1
|
Bellot GL, Liu D, Fivaz M, Yadav SK, Kaur C, Pervaiz S. Lanthanide conjugate Pr-MPO elicits anti-cancer activity by targeting lysosomal machinery and inducing zinc-dependent cataplerosis. Cell Commun Signal 2024; 22:509. [PMID: 39427179 PMCID: PMC11490180 DOI: 10.1186/s12964-024-01883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Acquired drug resistance is a major challenge in the management of cancer, which underscores the need for discovery and development of novel therapeutic strategies. We report here the mechanism of the anti-cancer activity of a small coordinate complex composed of the rare earth metal praseodymium (Pr) and mercaptopyridine oxide (MPO; pyrithione). Exposure of cancer cells to relatively low concentrations of the conjugate Pr-MPO (5 µM) significantly impairs cell survival in a p53-independent manner and irrespective of the drug resistant phenotype. Mechanistically, Pr-MPO-induced cell death is caspase-independent, not inhibitable by necrostatin, but associated with the appearance of autophagy markers. However, further analysis revealed incomplete autophagic flux, thus suggesting altered integrity of lysosomal machinery. Supporting the lysosomal targeting activity are data demonstrating increased lysosomal Ca2+ accumulation and alkalinization, which coincides with cytosolic acidification (drop in pHc from 7.75 to 7.00). In parallel, an increase in lysosomal activity of glycosidase alpha acid (GAA), involved in passive glycogen breakdown, correlates with rapid depletion of glucose stores upon Pr-MPO treatment. This is associated with swift cataplerosis of TCA cycle intermediates, loss of NAD+/NADH and increase in pyruvate dehydrogenase (PDH) activity to compensate for pyruvate loss. Addition of exogenous pyruvate rescued cell survival. Notably, lysosomal impairment and metabolic catastrophe triggered by Pr-MPO are suggestive of Zn2+-mediated cytotoxicity, which is confirmed by the ability of Zn2+ chelator TPEN to block Pr-MPO-mediated anti-tumor activity. Together, these results highlight the ability of the small molecule lanthanide conjugate to target the cells' waste clearing machinery as well as mitochondrial metabolism for Zn2+-mediated execution of cancer cells, which could have therapeutic potential against cancers with high metabolic activity.
Collapse
Affiliation(s)
- Gregory Lucien Bellot
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Dan Liu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore, Singapore
| | - Marc Fivaz
- Program in Neuroscience and Behavioral Disorders. Duke-NUS Medical School, Singapore, Singapore
- Present address: reMYND NV. Bio-Incubator, Leuven, Belgium
| | - Sanjiv K Yadav
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, NUS, Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
- Integrative Science and Engineering Programme (ISEP), NUS Graduate School (NUSGS), NUS, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, NUS, Singapore, Singapore.
- National University Cancer Institute, National University Health System, Singapore, Singapore.
| |
Collapse
|
2
|
Zong P, Li CX, Feng J, Cicchetti M, Yue L. TRP Channels in Stroke. Neurosci Bull 2024; 40:1141-1159. [PMID: 37995056 PMCID: PMC11306852 DOI: 10.1007/s12264-023-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/24/2023] Open
Abstract
Ischemic stroke is a devastating disease that affects millions of patients worldwide. Unfortunately, there are no effective medications for mitigating brain injury after ischemic stroke. TRP channels are evolutionally ancient biosensors that detect external stimuli as well as tissue or cellular injury. To date, many members of the TRP superfamily have been reported to contribute to ischemic brain injury, including the TRPC subfamily (1, 3, 4, 5, 6, 7), TRPV subfamily (1, 2, 3, 4) and TRPM subfamily (2, 4, 7). These TRP channels share structural similarities but have distinct channel functions and properties. Their activation during ischemic stroke can be beneficial, detrimental, or even both. In this review, we focus on discussing the interesting features of stroke-related TRP channels and summarizing the underlying cellular and molecular mechanisms responsible for their involvement in ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
- Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT, 06269, USA.
