1
|
Lehtola T, Nummenmaa E, Nieminen R, Hämäläinen M, Vuolteenaho K, Moilanen E. The glucocorticoid dexamethasone alleviates allergic inflammation through a mitogen-activated protein kinase phosphatase-1-dependent mechanism in mice. Basic Clin Pharmacol Toxicol 2024; 134:686-694. [PMID: 38439200 DOI: 10.1111/bcpt.13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/06/2024]
Abstract
Glucocorticoids are widely used in the treatment of allergic and inflammatory diseases. Glucocorticoids have a widespread action on gene expression resulting in their pharmacological actions and also an array of adverse effects which limit their clinical use. It remains, however, to be studied which target gene effects are essential for the anti-allergic activity of glucocorticoids. Mitogen-activated protein kinase phosphatase-1 (MKP-1) inhibits proinflammatory signalling by suppressing the activity of mitogen activated protein kinase (MAP kinase) pathways. MKP-1 is one of the anti-inflammatory genes whose expression is enhanced by glucocorticoids. In the present study, we aimed to investigate the role of MKP-1 in the therapeutic effects of the glucocorticoid dexamethasone in acute allergic reaction. The effects of dexamethasone were studied in wild-type and MKP-1 deficient mice. The mice were first sensitized to ovalbumin, and the allergic reaction was then induced by a subcutaneous ovalbumin injection in the hind paw. Inflammatory edema was quantified with plethysmometer and expression of inflammatory factors was measured by quantitative reverse transcription polymerase chain reaction (RT-PCR). Dexamethasone reduced the ovalbumin-induced paw edema at 1.5, 3 and 6 h time points in wild-type mice by 70%, 95% and 89%, respectively. The effect was largely abolished in MKP-1 deficient mice. Furthermore, dexamethasone significantly attenuated the expression of ovalbumin-induced inflammatory factors cyclooxygenase-2 (COX-2); inducible nitric oxide synthase (iNOS); interleukins (IL) 1β, 6 and 13; C-C motif chemokine 11 (CCL-11); tumour necrosis factor (TNF) and thymic stromal lymphopoietin (TSLP) in wild-type mice by more than 40%. In contrast, in MKP-1 deficient mice dexamethasone had no effect or even enhanced the expression of these inflammatory factors. The results suggest that dexamethasone alleviates allergic inflammation through an MKP-1-dependent mechanism. The results also demonstrate MKP-1 as an important conveyor of the favourable glucocorticoid effects in ovalbumin-induced type I allergic reaction. Together with previous findings, the present study supports the concept of MKP-1 enhancing compounds as potential novel anti-inflammatory and anti-allergic drugs.
Collapse
Affiliation(s)
- Tiina Lehtola
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Elina Nummenmaa
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Katriina Vuolteenaho
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
2
|
Kim Y, Hou V, Huff RD, Aguiar JA, Revill S, Tiessen N, Cao Q, Miller MS, Inman MD, Ask K, Doxey AC, Hirota JA. Potentiation of long-acting β 2-agonist and glucocorticoid responses in human airway epithelial cells by modulation of intracellular cAMP. Respir Res 2021; 22:266. [PMID: 34666750 PMCID: PMC8527633 DOI: 10.1186/s12931-021-01862-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/09/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction Over 300 million people in the world live with asthma, resulting in 500,000 annual global deaths with future increases expected. It is estimated that around 50–80% of asthma exacerbations are due to viral infections. Currently, a combination of long-acting beta agonists (LABA) for bronchodilation and glucocorticoids (GCS) to control lung inflammation represent the dominant strategy for the management of asthma, however, it is still sub-optimal in 35–50% of moderate-severe asthmatics resulting in persistent lung inflammation, impairment of lung function, and risk of mortality. Mechanistically, LABA/GCS combination therapy results in synergistic efficacy mediated by intracellular cyclic adenosine monophosphate (cAMP). Hypothesis Increasing intracellular cAMP during LABA/GCS combination therapy via inhibiting phosphodiesterase 4 (PDE4) and/or blocking the export of cAMP by ATP Binding Cassette Transporter C4 (ABCC4), will potentiate anti-inflammatory responses of mainstay LABA/GCS therapy. Methods Expression and localization experiments were performed using in situ hybridization and immunohistochemistry in human lung tissue from healthy subjects, while confirmatory transcript and protein expression analyses were performed in primary human airway epithelial cells and cell lines. Intervention experiments were performed on the human airway epithelial cell line, HBEC-6KT, by pre-treatment with combinations of LABA/GCS with PDE4 and/or ABCC4 inhibitors followed by Poly I:C or imiquimod challenge as a model for viral stimuli. Cytokine readouts for IL-6, IL-8, CXCL10/IP-10, and CCL5/RANTES were quantified by ELISA. Results Using archived human lung and human airway epithelial cells, ABCC4 gene and protein expression were confirmed in vitro and in situ. LABA/GCS attenuation of Poly I:C or imiquimod-induced IL-6 and IL-8 were potentiated with ABCC4 and PDE4 inhibition, which was greater when ABCC4 and PDE4 inhibition was combined. Modulation of cAMP levels had no impact on LABA/GCS modulation of Poly I:C-induced CXCL10/IP-10 or CCL5/RANTES. Conclusion Modulation of intracellular cAMP levels by PDE4 or ABCC4 inhibition potentiates LABA/GCS efficacy in human airway epithelial cells challenged with viral stimuli. The data suggest further exploration of the value of adding cAMP modulators to mainstay LABA/GCS therapy in asthma for potentiated anti-inflammatory efficacy.
Collapse
Affiliation(s)
- Yechan Kim
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Vincent Hou
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, V6H 3Z, Canada
| | - Jennifer A Aguiar
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Spencer Revill
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Nicholas Tiessen
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Quynh Cao
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Matthew S Miller
- Department of Biochemistry, McMaster University, Hamilton, ON, L8S 4K1, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Mark D Inman
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew C Doxey
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada.,Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health-Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, L8N 4A6, Canada. .,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, V6H 3Z, Canada. .,Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada. .,McMaster Immunology Research Centre, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
3
|
Falcinelli M, Thaker PH, Lutgendorf SK, Conzen SD, Flaherty RL, Flint MS. The Role of Psychologic Stress in Cancer Initiation: Clinical Relevance and Potential Molecular Mechanisms. Cancer Res 2021; 81:5131-5140. [PMID: 34266894 PMCID: PMC8530873 DOI: 10.1158/0008-5472.can-21-0684] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
The hypothesis that the physiologic response to psychologic stress influences the initiation of cancer is highly controversial. The link between initiating stressors, the psychologic stress response, and disease is plausible, considering that the stress response is associated with defined physiologic outcomes and molecular mechanisms. In light of this, we review the clinical relevance of psychologic stress on the risk of cancer, and we propose potential molecular pathways that may link the stress response to early stages of malignant cell transformation.
Collapse
Affiliation(s)
- Marta Falcinelli
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, United Kingdom
| | - Premal H Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Susan K Lutgendorf
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Suzanne D Conzen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Renée L Flaherty
- Division of Breast Cancer Research, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Melanie S Flint
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Centre for Stress and Age-related Diseases, Moulsecoomb, Brighton, United Kingdom.
| |
Collapse
|
4
|
Suzuki S, Okada M, Sanomachi T, Togashi K, Seino S, Sato A, Yamamoto M, Kitanaka C. Therapeutic targeting of pancreatic cancer stem cells by dexamethasone modulation of the MKP-1-JNK axis. J Biol Chem 2020; 295:18328-18342. [PMID: 33115754 PMCID: PMC7939393 DOI: 10.1074/jbc.ra120.015223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Postoperative recurrence from microscopic residual disease must be prevented to cure intractable cancers, including pancreatic cancer. Key to this goal is the elimination of cancer stem cells (CSCs) endowed with tumor-initiating capacity and drug resistance. However, current therapeutic strategies capable of accomplishing this are insufficient. Using in vitro models of CSCs and in vivo models of tumor initiation in which CSCs give rise to xenograft tumors, we show that dexamethasone induces expression of MKP-1, a MAPK phosphatase, via glucocorticoid receptor activation, thereby inactivating JNK, which is required for self-renewal and tumor initiation by pancreatic CSCs as well as for their expression of survivin, an anti-apoptotic protein implicated in multidrug resistance. We also demonstrate that systemic administration of clinically relevant doses of dexamethasone together with gemcitabine prevents tumor formation by CSCs in a pancreatic cancer xenograft model. Our study thus provides preclinical evidence for the efficacy of dexamethasone as an adjuvant therapy to prevent postoperative recurrence in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Shuhei Suzuki
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan; Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata, Japan
| | - Masashi Okada
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan.
| | - Tomomi Sanomachi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan; Department of Clinical Oncology, Yamagata University School of Medicine, Yamagata, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan; Department of Ophthalmology and Visual Sciences, Yamagata University School of Medicine, Yamagata, Japan
| | - Shizuka Seino
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Atsushi Sato
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan; Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, Yamagata, Japan.
| |
Collapse
|
5
|
Kim D, Nguyen QT, Lee J, Lee SH, Janocha A, Kim S, Le HT, Dvorina N, Weiss K, Cameron MJ, Asosingh K, Erzurum SC, Baldwin WM, Lee JS, Min B. Anti-inflammatory Roles of Glucocorticoids Are Mediated by Foxp3 + Regulatory T Cells via a miR-342-Dependent Mechanism. Immunity 2020; 53:581-596.e5. [PMID: 32707034 DOI: 10.1016/j.immuni.2020.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GC) are the mainstay treatment option for inflammatory conditions. Despite the broad usage of GC, the mechanisms by which GC exerts its effects remain elusive. Here, utilizing murine autoimmune and allergic inflammation models, we report that Foxp3+ regulatory T (Treg) cells are irreplaceable GC target cells in vivo. Dexamethasone (Dex) administered in the absence of Treg cells completely lost its ability to control inflammation, and the lack of glucocorticoid receptor in Treg cells alone resulted in the loss of therapeutic ability of Dex. Mechanistically, Dex induced miR-342-3p specifically in Treg cells and miR-342-3p directly targeted the mTORC2 component, Rictor. Altering miRNA-342-3p or Rictor expression in Treg cells dysregulated metabolic programming in Treg cells, controlling their regulatory functions in vivo. Our results uncover a previously unknown contribution of Treg cells during glucocorticoid-mediated treatment of inflammation and the underlying mechanisms operated via the Dex-miR-342-Rictor axis.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Juyeun Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sung Hwan Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Allison Janocha
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sohee Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Kelly Weiss
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Booki Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195.
