-/-) specific PLA2G6 deletion were generated and phenotyped after MCDD feeding. Without any effects on hepatic steatosis, MCDD-fed MPla2g6-/- mice showed further exaggeration of liver inflammation and fibrosis as well as elevation of plasma TNFα, CCL2, and circulating monocytes. Bone-marrow-derived macrophages (BMDMs) from MPla2g6-/- mice displayed upregulation of PPARγ and CEBPα proteins, and elevated release of IL6 and CXCL1 under LPS stimulation. LPS-stimulated BMDMs from MCDD-fed MPla2g6-/- mice showed suppressed expression of M1 Tnfa and Il6, but marked upregulation of M2 Arg1, Chil3, IL10, and IL13 as well as chemokine receptors Ccr2 and Ccr5. This in vitro shift was associated with exaggeration of hepatic M1/M2 cytokines, chemokines/chemokine receptors, and fibrosis genes. Contrarily, MCDD-fed LPla2g6-/- mice showed a complete protection which was associated with upregulation of Ppara/PPARα and attenuated expression of Pparg/PPARγ, fatty-acid uptake, triglyceride synthesis, and de novo lipogenesis genes. Interestingly, LPla2g6-/- mice fed with chow or MCDD displayed an attenuation of blood monocytes and elevation of anti-inflammatory lipoxin A4 in plasma and liver. Thus, PLA2G6 inactivation specifically in myeloid cells and hepatocytes led to opposing phenotypes in female mice undergoing NASH. Hepatocyte-specific PLA2G6 inhibitors may be further developed for treatment of this disease.
Collapse
Affiliation(s)
- Chutima Jansakun
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Martina Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), German Centre for Cardiovascular Research, Partner Site, University of Heidelberg, Germany
| | - Simone Staffer
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Uta Merle
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Phan K, He Y, Bhatia S, Pickford R, McDonald G, Mazumder S, Timmins HC, Hodges JR, Piguet O, Dzamko N, Halliday GM, Kiernan MC, Kim WS. Multiple pathways of lipid dysregulation in amyotrophic lateral sclerosis. Brain Commun 2022; 5:fcac340. [PMID: 36632187 PMCID: PMC9825811 DOI: 10.1093/braincomms/fcac340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/02/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022] Open
Abstract
Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease characterized by the degeneration of motor neurons and loss of various muscular functions. Dyslipidaemia is prevalent in amyotrophic lateral sclerosis with aberrant changes mainly in cholesterol ester and triglyceride. Despite this, little is known about global lipid changes in amyotrophic lateral sclerosis or in relation to disease progression. The present study incorporated a longitudinal lipidomic analysis of amyotrophic lateral sclerosis serum with a comparison with healthy controls using advanced liquid chromatography-mass spectrometry. The results established that diglyceride, the precursor of triglyceride, was enriched the most, while ceramide was depleted the most in amyotrophic lateral sclerosis compared with controls, with the diglyceride species (18:1/18:1) correlating significantly to neurofilament light levels. The prenol lipid CoQ8 was also decreased in amyotrophic lateral sclerosis and correlated to neurofilament light levels. Most interestingly, the phospholipid phosphatidylethanolamine and its three derivatives decreased with disease progression, in contrast to changes with normal ageing. Unsaturated lipids that are prone to lipid peroxidation were elevated with disease progression with increases in the formation of toxic lipid products. Furthermore, in vitro studies revealed that phosphatidylethanolamine synthesis modulated TARDBP expression in SH-SY5Y neuronal cells. Finally, diglyceride, cholesterol ester and ceramide were identified as potential lipid biomarkers for amyotrophic lateral sclerosis diagnosis and monitoring disease progression. In summary, this study represents a longitudinal lipidomics analysis of amyotrophic lateral sclerosis serum and has provided new insights into multiple pathways of lipid dysregulation in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | | | | | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Gordon McDonald
- The University of Sydney, Sydney Informatics Hub, Sydney, NSW, Australia
| | - Srestha Mazumder
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Hannah C Timmins
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,The University of Sydney, School of Psychology, Sydney, NSW, Australia
| | - Nicolas Dzamko
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Matthew C Kiernan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Woojin Scott Kim
- Correspondence to: W. S. Kim, Associate Professor Brain and Mind Centre, The University of Sydney Camperdown NSW 2050, Australia E-mail:
| |
Collapse
|
15
|
Liu Y, Wu Y, Jiang M. The emerging roles of PHOSPHO1 and its regulated phospholipid homeostasis in metabolic disorders. Front Physiol 2022; 13:935195. [PMID: 35957983 PMCID: PMC9360546 DOI: 10.3389/fphys.2022.935195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence suggests that phosphoethanolamine/phosphocholine phosphatase 1 (PHOSPHO1), a specific phosphoethanolamine and phosphocholine phosphatase, is involved in energy metabolism. In this review, we describe the structure and regulation of PHOSPHO1, as well as current knowledge about the role of PHOSPHO1 and its related phospholipid metabolites in regulating energy metabolism. We also examine mechanistic evidence of PHOSPHO1- and phospholipid-mediated regulation of mitochondrial and lipid droplets functions in the context of metabolic homeostasis, which could be potentially targeted for treating metabolic disorders.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yingting Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Mengxi Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- *Correspondence: Mengxi Jiang,
| |
Collapse
|
16
|
Wu G, Li Z, Zheng Y, Zhang Y, Liu L, Gong D, Geng T. Supplementing cholamine to diet lowers laying rate by promoting liver fat deposition and altering intestinal microflora in laying hens. Poult Sci 2022; 101:102084. [PMID: 36055021 PMCID: PMC9449860 DOI: 10.1016/j.psj.2022.102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/25/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The effects of cholamine, a raw material for synthesis of some active lipids, are unknown in poultry. To address this, 180 52-wk-old Hyline laying hens were randomly divided into 3 groups (20 replicates per group with three hens per replicate). The control group and the treatment groups (treatment 1 and 2) were fed basal diet and the diet supplemented with 500 or 1,000 mg of cholamine per kilogram of the diet for 35 d, respectively. The data showed that supplementary cholamine significantly lowered egg production, daily feed intake, serum high-density lipoprotein cholesterol level, liver index, and the percentages of C15:0 and C20:0 in fatty acid composition of liver, significantly elevated hepatic triglyceride content, the ratio of villus height to crypt depth (P < 0.05), and the percentage of C18:2n−6 and the ratio of n−6 to n−3 polyunsaturated fatty acids in liver fat (P < 0.10). Moreover, supplementary cholamine altered the relative abundance of some intestinal bacteria with a decrease in the alpha biodiversity (P < 0.10). Additionally, transcriptome analysis on the livers of the treatment vs. the control groups identified 1,151 up- and 914 down-regulated differentially expressed genes (DEGs), and pathway analysis revealed that the suppressed Notch signaling pathway and the enhanced Oxidative phosphorylation pathway were enriched with DEGs. Particularly, fat absorption, transport and oxidative phosphorylation-related DEGs (e.g., FABP1, APOA4, and PCK1) were significantly induced, but fatty acid synthesis, and lipid package and secretion-related DEGs (e.g., FASN, SCD, and MTTP) were not. In conclusion, supplementary cholamine may lower egg production by promoting hepatic lipid deposition and reducing abundances of beneficial intestinal bacteria and microfloral biodiversity in laying hens.
Collapse
Affiliation(s)
- Guiping Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Zhenhui Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yun Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yihui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
17
|
Grapentine S, Singh RK, Basu P, Sivanesan S, Mattos G, Oresajo O, Cheema J, Demeke W, Dolinsky VW, Bakovic M. Pcyt2 deficiency causes age-dependant development of nonalcoholic steatohepatitis and insulin resistance that could be attenuated with phosphoethanolamine. Sci Rep 2022; 12:1048. [PMID: 35058529 PMCID: PMC8776951 DOI: 10.1038/s41598-022-05140-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
The mechanisms of NASH development in the context of age and genetics are not fully elucidated. This study investigates the age-dependent liver defects during NASH development in mice with heterozygous deletion of Pcyt2 (Pcyt2+/−), the rate limiting enzyme in phosphatidylethanolamine (PE) synthesis. Further, the therapeutic potential of Pcyt2 substrate, phosphoethanolamine (PEtn), is examined. Pcyt2+/− were investigated at 2 and 6–8 months (mo) of age and in addition, 6-mo old Pcyt2+/− with developed NASH were supplemented with PEtn for 8 weeks and glucose and fatty acid metabolism, insulin signaling, and inflammation were examined. Heterozygous ablation of Pcyt2 causes changes in liver metabolic regulators from young age, prior to the development of liver disease which does not occur until adulthood. Only older Pcyt2+/− experiences perturbed glucose and fatty acid metabolism. Older Pcyt2+/− liver develops NASH characterized by increased glucose production, accumulation of TAG and glycogen, and increased inflammation. Supplementation with PEtn reverses Pcyt2+/− steatosis, inflammation, and other aspects of NASH, showing that was directly caused by Pcyt2 deficiency. Pcyt2 deficiency is a novel mechanism of metabolic dysregulation due to reduced membrane ethanolamine phospholipid synthesis, and the metabolite PEtn offers therapeutic potential for NASH reversion.