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
| | - Mara Cicchetti
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA
- Department of Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, School of Medicine (UConn Health), University of Connecticut, Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Park CS, Lee JY, Seo KJ, Kim IY, Ju BG, Yune TY. TRPM7 Mediates BSCB Disruption After Spinal Cord Injury by Regulating the mTOR/JMJD3 Axis in Rats. Mol Neurobiol 2024; 61:662-677. [PMID: 37653221 DOI: 10.1007/s12035-023-03617-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
After spinal cord injury (SCI), secondary injuries including blood cells infiltration followed by the production of inflammatory mediators are led by blood-spinal cord barrier (BSCB) breakdown. Therefore, preventing BSCB damage could alleviate the secondary injury progresses after SCI. Recently, we reported that transient receptor potential melastatin 7 channel (TRPM7) expression is increased in vascular endothelial cells after injury and thereby mediates BSCB disruption. However, the mechanism by which TRPM7 regulates BSCB disruption has not been examined yet. In current research, we show that TRPM7 mediates BSCB disruption via mammalian target of rapamycin (mTOR) pathway after SCI in rats. After contusion injury at T9 level of spinal cord, mTOR pathway was activated in the endothelial cells of blood vessels and TRPM7 was involved in the activation of mTOR pathway. BSCB disruption, MMP-2/9 activation, and blood cell infiltration after injury were alleviated by rapamycin, a mTOR signaling inhibitor. Rapamycin also conserved the level of tight junction proteins, which were decreased after SCI. Furthermore, mTOR pathway regulated the expression and activation of histone H3K27 demethylase JMJD3, known as a key epigenetic regulator mediating BSCB damage after SCI. In addition, rapamycin inhibited JMJD3 expression, the loss of tight junction molecules, and MMP-2/9 expression in bEnd.3, a brain endothelial cell line, after oxygen-glucose deprivation/reoxygenation. Thus, our results suggest that TRPM7 contributes to the BSCB disruption by regulating JMJD3 expression through the mTOR pathway after SCI.
Collapse
Affiliation(s)
- Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Jin Seo
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - In Yi Kim
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bong Gun Ju
- Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
4
|
Rios FJ, Sarafian RD, Camargo LL, Montezano AC, Touyz RM. Recent Advances in Understanding the Mechanistic Role of Transient Receptor Potential Ion Channels in Patients With Hypertension. Can J Cardiol 2023; 39:1859-1873. [PMID: 37865227 DOI: 10.1016/j.cjca.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023] Open
Abstract
The transient receptor potential (TRP) channel superfamily is a group of nonselective cation channels that function as cellular sensors for a wide range of physical, chemical, and environmental stimuli. According to sequence homology, TRP channels are categorized into 6 subfamilies: TRP canonical, TRP vanilloid, TRP melastatin, TRP ankyrin, TRP mucolipin, and TRP polycystin. They are widely expressed in different cell types and tissues and have essential roles in various physiological and pathological processes by regulating the concentration of ions (Ca2+, Mg2+, Na+, and K+) and influencing intracellular signalling pathways. Human data and experimental models indicate the importance of TRP channels in vascular homeostasis and hypertension. Furthermore, TRP channels have emerged as key players in oxidative stress and inflammation, important in the pathophysiology of cardiovascular diseases, including hypertension. In this review, we present an overview of the TRP channels with a focus on their role in hypertension. In particular, we highlight mechanisms activated by TRP channels in vascular smooth muscle and endothelial cells and discuss their contribution to processes underlying vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Raquel D Sarafian
- Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Benarroch E. What Are the Functions of Zinc in the Nervous System? Neurology 2023; 101:714-720. [PMID: 37845046 PMCID: PMC10585682 DOI: 10.1212/wnl.0000000000207912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 10/18/2023] Open
|
6
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
7
|
Albrecht EA, Carter JD, Garbar V, Choudhary A, Tomlins SA. Intracellular Zinc Trafficking during Crotalus atrox Venom Wound Development. Int J Mol Sci 2023; 24:ijms24076763. [PMID: 37047742 PMCID: PMC10094922 DOI: 10.3390/ijms24076763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, we examined zinc trafficking in human umbilical vein endothelial cells (HUVEC) stimulated with Crotalus atrox (CA venom) snake venom. We utilized MTS cytotoxicity assays to monitor the cytotoxic range of CA venom. HUVEC monolayers stimulated with 10 µg/mL CA venom for 3 h displayed cellular retraction, which coincided with 53.0 ± 6.5 percent viability. In contrast, venom concentrations of 100 µg/mL produced a complete disruption of cellular adherence and viability decreased to 36.6 ± 1.0. The zinc probe Fluozin-3AM was used to detect intracellular zinc in non-stimulated controls, HUVEC stimulated with 10 µg/mL CA venom or HUVEC preincubated with TPEN for 2 h then stimulated with 10 µg/mL CA venom. Fluorescent intensity analysis returned values of 1434.3 ± 197.4 for CA venom demonstrating an increase of about two orders of magnitude in labile zinc compared to non-stimulated controls. Endothelial response to CA venom induced a 96.1 ± 3.0- and 4.4 ± 0.41-fold increase in metallothionein 1X (MT1X) and metallothionein 2A (MT2A) gene expression. Zinc chelation during CA venom stimulation significantly increased cell viability, suggesting that the maintenance of zinc homeostasis during envenomation injury improves cell survival.