| |
Collapse
|
6
|
van der Sluis RJ, Hoekstra M. Glucocorticoids are active players and therapeutic targets in atherosclerotic cardiovascular disease. Mol Cell Endocrinol 2020; 504:110728. [PMID: 31968221 DOI: 10.1016/j.mce.2020.110728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Adrenal-derived glucocorticoids mediate the physiological response to stress. Chronic disturbances in glucocorticoid homeostasis, i.e. in Addison's and Cushing's disease patients, predispose to the development of atherosclerotic cardiovascular disease. Here we review preclinical and clinical findings regarding the relation between changes in plasma glucocorticoid levels and the atherosclerosis extent. It appears that, although the altered glucocorticoid function can in most cases be restored in the different patient groups, current therapies do not necessarily reverse the associated risk for atherosclerotic cardiovascular disease. In our opinion much attention should therefore be given to the development of a Cushing's disease mouse model that can (1) effectively replicate the effect of hypercortisolemia on atherosclerosis outcome observed in humans and (2) be used to investigate, in a preclinical setting, the relative impact on atherosclerosis susceptibility of already available (e.g. metyrapone) and potentially novel (i.e. SR-BI activity modulators) therapeutic agents that target the adrenal glucocorticoid output.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
7
|
Qian L, Xu D, Xue F, Li M, Wang X, Liu G. Interleukin-35 sensitizes monocytes from patients with asthma to glucocorticoid therapy by regulating p38 MAPK. Exp Ther Med 2020; 19:3247-3258. [PMID: 32266020 PMCID: PMC7132241 DOI: 10.3892/etm.2020.8586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/31/2020] [Indexed: 01/06/2023] Open
Abstract
The activation of monocytes and macrophages is associated with steroid-resistant (SR) asthma. Interleukin-35 (IL-35) is an important anti-inflammatory cytokine, but its regulatory effects on monocytes in patients with SR asthma is not fully understood. Based on clinical response to oral prednisolone, 34 patients with steroid-sensitive (SS) asthma and 20 patients with SR asthma were enrolled in the present study. Serum IL-35 levels were analyzed using the Luminex 200 platform. Monocytes from patients with asthma were pretreated with IL-35 followed by dexamethasone (DEX) and lipopolysaccharide (LPS), then corticosteroid sensitivity was evaluated according to the half-maximal inhibitory concentration of DEX with respect to LPS-induced IL-6 maximal production in monocytes (DEX-IC50). The percentage of maximal inhibition of IL-6 by DEX was presented as Emax. Phosphorylated-P38 mitogen activated kinase (p-p38 MAPK) and mitogen-activated protein kinase phosphatase-1 (MKP-1) were examined by flow cytometry and reverse transcription-quantitative PCR analysis, respectively. Glucocorticoid receptor (GR) binding to the glucocorticoid response element (GRE) was assessed by chromatin immunoprecipitation. Compared with patients with SS asthma, patients with SR asthma had lower IL-35 expression levels (P<0.05). Correlation analysis results demonstrated that the expression levels of IL-35 showed a weak negative correlation with log DEX-IC50 (r=-0.351; P<0.01) and a moderate positive correlation with Emax value (r=0.4501; P<0.01) in all patients with asthma. Moreover, IL-35 enhanced DEX-suppressed IL-6 production and the DEX-induced upregulation of the MKP-1 mRNA expression level in monocytes from both patient groups (P<0.01). In addition, IL-35 inhibited p-p38 MAPK expression in monocytes, and these effects were mediated via an increase in DEX-induced GR binding to GRE. Therefore, IL-35 may be involved in the corticosteroid enhancing effects in monocytes of patients with SR and SS asthma, suggesting potential benefits of IL-35 supplementation in asthmatics with DEX.
Collapse
Affiliation(s)
- Lei Qian
- Department of Laboratory Medicine, Binhai County People's Hospital, Yancheng, Jiangsu 224500, P.R. China
| | - Donghui Xu
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu 224500, P.R. China
| | - Fangsu Xue
- Department of Respiration, Binhai County People's Hospital, Yancheng, Jiangsu 224500, P.R. China
| | - Ming Li
- Department of Laboratory Medicine, Binhai County People's Hospital, Yancheng, Jiangsu 224500, P.R. China
| | - Xushan Wang
- Department of Laboratory Medicine, Guanyun County People's Hospital, Lianyungang, Jiangsu 222200, P.R. China
| | - Guangliang Liu
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu 224500, P.R. China
| |
Collapse
|
8
|
Hirose I, Kanda A, Noda K, Ishida S. Glucocorticoid receptor inhibits Müller glial galectin-1 expression via DUSP1-dependent and -independent deactivation of AP-1 signalling. J Cell Mol Med 2019; 23:6785-6796. [PMID: 31328390 PMCID: PMC6787449 DOI: 10.1111/jcmm.14559] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
Galectin‐1/LGALS1 is a hypoxia‐induced angiogenic factor associated with diabetic retinopathy (DR). Recently, we elucidated a hypoxia‐independent pathway to produce galectin‐1 in Müller glial cells stimulated by interleukin (IL)‐1β. Here we revealed glucocorticoid receptor (GR)‐mediated inhibitory mechanisms for Müller glial galectin‐1/LGALS1 expression. Activator protein (AP)‐1 site in the LGALS1 enhancer region, to which activating transcription factor2, c‐Fos and c‐Jun bind, was shown to be essential for IL‐1β‐induced galectin‐1/LGALS1 expression in Müller cells. Ligand (dexamethasone or triamcinolone acetonide)‐activated GR induced dual specificity phosphatase (DUSP)1 expression via the glucocorticoid response element and attenuated IL‐1β‐induced galectin‐1/LGALS1 expression by reducing phosphorylation of these AP‐1 subunits following AKT and extracellular signal‐regulated kinase (ERK)1/2 deactivation. Moreover, activated GR also caused DUSP1‐independent down‐regulation of IL‐1β‐induced LGALS1 expression via its binding to AP‐1. Administration of glucocorticoids to mice attenuated diabetes‐induced retinal galectin‐1/Lgals1 expression together with AKT/AP‐1 and ERK/AP‐1 pathways. Supporting these in vitro and in vivo findings, immunofluorescence analyses showed co‐localization of galectin‐1 with GR and phosphorylated AP‐1 in DUSP1‐positive glial cells in fibrovascular tissues from patients with DR. Our present data demonstrated the inhibitory effects of glucocorticoids on glial galectin‐1 expression via DUSP1‐dependent and ‐independent deactivation of AP‐1 signalling (transactivation and transrepression), highlighting therapeutic implications for DR.
Collapse
Affiliation(s)
- Ikuyo Hirose
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuhiro Kanda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kousuke Noda
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Susumu Ishida
- Laboratory of Ocular Cell Biology and Visual Science, Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Pfänder P, Fidan M, Burret U, Lipinski L, Vettorazzi S. Cdk5 Deletion Enhances the Anti-inflammatory Potential of GC-Mediated GR Activation During Inflammation. Front Immunol 2019; 10:1554. [PMID: 31354714 PMCID: PMC6635475 DOI: 10.3389/fimmu.2019.01554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
The suppression of activated pro-inflammatory macrophages during immune response has a major impact on the outcome of many inflammatory diseases including sepsis and rheumatoid arthritis. The pro- and anti-inflammatory functions of macrophages have been widely studied, whereas their regulation under immunosuppressive treatments such as glucocorticoid (GC) therapy is less well-understood. GC-mediated glucocorticoid receptor (GR) activation is crucial to mediate anti-inflammatory effects. In addition, the anti-cancer drug roscovitine, that is currently being tested in clinical trials, was recently described to regulate inflammatory processes by inhibiting different Cdks such as cyclin-dependent kinase 5 (Cdk5). Cdk5 was identified as a modulator of inflammatory processes in different immune cells and furthermore described to influence GR gene expression in the brain. Whether roscovitine can enhance the immunosuppressive effects of GCs and if the inhibition of Cdk5 affects GR gene regulatory function in innate immune cells, such as macrophages, has not yet been investigated. Here, we report that roscovitine enhances the immunosuppressive Dexamethasone (Dex) effect on the inducible nitric oxide synthase (iNos) expression, which is essential for immune regulation. Cdk5 deletion in macrophages prevented iNos protein and nitric oxide (NO) generation after a combinatory treatment with inflammatory stimuli and Dex. Cdk5 deletion in macrophages attenuated the GR phosphorylation on serine 211 after Dex treatment alone and in combination with inflammatory stimuli, but interestingly increased the GR-dependent anti-inflammatory target gene dual-specificity phosphatase 1 (Dusp1, Mkp1). Mkp1 phosphatase activity decreases the activation of its direct target p38Mapk, reduced iNos expression and NO production upon inflammatory stimuli and Dex treatment in the absence of Cdk5. Taken together, we identified Cdk5 as a potential novel regulator of NO generation in inflammatory macrophages under GC treatment. Our data suggest that GC treatment in combination with specific Cdk5 inhibtior(s) provides a stronger suppression of inflammation and could thus replace high-dose GC therapy which has severe side effects in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Pauline Pfänder
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Ute Burret
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Lena Lipinski
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| |
Collapse
|
10
|
Chen X, Cao Y, Wang Z, Zhang D, Tang W. Bioinformatic analysis reveals novel hub genes and pathways associated with hypertensive nephropathy. Nephrology (Carlton) 2019; 24:1103-1114. [PMID: 30298691 DOI: 10.1111/nep.13508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2018] [Indexed: 02/05/2023]
Abstract
AIM Hypertensive nephropathy (HTN) is one of the leading causes of end-stage renal disease and is closely associated with inflammation and tubule-interstitial fibrosis. The molecular mechanism underlying HTN remains unclear. This study used bioinformatic analysis to identify the novel gene targets for HTN. METHODS We downloaded the microarray data of GSE99325 and GSE32591 from Gene Expression Omnibus. The dataset comprised 20 HTN and 15 normal samples. The differentially expressed genes (DEG) were identified, and then gene ontology (GO) enrichment was performed, and a GO tree was constructed by using clusterProfiler and ClueGO. In addition, a protein-protein interaction network was established using the Search Tool for the Retrieval of Interacting Genes database and visualized by Cytoscape. The novel hub genes were validated in in vitro experiments. RESULTS A total of 267 genes (117 up-regulated and 150 down-regulated genes) were identified as DEG. GO analysis and the GO tree indicated that the DEG were mainly associated with steroid hormone response and the extracellular matrix. Based on the protein-protein interaction network, we screened out several novel hub genes. Considering the findings and the literature review, we focused on and validated the dual specificity phosphatase 1, tissue inhibitor of matrix metalloproteinases 1, fos proto-oncogene and jun proto-oncogenes, which may play significant roles in the pathogenesis of HTN. These findings were consistent with the bioinformatic results for the in vitro validation. CONCLUSION This study identified for the first time novel hub genes with microarray data in HTN by using bioinformatic analysis and provided novel evidence and clues for future works.
Collapse
Affiliation(s)
- Xiaolei Chen
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiling Cao
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Wang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongmei Zhang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Wanxin Tang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Evolving Role of Vitamin D in Immune-Mediated Disease and Its Implications in Autoimmune Hepatitis. Dig Dis Sci 2019; 64:324-344. [PMID: 30370494 DOI: 10.1007/s10620-018-5351-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Vitamin D has immunomodulatory, anti-inflammatory, antioxidant, and anti-fibrotic actions that may impact on the occurrence and outcome of immune-mediated disease. The goals of this review are to describe the nature of these expanded roles, examine the implications of vitamin D deficiency in autoimmune hepatitis, and identify opportunities for future investigation. Abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. Vitamin D receptors are expressed on the principal cell populations involved in the innate and adaptive immune responses. Macrophages and dendritic cells can produce 1,25-dihydroxyvitamin D within the microenvironment. This active form of vitamin D can inhibit immune cell proliferation, promote an anti-inflammatory cytokine profile, expand regulatory T cells, enhance glucocorticoid actions, increase glutathione production, and inhibit hepatic stellate cells. Vitamin D deficiency has been commonly present in patients with immune-mediated liver and non-liver diseases, and it has been associated with histological severity, advanced hepatic fibrosis, and non-response to conventional glucocorticoid therapy in autoimmune hepatitis. Vitamin D analogues with high potency, low calcemic effects, and independence from hepatic hydroxylation are possible interventions. In conclusion, vitamin D has properties that could ameliorate immune-mediated disease, and vitamin D deficiency has been a common finding in immune-mediated liver and non-liver diseases, including autoimmune hepatitis. Loss of vitamin D-dependent homeostatic mechanisms may promote disease progression. Vitamin D analogues that are independent of hepatic hydroxylation constitute an investigational opportunity to supplement current management of autoimmune hepatitis.