Collapse
|
18
|
Yamada T, Kamiya M, Higuchi M. Metabolomic analysis of plasma and intramuscular adipose tissue between Wagyu and Holstein cattle. J Vet Med Sci 2021; 84:186-192. [PMID: 34897188 PMCID: PMC8920725 DOI: 10.1292/jvms.21-0562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this experiment, we studied the effects of breed differences in intramuscular
adipogenic capacity on the metabolomic profiles of plasma and intramuscular adipose tissue
between Wagyu (high intramuscular adipogenic capacity) and Holstein (low intramuscular
adipogenic capacity) using capillary electrophoresis time-of-flight mass spectrometry
(CE-TOFMS). We showed that the intramuscular fat content, intramuscular adipocyte size and
the expression of adipogenic transcription factors (C/EBPβ and C/EBPα) of Wagyu were
significantly higher than those of Holstein. Metabolites detected at significantly higher
levels in Wagyu plasma were related to the tricarboxylic acid cycle, lipid synthesis,
fatty acid metabolism, diabetes, and glucose homeostasis. In contrast, metabolites
detected at significantly higher levels in Holstein plasma were related to choline
metabolism, the ethanolamine pathway, glutathione homeostasis, nucleic acid metabolism,
and amino acid metabolism. Metabolites detected at significantly higher levels in Holstein
intramuscular adipose tissue were related to nucleic acid metabolism, amino acid
metabolism, amino sugar metabolism, beta oxidation, and the ethanolamine pathway. There
were no metabolites significantly higher levels in Wagyu intramuscular adipose tissue.
These results indicate candidate biomarkers of breed differences in intramuscular
adipogenic capacity between Wagyu and Holstein.
Collapse
Affiliation(s)
- Tomoya Yamada
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization
| | - Mituru Kamiya
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization
| | - Mikito Higuchi
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization
| |
Collapse
|
19
|
Biosynthetic Mechanisms and Biological Significance of Glycerol Phosphate-Containing Glycan in Mammals. Molecules 2021; 26:molecules26216675. [PMID: 34771084 PMCID: PMC8587909 DOI: 10.3390/molecules26216675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Bacteria contain glycerol phosphate (GroP)-containing glycans, which are important constituents of cell-surface glycopolymers such as the teichoic acids of Gram-positive bacterial cell walls. These glycopolymers comprising GroP play crucial roles in bacterial physiology and virulence. Recently, the first identification of a GroP-containing glycan in mammals was reported as a variant form of O-mannosyl glycan on α-dystroglycan (α-DG). However, the biological significance of such GroP modification remains largely unknown. In this review, we provide an overview of this new discovery of GroP-containing glycan in mammals and then outline the recent progress in elucidating the biosynthetic mechanisms of GroP-containing glycans on α-DG. In addition, we discuss the potential biological role of GroP modification along with the challenges and prospects for further research. The progress in this newly identified glycan modification will provide insights into the phylogenetic implications of glycan.
Collapse
|
20
|
Acoba MG, Senoo N, Claypool SM. Phospholipid ebb and flow makes mitochondria go. J Cell Biol 2021; 219:151918. [PMID: 32614384 PMCID: PMC7401802 DOI: 10.1083/jcb.202003131] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondria, so much more than just being energy factories, also have the capacity to synthesize macromolecules including phospholipids, particularly cardiolipin (CL) and phosphatidylethanolamine (PE). Phospholipids are vital constituents of mitochondrial membranes, impacting the plethora of functions performed by this organelle. Hence, the orchestrated movement of phospholipids to and from the mitochondrion is essential for cellular integrity. In this review, we capture recent advances in the field of mitochondrial phospholipid biosynthesis and trafficking, highlighting the significance of interorganellar communication, intramitochondrial contact sites, and lipid transfer proteins in maintaining membrane homeostasis. We then discuss the physiological functions of CL and PE, specifically how they associate with protein complexes in mitochondrial membranes to support bioenergetics and maintain mitochondrial architecture.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
21
|
Martínez BA, Hoyle RG, Yeudall S, Granade ME, Harris TE, Castle JD, Leitinger N, Bland ML. Innate immune signaling in Drosophila shifts anabolic lipid metabolism from triglyceride storage to phospholipid synthesis to support immune function. PLoS Genet 2020; 16:e1009192. [PMID: 33227003 PMCID: PMC7721134 DOI: 10.1371/journal.pgen.1009192] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 12/07/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
During infection, cellular resources are allocated toward the metabolically-demanding processes of synthesizing and secreting effector proteins that neutralize and kill invading pathogens. In Drosophila, these effectors are antimicrobial peptides (AMPs) that are produced in the fat body, an organ that also serves as a major lipid storage depot. Here we asked how activation of Toll signaling in the larval fat body perturbs lipid homeostasis to understand how cells meet the metabolic demands of the immune response. We find that genetic or physiological activation of fat body Toll signaling leads to a tissue-autonomous reduction in triglyceride storage that is paralleled by decreased transcript levels of the DGAT homolog midway, which carries out the final step of triglyceride synthesis. In contrast, Kennedy pathway enzymes that synthesize membrane phospholipids are induced. Mass spectrometry analysis revealed elevated levels of major phosphatidylcholine and phosphatidylethanolamine species in fat bodies with active Toll signaling. The ER stress mediator Xbp1 contributed to the Toll-dependent induction of Kennedy pathway enzymes, which was blunted by deleting AMP genes, thereby reducing secretory demand elicited by Toll activation. Consistent with ER stress induction, ER volume is expanded in fat body cells with active Toll signaling, as determined by transmission electron microscopy. A major functional consequence of reduced Kennedy pathway induction is an impaired immune response to bacterial infection. Our results establish that Toll signaling induces a shift in anabolic lipid metabolism to favor phospholipid synthesis and ER expansion that may serve the immediate demand for AMP synthesis and secretion but with the long-term consequence of insufficient nutrient storage.
Collapse
Affiliation(s)
- Brittany A. Martínez
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
| | - Rosalie G. Hoyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
| | - Scott Yeudall
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, United States of America
| | - Mitchell E. Granade
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
| | - Thurl E. Harris
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
| | - J. David Castle
- Department of Cell Biology, University of Virginia, Charlottesville, VA, United States of America
| | - Norbert Leitinger
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
| | - Michelle L. Bland
- Biomedical Sciences Graduate Program, University of Virginia, Charlottesville, VA, United States of America
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States of America
- * E-mail:
| |
Collapse
|
22
|
Rescue of Hepatic Phospholipid Remodeling Defectin iPLA2β-Null Mice Attenuates Obese but Not Non-Obese Fatty Liver. Biomolecules 2020; 10:biom10091332. [PMID: 32957701 PMCID: PMC7565968 DOI: 10.3390/biom10091332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/19/2022] Open
Abstract
Polymorphisms of group VIA calcium-independent phospholipase A2 (iPLA2β or PLA2G6) are positively associated with adiposity, blood lipids, and Type-2 diabetes. The ubiquitously expressed iPLA2β catalyzes the hydrolysis of phospholipids (PLs) to generate a fatty acid and a lysoPL. We studied the role of iPLA2β on PL metabolism in non-alcoholic fatty liver disease (NAFLD). By using global deletion iPLA2β-null mice, we investigated three NAFLD mouse models; genetic Ob/Ob and long-term high-fat-diet (HFD) feeding (representing obese NAFLD) as well as feeding with methionine- and choline-deficient (MCD) diet (representing non-obese NAFLD). A decrease of hepatic PLs containing monounsaturated- and polyunsaturated fatty acids and a decrease of the ratio between PLs and cholesterol esters were observed in all three NAFLD models. iPLA2β deficiency rescued these decreases in obese, but not in non-obese, NAFLD models. iPLA2β deficiency elicited protection against fatty liver and obesity in the order of Ob/Ob › HFD » MCD. Liver inflammation was not protected in HFD NAFLD, and that liver fibrosis was even exaggerated in non-obese MCD model. Thus, the rescue of hepatic PL remodeling defect observed in iPLA2β-null mice was critical for the protection against NAFLD and obesity. However, iPLA2β deletion in specific cell types such as macrophages may render liver inflammation and fibrosis, independent of steatosis protection.
Collapse
|
23
|
Osawa T, Shimamura T, Saito K, Hasegawa Y, Ishii N, Nishida M, Ando R, Kondo A, Anwar M, Tsuchida R, Hino S, Sakamoto A, Igarashi K, Saitoh K, Kato K, Endo K, Yamano S, Kanki Y, Matsumura Y, Minami T, Tanaka T, Anai M, Wada Y, Wanibuchi H, Hayashi M, Hamada A, Yoshida M, Yachida S, Nakao M, Sakai J, Aburatani H, Shibuya M, Hanada K, Miyano S, Soga T, Kodama T. Phosphoethanolamine Accumulation Protects Cancer Cells under Glutamine Starvation through Downregulation of PCYT2. Cell Rep 2020; 29:89-103.e7. [PMID: 31577958 DOI: 10.1016/j.celrep.2019.08.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/02/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Tolerance to severe tumor microenvironments, including hypoxia and nutrient starvation, is a common feature of aggressive cancer cells and can be targeted. However, metabolic alterations that support cancer cells upon nutrient starvation are not well understood. Here, by comprehensive metabolome analyses, we show that glutamine deprivation leads to phosphoethanolamine (PEtn) accumulation in cancer cells via the downregulation of PEtn cytidylyltransferase (PCYT2), a rate-limiting enzyme of phosphatidylethanolamine biosynthesis. PEtn accumulation correlated with tumor growth under nutrient starvation. PCYT2 suppression was partially mediated by downregulation of the transcription factor ELF3. Furthermore, PCYT2 overexpression reduced PEtn levels and tumor growth. In addition, PEtn accumulation and PCYT2 downregulation in human breast tumors correlated with poor prognosis. Thus, we show that glutamine deprivation leads to tumor progression by regulating PE biosynthesis via the ELF3-PCYT2 axis. Furthermore, manipulating glutamine-responsive genes could be a therapeutic approach to limit cancer progression.