Collapse
Affiliation(s)
- Eric A Albrecht
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Jasmine D Carter
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Veronica Garbar
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Abeeha Choudhary
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Scott A Tomlins
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Hong DK, Kho AR, Lee SH, Kang BS, Park MK, Choi BY, Suh SW. Pathophysiological Roles of Transient Receptor Potential (Trp) Channels and Zinc Toxicity in Brain Disease. Int J Mol Sci 2023; 24:ijms24076665. [PMID: 37047637 PMCID: PMC10094935 DOI: 10.3390/ijms24076665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Maintaining the correct ionic gradient from extracellular to intracellular space via several membrane-bound transporters is critical for maintaining overall cellular homeostasis. One of these transporters is the transient receptor potential (TRP) channel family that consists of six putative transmembrane segments systemically expressed in mammalian tissues. Upon the activation of TRP channels by brain disease, several cations are translocated through TRP channels. Brain disease, especially ischemic stroke, epilepsy, and traumatic brain injury, triggers the dysregulation of ionic gradients and promotes the excessive release of neuro-transmitters and zinc. The divalent metal cation zinc is highly distributed in the brain and is specifically located in the pre-synaptic vesicles as free ions, usually existing in cytoplasm bound with metallothionein. Although adequate zinc is essential for regulating diverse physiological functions, the brain-disease-induced excessive release and translocation of zinc causes cell damage, including oxidative stress, apoptotic cascades, and disturbances in energy metabolism. Therefore, the regulation of zinc homeostasis following brain disease is critical for the prevention of brain damage. In this review, we summarize recent experimental research findings regarding how TRP channels (mainly TRPC and TRPM) and zinc are regulated in animal brain-disease models of global cerebral ischemia, epilepsy, and traumatic brain injury. The blockade of zinc translocation via the inhibition of TRPC and TRPM channels using known channel antagonists, was shown to be neuroprotective in brain disease. The regulation of both zinc and TRP channels may serve as targets for treating and preventing neuronal death.
Collapse
Affiliation(s)
- Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - A Ra Kho
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, College of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Bo Young Choi
- Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
9
|
Yamanaka T, Ueki T, Mase M, Inoue K. Arbitrary Ca 2+ regulation for endothelial nitric oxide, NFAT and NF-κB activities by an optogenetic approach. Front Pharmacol 2023; 13:1076116. [PMID: 36703743 PMCID: PMC9871596 DOI: 10.3389/fphar.2022.1076116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Modern western dietary habits and low physical activity cause metabolic abnormalities and abnormally elevated levels of metabolites such as low-density lipoprotein, which can lead to immune cell activation, and inflammatory reactions, and atherosclerosis. Appropriate stimulation of vascular endothelial cells can confer protective responses against inflammatory reactions and atherosclerotic conditions. This study aims to determine whether a designed optogenetic approach is capable of affecting functional changes in vascular endothelial cells and to evaluate its potential for therapeutic regulation of vascular inflammatory responses in vitro. We employed a genetically engineered, blue light-activated Ca2+ channel switch molecule that utilizes an endogenous store-operated calcium entry system and induces intracellular Ca2+ influx through blue light irradiation and observed an increase in intracellular Ca2+ in vascular endothelial cells. Ca2+-dependent activation of the nuclear factor of activated T cells and nitric oxide production were also detected. Microarray analysis of Ca2+-induced changes in vascular endothelial cells explored several genes involved in cellular contractility and inflammatory responses. Indeed, there was an increase in the gene expression of molecules related to anti-inflammatory and vasorelaxant effects. Thus, a combination of human blue light-activated Ca2+ channel switch 2 (hBACCS2) and blue light possibly attenuates TNFα-induced inflammatory NF-κB activity. We propose that extrinsic cellular Ca2+ regulation could be a novel approach against vascular inflammation.