Collapse
|
12
|
Savvidou O, Milonaki M, Goumenos S, Flevas D, Papagelopoulos P, Moutsatsou P. Glucocorticoid signaling and osteoarthritis. Mol Cell Endocrinol 2019; 480:153-166. [PMID: 30445185 DOI: 10.1016/j.mce.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Glucocorticoids are steroid hormones synthesized and released by the adrenal cortex. Their main function is to maintain cell homeostasis through a variety of signaling pathways, responding to changes in an organism's environment or developmental status. Mimicking the actions of natural glucocorticoids, synthetic glucocorticoids have been recruited to treat many diseases that implicate glucocorticoid receptor signaling such as osteoarthritis. In osteoarthritis, synthetic glucocorticoids aim to alleviate inflammation and pain. The variation of patients' response and the possibility of complications associated with their long-term use have led to a need for a better understanding of glucocorticoid receptor signaling in osteoarthritis. In this review, we performed a literature search in the molecular pathways that link the osteoarthritic joint to the glucocorticoid receptor signaling. We hope that this information will advance research in the field and propose new molecular targets for the development of more optimized therapies for osteoarthritis.
Collapse
Affiliation(s)
- Olga Savvidou
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Mandy Milonaki
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Stavros Goumenos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Dimitrios Flevas
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Panayiotis Papagelopoulos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| |
Collapse
|
13
|
Abstract
Glucocorticoids are steroid hormones that play a key role in metabolic adaptations during stress, such as fasting and starvation, in order to maintain plasma glucose levels. Excess and chronic glucocorticoid exposure, however, causes metabolic syndrome including insulin resistance, dyslipidemia, and hyperglycemia. Studies in animal models of metabolic disorders frequently demonstrate that suppressing glucocorticoid signaling improves insulin sensitivity and metabolic profiles. Glucocorticoids convey their signals through an intracellular glucocorticoid receptor (GR), which is a transcriptional regulator. The adipocyte is one cell type that contributes to whole body metabolic homeostasis under the influence of GR. Glucocorticoids' functions on adipose tissues are complex. Depending on various physiological or pathophysiological states as well as distinct fat depots, glucocorticoids can either increase or decrease lipid storage in adipose tissues. In rodents, glucocorticoids have been shown to reduce the thermogenic activity of brown adipocytes. However, in human acute glucocorticoid exposure, glucocorticoids act to promote thermogenesis. In this article, we will review the recent studies on the mechanisms underlying the complex metabolic functions of GR in adipocytes. These include studies of the metabolic outcomes of adipocyte specific GR knockout mice and identification of novel GR primary target genes that mediate glucocorticoid action in adipocytes.
Collapse
Affiliation(s)
- Rebecca A Lee
- Endocrinology Graduate Program and Department of Nutritional Science & Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, USA
| | - Charles A Harris
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Jen-Chywan Wang
- Endocrinology Graduate Program and Department of Nutritional Science & Toxicology, University of California Berkeley, Berkeley, CA 94720-3104, USA
| |
Collapse
|
14
|
Clayton SA, Jones SW, Kurowska-Stolarska M, Clark AR. The role of microRNAs in glucocorticoid action. J Biol Chem 2018; 293:1865-1874. [PMID: 29301941 PMCID: PMC5808749 DOI: 10.1074/jbc.r117.000366] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glucocorticoids (GCs) are steroids with profound anti-inflammatory and immunomodulatory activities. Synthetic GCs are widely used for managing chronic inflammatory and autoimmune conditions, as immunosuppressants in transplantation, and as anti-tumor agents in certain hematological cancers. However, prolonged GC exposure can cause adverse effects. A detailed understanding of GCs' mechanisms of action may enable harnessing of their desirable actions while minimizing harmful effects. Here, we review the impact on the GC biology of microRNAs, small non-coding RNAs that post-transcriptionally regulate gene expression. Emerging evidence indicates that microRNAs modulate GC production by the adrenal glands and the cells' responses to GCs. Furthermore, GCs influence cell proliferation, survival, and function at least in part by regulating microRNA expression. We propose that the beneficial effects of GCs may be enhanced through combination with reagents targeting specific microRNAs.
Collapse
Affiliation(s)
- Sally A Clayton
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Simon W Jones
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB.,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| | - Mariola Kurowska-Stolarska
- the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom.,the Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, and
| | - Andrew R Clark
- From the Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2WB, .,the Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, Birmingham, and Newcastle Universities, Glasgow G12 8TA, Scotland, United Kingdom
| |
Collapse
|
15
|
Liao B, Zhou H, Liang H, Li C. Regulation of ERK and AKT pathways by hepatitis B virus X protein via the Notch1 pathway in hepatocellular carcinoma. Int J Oncol 2017; 51:1449-1459. [PMID: 29048612 PMCID: PMC5643068 DOI: 10.3892/ijo.2017.4126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is the dominant risk factor for hepatocellular carcinoma (HCC). HBV X protein (HBx) plays crucial roles in HCC carcinogenesis. HBx interferes with several signaling pathways including the Notch1 pathway in HCC. In this study, we found that Notch1 was highly expressed in HCC, especially in large HCCs. Notch1 and HBx co-localized in HCC and their levels were positively correlated with each other. Notch1 expression was more elevated in HepG2.2.15 cells than that in HepG2 cells. HBx activated the Notch1 pathway in HepG2.2.15 cells. Suppression of HBx and the Notch1 pathway attenuated the growth of HepG2.2.15 cells. Notch1, ERK, and AKT pathways were inhibited after γ-secretase inhibitor treatment. Dual-specificity phosphatase 1 (DUSP1) and phosphatase and tensin homolog (PTEN) were upregulated after γ-secretase inhibitor treatment and Hes1 inhibition. Luciferase reporter assays showed that Hes1 suppressed the promoters of DUSP1 and PTEN genes, which was reversed by γ-secretase inhibitor treatment. Western blotting demonstrated that DUSP1 dephosphorylated pERK and PTEN dephosphorylated pAKT. Collectively, we found a link among HBx, the Notch1 pathway, DUSP1/PTEN, and ERK/AKT pathways, which influenced HCC cell survival and could be a therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Bo Liao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, P.R. China
| | - Honghao Zhou
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, P.R. China
| | - Huifang Liang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, P.R. China
| | - Changhai Li
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
16
|
Moosavi SM, Prabhala P, Ammit AJ. Role and regulation of MKP-1 in airway inflammation. Respir Res 2017; 18:154. [PMID: 28797290 PMCID: PMC5554001 DOI: 10.1186/s12931-017-0637-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is a protein with anti-inflammatory properties and the archetypal member of the dual-specificity phosphatases (DUSPs) family that have emerged over the past decade as playing an instrumental role in the regulation of airway inflammation. Not only does MKP-1 serve a critical role as a negative feedback effector, controlling the extent and duration of pro-inflammatory MAPK signalling in airway cells, upregulation of this endogenous phosphatase has also emerged as being one of the key cellular mechanism responsible for the beneficial actions of clinically-used respiratory medicines, including β2-agonists, phosphodiesterase inhibitors and corticosteroids. Herein, we review the role and regulation of MKP-1 in the context of airway inflammation. We initially outline the structure and biochemistry of MKP-1 and summarise the multi-layered molecular mechanisms responsible for MKP-1 production more generally. We then focus in on some of the key in vitro studies in cell types relevant to airway disease that explain how MKP-1 can be regulated in airway inflammation at the transcriptional, post-translation and post-translational level. And finally, we address some of the potential challenges with MKP-1 upregulation that need to be explored further to fully exploit the potential of MKP-1 to repress airway inflammation in chronic respiratory disease.
Collapse
Affiliation(s)
- Seyed M Moosavi
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Pavan Prabhala
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Alaina J Ammit
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia. .,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Zhou X, Dang YJ, Wang GF, Jin XQ. Effects of Aspergillus fumigatus on glucocorticoid receptor and β2-adrenergic receptor expression in a rat model of asthma. Exp Lung Res 2017; 43:197-207. [PMID: 28696809 DOI: 10.1080/01902148.2017.1339142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Conventional inhaled corticosteroids or β2-adrenergic receptor agonists do not work well in some asthmatic populations while empirical antifungal therapy has obvious impact on those patients. The study was designed to investigate whether short-term exposure to Aspergillus fumigatus (A. fumigatus) could decrease glucocorticoid receptor (GCR) and β2-adrenergic receptor (ADRB2) expression in lung tissue of asthmatic rats. MATERIALS AND METHODS A rat model of chronic asthma was first established by ovalbumin sensitization and challenge. Rats with chronic asthma were then exposed to short-term application of A. fumigatus spores. Airway hyper-responsiveness, eosinophil ratio in bronchoalveolar lavage (BAL) fluid and total IgE in serum were counted in these experimental animals. GCR and ADRB2 expression in the lung were detected and analyzed. Furthermore, the levels of toll-like receptors (TLRs) 2, 3 and 4 in lung tissue were measured. RESULTS Short-term exposure to A. fumigatus could down-regulate the expression of GCR, aggravate airway hyper-responsiveness and increase the level of TLR2 in rats with asthma. There were no obvious changes in the levels of ADRB2 expression, recruited eosinophils, total IgE, TLR3 and TLR4 after application of A. fumigatus in asthmatic rats. CONCLUSIONS These findings indicate that A. fumigatus exposure may be involved in glucocorticoids unresponsiveness by down-regulating the expression of GCR in asthmatics. The possibility of A. fumigatus colonization or infection should not be ignored in patients of steroid-resistant asthma.
Collapse
Affiliation(s)
- Xia Zhou
- a Department of Respiratory Medicine , Huashan Hospital Affiliated to Fudan University , Shanghai , China
| | - Ya-Jie Dang
- b Department of Respiratory Medicine , Shanghai First People's Hospital Affiliated to Shanghai JiaoTong University , Shanghai , China
| | - Gui-Fang Wang
- a Department of Respiratory Medicine , Huashan Hospital Affiliated to Fudan University , Shanghai , China
| | - Xian-Qiao Jin
- a Department of Respiratory Medicine , Huashan Hospital Affiliated to Fudan University , Shanghai , China
| |
Collapse
|
18
|
Patel BS, Rahman MM, Baehring G, Xenaki D, Tang FSM, Oliver BG, Ammit AJ. Roflumilast N-Oxide in Combination with Formoterol Enhances the Antiinflammatory Effect of Dexamethasone in Airway Smooth Muscle Cells. Am J Respir Cell Mol Biol 2017; 56:532-538. [PMID: 27997807 DOI: 10.1165/rcmb.2016-0191oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Roflumilast is an orally active phosphodiesterase 4 inhibitor approved for use in chronic obstructive pulmonary disease. Roflumilast N-oxide (RNO) is the active metabolite of roflumilast and has a demonstrated antiinflammatory impact in vivo and in vitro. To date, the effect of RNO on the synthetic function of airway smooth muscle (ASM) cells is unknown. We address this herein and investigate the effect of RNO on β2-adrenoceptor-mediated, cAMP-dependent responses in ASM cells in vitro, and whether RNO enhances steroid-induced repression of inflammation. RNO (0.001-1,000 nM) alone had no effect on AMP production from ASM cells, and significant potentiation of the long-acting β2-agonist formoterol-induced cAMP could only be achieved at the highest concentration of RNO tested (1,000 nM). At this concentration, RNO exerted a small, but not significantly different, potentiation of formoterol-induced expression of antiinflammatory mitogen-activated protein kinase phosphatase 1. Consequently, tumor necrosis factor-induced IL-8 secretion was unaffected by RNO in combination with formoterol. However, because there was the potential for phosphodiesterase 4 inhibitors and long-acting β2-agonists to interact with corticosteroids to achieve superior antiinflammatory efficacy, we examined whether RNO, alone or in combination with formoterol, enhanced the antiinflammatory effect of dexamethasone by measuring the impact on IL-8 secretion. Although RNO alone did not significantly enhance the cytokine repression achieved with steroids, RNO in combination with formoterol significantly enhanced the antiinflammatory effect of dexamethasone in ASM cells. This was linked to increased mitogen-activated protein kinase phosphatase 1 expression in ASM cells, suggesting that a molecular mechanism is responsible for augmented antiinflammatory actions of combination therapeutic approaches that include RNO.