Collapse
Affiliation(s)
- Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Teppei Shimamura
- Department of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Kyoko Saito
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoko Hasegawa
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Naoko Ishii
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Miyuki Nishida
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ritsuko Ando
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ayano Kondo
- Division of Genome Science, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Muyassar Anwar
- Division of Genome Science, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Rika Tsuchida
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Akihisa Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kaori Igarashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Kaori Saitoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Keiko Kato
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Keiko Endo
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Shotaro Yamano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan
| | - Toshiya Tanaka
- Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Motonobu Anai
- Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Mitsuhiro Hayashi
- Division of Clinical Pharmacology and Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masayuki Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo 153-8904, Japan; Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, 634-1 Toyazuka-machi, Isesaki, Gunma 372-8588, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan.
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo 153-8904, Japan.
| |
Collapse
|
24
|
Saande CJ, Bries AE, Pritchard SK, Nass CA, Reed CH, Rowling MJ, Schalinske KL. Whole Egg Consumption Decreases Cumulative Weight Gain in Diet-Induced Obese Rats. J Nutr 2020; 150:1818-1823. [PMID: 32359139 DOI: 10.1093/jn/nxaa114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/10/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Whole egg (WE) consumption has been demonstrated to attenuate body weight (BW) gain and adiposity in genetic animal models of type 2 diabetes (T2D). This finding was accompanied by increased food consumption. OBJECTIVES This study aimed to examine the effects of long-term WE intake on BW gain, fat distribution, and food intake in a rat model of diet-induced obesity (DIO). METHODS Male Sprague Dawley rats (n = 24) were obtained at 5 wk of age and were randomly weight-matched across 1 of 4 dietary intervention groups (6 rats per group): a casein-based diet (CAS), a high-fat high-sucrose CAS diet (HFHS CAS), a whole egg-based diet (EGG), or a high-fat high-sucrose EGG diet (HFHS EGG). All diets provided 20% (w/w) protein and were provided for 33 wk. HFHS diets provided ∼61% of kilocalories from fat and 10% from sucrose. Daily weight gain and food intake were recorded, biochemical parameters were measured via ELISA, and epididymal fat pad weights were recorded at the end of the study. RESULTS At 33 wk, cumulative BW gain in DIO rats fed HFHS EGG resulted in 23% lower weight gain compared with DIO rats fed HFHS CAS (P < 0.0001), but no significant differences in BW gain were observed between the HFHS EGG group and the control EGG and CAS groups (P = 0.71 and P = 0.61, respectively). Relative food intake (grams per kilogram BW) was 23% lower (P < 0.0001) in rats fed HFHS CAS compared with CAS, whereas there was no difference in food intake within the EGG dietary groups. DIO rats fed HFHS EGG exhibited a 22% decrease in epididymal fat weight compared with their counterparts fed the HFHS CAS. CONCLUSIONS Our data demonstrate that consumption of a WE-based diet reduced BW gain and visceral fat in the DIO rat, similar to our previous findings in a genetic rat model with T2D.
Collapse
Affiliation(s)
- Cassondra J Saande
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA.,USDA National Needs Fellowship
| | - Amanda E Bries
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Samantha K Pritchard
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Caitlyn A Nass
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Carter H Reed
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Matthew J Rowling
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| | - Kevin L Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
25
|
Liu Y, Chan DK, Thalamuthu A, Wen W, Jiang J, Paradise M, Lee T, Crawford J, Wai Kin Wong M, Hua Xu Y, Poljak A, Pickford R, Sachdev PS, Braidy N. Plasma lipidomic biomarker analysis reveals distinct lipid changes in vascular dementia. Comput Struct Biotechnol J 2020; 18:1613-1624. [PMID: 32670502 PMCID: PMC7334482 DOI: 10.1016/j.csbj.2020.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022] Open
Abstract
Vascular dementia (VaD) is a complex neurocognitive disorder secondary to a variety of cerebrovascular lesions. Numerous studies have shown that lipid metabolism is involved in the pathobiology of the disease. We examined the plasma lipid profiles in VaD, with the expectation of identifying reliable lipid biomarkers for VaD. 49 VaD patients and 48 healthy controls were recruited from Bankstown-Lidcombe Hospital in Sydney, Australia. Lipids were extracted by single phase 1-butanol/methanol, and untargeted analysis was performed by liquid chromatography coupled-mass spectrometry (LC–MS/MS). Univariate analysis of variance was used to examine the differences in lipid classes and individual lipids between VaD and control groups. In an independent sample of 161 subjects from the Older Australian Twins Study (OATS), elastic net penalization for the generalized linear model (Glmnet) and Random Forest were applied to the lipid levels to subcategorise the sample into vascular cognitive impairment and controls. Most lipids belonging to the classes of ceramides (Cer), cholesterol esters (ChE) and phospholipids were significantly lower in VaD plasma, while glycerides were elevated compared to controls. Levels of ChE, Cer and the two lipid classes together achieved the best accuracy in discriminating VaD from controls, with more than 80% accuracy. The probable VaD group in the OATS sample predicted by the lipid levels showed greater impairment in most cognitive domains, especially attention and processing speed and executive function from controls but did not differ in white matter hyperintensities and DTI measures. As a conclusion, plasma lipids levels, in particular Cer and ChE, are abnormal in VaD and may help discriminate them from healthy controls. Understanding the basis of these differences may provide insights into the pathobiology of VaD.
Collapse
Affiliation(s)
- Yue Liu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Daniel K.Y. Chan
- Department of Aged Care and Rehabilitation, Bankstown Hospital, Bankstown, NSW, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuroscience Research Australia, Randwick, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Matthew Paradise
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Teresa Lee
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - John Crawford
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Matthew Wai Kin Wong
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ying Hua Xu
- Department of Aged Care and Rehabilitation, Bankstown Hospital, Bankstown, NSW, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Russell Pickford
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Sydney, Australia
- Corresponding author: School of Medicine, Huzhou University, Wuxing district, Zhejiang, China
| |
Collapse
|
26
|
O’Dwyer C, Yaworski R, Katsumura S, Ghorbani P, Gobeil Odai K, Nunes JR, LeBlond ND, Sanjana S, Smith TT, Han S, Margison KD, Alain T, Morita M, Fullerton MD. Hepatic Choline Transport Is Inhibited During Fatty Acid-Induced Lipotoxicity and Obesity. Hepatol Commun 2020; 4:876-889. [PMID: 32490323 PMCID: PMC7262319 DOI: 10.1002/hep4.1516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 01/11/2023] Open
Abstract
Choline is an essential nutrient and a critical component of the membrane phospholipid phosphatidylcholine (PC), the neurotransmitter acetylcholine, while also contributing to the methylation pathway. In the liver specifically, PC is the major membrane constituent and can be synthesized by the cytidine diphosphate-choline or the phosphatidylethanolamine N-methyltransferase pathway. With the continuing global rise in the rates of obesity and nonalcoholic fatty liver disease, we sought to explore how excess fatty acids on primary hepatocytes and diet-induced obesity affect choline uptake and metabolism. Our results demonstrate that hepatocytes chronically treated with palmitate, but not oleate or a mixture, had decreased choline uptake, which was associated with lower choline incorporation into PC and lower expression of choline transport proteins. Interestingly, a reduction in the rate of degradation spared PC levels in response to palmitate when compared with control. The effects of palmitate treatment were independent of endoplasmic reticulum stress, which counterintuitively augmented choline transport and transporter expression. In a model of obesity-induced hepatic steatosis, male mice fed a 60% high-fat diet for 10 weeks had significantly diminished hepatic choline uptake compared with lean mice fed a control diet. Although the transcript and protein expression of various choline metabolic enzymes fluctuated slightly, we observed reduced protein expression of choline transporter-like 1 (CTL1) in the liver of mice fed a high-fat diet. Polysome profile analyses revealed that in livers of obese mice, the CTL1 transcript, despite being more abundant, was translated to a lesser extent compared with lean controls. Finally, human liver cells demonstrated a similar response to palmitate treatment. Conclusion: Our results suggest that the altered fatty acid milieu seen in obesity-induced fatty liver disease progression may adversely affect choline metabolism, potentially through CTL1, but that compensatory mechanisms work to maintain phospholipid homeostasis.