Collapse
Affiliation(s)
- Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Koichi Inoue,
| |
Collapse
|
10
|
Xu Q, Zou Y, Miao Z, Jiang L, Zhao X. Transient receptor potential ion channels and cerebral stroke. Brain Behav 2023; 13:e2843. [PMID: 36527242 PMCID: PMC9847613 DOI: 10.1002/brb3.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
METHODS The databases Pubmed, and the National Library of Medicine were searched for literature. All papers on celebral stroke and transient receptor potential ion channels were considered. RESULTS Stroke is the second leading cause of death and disability, with an increasing incidence in developing countries. About 75 per cent of strokes are caused by occlusion of cerebral arteries, and substantial advances have been made in elucidating mechanisms how stroke affects the brain. Transient receptor potential (TRP) ion channels are calcium-permeable channels highly expressed in brain that drives Ca2+ entry into multiple cellular compartments. TRPC1/3/4/6, TRPV1/2/4, and TRPM2/4/7 channels have been implicated in stroke pathophysiology. CONCLUSIONS Although the precise mechanism of transient receptor potential ion channels in cerebral stroke is still unclear, it has the potential to be a therapeutic target for patients with stroke if developed appropriately. Hence, more research is needed to prove its efficacy in this context.
Collapse
Affiliation(s)
- Qin'yi Xu
- Department of Neurosurgery, The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Zou
- Department of Neurosurgery, The Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zeng'li Miao
- Department of Neurosurgery, The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Lei Jiang
- Department of Neurosurgery, The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Xu'dong Zhao
- Department of Neurosurgery, The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
11
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
12
|
Carvacrol Inhibits Expression of Transient Receptor Potential Melastatin 7 Channels and Alleviates Zinc Neurotoxicity Induced by Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms232213840. [PMID: 36430333 PMCID: PMC9692658 DOI: 10.3390/ijms232213840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Carvacrol is a monoterpenoid phenol produced by aromatic plants such as oregano. Although the exact mechanism by which carvacrol acts has not yet been established, it appears to inhibit transient receptor potential melastatin 7 (TRPM7), which modulates the homeostasis of metal ions such as zinc and calcium. Several studies have demonstrated that carvacrol has protective effects against zinc neurotoxicity after ischemia and epilepsy. However, to date, no studies have investigated the effect of carvacrol on traumatic brain injury (TBI)-induced zinc neurotoxicity. In the present study, we investigated the therapeutic potential of carvacrol for the prevention of zinc-induced neuronal death after TBI. Rats were subjected to a controlled cortical impact, and carvacrol was injected at a dose of 50 mg/kg. Histological analysis was performed at 12 h, 24 h, and 7 days after TBI. We found that carvacrol reduced TBI-induced TRPM7 over-expression and free zinc accumulation. As a result, subsequent oxidative stress, dendritic damage, and neuronal degeneration were decreased. Moreover, carvacrol not only reduced microglial activation and delayed neuronal death but also improved neurological outcomes after TBI. Taken together, these findings suggest that carvacrol administration may have therapeutic potential after TBI by preventing neuronal death through the inhibition of TRPM7 expression and alleviation of zinc neurotoxicity.
Collapse
|
13
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
14
|
Gao X, Kuo CW, Main A, Brown E, Rios FJ, Camargo LDL, Mary S, Wypijewski K, Gök C, Touyz RM, Fuller W. Palmitoylation regulates cellular distribution of and transmembrane Ca flux through TrpM7. Cell Calcium 2022; 106:102639. [PMID: 36027648 DOI: 10.1016/j.ceca.2022.102639] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022]
Abstract
The bifunctional cation channel/kinase TrpM7 is ubiquitously expressed and regulates embryonic development and pathogenesis of several common diseases. The TrpM7 integral membrane ion channel domain regulates transmembrane movement of divalent cations, and its kinase domain controls gene expression via histone phosphorylation. Mechanisms regulating TrpM7 are elusive. It exists in two populations in the cell: at the cell surface where it controls divalent cation fluxes, and in intracellular vesicles where it controls zinc uptake and release. Here we report that TrpM7 is palmitoylated at a cluster of cysteines at the C terminal end of its Trp domain. Palmitoylation controls the exit of TrpM7 from the endoplasmic reticulum and the distribution of TrpM7 between cell surface and intracellular pools. Using the Retention Using Selective Hooks (RUSH) system, we demonstrate that palmitoylated TrpM7 traffics from the Golgi to the surface membrane whereas non-palmitoylated TrpM7 is sequestered in intracellular vesicles. We identify the Golgi-resident enzyme zDHHC17 and surface membrane-resident enzyme zDHHC5 as responsible for palmitoylating TrpM7 and find that TrpM7-mediated transmembrane calcium uptake is significantly reduced when TrpM7 is not palmitoylated. The closely related channel/kinase TrpM6 is also palmitoylated on the C terminal side of its Trp domain. Our findings demonstrate that palmitoylation controls ion channel activity of TrpM7 and that TrpM7 trafficking is dependant on its palmitoylation. We define a new mechanism for post translational modification and regulation of TrpM7 and other Trps.