Collapse
Affiliation(s)
| | | | | | - Dikaia Xenaki
- 3 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; and
| | | | - Brian G Oliver
- 2 Woolcock Emphysema Centre and.,3 Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia; and.,4 Centre for Health Technologies and Molecular Biosciences, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Alaina J Ammit
- 2 Woolcock Emphysema Centre and.,4 Centre for Health Technologies and Molecular Biosciences, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Abstract
Glucocorticoids (GCs; referred to clinically as corticosteroids) are steroid hormones with potent anti-inflammatory and immune modulatory profiles. Depending on the context, these hormones can also mediate pro-inflammatory activities, thereby serving as primers of the immune system. Their target receptor, the GC receptor (GR), is a multi-tasking transcription factor, changing its role and function depending on cellular and organismal needs. To get a clearer idea of how to improve the safety profile of GCs, recent studies have investigated the complex mechanisms underlying GR functions. One of the key findings includes both pro- and anti-inflammatory roles of GR, and a future challenge will be to understand how such paradoxical findings can be reconciled and how GR ultimately shifts the balance to a net anti-inflammatory profile. As such, there is consensus that GR deserves a second life as a drug target, with either refined classic GCs or a novel generation of nonsteroidal GR-targeting molecules, to meet the increasing clinical needs of today to treat inflammation and cancer.
Collapse
|
20
|
Newton R, Shah S, Altonsy MO, Gerber AN. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance. J Biol Chem 2017; 292:7163-7172. [PMID: 28283576 DOI: 10.1074/jbc.r117.777318] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid.
Collapse
Affiliation(s)
- Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Alberta T2N 4Z6, Canada,
| | - Suharsh Shah
- the Arnie Charbonneau Cancer Institute, Department of Oncology, University of Calgary, Alberta T2N 4Z6, Canada
| | - Mohammed O Altonsy
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Alberta T2N 4Z6, Canada.,the Faculty of Science, Sohag University, Sohag 82524, Egypt, and
| | - Antony N Gerber
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| |
Collapse
|
21
|
Newton R, Giembycz MA. Understanding how long-acting β 2 -adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids in asthma - an update. Br J Pharmacol 2016; 173:3405-3430. [PMID: 27646470 DOI: 10.1111/bph.13628] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022] Open
Abstract
In moderate-to-severe asthma, adding an inhaled long-acting β2 -adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1), ICSs promote anti-inflammatory/anti-asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of many glucocorticoid-induced genes. Other genes, including dual-specificity phosphatase 1(DUSP1) in human airways smooth muscle (ASM) and epithelial cells, are up-regulated additively by both drug classes. Synergy may also occur for LABA-induced genes, as illustrated by the bronchoprotective gene, regulator of G-protein signalling 2 (RGS2) in ASM. Such effects cannot be produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular basis of synergy remains unclear, mechanistic interpretations must accommodate gene-specific regulation. We explore the concept that each glucocorticoid-induced gene is an independent signal transducer optimally activated by a specific, ligand-directed, GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be suboptimal due to low β2 -adrenoceptor density or biased β2 -adrenoceptor signalling. Strategies to overcome these limitations include adding-on a phosphodiesterase inhibitor and using agonists of other Gs-coupled receptors. In all cases, the rational design of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for therapeutic benefit to be maximized.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Enhancing nuclear translocation: perspectives in inhaled corticosteroid therapy. Ther Deliv 2016; 6:443-51. [PMID: 25996043 DOI: 10.4155/tde.15.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Corticosteroids are widely used in the treatment of asthma and chronic obstructive pulmonary disease (COPD). In contrast to their use in mild-to-moderate asthma, they are less efficacious in improving lung function and controlling the underlying inflammation in COPD. In most clinical trials, corticosteroids have shown little benefit in COPD, but have shown a greater clinical effect in combination with long-acting bronchodilators. Impaired corticosteroid activation of the glucocorticoid receptor (GR) has been reported in corticosteroid-insensitive individuals. Reversal of corticosteroid-insensitivity by enhancing GR nuclear translocation is a potential therapeutic target. Preclinical studies suggest members of the nuclear receptor superfamily may facilitate glucocorticoid receptor nuclear translocation. Unravelling the mechanisms that govern GR nuclear translocation may identify novel therapeutic targets for reversing corticosteroid-insensitivity.
Collapse
|
23
|
Evidence supporting the conceptual framework of cancer chemoprevention in canines. Sci Rep 2016; 6:26500. [PMID: 27216246 PMCID: PMC4877707 DOI: 10.1038/srep26500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 11/08/2022] Open
Abstract
As with human beings, dogs suffer from the consequences of cancer. We investigated the potential of a formulation comprised of resveratrol, ellagic acid, genistein, curcumin and quercetin to modulate biomarkers indicative of disease prevention. Dog biscuits were evaluated for palatability and ability to deliver the chemopreventive agents. The extent of endogenous DNA damage in peripheral blood lymphocytes from dogs given the dietary supplement or placebo showed no change. However, H2O2-inducible DNA damage was significantly decreased after consumption of the supplement. The expression of 11 of 84 genes related to oxidative stress was altered. Hematological parameters remained in the reference range. The concept of chemoprevention for the explicit benefit of the canine is compelling since dogs are an important part of our culture. Our results establish a proof-of-principle and provide a framework for improving the health and well-being of “man’s best friend”.
Collapse
|
24
|
Kuo T, Liu PH, Chen TC, Lee RA, New J, Zhang D, Lei C, Chau A, Tang Y, Cheung E, Wang JC. Transcriptional regulation of FoxO3 gene by glucocorticoids in murine myotubes. Am J Physiol Endocrinol Metab 2016; 310:E572-85. [PMID: 26758684 PMCID: PMC4824139 DOI: 10.1152/ajpendo.00214.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 01/06/2016] [Indexed: 01/08/2023]
Abstract
Glucocorticoids and FoxO3 exert similar metabolic effects in skeletal muscle. FoxO3 gene expression was increased by dexamethasone (Dex), a synthetic glucocorticoid, both in vitro and in vivo. In C2C12 myotubes the increased expression is due to, at least in part, the elevated rate of FoxO3 gene transcription. In the mouse FoxO3 gene, we identified three glucocorticoid receptor (GR) binding regions (GBRs): one being upstream of the transcription start site, -17kbGBR; and two in introns, +45kbGBR and +71kbGBR. Together, these three GBRs contain four 15-bp glucocorticoid response elements (GREs). Micrococcal nuclease (MNase) assay revealed that Dex treatment increased the sensitivity to MNase in the GRE of +45kbGBR and +71kbGBR upon 30- and 60-min Dex treatment, respectively. Conversely, Dex treatment did not affect the chromatin structure near the -17kbGBR, in which the GRE is located in the linker region. Dex treatment also increased histone H3 and/or H4 acetylation in genomic regions near all three GBRs. Moreover, using chromatin conformation capture (3C) assay, we showed that Dex treatment increased the interaction between the -17kbGBR and two genomic regions: one located around +500 bp and the other around +73 kb. Finally, the transcriptional coregulator p300 was recruited to all three GBRs upon Dex treatment. The reduction of p300 expression decreased FoxO3 gene expression and Dex-stimulated interaction between distinct genomic regions of FoxO3 gene identified by 3C. Overall, our results demonstrate that glucocorticoids activated FoxO3 gene transcription through multiple GREs by chromatin structural change and DNA looping.
Collapse
Affiliation(s)
- Taiyi Kuo
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, California; and Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Patty H Liu
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Tzu-Chieh Chen
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Rebecca A Lee
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, California; and Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Jenny New
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Danyun Zhang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Cassandra Lei
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Andy Chau
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Yicheng Tang
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Edna Cheung
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| | - Jen-Chywan Wang
- Endocrinology Graduate Program, University of California Berkeley, Berkeley, California; and Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, California
| |
Collapse
|
25
|
Jubb AW, Young RS, Hume DA, Bickmore WA. Enhancer Turnover Is Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and Human Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:813-822. [PMID: 26663721 PMCID: PMC4707550 DOI: 10.4049/jimmunol.1502009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
Abstract
Phenotypic differences between individuals and species are controlled in part through differences in expression of a relatively conserved set of genes. Genes expressed in the immune system are subject to especially powerful selection. We have investigated the evolution of both gene expression and candidate enhancers in human and mouse macrophages exposed to glucocorticoid (GC), a regulator of innate immunity and an important therapeutic agent. Our analyses revealed a very limited overlap in the repertoire of genes responsive to GC in human and mouse macrophages. Peaks of inducible binding of the GC receptor (GR) detected by chromatin immunoprecipitation-Seq correlated with induction, but not repression, of target genes in both species, occurred at distal regulatory sites not promoters, and were strongly enriched for the consensus GR-binding motif. Turnover of GR binding between mice and humans was associated with gain and loss of the motif. There was no detectable signal of positive selection at species-specific GR binding sites, but clear evidence of purifying selection at the small number of conserved sites. We conclude that enhancer divergence underlies the difference in transcriptional activation after GC treatment between mouse and human macrophages. Only the shared inducible loci show evidence of selection, and therefore these loci may be important for the subset of responses to GC that is shared between species.
Collapse
Affiliation(s)
- Alasdair W Jubb
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, Scotland, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Robert S Young
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, Scotland, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, Scotland, UK
| |
Collapse
|
26
|
Bockmühl Y, Patchev AV, Madejska A, Hoffmann A, Sousa JC, Sousa N, Holsboer F, Almeida OFX, Spengler D. Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress. Epigenetics 2015; 10:247-57. [PMID: 25793778 PMCID: PMC4622987 DOI: 10.1080/15592294.2015.1017199] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Early-life stress (ELS) induces long-lasting changes in gene expression conferring an increased risk for the development of stress-related mental disorders. Glucocorticoid receptors (GR) mediate the negative feedback actions of glucocorticoids (GC) in the paraventricular nucleus (PVN) of the hypothalamus and anterior pituitary and therefore play a key role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis and the endocrine response to stress. We here show that ELS programs the expression of the GR gene (Nr3c1) by site-specific hypermethylation at the CpG island (CGI) shore in hypothalamic neurons that produce corticotropin-releasing hormone (Crh), thus preventing Crh upregulation under conditions of chronic stress. CpGs mapping to the Nr3c1 CGI shore region are dynamically regulated by ELS and underpin methylation-sensitive control of this region's insulation-like function via Ying Yang 1 (YY1) binding. Our results provide new insight into how a genomic element integrates experience-dependent epigenetic programming of the composite proximal Nr3c1 promoter, and assigns an insulating role to the CGI shore.