Collapse
Affiliation(s)
- Conor O’Dwyer
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Rebecca Yaworski
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Sakie Katsumura
- Department of Molecular MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTX
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Kaelan Gobeil Odai
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Julia R.C. Nunes
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Nicholas D. LeBlond
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Sabrin Sanjana
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Tyler T.K. Smith
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Shauna Han
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Kaitlyn D. Margison
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
- Children’s Hospital of Eastern Ontario Research InstituteOttawaONCanada
| | - Masahiro Morita
- Department of Molecular MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioTX
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTX
- Institute of Resource Development and AnalysisKumamoto UniversityKumamotoJapan
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaONCanada
- Centre for InfectionImmunity and Inflammation and Centre for Catalysis Research and InnovationUniversity of OttawaOttawaONCanada
| |
Collapse
|
27
|
Somerharju P, Virtanen JA, Hermansson M. Hypothesis: Chemical activity regulates and coordinates the processes maintaining glycerophospholipid homeostasis in mammalian cells. FASEB Bioadv 2020; 2:182-187. [PMID: 32161907 PMCID: PMC7059623 DOI: 10.1096/fba.2019-00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 07/19/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Mammalian cells maintain the complex glycerophospholipid (GPL) class compositions of their various membranes within close limits because this is essential to their well‐being or viability. Surprisingly, however, it is still not understood how those compositions are maintained except that GPL synthesis and degradation are closely coordinated. Here, we hypothesize that abrupt changes in the chemical activity of the individual GPL classes coordinate synthesis and degradation as well other the homeostatic processes. We have previously proposed that only a limited number of “allowed” or “optimal” GPL class compositions exist in cellular membranes because those compositions are energetically more favorable than others, that is, they represent local free energy minima (Somerharju et al 2009, Biochim. Biophys. Acta 1788, 12‐23). This model, however, could not satisfactorily explain how the “optimal” compositions are sensed by the key homeostatic enzymes, that is, rate‐limiting synthetizing enzymes and homeostatic phospholipases. We now hypothesize that when the mole fraction of a GPL class exceeds an optimal value, its chemical activity abruptly increases which (a) increases its propensity to efflux from the membrane thus making it susceptible for hydrolysis by homeostatic phospholipases; (b) increases its potency to inhibit its own biosynthesis via a feedback mechanism; (c) enhances its conversion to another glycerophospholipid class via a novel process termed “head group remodeling” or (d) enhances its translocation to other subcellular membranes. In summary, abrupt change in the chemical activity of the individual GPL classes is proposed to regulate and coordinate those four processes maintaining GPL class homeostasis in mammalian cells.
Collapse
Affiliation(s)
| | - Jorma A Virtanen
- Medicum Faculty of Medicine University of Helsinki Helsinki Finland
| | | |
Collapse
|
28
|
Gobeil Odai K, O’Dwyer C, Steenbergen R, Shaw TA, Renner TM, Ghorbani P, Rezaaifar M, Han S, Langlois MA, Crawley AM, Russell RS, Pezacki JP, Tyrrell DL, Fullerton MD. In Vitro Hepatitis C Virus Infection and Hepatic Choline Metabolism. Viruses 2020; 12:v12010108. [PMID: 31963173 PMCID: PMC7019665 DOI: 10.3390/v12010108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Choline is an essential nutrient required for normal neuronal and muscular development, as well as homeostatic regulation of hepatic metabolism. In the liver, choline is incorporated into the main eukaryotic phospholipid, phosphatidylcholine (PC), and can enter one-carbon metabolism via mitochondrial oxidation. Hepatitis C virus (HCV) is a hepatotropic positive-strand RNA virus that similar to other positive-strand RNA viruses and can impact phospholipid metabolism. In the current study we sought to interrogate if HCV modulates markers of choline metabolism following in vitro infection, while subsequently assessing if the inhibition of choline uptake and metabolism upon concurrent HCV infection alters viral replication and infectivity. Additionally, we assessed whether these parameters were consistent between cells cultured in fetal bovine serum (FBS) or human serum (HS), conditions known to differentially affect in vitro HCV infection. We observed that choline transport in FBS- and HS-cultured Huh7.5 cells is facilitated by the intermediate affinity transporter, choline transporter-like family (CTL). HCV infection in FBS, but not HS-cultured cells diminished CTL1 transcript and protein expression at 24 h post-infection, which was associated with lower choline uptake and lower incorporation of choline into PC. No changes in other transporters were observed and at 96 h post-infection, all differences were normalized. Reciprocally, limiting the availability of choline for PC synthesis by use of a choline uptake inhibitor resulted in increased HCV replication at this early stage (24 h post-infection) in both FBS- and HS-cultured cells. Finally, in chronic infection (96 h post-infection), inhibiting choline uptake and metabolism significantly impaired the production of infectious virions. These results suggest that in addition to a known role of choline kinase, the transport of choline, potentially via CTL1, might also represent an important and regulated process during HCV infection.
Collapse
Affiliation(s)
- Kaelan Gobeil Odai
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (K.G.O.); (C.O.); (T.M.R.); (P.G.); (M.R.); (S.H.); (M.-A.L.); (A.M.C.); (J.P.P.)
- University of Ottawa Centre for Infection, Immunity and Inflammation and Centre for Catalysis Research and Innovation, Ottawa, ON K1H 8M5, Canada
| | - Conor O’Dwyer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (K.G.O.); (C.O.); (T.M.R.); (P.G.); (M.R.); (S.H.); (M.-A.L.); (A.M.C.); (J.P.P.)
- University of Ottawa Centre for Infection, Immunity and Inflammation and Centre for Catalysis Research and Innovation, Ottawa, ON K1H 8M5, Canada
| | - Rineke Steenbergen
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.S.); (D.L.T.)
| | - Tyler A. Shaw
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Tyler M. Renner
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (K.G.O.); (C.O.); (T.M.R.); (P.G.); (M.R.); (S.H.); (M.-A.L.); (A.M.C.); (J.P.P.)
- University of Ottawa Centre for Infection, Immunity and Inflammation and Centre for Catalysis Research and Innovation, Ottawa, ON K1H 8M5, Canada
| | - Peyman Ghorbani
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (K.G.O.); (C.O.); (T.M.R.); (P.G.); (M.R.); (S.H.); (M.-A.L.); (A.M.C.); (J.P.P.)
- University of Ottawa Centre for Infection, Immunity and Inflammation and Centre for Catalysis Research and Innovation, Ottawa, ON K1H 8M5, Canada
| | - Mojgan Rezaaifar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (K.G.O.); (C.O.); (T.M.R.); (P.G.); (M.R.); (S.H.); (M.-A.L.); (A.M.C.); (J.P.P.)
- University of Ottawa Centre for Infection, Immunity and Inflammation and Centre for Catalysis Research and Innovation, Ottawa, ON K1H 8M5, Canada
| | - Shauna Han
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (K.G.O.); (C.O.); (T.M.R.); (P.G.); (M.R.); (S.H.); (M.-A.L.); (A.M.C.); (J.P.P.)
- University of Ottawa Centre for Infection, Immunity and Inflammation and Centre for Catalysis Research and Innovation, Ottawa, ON K1H 8M5, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (K.G.O.); (C.O.); (T.M.R.); (P.G.); (M.R.); (S.H.); (M.-A.L.); (A.M.C.); (J.P.P.)
- University of Ottawa Centre for Infection, Immunity and Inflammation and Centre for Catalysis Research and Innovation, Ottawa, ON K1H 8M5, Canada
| | - Angela M. Crawley
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (K.G.O.); (C.O.); (T.M.R.); (P.G.); (M.R.); (S.H.); (M.-A.L.); (A.M.C.); (J.P.P.)
- University of Ottawa Centre for Infection, Immunity and Inflammation and Centre for Catalysis Research and Innovation, Ottawa, ON K1H 8M5, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Medicine, Division of Infectious Diseases, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Department of Biology, Faculty of Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Rodney S. Russell
- Immunology and Infectious Diseases, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada;
| | - John P. Pezacki
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (K.G.O.); (C.O.); (T.M.R.); (P.G.); (M.R.); (S.H.); (M.-A.L.); (A.M.C.); (J.P.P.)
- University of Ottawa Centre for Infection, Immunity and Inflammation and Centre for Catalysis Research and Innovation, Ottawa, ON K1H 8M5, Canada
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - D. Lorne Tyrrell
- Department of Medical Microbiology and Immunology and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.S.); (D.L.T.)
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (K.G.O.); (C.O.); (T.M.R.); (P.G.); (M.R.); (S.H.); (M.-A.L.); (A.M.C.); (J.P.P.)
- University of Ottawa Centre for Infection, Immunity and Inflammation and Centre for Catalysis Research and Innovation, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +(1)-613-562-5800 (ext. 8310)
| |
Collapse
|
29
|
Gaskell H, Ge X, Desert R, Das S, Han H, Lantvit D, Guzman G, Nieto N. Ablation of Hmgb1 in Intestinal Epithelial Cells Causes Intestinal Lipid Accumulation and Reduces NASH in Mice. Hepatol Commun 2019; 4:92-108. [PMID: 31909358 PMCID: PMC6939545 DOI: 10.1002/hep4.1448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a metabolic disorder in which poor nutrition and the gut-to-liver interaction play a major role. We previously established that hepatic high mobility group box-1 (HMGB1) is involved in chronic liver disease. HMGB1 increases in patients with NASH and it is expressed in intestinal epithelial cells (IEC); yet, the role of intestinal HMGB1 in the pathogenesis of NASH has not been investigated. Thus, we hypothesized that IEC-derived HMGB1 could play a role in NASH due to local effects in the intestine that govern hepatic steatosis. Control littermates and Hmgb1 ΔIEC mice were fed for 1 or 24 weeks a control diet or a high fat, high cholesterol (CHO) and fructose-enriched diet (HFCFD). Hepatic and intestinal injury were analyzed. Hmgb1 ΔIEC mice were protected from HFCFD-induced NASH after 1 or 24 weeks of feeding; however, they showed extensive atypical lipid droplet accumulation and increased concentrations of triglycerides (TG) and CHO in jejunal IEC together with lower TG and other lipid classes in serum. Olive oil or CHO gavage resulted in decreased serum TG and CHO in Hmgb1 ΔIEC mice, respectively, indicating delayed and/or reduced chylomicron (CM) efflux. There was significant up-regulation of scavenger receptor class B type 1 (SR-B1) and down-regulation of apolipoprotein B48 (ApoB48) proteins, suggesting decreased lipid packaging and/or CM formation that resulted in lesser hepatosteatosis. Conclusion: Ablation of Hmgb1 in IEC causes up-regulation of SR-B1 and down-regulation of ApoB48, leads to lipid accumulation in jejunal IEC, decreases CM packaging and/or release, reduces serum TG, and lessens liver steatosis, therefore protecting Hmgb1 ΔIEC mice from HFCFD-induced NASH.