Collapse
Affiliation(s)
- Xing Gao
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Chien-Wen Kuo
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Alice Main
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Elaine Brown
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Francisco J Rios
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Livia De Lucca Camargo
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sheon Mary
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Krzysztof Wypijewski
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Caglar Gök
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Rhian M Touyz
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom; Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - William Fuller
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| |
Collapse
|
15
|
Franken GAC, Huynen MA, Martínez-Cruz LA, Bindels RJM, de Baaij JHF. Structural and functional comparison of magnesium transporters throughout evolution. Cell Mol Life Sci 2022; 79:418. [PMID: 35819535 PMCID: PMC9276622 DOI: 10.1007/s00018-022-04442-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022]
Abstract
Magnesium (Mg2+) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg2+ is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg2+ concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg2+ levels, all organisms rely on balanced Mg2+ influx and efflux via Mg2+ channels and transporters. This review compares the structure and the function of prokaryotic Mg2+ transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg2+ homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg2+ transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg2+ transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na+/Mg2+ transporters. In eukaryotes, TRPM6 and TRPM7 Mg2+ channels provide an additional Mg2+ transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg2+ transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg2+ transport.
Collapse
Affiliation(s)
- G A C Franken
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - M A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park, Derio, 48160, Bizkaia, Spain
| | - R J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
16
|
Tauskela JS, Brunette E, Aylsworth A, Zhao X. Neuroprotection against supra-lethal 'stroke in a dish' insults by an anti-excitotoxic receptor antagonist cocktail. Neurochem Int 2022; 158:105381. [PMID: 35764225 DOI: 10.1016/j.neuint.2022.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
The goal of this study was to identify cocktails of drugs able to protect cultured rodent cortical neurons against increasing durations of oxygen-glucose deprivation (OGD). As expected, a cocktail composed of an NMDA and AMPA receptor antagonists and a voltage gated Ca2+ channel blocker (MK-801, CNQX and nifedipine, respectively) provided complete neuroprotection against mild OGD. Increasingly longer durations of OGD necessitated increasing the doses of MK-801 and CNQX, until these cocktails ultimately failed to provide neuroprotection against supra-lethal OGD, even at maximal drug concentrations. Surprisingly, supplementation of any of these cocktails with blockers of TRPM7 channels for increasing OGD durations was not neuroprotective, unless these blockers possessed the ability to inhibit NMDA receptors. Supplementation of the maximally effective cocktail with other NMDA receptor antagonists augmented neuroprotection, suggesting insufficient NMDAR blockade by MK-801. Substitution of MK-801 in cocktails with high concentrations of a glycine site NMDA receptor antagonist caused the greatest improvements in neuroprotection, with the more potent SM-31900 superior to L689,560. Substitution of CQNX in cocktails with AMPA receptor antagonists at high concentrations also improved neuroprotection, particularly with the combination of SYM 2206 and NBQX. The most neuroprotective cocktail was thus composed of SM-31900, SYM2206, NBQX, nifedipine and the antioxidant trolox. Thus, the cumulative properties of antagonist potency and concentration in a cocktail dictate neuroprotective efficacy. The central target of supra-lethal OGD is excitotoxicity, which must be blocked to the greatest extent possible to minimize ion influx.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6.
| | - Eric Brunette
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Amy Aylsworth
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| | - Xigeng Zhao
- National Research Council of Canada, Human Health Therapeutics, Building M-54, 1200 Montreal Road, Ottawa, ON, Canada, K1A 0R6
| |
Collapse
|
17
|
Willekens J, Runnels LW. Impact of Zinc Transport Mechanisms on Embryonic and Brain Development. Nutrients 2022; 14:2526. [PMID: 35745255 PMCID: PMC9231024 DOI: 10.3390/nu14122526] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/04/2022] Open
Abstract
The trace element zinc (Zn) binds to over ten percent of proteins in eukaryotic cells. Zn flexible chemistry allows it to regulate the activity of hundreds of enzymes and influence scores of metabolic processes in cells throughout the body. Deficiency of Zn in humans has a profound effect on development and in adults later in life, particularly in the brain, where Zn deficiency is linked to several neurological disorders. In this review, we will summarize the importance of Zn during development through a description of the outcomes of both genetic and early dietary Zn deficiency, focusing on the pathological consequences on the whole body and brain. The epidemiology and the symptomology of Zn deficiency in humans will be described, including the most studied inherited Zn deficiency disease, Acrodermatitis enteropathica. In addition, we will give an overview of the different forms and animal models of Zn deficiency, as well as the 24 Zn transporters, distributed into two families: the ZIPs and the ZnTs, which control the balance of Zn throughout the body. Lastly, we will describe the TRPM7 ion channel, which was recently shown to contribute to intestinal Zn absorption and has its own significant impact on early embryonic development.