Collapse
Key Words
- Avp, arginine vasopressin
- BPD, borderline personal disorder
- CGI, CpG island
- CUS, chronic unpredictable stress
- ChIP, chromatin immunoprecipitation
- CpG island shore
- Crh, corticotropin releasing hormone
- DNA methylation
- Dusp1, dual specificity phosphatase 1
- ELS, early-life stress
- EMSA, electrophoretic mobility shift assay
- Fkbp5, FK506 binding protein 51
- GC, glucocorticoid
- GR, glucocorticoid receptor
- GRE, glucocorticoid response element
- HPA, hypothalamic-pituitary-adrenal
- MDD, major depressive disorder
- PTSD, posttraumatic stress disorder
- PVN, paraventricular nucleus
- Pomc, pro-opiomelanocortin
- Sgk1, serum glucocorticoid kinase 1
- YY1, Yin Yang
- Yin Yang
- early-life stress
- glucocorticoid receptor
- insulator
Collapse
|
27
|
Krasnov GS, Dmitriev AA, Sadritdinova AF, Volchenko NN, Slavnova EN, Danilova TV, Snezhkina AV, Melnikova NV, Fedorova MS, Lakunina VA, Belova AA, Nyushko KM, Alekseev BY, Kaprin AD, Kudryavtseva AV. Molecular genetic mechanisms of drug resistance in prostate cancer. Mol Biol 2015. [DOI: 10.1134/s0026893315050118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Sundahl N, Bridelance J, Libert C, De Bosscher K, Beck IM. Selective glucocorticoid receptor modulation: New directions with non-steroidal scaffolds. Pharmacol Ther 2015; 152:28-41. [PMID: 25958032 DOI: 10.1016/j.pharmthera.2015.05.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Glucocorticoids remain the frontline treatment for inflammatory disorders, yet represent a double-edged sword with beneficial therapeutic actions alongside adverse effects, mainly in metabolic regulation. Considerable efforts were made to improve this balance by attempting to amplify therapeutic beneficial anti-inflammatory actions and to minimize adverse metabolic actions. Most attention has focused on the development of novel compounds favoring the transrepressing actions of the glucocorticoid receptor, assumed to be important for anti-inflammatory actions, over the transactivating actions, assumed to underpin the undesirable actions. These compounds are classified as selective glucocorticoid receptor agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). The latter class is able to modulate the activity of a GR agonist and/or may not classically bind the glucocorticoid receptor ligand-binding pocket. SEGRAs and SEGRMs are collectively denominated SEGRAMs (selective glucocorticoid receptor agonists and modulators). Although this transrepression vs transactivation concept proved to be too simplistic, the developed SEGRAMs were helpful in elucidating various molecular actions of the glucocorticoid receptor, but have also raised many novel questions. We discuss lessons learned from recent mechanistic studies of selective glucocorticoid receptor modulators. This is approached by analyzing recent experimental insights in comparison with knowledge obtained using mutant GR research, thus clarifying the current view on the SEGRAM field. These insights also contribute to our understanding of the processes controlling glucocorticoid-mediated side effects as well as glucocorticoid resistance. Our perspective on non-steroidal SEGRAs and SEGRMs considers remaining opportunities to address research gaps in order to harness the potential for more safe and effective glucocorticoid receptor therapies.
Collapse
Affiliation(s)
- Nora Sundahl
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Jolien Bridelance
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| | - Claude Libert
- Department for Molecular Biomedical Research, VIB, Gent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Gent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab (NRL), VIB Department of Medical Protein Research, Ghent University, Gent, Belgium.
| | - Ilse M Beck
- Laboratory of Experimental Cancer Research (LECR), Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Gent, Belgium
| |
Collapse
|
29
|
Pinart M, Hussain F, Shirali S, Li F, Zhu J, Clark AR, Ammit AJ, Chung KF. Role of mitogen-activated protein kinase phosphatase-1 in corticosteroid insensitivity of chronic oxidant lung injury. Eur J Pharmacol 2014; 744:108-14. [PMID: 25310910 PMCID: PMC4266539 DOI: 10.1016/j.ejphar.2014.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/23/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and in the induction of corticosteroid (CS) insensitivity. Chronic ozone exposure leads to a model of COPD with lung inflammation and emphysema. Mitogen-activated protein kinase phosphatase-1 (MKP-1) may underlie CS insensitivity in COPD. We determined the role played by MKP-1 by studying the effect of corticosteroids in wild-type C57/BL6J and MKP-1−/− mice after chronic ozone exposure. Mice were exposed to ozone (3 ppm, 3 h) 12 times over 6 weeks. Dexamethasone (0.1 or 2 mg/kg; intraperitoneally) was administered before each exposure. Mice were studied 24 h after final exposure. In ozone-exposed C57/BL6J mice, bronchial hyperresponsiveness (BHR) was not inhibited by both doses of dexamethasone, but in MKP-1−/− mice, there was a small inhibition by high dose dexamethasone (2 mg/kg). There was an increase in mean linear intercept after chronic ozone exposure in both strains which was CS-insensitive. There was lesser inflammation after low dose of dexamethasone in MKP-1−/− mice compared to C57/Bl6J mice. Epithelial and collagen areas were modulated in ozone-exposed MKP-1−/− mice treated with dexamethasone compared to C57/Bl6J mice. MKP-1 regulated the expression of MMP-12, IL-13 and KC induced by ozone but did not alter dexamethasone׳s effects. Bronchial hyperresponsiveness, lung inflammation and emphySEMa after chronic exposure are CS-insensitive, and the contribution of MKP-1 to CS sensitivity in this model was negligible.
Collapse
Affiliation(s)
- Mariona Pinart
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Farhana Hussain
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sima Shirali
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Feng Li
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jie Zhu
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andrew R Clark
- Kennedy Institute of Rheumatology Division, Imperial College London, London, UK
| | - Alaina J Ammit
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, NSW, Australia
| | - Kian Fan Chung
- Experimental Studies Unit, Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
30
|
Zhang Y, Leung DYM, Goleva E. Anti-inflammatory and corticosteroid-enhancing actions of vitamin D in monocytes of patients with steroid-resistant and those with steroid-sensitive asthma. J Allergy Clin Immunol 2014; 133:1744-52.e1. [PMID: 24418482 PMCID: PMC4040328 DOI: 10.1016/j.jaci.2013.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/04/2013] [Accepted: 12/06/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND Vitamin D is known for its anti-inflammatory effects. OBJECTIVE Vitamin D regulation of responses in patients with steroid-resistant (SR) versus steroid-sensitive (SS) asthma has not been studied. METHODS Peripheral blood cells from 11 patients with SR asthma and 8 patients with SS asthma were preincubated with 1,25-dihydroxyvitamin D (1,25[OH]2D [VitD]), followed by dexamethasone (DEX) treatment and LPS stimulation. LPS-induced phosphorylated p38 mitogen-activated protein kinase (p-p38) in monocytes was examined by means of flow cytometry. Mitogen-activated protein kinase phosphatase-1 (MKP-1) mRNA expression, which inhibits p-p38, was analyzed by means of real-time PCR. Glucocorticoid receptor (GR) binding and histone H4 acetylation in the glucocorticoid response element of the MKP-1 promoter in monocytes were analyzed by means of chromatin immunoprecipitation. RESULTS DEX significantly inhibited LPS-induced p-p38 in monocytes from patients with SS asthma but not those from patients with SR asthma (P < .01). VitD inhibited LPS-induced p-p38 in monocytes from both patient groups (P < .01) but enhanced DEX suppression of LPS-induced p-p38 only in monocytes from patients with SS asthma (P < .01). VitD induced MKP-1 expression and enhanced DEX induction of MKP-1 in both patients with SS asthma and patients with SR asthma. VitD/DEX-induced MKP-1 mRNA levels remained significantly lower in monocytes from patients with SR asthma (P < .05). DEX-stimulated recruitment of GR and histone H4 acetylation at the glucocorticoid response element 4.6 kbp upstream of the MKP-1 gene were significantly lower in monocytes from patients with SR asthma compared with those from patients with SS asthma. VitD pretreatment enhanced DEX-induced GR binding and histone acetylation in monocytes from both patient groups. However, GR binding and histone H4 acetylation remained significantly lower in monocytes from patients with SR asthma. CONCLUSION VitD demonstrated anti-inflammatory and corticosteroid-enhancing effects in monocytes of patients with SR asthma and patients with SS asthma. However, the responses to corticosteroids in patients with SR asthma remained significantly lower than those in patients with SS asthma.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colo; Department of Pediatrics, University of Colorado Denver, Aurora, Colo
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colo.
| |
Collapse
|
31
|
Osterlund CD, Thompson V, Hinds L, Spencer RL. Absence of glucocorticoids augments stress-induced Mkp1 mRNA expression within the hypothalamic-pituitary-adrenal axis. J Endocrinol 2014; 220:1-11. [PMID: 24287620 PMCID: PMC3869093 DOI: 10.1530/joe-13-0365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stress-induced activation of hypothalamic paraventricular nucleus (PVN) corticotropin-releasing hormone (CRH) neurons trigger CRH release and synthesis. Recent findings have suggested that this process depends on the intracellular activation (phosphorylation) of ERK1/2 within CRH neurons. We have recently shown that the presence of glucocorticoids constrains stress-stimulated phosphorylation of PVN ERK1/2. In some peripheral cell types, dephosphorylation of ERK has been shown to be promoted by direct glucocorticoid upregulation of the MAP kinase phosphatase 1 (Mkp1) gene. In this study, we tested the hypothesis that glucocorticoids regulate Mkp1 mRNA expression in the neural forebrain (medial prefrontal cortex, mPFC, and PVN) and endocrine tissue (anterior pituitary) by subjecting young adult male Sprague-Dawley rats to various glucocorticoid manipulations with or without acute psychological stress (restraint). Restraint led to a rapid increase in Mkp1 mRNA within the mPFC, PVN, and anterior pituitary, and this increase did not require glucocorticoid activity. In contrast to glucocorticoid upregulation of Mkp1 gene expression in the peripheral tissues, we found that the absence of glucocorticoids (as a result of adrenalectomy) augmented basal mPFC and stress-induced PVN and anterior pituitary Mkp1 gene expression. Taken together, this study indicates that the presence of glucocorticoids may constrain Mkp1 gene expression in the neural forebrain and endocrine tissues. This possible constraint may be an indirect consequence of the inhibitory influence of glucocorticoids on stress-induced activation of ERK1/2, a known upstream positive regulator of Mkp1 gene transcription.
Collapse
Affiliation(s)
- Chad D Osterlund
- Department of Psychology and Neuroscience, University of Colorado, UCB 345, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
32
|
Korhonen R, Moilanen E. Mitogen-activated protein kinase phosphatase 1 as an inflammatory factor and drug target. Basic Clin Pharmacol Toxicol 2013; 114:24-36. [PMID: 24112275 DOI: 10.1111/bcpt.12141] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/17/2013] [Indexed: 12/28/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are signaling proteins that are activated through phosphorylation, and they regulate many physiological and pathophysiological processes in cells. Mitogen-activated protein kinase phosphatase 1 (MKP-1) is an inducible nuclear phosphatase that dephosphorylates MAPKs, and thus, it is a negative feedback regulator of MAPK activity. MKP-1 has been found as a key endogenous suppressor of innate immune responses, as well as a regulator of the onset and course of adaptive immune responses. Altered MKP-1 signaling is implicated in chronic inflammatory diseases in man. Interestingly, MKP-1 expression and protein function have been found to be regulated by certain anti-inflammatory drugs, namely by glucocorticoids, antirheumatic gold compounds and PDE4 inhibitors, and MKP-1 has been shown to mediate many of their anti-inflammatory effects. In this Mini Review, we summarize the effect of MKP-1 in the regulation of innate and adaptive immune responses and its role as a potential anti-inflammatory drug target and review recent findings concerning the role of MKP-1 in certain anti-inflammatory drug effects.