Collapse
Affiliation(s)
- Harriet Gaskell
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Xiaodong Ge
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Romain Desert
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Sukanta Das
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Hui Han
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Daniel Lantvit
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Grace Guzman
- Department of Pathology University of Illinois at Chicago Chicago IL
| | - Natalia Nieto
- Department of Pathology University of Illinois at Chicago Chicago IL.,Department of Medicine Division of Gastroenterology and Hepatology University of Illinois at Chicago Chicago IL
| |
Collapse
|
30
|
Lee J, Ridgway ND. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158438. [PMID: 30959116 DOI: 10.1016/j.bbalip.2019.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023]
Abstract
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP-ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.
Collapse
Affiliation(s)
- Jonghwa Lee
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
31
|
Wang X, Son M, Meram C, Wu J. Mechanism and Potential of Egg Consumption and Egg Bioactive Components on Type-2 Diabetes. Nutrients 2019; 11:nu11020357. [PMID: 30744071 PMCID: PMC6413102 DOI: 10.3390/nu11020357] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Type-2 diabetes (T2D) is one of the major global health challenges and a substantial economic burden. Egg and egg-derived components have been indicated to possess antioxidant, anti-inflammatory, anti-hypertensive, immunomodulatory, and anti-cancer activities. However, the scientific evidence about the benefits of egg on T2D is debatable. The relationship between egg consumption and the risk of T2D from observational epidemiological studies is not consistent. Interventional clinical studies, however, provide promising evidence that egg consumption ameliorates the risk of T2D. Current research progress also indicates that some egg components and egg-derived peptides might be beneficial in the context of T2D, in terms of insulin secretion and sensitivity, oxidative stress, and inflammation, suggesting possible application on T2D management. The current review summarizes recent clinical investigations related to the influence of egg consumption on T2D risk and in vivo and in vitro studies on the effect and mechanism of egg components and egg-derived peptides on T2D.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Myoungjin Son
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Chalamaiah Meram
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada.
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
32
|
Otto AC, Gan-Schreier H, Zhu X, Tuma-Kellner S, Staffer S, Ganzha A, Liebisch G, Chamulitrat W. Group VIA phospholipase A2 deficiency in mice chronically fed with high-fat-diet attenuates hepatic steatosis by correcting a defect of phospholipid remodeling. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:662-676. [PMID: 30735855 DOI: 10.1016/j.bbalip.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Abstract
A defect of hepatic remodeling of phospholipids (PL) is seen in non-alcoholic fatty liver disease and steatohepatitis (NASH) indicating pivotal role of PL metabolism in this disease. The deletion of group VIA calcium-independent phospholipase A2 (iPla2β) protects ob/ob mice from hepatic steatosis (BBAlip 1861, 2016, 440-461), however its role in high-fat diet (HFD)-induced NASH is still elusive. Here, wild-type and iPla2β-null mice were subjected to chronic feeding with HFD for 6 months. We showed that protection was observed in iPla2β-null mice with an attenuation of diet-induced body and liver-weight gains, liver enzymes, serum free fatty acids as well as hepatic TG and steatosis scores. iPla2β deficiency under HFD attenuated the levels of 1-stearoyl lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and lysophosphatidylinositol (LPI) as well as elevation of hepatic arachidonate, arachidonate-containing cholesterol esters and prostaglandin E2. More importantly, this deficiency rescued a defect in PL remodeling and attenuated the ratio of saturated and unsaturated PL. The protection by iPla2β deficiency was not observed during short-term HFD feeding of 3 or 5 weeks which showed no PL remodeling defect. In addition to PC/PE, this deficiency reversed the suppression of PC/PI and PE/PI among monounsaturated PL. However, this deficiency did not modulate hepatic PL contents and PL ratios in ER fractions, ER stress, fibrosis, and inflammation markers. Hence, iPla2β inactivation protected mice against hepatic steatosis and obesity during chronic dietary NASH by correcting PL remodeling defect and PI composition relative to PC and PE.
Collapse
Affiliation(s)
- Ann-Christin Otto
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Xingya Zhu
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Alexandra Ganzha
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
33
|
Mansur AP, Mansur HS, Carvalho SM, Lobato ZI, Leite MDF, Mansur LL. Fluorescent ZnS Quantum Dots-Phosphoethanolamine Nanoconjugates for Bioimaging Live Cells in Cancer Research. ACS OMEGA 2018; 3:15679-15691. [PMID: 30556011 PMCID: PMC6288785 DOI: 10.1021/acsomega.8b02098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/05/2018] [Indexed: 05/02/2023]
Abstract
Many human diseases, including metabolic, immune, and central nervous system disorders, as well as several types of cancers, are the consequence of an important alteration in lipid-related metabolic biomolecules. Although recognized that one of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism, the multiple complex signaling pathways are poorly understood yet. Thus, in this research, novel nanoconjugates made of ZnS quantum dots (QDs) were directly synthesized in aqueous media using phosphoethanolamine (PEA) as the capping ligand, which is an important biomolecule naturally present in cells for de novo biosynthesis of fatty acids and phospholipids involved in the cell structure (e.g., membrane), differentiation, and cancer growth. These QD-PEA bio-nanoconjugates were characterized by spectroscopical and morphological techniques. The results demonstrated that fluorescent ZnS nanocrystalline QDs were produced with uniform spherical morphology and estimated sizes of 3.3 ± 0.6 nm. These nanoconjugates indicated core-shell colloidal nanostructures (ZnS QD-PEA) with the hydrodynamic diameter (H D) of 26.0 ± 3.5 nm and ζ-potential centered at -30.0 ± 4.5 mV. The cell viability response using mitochondrial activity assay in vitroconfirmed no cytotoxicity at several concentrations of PEA (biomolecule) and the ZnS-PEA nanoconjugates. Moreover, these nanoconjugates effectively behaved as fluorescent nanomarkers for tracking the endocytic pathways of cancer cells using confocal laser scanning microscopy bioimaging. Hence, these results proved that biofunctionalized ZnS-PEA nanoprobes offer prospective tools for cellular bioimaging with encouraging forecast for future applications as active fluorescent biomarker conjugates in metabolic-related cancer research.
Collapse
Affiliation(s)
- Alexandra
A. P. Mansur
- Center
of Nanoscience, Nanotechnology and Innovation-CeNanoI, Department
of Preventive Veterinary Medicine, Veterinary School,
and Department of Physiology
and Biophysics, ICB, Federal University
of Minas Gerais-UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/MG, Brazil
| | - Herman S. Mansur
- Center
of Nanoscience, Nanotechnology and Innovation-CeNanoI, Department
of Preventive Veterinary Medicine, Veterinary School,
and Department of Physiology
and Biophysics, ICB, Federal University
of Minas Gerais-UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/MG, Brazil
- E-mail: . Phone/Fax: +55-31-34091843 (H.S.M.)
| | - Sandhra M. Carvalho
- Center
of Nanoscience, Nanotechnology and Innovation-CeNanoI, Department
of Preventive Veterinary Medicine, Veterinary School,
and Department of Physiology
and Biophysics, ICB, Federal University
of Minas Gerais-UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/MG, Brazil
| | - Zélia I.