Collapse
Affiliation(s)
| | - Loren W. Runnels
- Department of Pharmacology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
18
|
Okura A, Inoue K, Sakuma E, Takase H, Ueki T, Mase M. SGK1 in Schwann cells is a potential molecular switch involved in axonal and glial regeneration during peripheral nerve injury. Biochem Biophys Res Commun 2022; 607:158-165. [DOI: 10.1016/j.bbrc.2022.03.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
|
19
|
Souza Bomfim GH, Niemeyer BA, Lacruz RS, Lis A. On the Connections between TRPM Channels and SOCE. Cells 2022; 11:1190. [PMID: 35406753 PMCID: PMC8997886 DOI: 10.3390/cells11071190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.
Collapse
Affiliation(s)
- Guilherme H. Souza Bomfim
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Barbara A. Niemeyer
- Department of Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany;
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA;
| | - Annette Lis
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
20
|
Park CS, Lee JY, Choi HY, Yune TY. Suppression of TRPM7 by carvacrol protects against injured spinal cord by inhibiting blood-spinal cord barrier disruption. J Neurotrauma 2022; 39:735-749. [PMID: 35171694 DOI: 10.1089/neu.2021.0338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When the blood-spinal cord barrier (BSCB) is disrupted after a spinal cord injury (SCI), several pathophysiological cascades occur, including inflammation and apoptotic cell death of neurons and oligodendrocytes, resulting in permanent neurological deficits. Transient receptor potential melastatin 7 (TRPM7) is involved in the pathological processes in many neuronal diseases, including traumatic brain injury, amyotrophic lateral sclerosis, parkinsonism dementia, and Alzheimer's disease. Furthermore, carvacrol (CAR), a TRPM7 inhibitor, is known to protect against SCI by reducing oxidative stress and inhibiting the endothelial nitric oxide synthase pathway. However, the functions of TRPM7 in the regulation of BSCB homeostasis after SCI have not been examined. Here, we demonstrated that TRPM7, a calcium-mediated non-selective divalent cation channel, plays a critical role after SCI in rats. Rats were contused at T9 and given CAR (50 mg/kg) via intraperitoneally immediately and 12 hours after SCI, and then given the same dose once a day for 7 days. TRPM7 was found to be up-regulated after SCI in both in vitro and in vivo studies, and it was expressed in blood vessels alongside neurons and oligodendrocytes. Additionally, CAR treatment suppressed BSCB disruption by inhibiting the loss of TJ proteins and preserved TJ integrity. CAR also reduced apoptotic cell death and improved functional recovery after SCI by preventing BSCB disruption caused by blood infiltration and inflammatory responses. Based on these findings, we propose that blocking the TRPM7 channel can inhibit the destruction of the BSCB and it is a potential target in therapeutic drug development for use in SCI.
Collapse
Affiliation(s)
- Chan S Park
- Kyung Hee University, 26723, Dongdaemun-gu, Seoul, Korea (the Republic of);
| | - Jee Youn Lee
- Kyung Hee University, 26723, Seoul, Korea (the Republic of);
| | - Hye Y Choi
- Kyung Hee University, 26723, Age-Related and Brain Diseases Research Center, Seoul, Korea (the Republic of);
| | - Tae Y Yune
- Kyung Hee University, 26723, Age-Related and Brain Diseases Research Center, Seoul, Korea (the Republic of);
| |
Collapse
|
21
|
Zong P, Lin Q, Feng J, Yue L. A Systemic Review of the Integral Role of TRPM2 in Ischemic Stroke: From Upstream Risk Factors to Ultimate Neuronal Death. Cells 2022; 11:491. [PMID: 35159300 PMCID: PMC8834171 DOI: 10.3390/cells11030491] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ischemic stroke causes a heavy health burden worldwide, with over 10 million new cases every year. Despite the high prevalence and mortality rate of ischemic stroke, the underlying molecular mechanisms for the common etiological factors of ischemic stroke and ischemic stroke itself remain unclear, which results in insufficient preventive strategies and ineffective treatments for this devastating disease. In this review, we demonstrate that transient receptor potential cation channel, subfamily M, member 2 (TRPM2), a non-selective ion channel activated by oxidative stress, is actively involved in all the important steps in the etiology and pathology of ischemic stroke. TRPM2 could be a promising target in screening more effective prophylactic strategies and therapeutic medications for ischemic stroke.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| | - Qiaoshan Lin
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA;
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConnHealth), Farmington, CT 06030, USA; (P.Z.); (J.F.)