Collapse
Affiliation(s)
- Riku Korhonen
- The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland; Department of Clinical Pharmacology &Toxicology, University of Tampere School of Medicine, Tampere, Finland
| | | |
Collapse
|
33
|
Oppong E, Flink N, Cato ACB. Molecular mechanisms of glucocorticoid action in mast cells. Mol Cell Endocrinol 2013; 380:119-26. [PMID: 23707629 DOI: 10.1016/j.mce.2013.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/07/2023]
Abstract
Glucocorticoids are compounds that have successfully been used over the years in the treatment of inflammatory disorders. They are known to exhibit their effects through the glucocorticoid receptor (GR) that acts to downregulate the action of proinflammatory transcription factors such as AP-1 and NF-κB. The GR also exerts anti-inflammatory effects through activation of distinct genes. In addition to their anti-inflammatory actions, glucocorticoids are also potent antiallergic compounds that are widely used in conditions such as asthma and anaphylaxis. Nevertheless the mechanism of action of this hormone in these disorders is not known. In this article, we have reviewed reports on the effects of glucocorticoids in mast cells, one of the important immune cells in allergy. Building on the knowledge of the molecular action of glucocorticoids and the GR in the treatment of inflammation in other cell types, we have made suggestions as to the likely mechanisms of action of glucocorticoids in mast cells. We have further identified some important questions and research directions that need to be addressed in future studies to improve the treatment of allergic disorders.
Collapse
Affiliation(s)
- Emmanuel Oppong
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | | |
Collapse
|
34
|
Serum amyloid A inhibits dendritic cell apoptosis to induce glucocorticoid resistance in CD4(+) T cells. Cell Death Dis 2013; 4:e786. [PMID: 24008730 PMCID: PMC3789185 DOI: 10.1038/cddis.2013.327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 01/17/2023]
Abstract
Mediators produced by the airway epithelium control the activation, recruitment, and survival of pulmonary dendritic cells (DC) that present antigen to CD4(+) T cells during the genesis and exacerbation of allergic asthma. The epithelial-derived acute phase protein, serum amyloid A (SAA), induces DC maturation and TH17 polarization. TH17 responses are associated with severe forms of allergic asthma that are poorly controlled by corticosteroids. We sought to determine whether SAA would enhance the survival of DC during serum starvation and could then contribute to the development of a glucocorticoid-resistant phenotype in CD4(+) T cells. Bone marrow-derived dendritic cells (BMDC) that were serum starved in the presence of SAA were protected from activation of caspase-3 and released less lactate dehydrogenase. In comparison with untreated serum-starved BMDC, treatment with SAA downregulated mRNA expression of the pro-apoptotic molecule Bim, increased production of the pro-survival heat shock protein 70 (HSP70), and induced secretion of pro-inflammatory cytokines. SAA-treated BMDC that were serum starved for 48 h remained capable of presenting antigen and induced OTII CD4(+) T cells to secrete IL-17A, IL-17F, IL-21, IL-22, and IFNγ in the presence of ovalbumin. IL-17A, IL-17F, IL-21, and IFNγ production occurred even when the CD4(+) T cells were treated with dexamethasone (Dex), whereas glucocorticoid treatment abolished cytokine secretion by T cells cocultured with untreated serum-starved BMDC. Measurement of Dex-responsive gene expression demonstrated CD4(+) T cells as the target of glucocorticoid hyperresponsiveness manifest as a consequence of BMDC stimulation by SAA. Finally, allergic airway disease induced by SAA and antigen inhalation was unresponsive to Dex treatment. Our results indicate that apo-SAA affects DC to both prolong their viability and increase their inflammatory potential under apoptosis-inducing conditions. These findings reveal mechanisms through which SAA enhances the CD4(+) T-cell-stimulating capacity of antigen-presenting cells that may actively participate in the pathogenicity of glucocorticoid-resistant lung disease.
Collapse
|
35
|
Seibel MJ, Cooper MS, Zhou H. Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes Endocrinol 2013; 1:59-70. [PMID: 24622268 DOI: 10.1016/s2213-8587(13)70045-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glucocorticoids are widely used for their unsurpassed anti-inflammatory and immunomodulatory effects. However, the therapeutic use of glucocorticoids is almost always limited by substantial adverse outcomes such as osteoporosis, diabetes, and obesity. These unwanted outcomes are a major dilemma for clinicians because improvements in the primary disorder seem to be achievable only by accepting substantial adverse effects that are often difficult to prevent or treat. To understand the pathogenesis of glucocorticoid-induced osteoporosis, it is necessary to consider that the actions of glucocorticoids on bone and mineral metabolism are strongly dose and time dependent. At physiological concentrations, endogenous glucocorticoids are key regulators of mesenchymal cell differentiation and bone development, with additional regulatory roles in renal and intestinal calcium handling. However, at supraphysiological concentrations, glucocorticoids affect the same systems in different and often unfavourable ways. For many years, these anabolic and catabolic actions of glucocorticoids on bone were deemed paradoxical. In this Review, we highlight recent advances in our understanding of the mechanisms underlying the physiology and pathophysiology of glucocorticoid action on the skeleton and discuss present and future management strategies for glucocorticoid-induced osteoporosis.
Collapse
Affiliation(s)
- Markus J Seibel
- Bone Research Program, Concord Hospital, Concord, Sydney, NSW, Australia; ANZAC Research Institute, Concord Hospital, Concord, Sydney, NSW, Australia; Department of Endocrinology and Metabolism, Concord Hospital, Concord, Sydney, NSW, Australia; Concord Clinical School, Concord Hospital, Concord, Sydney, NSW, Australia.
| | - Mark S Cooper
- Adrenal Steroid Laboratory, Concord Hospital, Concord, Sydney, NSW, Australia; ANZAC Research Institute, Concord Hospital, Concord, Sydney, NSW, Australia; Department of Endocrinology and Metabolism, Concord Hospital, Concord, Sydney, NSW, Australia; Concord Clinical School, Concord Hospital, Concord, Sydney, NSW, Australia
| | - Hong Zhou
- Bone Research Program, Concord Hospital, Concord, Sydney, NSW, Australia; Concord Clinical School, Concord Hospital, Concord, Sydney, NSW, Australia
| |
Collapse
|
36
|
Hakim A, Barnes PJ, Adcock IM, Usmani OS. Importin‐7 mediates glucocorticoid receptor nuclear import and is impaired by oxidative stress, leading to glucocorticoid insensitivity. FASEB J 2013; 27:4510-9. [DOI: 10.1096/fj.12-222604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amir Hakim
- National Heart and Lung InstituteImperial College London and Royal Brompton HospitalLondonUK
| | - Peter J. Barnes
- National Heart and Lung InstituteImperial College London and Royal Brompton HospitalLondonUK
| | - Ian M. Adcock
- National Heart and Lung InstituteImperial College London and Royal Brompton HospitalLondonUK
| | - Omar S. Usmani
- National Heart and Lung InstituteImperial College London and Royal Brompton HospitalLondonUK
| |
Collapse
|
37
|
DUSP1 Gene Polymorphisms Are Associated with Obesity-Related Metabolic Complications among Severely Obese Patients and Impact on Gene Methylation and Expression. Int J Genomics 2013; 2013:609748. [PMID: 23986905 PMCID: PMC3748404 DOI: 10.1155/2013/609748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/11/2013] [Indexed: 01/04/2023] Open
Abstract
The DUSP1 gene encodes a member of the dual-specificity phosphatase family previously identified as being differentially expressed in visceral adipose tissue (VAT) of severely obese men with versus without the metabolic syndrome. Objective. To test the association between DUSP1 polymorphisms, obesity-related metabolic complications, gene methylation, and expression levels in VAT. Methods. The DUSP1 locus and promoter region were sequenced in 25 individuals. SNPs were tested for association with obesity-related complications in a cohort of more than 1900 severely obese individuals. The impact of SNPs on methylation levels of 36 CpG sites and correlations between DNA methylation and gene expression levels in VAT were computed in a subset of 14 samples. Results. Heterozygotes for rs881150 had lower HDL-cholesterol levels (HDL-C; P = 0.01), and homozygotes for the minor allele of rs13184134 and rs7702178 had increased fasting glucose levels (P = 0.04 and 0.01, resp.). rs881150 was associated with methylation levels of CpG sites located ~1250 bp upstream the transcription start site. Methylation levels of 4 CpG sites were inversely correlated with DUSP1 gene expression. Conclusion. These results suggest that DUSP1 polymorphisms modulate plasma glucose and HDL-C levels in obese patients possibly through alterations of DNA methylation and gene expression levels.
Collapse
|
38
|
Rhinovirus infection causes steroid resistance in airway epithelium through nuclear factor κB and c-Jun N-terminal kinase activation. J Allergy Clin Immunol 2013; 132:1075-1085.e6. [PMID: 23871663 DOI: 10.1016/j.jaci.2013.05.028] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 05/13/2013] [Accepted: 05/25/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Although inhaled glucocorticoids are the mainstays of asthma treatment, they are poorly effective at treating and preventing virus-induced asthma exacerbations. The major viruses precipitating asthma exacerbations are rhinoviruses. OBJECTIVE We sought to evaluate whether rhinovirus infection interferes with the mechanisms of action of glucocorticoids. METHODS Cultured primary human bronchial or transformed (A549) respiratory epithelial cells were infected with rhinovirus 16 (RV-16) before dexamethasone exposure. Glucocorticoid receptor (GR) α nuclear translocation, glucocorticoid response element (GRE) binding, and transactivation/transrepression functional readouts were evaluated by using immunocytochemistry, Western blotting, DNA binding assays, real-time quantitative PCR, coimmunoprecipitation, and ELISA techniques. Specific inhibitors of c-Jun N-terminal kinase (JNK) and of IκB kinase (IKK) were used to investigate the involvement of intracellular signaling pathways. RESULTS RV-16 infection impaired dexamethasone-dependent (1) inhibition of IL-1β-induced CXCL8 release, (2) induction of mitogen-activated protein kinase phosphatase 1 gene expression, and (3) binding of GR to GREs in airway epithelial cells. This was associated with impaired GRα nuclear translocation, as assessed by means of both immunochemistry (54.0% ± 6.8% vs 24.7% ± 3.8% GR-positive nuclei after 10 nmol/L dexamethasone treatment in sham- or RV-16-infected cells, respectively; P < .01) and Western blotting. RV-16 infection induced nuclear factor κB activation and GRα phosphorylation, which were prevented by inhibitors of IKK2 and JNK, respectively. In rhinovirus-infected cells the combination of JNK and IKK2 inhibitors totally restored dexamethasone suppression of CXCL8 release, induction of mitogen-activated protein kinase phosphatase 1 gene expression, and GRα nuclear translocation. CONCLUSION RV-16 infection of human airway epithelium induces glucocorticoid resistance. Inhibition of RV-16-induced JNK and nuclear factor κB activation fully reversed rhinovirus impairment of both GRα nuclear translocation and the transactivation/transrepression activities of glucocorticoids.
Collapse
|
39
|
Sheela Rani CS, Soto-Pina A, Iacovitti L, Strong R. Evolutionary conservation of an atypical glucocorticoid-responsive element in the human tyrosine hydroxylase gene. J Neurochem 2013; 126:19-28. [PMID: 23647419 DOI: 10.1111/jnc.12294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/19/2013] [Accepted: 05/01/2013] [Indexed: 11/29/2022]
Abstract
The human tyrosine hydroxylase (hTH) gene has a 42 bp evolutionarily conserved region designated (CR) II at -7.24 kb, which bears 93% homology to the region we earlier identified as containing the glucocorticoid response element, a 7 bp activator protein-1 (AP-1)-like motif in the rat TH gene. We cloned this hTH-CRII region upstream of minimal basal hTH promoter in luciferase (Luc) reporter vector, and tested glucocorticoid responsiveness in human cell lines. Dexamethasone (Dex) stimulated Luc activity of hTH-CRII in HeLa cells, while mifepristone, a glucocorticoid receptor (GR) antagonist, prevented Dex stimulation. Deletion of the 7 bp 5'-TGACTAA at -7243 bp completely abolished the Dex-stimulated Luc activity of hTH-CRII construct. The AP-1 agonist, tetradeconoyl-12,13-phorbol acetate (TPA), also stimulated hTH promoter activity, and Dex and TPA together further accentuated this response. Chromatin immunoprecipitation assays revealed the presence of both GR and AP-1 proteins, especially Jun family members, at this hTH promoter site. Dex did not stimulate hTH promoter activity in a catecholaminergic cell line, which had low endogenous GR levels, but did activate the response when GR was expressed exogenously. Thus, our studies have clearly identified a glucocorticoid-responsive element in a 7 bp AP-1-like motif in the promoter region at -7.24 kb of the human TH gene.