P. Lobato
- Center
of Nanoscience, Nanotechnology and Innovation-CeNanoI, Department
of Preventive Veterinary Medicine, Veterinary School,
and Department of Physiology
and Biophysics, ICB, Federal University
of Minas Gerais-UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/MG, Brazil
| | - Maria de Fátima Leite
- Center
of Nanoscience, Nanotechnology and Innovation-CeNanoI, Department
of Preventive Veterinary Medicine, Veterinary School,
and Department of Physiology
and Biophysics, ICB, Federal University
of Minas Gerais-UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/MG, Brazil
| | - Lorena L. Mansur
- Center
of Nanoscience, Nanotechnology and Innovation-CeNanoI, Department
of Preventive Veterinary Medicine, Veterinary School,
and Department of Physiology
and Biophysics, ICB, Federal University
of Minas Gerais-UFMG, Av. Antônio Carlos, 6627 Belo Horizonte/MG, Brazil
| |
Collapse
|
34
|
Zia Y, Al Rajabi A, Mi S, Ju T, Leonard KA, Nelson R, Thiesen A, Willing BP, Field CJ, Curtis JM, van der Veen JN, Jacobs RL. Hepatic Expression of PEMT, but Not Dietary Choline Supplementation, Reverses the Protection against Atherosclerosis in Pemt-/-/Ldlr-/- Mice. J Nutr 2018; 148:1513-1520. [PMID: 30281112 DOI: 10.1093/jn/nxy165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/03/2018] [Indexed: 01/11/2023] Open
Abstract
Background Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine to phosphatidylcholine. Pemt-/-/low density lipoprotein receptor (Ldlr)-/- mice have significantly reduced plasma lipids and are protected against atherosclerosis. Recent studies have shown that choline can be metabolized by the gut flora into trimethylamine-N-oxide (TMAO), which is an emerging risk factor for atherosclerosis. Objective The objective of this study was to determine whether ectopic hepatic PEMT expression or choline supplementation would promote atherosclerosis in Pemt-/-/Ldlr-/- mice. Methods Male 8- to 10-wk-old Pemt+/+/Ldlr-/- (SKO) and Pemt-/-/Ldlr-/- (DKO) mice were injected with an adeno-associated virus (AAV) expressing green fluorescent protein (GFP) or human PEMT and fed a Western diet (40% of calories from fat, 0.5% cholesterol) for 8 wk. In a separate experiment, 8- to 10-wk-old SKO and half of the DKO male mice were fed a Western diet with normal (3 g/kg) choline for 12 wk. The remaining DKO mice [choline-supplemented (CS) DKO] were fed a CS Western diet (10 g choline/kg). Plasma lipid concentrations, choline metabolites, and aortic atherosclerosis were measured. Results Plasma cholesterol, plasma TMAO, and aortic atherosclerosis were reduced by 60%, 40%, and 80%, respectively, in DKO mice compared with SKO mice. AAV-PEMT administration increased plasma cholesterol and TMAO by 30% and 40%, respectively, in DKO mice compared with AAV-GFP-treated DKO mice. Furthermore, AAV-PEMT-injected DKO mice developed atherosclerotic lesions similar to SKO mice. In the second study, there was no difference in atherosclerosis or plasma cholesterol between DKO and CS-DKO mice. However, plasma TMAO concentrations were increased 2.5-fold in CS-DKO mice compared with DKO mice. Conclusions Reintroducing hepatic PEMT reversed the atheroprotective phenotype of DKO mice. Choline supplementation did not increase atherosclerosis or plasma cholesterol in DKO mice. Our data suggest that plasma TMAO does not induce atherosclerosis when plasma cholesterol is low. Furthermore, this is the first report to our knowledge that suggests that de novo choline synthesis alters TMAO status.
Collapse
Affiliation(s)
- Yumna Zia
- Departments of Agricultural, Food, and Nutritional Science
| | - Ala Al Rajabi
- Departments of Agricultural, Food, and Nutritional Science
| | - Si Mi
- Departments of Agricultural, Food, and Nutritional Science
| | - Tingting Ju
- Departments of Agricultural, Food, and Nutritional Science
| | | | | | - Aducio Thiesen
- Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | - René L Jacobs
- Departments of Agricultural, Food, and Nutritional Science.,Biochemistry
| |
Collapse
|
35
|
Sivanesan S, Taylor A, Zhang J, Bakovic M. Betaine and Choline Improve Lipid Homeostasis in Obesity by Participation in Mitochondrial Oxidative Demethylation. Front Nutr 2018; 5:61. [PMID: 30042948 PMCID: PMC6048254 DOI: 10.3389/fnut.2018.00061] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023] Open
Abstract
We investigated the metabolic effects of betaine (Bet) supplementation on CTP:phosphoethanolamine cytidylyltransferase/Pcyt2 heterozygous mice (HET). HET received either no treatment or were allowed access to 1% Bet supplemented water for 8 weeks. As we previously showed with choline (Cho), Bet improved hypertriglyceridemia, and hepatic steatosis in HET. The protection from obesity associated with reduced hepatic steatosis and increased lipid breakdown in adipocytes was attributed to increased energy requirements for metabolism and elimination of supplemented Bet and Cho. 1H-NMR-based profiling revealed metabolic changes caused by Bet and Cho supplementation. Cho increased the citric acid cycle intermediate succinic acid while reducing isoleucine, valine, threonine, and lysine. Bet increased α-ketoglutaric acid and did not stimulate catabolism of amino acids. Increased histidine and alanine are specific biomarkers for Bet treatment. Cho and Bet caused glycerol accumulation and reduced sarcosine, taurine, acetate, and β-hydroxybutyrate levels. These data provide new insights on how Cho and Bet supplementation can aid in treatment of obesity related disorders due to their positive effects on lipolysis, the citric acid cycle, and mitochondrial oxidative demethylation.
Collapse
Affiliation(s)
- Sugashan Sivanesan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development, National Research Council Canada, Halifax, NS, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
36
|
Snider SA, Margison KD, Ghorbani P, LeBlond ND, O'Dwyer C, Nunes JRC, Nguyen T, Xu H, Bennett SAL, Fullerton MD. Choline transport links macrophage phospholipid metabolism and inflammation. J Biol Chem 2018; 293:11600-11611. [PMID: 29880645 DOI: 10.1074/jbc.ra118.003180] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Choline is an essential nutrient that is required for synthesis of the main eukaryote phospholipid, phosphatidylcholine. Macrophages are innate immune cells that survey and respond to danger and damage signals. Although it is well-known that energy metabolism can dictate macrophage function, little is known as to the importance of choline homeostasis in macrophage biology. We hypothesized that the uptake and metabolism of choline are important for macrophage inflammation. Polarization of primary bone marrow macrophages with lipopolysaccharide (LPS) resulted in an increased rate of choline uptake and higher levels of PC synthesis. This was attributed to a substantial increase in the transcript and protein expression of the choline transporter-like protein-1 (CTL1) in polarized cells. We next sought to determine the importance of choline uptake and CTL1 for macrophage immune responsiveness. Chronic pharmacological or CTL1 antibody-mediated inhibition of choline uptake resulted in altered cytokine secretion in response to LPS, which was associated with increased levels of diacylglycerol and activation of protein kinase C. These experiments establish a previously unappreciated link between choline phospholipid metabolism and macrophage immune responsiveness, highlighting a critical and regulatory role for macrophage choline uptake via the CTL1 transporter.
Collapse
Affiliation(s)
- Shayne A Snider
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kaitlyn D Margison
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Peyman Ghorbani
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Nicholas D LeBlond
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Conor O'Dwyer
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Julia R C Nunes
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Thao Nguyen
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; the Ottawa Institute of Systems Biology and University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hongbin Xu
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; the Ottawa Institute of Systems Biology and University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Steffany A L Bennett
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; the Ottawa Institute of Systems Biology and University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Morgan D Fullerton
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
37
|
Vance JE. Historical perspective: phosphatidylserine and phosphatidylethanolamine from the 1800s to the present. J Lipid Res 2018; 59:923-944. [PMID: 29661786 DOI: 10.1194/jlr.r084004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
This article provides a historical account of the discovery, chemistry, and biochemistry of two ubiquitous phosphoglycerolipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), including the ether lipids. In addition, the article describes the biosynthetic pathways for these phospholipids and how these pathways were elucidated. Several unique functions of PS and PE in mammalian cells in addition to their ability to define physical properties of membranes are discussed. For example, the translocation of PS from the inner to the outer leaflet of the plasma membrane of cells occurs during apoptosis and during some other specific physiological processes, and this translocation is responsible for profound life-or-death events. Moreover, mitochondrial function is severely impaired when the PE content of mitochondria is reduced below a threshold level. The discovery and implications of the existence of membrane contact sites between the endoplasmic reticulum and mitochondria and their relevance for PS and PE metabolism, as well as for mitochondrial function, are also discussed. Many of the recent advances in these fields are due to the use of isotope labeling for tracing biochemical pathways. In addition, techniques for disruption of specific genes in mice are now widely used and have provided major breakthroughs in understanding the roles and metabolism of PS and PE in vivo.
Collapse
Affiliation(s)
- Jean E Vance
- Department of Medicine and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
38
|
ten Klooster JP, Sotiriou A, Boeren S, Vaessen S, Vervoort J, Pieters R. Type 2 diabetes-related proteins derived from an in vitro model of inflamed fat tissue. Arch Biochem Biophys 2018. [DOI: 10.1016/j.abb.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
39
|
Ho N, Xu C, Thibault G. From the unfolded protein response to metabolic diseases - lipids under the spotlight. J Cell Sci 2018; 131:131/3/jcs199307. [PMID: 29439157 DOI: 10.1242/jcs.199307] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is classically viewed as a stress response pathway to maintain protein homeostasis at the endoplasmic reticulum (ER). However, it has recently emerged that the UPR can be directly activated by lipid perturbation, independently of misfolded proteins. Comprising primarily phospholipids, sphingolipids and sterols, individual membranes can contain hundreds of distinct lipids. Even with such complexity, lipid distribution in a cell is tightly regulated by mechanisms that remain incompletely understood. It is therefore unsurprising that lipid dysregulation can be a key factor in disease development. Recent advances in analysis of lipids and their regulators have revealed remarkable mechanisms and connections to other cellular pathways including the UPR. In this Review, we summarize the current understanding in UPR transducers functioning as lipid sensors and the interplay between lipid metabolism and ER homeostasis in the context of metabolic diseases. We attempt to provide a framework consisting of a few key principles to integrate the different lines of evidence and explain this rather complicated mechanism.