| |
Collapse
|
22
|
Al Dera H, Alassiri M, Al Kahtani R, Eleawa SM, AlMulla MK, Alamri A. Melatonin attenuates cerebral hypoperfusion-induced hippocampal damage and memory deficits in rats by suppressing TRPM7 channels. Saudi J Biol Sci 2022; 29:2958-2968. [PMID: 35531206 PMCID: PMC9073071 DOI: 10.1016/j.sjbs.2022.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
This study was conducted to examine if modulating transporters like transient receptor potential cation channels, subfamily M, member 7 (TRPM7) underlies the hippocampal neuroprotection afforded by melatonin (Mel) in rats exposed to cerebral hypoperfusion (CHP). Experimental groups included control, Mel-treated (1.87 g/kg), CHP, and CHP + Mel (1.87 g/kg)-treated rats. CHP was induced by the permanent bilateral occlusion of the common carotid arteries (2VO) method and treatments were conducted for 7 days, orally. Mel prevented the damage of the dental gyrus and memory loss in CHP rats and inhibited the hippocampal reactive oxygen species (ROS), lipid peroxidation levels of tumor necrosis factor-α (TNF-α), interleukine-6 (IL-6), interleukine-1 beta (IL-1β), and prostaglandin E2 (PGE2). It also reduced the hippocampal transcription of the TRPM7 channels and lowered levels of calcium (Ca2+) and zinc (Zn2+). Mel Also enhanced the levels of total glutathione (GSH) and superoxide dismutase (SOD) in the hippocampus of the control and CHP-treated rats. In conclusion, downregulation of TRPM7 seems to be one mechanism underlying the neuroprotective effect of Mel against global ischemia and is triggered by its antioxidant potential.
Collapse
|
23
|
Bai Z, Feng J, Franken GAC, Al’Saadi N, Cai N, Yu AS, Lou L, Komiya Y, Hoenderop JGJ, de Baaij JHF, Yue L, Runnels LW. CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. PLoS Biol 2021; 19:e3001496. [PMID: 34928937 PMCID: PMC8726484 DOI: 10.1371/journal.pbio.3001496] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/04/2022] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Magnesium is essential for cellular life, but how it is homeostatically controlled still remains poorly understood. Here, we report that members of CNNM family, which have been controversially implicated in both cellular Mg2+ influx and efflux, selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. Coexpression of CNNMs with the channel markedly increased uptake of divalent cations, which is prevented by an inactivating mutation to the channel’s pore. Knockout (KO) of TRPM7 in cells or application of the TRPM7 channel inhibitor NS8593 also interfered with CNNM-stimulated divalent cation uptake. Conversely, KO of CNNM3 and CNNM4 in HEK-293 cells significantly reduced TRPM7-mediated divalent cation entry, without affecting TRPM7 protein expression or its cell surface levels. Furthermore, we found that cellular overexpression of phosphatases of regenerating liver (PRLs), known CNNMs binding partners, stimulated TRPM7-dependent divalent cation entry and that CNNMs were required for this activity. Whole-cell electrophysiological recordings demonstrated that deletion of CNNM3 and CNNM4 from HEK-293 cells interfered with heterologously expressed and native TRPM7 channel function. We conclude that CNNMs employ the TRPM7 channel to mediate divalent cation influx and that CNNMs also possess separate TRPM7-independent Mg2+ efflux activities that contribute to CNNMs’ control of cellular Mg2+ homeostasis. Magnesium is essential for cellular life, but how is it homeostatically controlled? This study shows that proteins of the CNNM family bind to the TRPM7 channel to stimulate divalent cation entry into cells, independent of their function in regulating magnesium ion efflux.