Collapse
Affiliation(s)
- C S Sheela Rani
- Department of Pharmacology and the Barshop Institute for Longevity and Aging Studies, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA.
| | | | | | | |
Collapse
|
40
|
Zhang Y, Leung DYM, Goleva E. Vitamin D enhances glucocorticoid action in human monocytes: involvement of granulocyte-macrophage colony-stimulating factor and mediator complex subunit 14. J Biol Chem 2013; 288:14544-14553. [PMID: 23572530 DOI: 10.1074/jbc.m112.427054] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vitamin D (VitD) is now recognized for its pleiotrophic roles in regulating immune function. VitD interaction with other steroid receptor superfamily receptors in peripheral blood mononuclear cells is poorly understood. In the current study, we demonstrate that VitD enhanced glucocorticoid (GC) responses in human peripheral blood mononuclear cells because it stimulated GC induction of mitogen-activated protein kinase phosphatase-1 (MKP-1) and enhanced GC inhibition of LPS-induced IL-6. These VitD effects were abolished in purified CD14(+) and CD14(-) cells but were recovered in CD14(+) cells co-cultured with CD14(-) cells separated by tissue culture inserts. GM-CSF, found in culture supernatants from CD14(-) cells, was shown to mediate VitD enhancement of GC-induced MKP-1 production in monocytes via increased production of mediator complex subunit 14 (MED14). Recruitment of VitD receptor and MED14, 4.7 kbp upstream of the human MKP-1 gene transcription start site, enhanced binding of glucocorticoid receptor and histone H4 acetylation at the 4.6-kbp glucocorticoid response element of the MKP-1 promoter in the presence of GM-CSF in U937 cells. Knockdown of MED14 abolished VitD-mediated enhancement of GC-induced MKP-1 production. These data demonstrate VitD-mediated stimulation of GC anti-inflammatory effects in human monocytes and identify a role for GM-CSF and MED14 as mediators of this process.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206; Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206.
| |
Collapse
|
41
|
Nixon M, Andrew R, Chapman KE. It takes two to tango: dimerisation of glucocorticoid receptor and its anti-inflammatory functions. Steroids 2013; 78:59-68. [PMID: 23127816 DOI: 10.1016/j.steroids.2012.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/28/2012] [Accepted: 09/07/2012] [Indexed: 01/30/2023]
Abstract
For a number of years, there has been a widespread view that the adverse side-effects of prolonged glucocorticoid (GC) treatment are a result of glucocorticoid receptor (GR)-mediated gene activation, whilst the beneficial anti-inflammatory effects result from GR-mediated 'transrepression'. Since the introduction of the dimerisation-deficient GR mutant, GR(dim), was apparently unable to activate gene transcription, yet still able to repress pro-inflammatory gene transcription, the search for novel GR modulators has centred on the separation of gene activation from repression by prevention of GR dimerisation. However, recent work has questioned the conclusions drawn from these early GR(dim) studies, with evidence that GR(dim) mutants not only activate gene transcription, but that, in direct contradiction to the initial GR(dim) work, are also capable of forming dimers. This review of the current literature highlights the versatility of the GR in forming homodimer interactions, as well as the ability to bind to alternate nuclear receptors, and investigates the potential implications such varying GR dimer conformations may have for the design of GR ligands with a safer side effect profile.
Collapse
Affiliation(s)
- Mark Nixon
- Endocrinology, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | | | | |
Collapse
|
42
|
Manetsch M, Ramsay EE, King EM, Seidel P, Che W, Ge Q, Hibbs DE, Newton R, Ammit AJ. Corticosteroids and β₂-agonists upregulate mitogen-activated protein kinase phosphatase 1: in vitro mechanisms. Br J Pharmacol 2012; 166:2049-59. [PMID: 22372570 DOI: 10.1111/j.1476-5381.2012.01923.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Airway remodelling is a consequence of long-term inflammation and MAPKs are key signalling molecules that drive pro-inflammatory pathways. The endogenous MAPK deactivator--MAPK phosphatase 1 (MKP-1)--is a critical negative regulator of the myriad pro-inflammatory pathways activated by MAPKs in the airway. EXPERIMENTAL APPROACH Herein we investigated the molecular mechanisms responsible for the upregulation of MKP-1 in airway smooth muscle (ASM) by the corticosteroid dexamethasone and the β₂-agonist formoterol, added alone and in combination. KEY RESULTS MKP-1 is a corticosteroid-inducible gene whose expression is enhanced by long-acting β₂-agonists in an additive manner. Formoterol induced MKP-1 expression via the β₂-adrenoceptor and we provide the first direct evidence (utilizing overexpression of PKIα, a highly selective PKA inhibitor) to show that PKA mediates β₂-agonist-induced MKP-1 upregulation. Dexamethasone activated MKP-1 transcription in ASM cells via a cis-acting corticosteroid-responsive region located between -1380 and -1266 bp of the MKP-1 promoter. While the 3'-untranslated region of MKP-1 contains adenylate + uridylate elements responsible for regulation at the post-transcriptional level, actinomycin D chase experiments revealed that there was no increase in MKP-1 mRNA stability in the presence of dexamethasone, formoterol, alone or in combination. Rather, there was an additive effect of the asthma therapeutics on MKP-1 transcription. CONCLUSIONS AND IMPLICATIONS Taken together, these studies allow us a greater understanding of the molecular basis of MKP-1 regulation by corticosteroids and β₂-agonists and this new knowledge may lead to elucidation of optimized corticosteroid-sparing therapies in the future.
Collapse
Affiliation(s)
- M Manetsch
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Burke SJ, Goff MR, Updegraff BL, Lu D, Brown PL, Minkin SC, Biggerstaff JP, Zhao L, Karlstad MD, Collier JJ. Regulation of the CCL2 gene in pancreatic β-cells by IL-1β and glucocorticoids: role of MKP-1. PLoS One 2012; 7:e46986. [PMID: 23056550 PMCID: PMC3467264 DOI: 10.1371/journal.pone.0046986] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/07/2012] [Indexed: 02/06/2023] Open
Abstract
Release of pro-inflammatory cytokines from both resident and invading leukocytes within the pancreatic islets impacts the development of Type 1 diabetes mellitus. Synthesis and secretion of the chemokine CCL2 from pancreatic β-cells in response to pro-inflammatory signaling pathways influences immune cell recruitment into the pancreatic islets. Therefore, we investigated the positive and negative regulatory components controlling expression of the CCL2 gene using isolated rat islets and INS-1-derived β-cell lines. We discovered that activation of the CCL2 gene by IL-1β required the p65 subunit of NF-κB and was dependent on genomic response elements located in the -3.6 kb region of the proximal gene promoter. CCL2 gene transcription in response to IL-1β was blocked by pharmacological inhibition of the IKKβ and p38 MAPK pathways. The IL-1β-mediated increase in CCL2 secretion was also impaired by p38 MAPK inhibition and by glucocorticoids. Moreover, multiple synthetic glucocorticoids inhibited the IL-1β-stimulated induction of the CCL2 gene. Induction of the MAP Kinase Phosphatase-1 (MKP-1) gene by glucocorticoids or by adenoviral-mediated overexpression decreased p38 MAPK phosphorylation, which diminished CCL2 gene expression, promoter activity, and release of CCL2 protein. We conclude that glucocorticoid-mediated repression of IL-1β-induced CCL2 gene transcription and protein secretion occurs in part through the upregulation of the MKP-1 gene and subsequent deactivation of the p38 MAPK. Furthermore, the anti-inflammatory actions observed with MKP-1 overexpression were obtained without suppressing glucose-stimulated insulin secretion. Thus, MKP-1 is a possible target for anti-inflammatory therapeutic intervention with preservation of β-cell function.
Collapse
Affiliation(s)
- Susan J. Burke
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Matthew R. Goff
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Barrett L. Updegraff
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Danhong Lu
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Patricia L. Brown
- Advanced Microscopy and Imaging Center, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Steven C. Minkin
- Advanced Microscopy and Imaging Center, University of Tennessee, Knoxville, Tennessee, United States of America
| | - John P. Biggerstaff
- Advanced Microscopy and Imaging Center, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, United States of America
- University of Tennessee Obesity Research Center, Knoxville, Tennessee, United States of America
| | - Michael D. Karlstad
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Surgery, Graduate School of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee, United States of America
- University of Tennessee Obesity Research Center, Knoxville, Tennessee, United States of America
| | - J. Jason Collier
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee, United States of America
- University of Tennessee Obesity Research Center, Knoxville, Tennessee, United States of America
| |
Collapse
|
44
|
Kelly MM, King EM, Rider CF, Gwozd C, Holden NS, Eddleston J, Zuraw B, Leigh R, O'Byrne PM, Newton R. Corticosteroid-induced gene expression in allergen-challenged asthmatic subjects taking inhaled budesonide. Br J Pharmacol 2012; 165:1737-1747. [PMID: 21827450 DOI: 10.1111/j.1476-5381.2011.01620.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Inhaled corticosteroids (ICS) are the cornerstone of asthma pharmacotherapy and, acting via the glucocorticoid receptor (GR), reduce inflammatory gene expression. While this is often attributed to a direct inhibitory effect of the GR on inflammatory gene transcription, corticosteroids also induce the expression of anti-inflammatory genes in vitro. As there are no data to support this effect in asthmatic subjects taking ICS, we have assessed whether ICS induce anti-inflammatory gene expression in subjects with atopic asthma. EXPERIMENTAL APPROACH Bronchial biopsies from allergen-challenged atopic asthmatic subjects taking inhaled budesonide or placebo were subjected to gene expression analysis using real-time reverse transcriptase-PCR for the corticosteroid-inducible genes (official gene symbols with aliases in parentheses): TSC22D3 [glucocorticoid-induced leucine zipper (GILZ)], dual-specificity phosphatase-1 (MAPK phosphatase-1), both anti-inflammatory effectors, and FKBP5 [FK506-binding protein 51 (FKBP51)], a regulator of GR function. Cultured pulmonary epithelial and smooth muscle cells were also treated with corticosteroids before gene expression analysis. KEY RESULTS Compared with placebo, GILZ and FKBP51 mRNA expression was significantly elevated in budesonide-treated subjects. Budesonide also increased GILZ expression in human epithelial and smooth muscle cells in culture. Immunostaining of bronchial biopsies revealed GILZ expression in the airways epithelium and smooth muscle of asthmatic subjects. CONCLUSIONS AND IMPLICATIONS Expression of the corticosteroid-induced genes, GILZ and FKBP51, is up-regulated in the airways of allergen-challenged asthmatic subjects taking inhaled budesonide. Consequently, the biological effects of corticosteroid-induced genes should be considered when assessing the actions of ICS. Treatment modalities that increase or decrease GR-dependent transcription may correspondingly affect corticosteroid efficacy.