Collapse
Affiliation(s)
- Nurulain Ho
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Chengchao Xu
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142-1479, USA
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| |
Collapse
|
40
|
Singh RK, Lui E, Wright D, Taylor A, Bakovic M. Alcohol extract of North American ginseng (Panax quinquefolius) reduces fatty liver, dyslipidemia, and other complications of metabolic syndrome in a mouse model. Can J Physiol Pharmacol 2017; 95:1046-1057. [PMID: 28666094 DOI: 10.1139/cjpp-2016-0510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigated whether North American ginseng (Panax quinquefolius) could reduce development of the metabolic syndrome phenotype in a mouse model (ETKO) of the disease. Young ETKO mice have no disease but similar to humans start to develop the fatty liver, hypertriglyceridemia, obesity, and insulin resistance at 25-30 weeks of age, and the disease continues to progress with ageing. ETKO mice were orally given an ethanol extract of ginseng roots at 4 and 32 weeks of age. Treatments with ginseng eliminated the ETKO fatty liver, reduced hepatic and intestinal lipoprotein secretion, and reduced the level of circulating lipids. Improvements by ginseng treatments were manifested as a reduction in the expression of genes involved in the regulation of fatty acid and triglyceride (fat) synthesis and secretion by the lipoproteins on one hand, and the stimulation of fatty acid oxidation and triglyceride degradation by lipolysis on the other hand. These processes altogether improved glucose, fatty acid, and triglyceride metabolism, reduced liver fat load, and reversed the progression of metabolic syndrome. These data confirm that treatments with North American ginseng could alleviate metabolic syndrome through the maintenance of a better balance between glucose and fatty acid metabolism, lipoprotein secretion, and energy homeostasis in disease-prone states.
Collapse
Affiliation(s)
- Ratnesh K Singh
- a Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Edmund Lui
- b Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - David Wright
- a Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Adrian Taylor
- a Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marica Bakovic
- a Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
41
|
Kulyté A, Ehrlund A, Arner P, Dahlman I. Global transcriptome profiling identifies KLF15 and SLC25A10 as modifiers of adipocytes insulin sensitivity in obese women. PLoS One 2017; 12:e0178485. [PMID: 28570579 PMCID: PMC5453532 DOI: 10.1371/journal.pone.0178485] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/12/2017] [Indexed: 12/15/2022] Open
Abstract
Although the mechanisms linking obesity to insulin resistance (IR) and type 2 diabetes (T2D) are not entirely understood, it is likely that alterations of adipose tissue function are involved. The aim of this study was to identify new genes controlling insulin sensitivity in adipocytes from obese women with either insulin resistant (OIR) or sensitive (OIS) adipocytes. Insulin sensitivity was first determined by measuring lipogenesis in isolated adipocytes from abdominal subcutaneous white adipose tissue (WAT) in a large observational study. Lipogenesis was measured under conditions where glucose transport was the rate limiting step and reflects in vivo insulin sensitivity. We then performed microarray-based transcriptome profiling on subcutaneous WAT specimen from a subgroup of 9 lean, 21 OIS and 18 obese OIR women. We could identify 432 genes that were differentially expressed between the OIR and OIS group (FDR ≤5%). These genes are enriched in pathways related to glucose and amino acid metabolism, cellular respiration, and insulin signaling, and include genes such as SLC2A4, AKT2, as well as genes coding for enzymes in the mitochondria respiratory chain. Two IR-associated genes, KLF15 encoding a transcription factor and SLC25A10 encoding a dicarboxylate carrier, were selected for functional evaluation in adipocytes differentiated in vitro. Knockdown of KLF15 and SLC25A10 using siRNA inhibited insulin-stimulated lipogenesis in adipocytes. Transcriptome profiling of siRNA-treated cells suggested that KLF15 might control insulin sensitivity by influencing expression of PPARG, PXMP2, AQP7, LPL and genes in the mitochondrial respiratory chain. Knockdown of SLC25A10 had only modest impact on the transcriptome, suggesting that it might directly influence insulin sensitivity in adipocytes independently of transcription due to its important role in fatty acid synthesis. In summary, this study identifies novel genes associated with insulin sensitivity in adipocytes in women independently of obesity. KFL15 and SLC25A10 are inhibitors of insulin-stimulated lipogenesis under conditions when glucose transport is the rate limiting step.
Collapse
Affiliation(s)
- Agné Kulyté
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
| | - Anna Ehrlund
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Dahlman
- Lipid laboratory, Department of Medicine H7, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
42
|
Abstract
The heart utilizes large amounts of fatty acids as energy providing substrates. The physiological balance of lipid uptake and oxidation prevents accumulation of excess lipids. Several processes that affect cardiac function, including ischemia, obesity, diabetes mellitus, sepsis, and most forms of heart failure lead to altered fatty acid oxidation and often also to the accumulation of lipids. There is now mounting evidence associating certain species of these lipids with cardiac lipotoxicity and subsequent myocardial dysfunction. Experimental and clinical data are discussed and paths to reduction of toxic lipids as a means to improve cardiac function are suggested.
Collapse
Affiliation(s)
- P Christian Schulze
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.).
| | - Konstantinos Drosatos
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| | - Ira J Goldberg
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| |
Collapse
|
43
|
van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1558-1572. [PMID: 28411170 DOI: 10.1016/j.bbamem.2017.04.006] [Citation(s) in RCA: 940] [Impact Index Per Article: 134.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/27/2017] [Accepted: 04/09/2017] [Indexed: 12/11/2022]
Abstract
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in all mammalian cell membranes. In the 1950s, Eugene Kennedy and co-workers performed groundbreaking research that established the general outline of many of the pathways of phospholipid biosynthesis. In recent years, the importance of phospholipid metabolism in regulating lipid, lipoprotein and whole-body energy metabolism has been demonstrated in numerous dietary studies and knockout animal models. The purpose of this review is to highlight the unappreciated impact of phospholipid metabolism on health and disease. Abnormally high, and abnormally low, cellular PC/PE molar ratios in various tissues can influence energy metabolism and have been linked to disease progression. For example, inhibition of hepatic PC synthesis impairs very low density lipoprotein secretion and changes in hepatic phospholipid composition have been linked to fatty liver disease and impaired liver regeneration after surgery. The relative abundance of PC and PE regulates the size and dynamics of lipid droplets. In mitochondria, changes in the PC/PE molar ratio affect energy production. We highlight data showing that changes in the PC and/or PE content of various tissues are implicated in metabolic disorders such as atherosclerosis, insulin resistance and obesity. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Jelske N van der Veen
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - John P Kennelly
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Agricultural, Food and Nutritional Science, 4-002 Li Ka Shing Centre for Heath Research Innovations, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Sereana Wan
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Jean E Vance
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Dennis E Vance
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - René L Jacobs
- Group on the Molecular and Cell Biology of Lipids, Canada; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; Department of Agricultural, Food and Nutritional Science, 4-002 Li Ka Shing Centre for Heath Research Innovations, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
44
|
Taylor A, Schenkel LC, Yokich M, Bakovic M. Adaptations to excess choline in insulin resistant and Pcyt2 deficient skeletal muscle. Biochem Cell Biol 2016; 95:223-231. [PMID: 28068143 DOI: 10.1139/bcb-2016-0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It was hypothesized that choline supplementation in insulin resistant (IR) CTP:phosphoethanolamine cytidylyltransferase deficient (Pcyt2+/-) mice would ameliorate muscle function by remodeling glucose and fatty acid (FA) metabolism. Pcyt2+/- mice either received no treatment or were allowed access to 2 mg/mL choline in drinking water for 4 weeks. Skeletal muscle was harvested from choline treated and untreated mice. Lipid analysis and metabolic gene expression and signaling pathways were compared between untreated Pcyt2+/- mice, treated Pcyt2+/- mice, and Pcyt2+/+ mice. The major positive effect of choline supplementation on IR muscle was the reduction of glucose utilization for FA and triglyceride (TAG) synthesis and increased muscle glucose storage as glycogen. Choline reduced the expression of genes for FA and TAG formation (Scd1, Fas, Srebp1c, Dgat1/2), upregulated the genes for FA oxidation (Cpt1, Pparα, Pgc1α), and had minor effects on phospholipid and lipolysis genes. Pcyt2+/- muscle had reduced insulin signaling (IRS1), autophagy (LC3), and choline transport (CTL1) proteins that were restored by choline treatment. Additionally, choline activated AMPK and Akt while inhibiting mTORC1 phosphorylation. These data established that choline supplementation could restore muscle glucose metabolism by reducing lipogenesis and improving mitochondrial and intracellular signaling for protein and energy metabolism in insulin resistant Pcyt2 deficient mice.
Collapse
Affiliation(s)
- Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Laila Cigana Schenkel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Maiya Yokich
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.,Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
45
|
Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine Metabolism in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:29-88. [PMID: 26811286 DOI: 10.1016/bs.ircmb.2015.10.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in eukaryotic cells. The existence of four only partially redundant biochemical pathways that produce PE, highlights the importance of this essential phospholipid. The CDP-ethanolamine and phosphatidylserine decarboxylase pathways occur in different subcellular compartments and are the main sources of PE in cells. Mammalian development fails upon ablation of either pathway. Once made, PE has diverse cellular functions that include serving as a precursor for phosphatidylcholine and a substrate for important posttranslational modifications, influencing membrane topology, and promoting cell and organelle membrane fusion, oxidative phosphorylation, mitochondrial biogenesis, and autophagy. The importance of PE metabolism in mammalian health has recently emerged following its association with Alzheimer's disease, Parkinson's disease, nonalcoholic liver disease, and the virulence of certain pathogenic organisms.