Collapse
Affiliation(s)
- M M Kelly
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - E M King
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - C F Rider
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - C Gwozd
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - N S Holden
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - J Eddleston
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - B Zuraw
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - R Leigh
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - P M O'Byrne
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - R Newton
- Airways Inflammation Research Group, Institute of Infection, Immunity and Inflammation, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaAllergy and Immunology Section, University of California, San Diego School of Medicine, La Jolla, CA, USAFirestone Institute for Respiratory Health, St. Joseph's Hospital and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
45
|
Vandevyver S, Dejager L, Van Bogaert T, Kleyman A, Liu Y, Tuckermann J, Libert C. Glucocorticoid receptor dimerization induces MKP1 to protect against TNF-induced inflammation. J Clin Invest 2012; 122:2130-40. [PMID: 22585571 DOI: 10.1172/jci60006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 04/04/2012] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids acting through the glucocorticoid receptor (GR) inhibit TNF-induced lethal inflammation. Here, we demonstrate that GR dimerization plays a role in reducing TNF sensitivity. In mutant mice unable to dimerize GR, we found that TNF failed to induce MAPK phosphatase 1 (MKP1). We assessed TNF sensitivity in Mkp1(-/-) mice and found increased inflammatory gene induction in livers, increased circulating cytokines, cell death in intestinal epithelium, severe intestinal inflammation, hypothermia, and death. Mkp1(-/-) mice had increased levels of phosphorylated JNK, which promotes apoptosis, in liver tissue. We further examined JNK-deficient mice for their response to TNF. Although Jnk1(-/-) mice showed no change in sensitivity to TNF, Jnk2(-/-) mice were significantly protected against TNF, identifying JNK2 as an essential player in inflammation induced by TNF. Furthermore, we found that loss of Jnk2 partially rescued the increased sensitivity of Mkp1(-/-) and mutant GR mice to TNF. Our data show that GR dimerization inhibits JNK2 through MKP1 and protects from TNF-induced apoptosis and lethal inflammation.
Collapse
Affiliation(s)
- Sofie Vandevyver
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
46
|
Joanny E, Ding Q, Gong L, Kong P, Saklatvala J, Clark AR. Anti-inflammatory effects of selective glucocorticoid receptor modulators are partially dependent on up-regulation of dual specificity phosphatase 1. Br J Pharmacol 2012; 165:1124-36. [PMID: 21718312 DOI: 10.1111/j.1476-5381.2011.01574.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE It is thought that the anti-inflammatory effects of glucocorticoids (GCs) are largely due to GC receptor (GR)-mediated transrepression of NF-κB and other transcription factors, whereas side effects are caused by activation of gene expression (transactivation). Selective GR modulators (SGRMs) that preferentially promote transrepression should retain anti-inflammatory properties whilst causing fewer side effects. Contradicting this model, we found that anti-inflammatory effects of the classical GC dexamethasone were partly dependent on transactivation of the dual specificity phosphatase 1 (DUSP1) gene. We wished to determine whether anti-inflammatory effects of SGRMs are also mediated by DUSP1. EXPERIMENTAL APPROACH Dissociated properties of two SGRMs were confirmed using GR- and NF-κB-dependent reporters, and capacity to activate GC-responsive elements of the DUSP1 gene was tested. Effects of SGRMs on the expression of DUSP1 and pro-inflammatory gene products were assessed in various cell lines and in primary murine Dusp1(+/+) and Dusp1(-/-) macrophages. KEY RESULTS The SGRMs were able to up-regulate DUSP1 in several cell types, and this response correlated with the ability of the compounds to suppress COX-2 expression. Several anti-inflammatory effects of SGRMs were ablated or significantly impaired in Dusp1(-/-) macrophages. CONCLUSIONS AND IMPLICATIONS Like dexamethasone, SGRMs appear to exert anti-inflammatory effects partly via the up-regulation of DUSP1. This finding has implications for how potentially therapeutic novel GR ligands are identified and assessed.
Collapse
Affiliation(s)
- Eugénie Joanny
- Kennedy Institute of Rheumatology Division, Imperial College London, Hammersmith, London, UK Roche Palo Alto LLC, Palo Alto, CA, USA
| | | | | | | | | | | |
Collapse
|
47
|
Reber LL, Daubeuf F, Plantinga M, De Cauwer L, Gerlo S, Waelput W, Van Calenbergh S, Tavernier J, Haegeman G, Lambrecht BN, Frossard N, De Bosscher K. A dissociated glucocorticoid receptor modulator reduces airway hyperresponsiveness and inflammation in a mouse model of asthma. THE JOURNAL OF IMMUNOLOGY 2012; 188:3478-87. [PMID: 22393156 DOI: 10.4049/jimmunol.1004227] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The glucocorticoid receptor (GR) is a transcription factor able to support either target gene activation via direct binding to DNA or gene repression via interfering with the activity of various proinflammatory transcription factors. An improved therapeutic profile for combating chronic inflammatory diseases has been reported through selectively modulating the GR by only triggering its transrepression function. We have studied in this paper the activity of Compound A (CpdA), a dissociated GR modulator favoring GR monomer formation, in a predominantly Th2-driven asthma model. CpdA acted similarly to the glucocorticoid dexamethasone (DEX) in counteracting OVA-induced airway hyperresponsiveness, recruitment of eosinophils, dendritic cells, neutrophils, B and T cells, and macrophages in bronchoalveolar lavage fluid, lung Th2, Tc2, Th17, Tc17, and mast cell infiltration, collagen deposition, and goblet cell metaplasia. Both CpdA and DEX inhibited Th2 cytokine production in bronchoalveolar lavage as well as nuclear translocation of NF-κB and its subsequent recruitment onto the IκBα promoter in the lung. By contrast, DEX but not CpdA induces expression of the GR-dependent model gene MAPK phosphatase 1 in the lung, confirming the dissociative action of CpdA. Mechanistically, we demonstrate that CpdA inhibited IL-4-induced STAT6 translocation and that GR is essential for CpdA to mediate chemokine repression. In conclusion, we clearly show in this study the anti-inflammatory effect of CpdA in a Th2-driven asthma model in the absence of transactivation, suggesting a potential therapeutic benefit of this strategy.
Collapse
Affiliation(s)
- Laurent L Reber
- Laboratoire d'Innovation Thérapeutique, Unité Mixte de Recherche 7200, Centre National de la Recherche Scientifique-Université de Strasbourg, Faculté de Pharmacie, F-67400 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Heuck-Knubel K, Proszkowiec-Weglarz M, Narayana J, Ellestad LE, Prakobsaeng N, Porter TE. Identification of cis elements necessary for glucocorticoid induction of growth hormone gene expression in chicken embryonic pituitary cells. Am J Physiol Regul Integr Comp Physiol 2012; 302:R606-19. [DOI: 10.1152/ajpregu.00492.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid (GC) treatment of rat or chicken embryonic pituitary (CEP) cells induces premature production of growth hormone (GH). GC induction of the GH gene requires ongoing protein synthesis, and the GH genes lack a canonical GC response element (GRE). To characterize cis-acting elements and identify trans-acting proteins involved in this process, we characterized the regulation of a luciferase reporter containing a fragment of the chicken GH gene (−1727/+48) in embryonic day 11 CEP cells. Corticosterone (Cort) increased luciferase activity and mRNA expression, and mRNA induction was blocked by protein synthesis inhibition. Through deletion analysis, we identified a GC-responsive region (GCRR) at −1045 to −954. The GCRR includes an ETS-1 binding site and a degenerate GRE (dGRE) half site. Nuclear proteins, including ETS-1, bound to a GCRR probe in electrophoretic mobility shift assays, and Cort regulated protein binding. Using chromatin immunoprecipitation, we found that ETS-1 and GC receptor (GR) were associated with the GCRR in CEP cells, and Cort increased GR recruitment to the GCRR. Mutation of the ETS-1 site or dGRE site in the −1045/+48 GH reporter abolished Cort responsiveness. We conclude that GC regulation of the GH gene during development requires cis-acting elements in the GCRR and involves ETS-1 and GR binding to these elements. Similar ETS-1 elements/dGREs are located in the 5′-flanking regions of GH genes in mammals, including rodents and humans. This is the first study to demonstrate involvement of ETS-1 in GC regulation of the GH gene during embryonic development in any species, enhancing our understanding of GH regulation in vertebrates.
Collapse
Affiliation(s)
| | | | - Jyoti Narayana
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Laura E. Ellestad
- Department of Animal and Avian Sciences and
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Nattiya Prakobsaeng
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Tom E. Porter
- Department of Animal and Avian Sciences and
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| |
Collapse
|
49
|
Wancket LM, Frazier WJ, Liu Y. Mitogen-activated protein kinase phosphatase (MKP)-1 in immunology, physiology, and disease. Life Sci 2012; 90:237-48. [PMID: 22197448 PMCID: PMC3465723 DOI: 10.1016/j.lfs.2011.11.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 11/18/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are key regulators of cellular physiology and immune responses, and abnormalities in MAPKs are implicated in many diseases. MAPKs are activated by MAPK kinases through phosphorylation of the threonine and tyrosine residues in the conserved Thr-Xaa-Tyr domain, where Xaa represents amino acid residues characteristic of distinct MAPK subfamilies. Since MAPKs play a crucial role in a variety of cellular processes, a delicate regulatory network has evolved to control their activities. Over the past two decades, a group of dual specificity MAPK phosphatases (MKPs) has been identified that deactivates MAPKs. Since MAPKs can enhance MKP activities, MKPs are considered as an important feedback control mechanism that limits the MAPK cascades. This review outlines the role of MKP-1, a prototypical MKP family member, in physiology and disease. We will first discuss the basic biochemistry and regulation of MKP-1. Next, we will present the current consensus on the immunological and physiological functions of MKP-1 in infectious, inflammatory, metabolic, and nervous system diseases as revealed by studies using animal models. We will also discuss the emerging evidence implicating MKP-1 in human disorders. Finally, we will conclude with a discussion of the potential for pharmacomodulation of MKP-1 expression.
Collapse
Affiliation(s)
- Lyn M. Wancket
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - W. Joshua Frazier
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| | - Yusen Liu
- Department of Veterinary Bioscience, The Ohio State University College of Veterinary Medicine, Columbus, OH 43221
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205
| |
Collapse
|
50
|
Chen CC, Hardy DB, Mendelson CR. Progesterone receptor inhibits proliferation of human breast cancer cells via induction of MAPK phosphatase 1 (MKP-1/DUSP1). J Biol Chem 2011; 286:43091-102. [PMID: 22020934 DOI: 10.1074/jbc.m111.295865] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of progesterone (P(4)) and of progesterone receptor (PR) in development and pathogenesis of breast cancer remain unclear. In this study, we observed that treatment of T47D breast cancer cells with progestin antagonized effects of fetal bovine serum (FBS) to stimulate cell proliferation, whereas siRNA-mediated knockdown of endogenous PR abrogated progestin-mediated anti-proliferative effects. To begin to define mechanisms for the anti-proliferative action of P(4)/PR, we considered the role of MAPK phosphatase 1 (MKP-1/DUSP1), which catalyzes dephosphorylation and inactivation of MAPKs. Progestin treatment of T47D cells rapidly induced MKP-1 expression in a PR-dependent manner. Importantly, P(4) induction of MKP-1 was associated with reduced levels of phosphorylated ERK1/2, whereas siRNA knockdown of MKP-1 blocked progestin-mediated ERK1/2 dephosphorylation and repression of FBS-induced cell proliferation. The importance of PR in MKP-1 expression was supported by findings that MKP-1 and PR mRNA levels were significantly correlated in 30 human breast cancer cell lines. By contrast, no correlation was observed with the glucocorticoid receptor, a known regulator of MKP-1 in other cell types. ChIP and luciferase reporter assay findings suggest that PR acts in a ligand-dependent manner through binding to two progesterone response elements downstream of the MKP-1 transcription start site to up-regulate MKP-1 promoter activity. PR also interacts with two Sp1 sites just downstream of the transcription start site to increase MKP-1 expression. Collectively, these findings suggest that MKP-1 is a critical mediator of anti-proliferative and anti-inflammatory actions of PR in the breast.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Departments of Biochemistry and Obstetrics & Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|