Collapse
Affiliation(s)
- Elizabeth Calzada
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ouma Onguka
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
A Metabolic Signature of Mitochondrial Dysfunction Revealed through a Monogenic Form of Leigh Syndrome. Cell Rep 2015; 13:981-9. [PMID: 26565911 PMCID: PMC4644511 DOI: 10.1016/j.celrep.2015.09.054] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 07/13/2015] [Accepted: 09/18/2015] [Indexed: 11/20/2022] Open
Abstract
A decline in mitochondrial respiration represents the root cause of a large number of inborn errors of metabolism. It is also associated with common age-associated diseases and the aging process. To gain insight into the systemic, biochemical consequences of respiratory chain dysfunction, we performed a case-control, prospective metabolic profiling study in a genetically homogenous cohort of patients with Leigh syndrome French Canadian variant, a mitochondrial respiratory chain disease due to loss-of-function mutations in LRPPRC. We discovered 45 plasma and urinary analytes discriminating patients from controls, including classic markers of mitochondrial metabolic dysfunction (lactate and acylcarnitines), as well as unexpected markers of cardiometabolic risk (insulin and adiponectin), amino acid catabolism linked to NADH status (α-hydroxybutyrate), and NAD+ biosynthesis (kynurenine and 3-hydroxyanthranilic acid). Our study identifies systemic, metabolic pathway derangements that can lie downstream of primary mitochondrial lesions, with implications for understanding how the organelle contributes to rare and common diseases.
Collapse
|
47
|
Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 2015; 468:125-32. [PMID: 25742316 DOI: 10.1042/bj20150125] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metformin is the mainstay therapy for type 2 diabetes (T2D) and many patients also take salicylate-based drugs [i.e., aspirin (ASA)] for cardioprotection. Metformin and salicylate both increase AMP-activated protein kinase (AMPK) activity but by distinct mechanisms, with metformin altering cellular adenylate charge (increasing AMP) and salicylate interacting directly at the AMPK β1 drug-binding site. AMPK activation by both drugs results in phosphorylation of ACC (acetyl-CoA carboxylase; P-ACC) and inhibition of acetyl-CoA carboxylase (ACC), the rate limiting enzyme controlling fatty acid synthesis (lipogenesis). We find doses of metformin and salicylate used clinically synergistically activate AMPK in vitro and in vivo, resulting in reduced liver lipogenesis, lower liver lipid levels and improved insulin sensitivity in mice. Synergism occurs in cell-free assays and is specific for the AMPK β1 subunit. These effects are also observed in primary human hepatocytes and patients with dysglycaemia exhibit additional improvements in a marker of insulin resistance (proinsulin) when treated with ASA and metformin compared with either drug alone. These data indicate that metformin-salicylate combination therapy may be efficacious for the treatment of non-alcoholic fatty liver disease (NAFLD) and T2D.
Collapse
|
48
|
Schenkel LC, Sivanesan S, Zhang J, Wuyts B, Taylor A, Verbrugghe A, Bakovic M. Choline supplementation restores substrate balance and alleviates complications of Pcyt2 deficiency. J Nutr Biochem 2015; 26:1221-34. [PMID: 26242921 DOI: 10.1016/j.jnutbio.2015.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 05/24/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023]
Abstract
Choline plays a critical role in systemic lipid metabolism and hepatic function. Here we conducted a series of experiments to investigate the effect of choline supplementation on metabolically altered Pcyt2(+/-) mice. In Pcyt2(+/-) mice, the membrane phosphatidylethanolamine (PE) turnover is reduced and the formation of fatty acids (FA) and triglycerides (TAG) increased, resulting in hypertriglyceridemia, liver steatosis and obesity. One month of choline supplementation reduced the incorporation of FA into TAG and facilitated TAG degradation in Pcyt2(+/-) adipocytes, plasma and liver. Choline particularly stimulated adipocyte and liver TAG lipolysis by specific lipases (ATGL, LPL and HSL) and inhibited TAG formation by DGAT1 and DGAT2. Choline also activated the liver AMPK and mitochondrial FA oxidation gene PPARα and reduced the FA synthesis genes SREBP1, SCD1 and FAS. Liver (HPLC) and plasma (tandem mass spectroscopy and (1)H-NMR) metabolite profiling established that Pcyt2(+/-) mice have reduced membrane cholesterol/sphingomyelin ratio and the homocysteine/methionine cycle that were improved by choline supplementation. These data suggest that supplementary choline is beneficial for restoring FA and TAG homeostasis under conditions of obesity caused by impaired PE synthesis.
Collapse
Affiliation(s)
- Laila C Schenkel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Sugashan Sivanesan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Junzeng Zhang
- Aquatic and Crop Resource Development, National Research Council Canada, Halifax, NS, Canada B3H 3Z1
| | - Birgitte Wuyts
- Department of Clinical Chemistry, Laboratory of Metabolic Disorders, University Hospital Ghent, 9000 Ghent, Belgium
| | - Adrian Taylor
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Adronie Verbrugghe
- University of Guelph, Ontario Veterinary College, Dep. Clinical Studies, Guelph, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
49
|
Pereira TJ, Fonseca MA, Campbell KE, Moyce BL, Cole LK, Hatch GM, Doucette CA, Klein J, Aliani M, Dolinsky VW. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome. J Physiol 2015; 593:3181-97. [PMID: 25922055 DOI: 10.1113/jp270429] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/17/2015] [Indexed: 12/16/2022] Open
Abstract
Maternal obesity is associated with a high risk for gestational diabetes mellitus (GDM), which is a common complication of pregnancy. The influence of maternal obesity and GDM on the metabolic health of the offspring is poorly understood. We hypothesize that GDM associated with maternal obesity will cause obesity, insulin resistance and hepatic steatosis in the offspring. Female Sprague-Dawley rats were fed a high-fat (45%) and sucrose (HFS) diet to cause maternal obesity and GDM. Lean control pregnant rats received low-fat (LF; 10%) diets. To investigate the interaction between the prenatal environment and postnatal diets, rat offspring were assigned to LF or HFS diets for 12 weeks, and insulin sensitivity and hepatic steatosis were evaluated. Pregnant GDM dams exhibited excessive gestational weight gain, hyperinsulinaemia and hyperglycaemia. Offspring of GDM dams gained more weight than the offspring of lean dams due to excess adiposity. The offspring of GDM dams also developed hepatic steatosis and insulin resistance. The postnatal consumption of a LF diet did not protect offspring of GDM dams against these metabolic disorders. Analysis of the hepatic metabolome revealed increased diacylglycerol and reduced phosphatidylethanolamine in the offspring of GDM dams compared to offspring of lean dams. Consistent with altered lipid metabolism, the expression of CTP:phosphoethanolamine cytidylyltransferase, and peroxisomal proliferator activated receptor-α mRNA was reduced in the livers of GDM offspring. GDM exposure programs gene expression and hepatic metabolite levels and drives the development of hepatic steatosis and insulin resistance in young adult rat offspring.
Collapse
Affiliation(s)
- Troy J Pereira
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Mario A Fonseca
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Kristyn E Campbell
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Brittany L Moyce
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Laura K Cole
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Grant M Hatch
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| | - Christine A Doucette
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba.,Department of Physiology and Pathophysiology
| | | | - Michel Aliani
- Department of Human Nutrition, University of Manitoba, Winnipeg, MB, Canada
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics.,Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme.,Children's Hospital Research Institute of Manitoba
| |
Collapse
|
50
|
Male-Specific Cardiac Dysfunction in CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2)-Deficient Mice. Mol Cell Biol 2015; 35:2641-57. [PMID: 25986609 DOI: 10.1128/mcb.00380-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 12/15/2022] Open
Abstract
Phosphatidylethanolamine (PE) is the most abundant inner membrane phospholipid. PE synthesis from ethanolamine and diacylglycerol is regulated primarily by CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Pcyt2(+/-) mice have reduced PE synthesis and, as a consequence, perturbed glucose and fatty acid metabolism, which gradually leads to the development of hyperlipidemia, obesity, and insulin resistance. Glucose and fatty acid uptake and the corresponding transporters Glut4 and Cd36 are similarly impaired in male and female Pcyt2(+/-) hearts. These mice also have similarly reduced phosphatidylinositol 3-kinase (PI3K)/Akt1 signaling and increased reactive oxygen species (ROS) production in the heart. However, only Pcyt2(+/-) males develop hypertension and cardiac hypertrophy. Pcyt2(+/-) males have upregulated heart AceI expression, heart phospholipids enriched in arachidonic acid and other n-6 polyunsaturated fatty acids, and dramatically increased ROS production in the aorta. In contrast, Pcyt2(+/-) females have unmodified heart phospholipids but have reduced heart triglyceride levels and altered expression of the structural genes Acta (low) and Myh7 (high). These changes together protect Pcyt2(+/-) females from cardiac dysfunction under conditions of reduced glucose and fatty acid uptake and heart insulin resistance. Our data identify Pcyt2 and membrane PE biogenesis as important determinants of gender-specific differences in cardiac lipids and heart function.
Collapse
|