Collapse
Affiliation(s)
- Zhiyong Bai
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jianlin Feng
- UCONN Health Center, Farmington, New Mexico, United States of America
| | | | - Namariq Al’Saadi
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- University of Misan, Amarah, Iraq
| | - Na Cai
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Albert S. Yu
- UCONN Health Center, Farmington, New Mexico, United States of America
| | - Liping Lou
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yuko Komiya
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | | | | | - Lixia Yue
- UCONN Health Center, Farmington, New Mexico, United States of America
| | - Loren W. Runnels
- Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
24
|
Modulation of inflammatory responses by fractalkine signaling in microglia. PLoS One 2021; 16:e0252118. [PMID: 34019594 PMCID: PMC8139449 DOI: 10.1371/journal.pone.0252118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Reactive microglia are suggested to be involved in neurological disorders, and the mechanisms underlying microglial activity may provide insights into therapeutic strategies for neurological diseases. Microglia produce immunological responses to various stimuli, which include fractalkine (FKN or CX3CL1). CX3CR1, a FKN receptor, is present in microglial cells, and when FKN is applied before lipopolysaccharide (LPS) administration, LPS-induced inflammatory responses are inhibited, suggesting that the activation of the FKN signal is beneficial. Considering the practical administration for treatment, we investigated the influence of FKN on immunoreactive microglia using murine primary microglia and BV-2, a microglial cell line. The administration of LPS leads to nitric oxide (NO) production. NO was reduced when FKN was administered 4 h after LPS administration without a change in inducible nitric oxide synthase expression. In contrast, morphological changes, migratory activity, and proliferation were not altered by delayed FKN treatment. LPS decreases the CX3CR1 mRNA concentration, and the overexpression of CX3CR1 restores the FKN-mediated decrease in NO. CX3CR1 overexpression decreased the NO production that is mediated by LPS even without the application of FKN. ATP and ethanol also reduced CX3CR1 mRNA concentrations. In conclusion, the delayed FKN administration modified the LPS-induced microglial activation. The FKN signals were attenuated by a reduction in CX3CR1 by some inflammatory stimuli, and this modulated the inflammatory response of microglial cells, at least partially.
Collapse
|
25
|
Inoue H, Murayama T, Kobayashi T, Konishi M, Yokoyama U. The zinc-binding motif of TRPM7 acts as an oxidative stress sensor to regulate its channel activity. J Gen Physiol 2021; 153:212116. [PMID: 33999118 PMCID: PMC8129778 DOI: 10.1085/jgp.202012708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 01/03/2023] Open
Abstract
The activity of the TRPM7 channel is negatively regulated by intracellular Mg2+. We previously reported that oxidative stress enhances the inhibition of TRPM7 by intracellular Mg2+. Here, we aimed to clarify the mechanism underlying TRPM7 inhibition by hydrogen peroxide (H2O2). Site-directed mutagenesis of full-length TRPM7 revealed that none of the cysteines other than C1809 and C1813 within the zinc-binding motif of the TRPM7 kinase domain were involved in the H2O2-induced TRPM7 inhibition. Mutation of C1809 or C1813 prevented expression of full-length TRPM7 on the plasma membrane. We therefore developed an assay to functionally reconstitute full-length TRPM7 by coexpressing the TRPM7 channel domain (M7cd) and the TRPM7 kinase domain (M7kd) as separate proteins in HEK293 cells. When M7cd was expressed alone, the current was inhibited by intracellular Mg2+ more strongly than that of full-length TRPM7 and was insensitive to oxidative stress. Coexpression of M7cd and M7kd attenuated the inhibition by intracellular Mg2+ and restored sensitivity to oxidative stress, indicating successful reconstitution of a full-length TRPM7-like current. We observed a similar effect when M7cd was coexpressed with the kinase-inactive mutant M7kd-K1645R, suggesting that the kinase activity is not essential for the reconstitution. However, coexpression of M7cd and M7kd carrying a mutation at either C1809 or C1813 failed to restore the full-length TRPM7-like current. No reconstitution was observed when using M7kd carrying a mutation at H1750 and H1807, which are involved in the zinc-binding motif formation with C1809 and C1813. These data suggest that the zinc-binding motif is essential for the intracellular Mg2+-dependent regulation of the TRPM7 channel activity by its kinase domain and that the cysteines in the zinc-binding motif play a role in the oxidative stress response of TRPM7.
Collapse
Affiliation(s)
- Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masato Konishi
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
26
|
Krall RF, Tzounopoulos T, Aizenman E. The Function and Regulation of Zinc in the Brain. Neuroscience 2021; 457:235-258. [PMID: 33460731 DOI: 10.1016/j.neuroscience.2021.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Nearly sixty years ago Fredrich Timm developed a histochemical technique that revealed a rich reserve of free zinc in distinct regions of the brain. Subsequent electron microscopy studies in Timm- stained brain tissue found that this "labile" pool of cellular zinc was highly concentrated at synaptic boutons, hinting a possible role for the metal in synaptic transmission. Although evidence for activity-dependent synaptic release of zinc would not be reported for another twenty years, these initial findings spurred decades of research into zinc's role in neuronal function and revealed a diverse array of signaling cascades triggered or regulated by the metal. Here, we delve into our current understanding of the many roles zinc plays in the brain, from influencing neurotransmission and sensory processing, to activating both pro-survival and pro-death neuronal signaling pathways. Moreover, we detail the many mechanisms that tightly regulate cellular zinc levels, including metal binding proteins and a large array of zinc transporters.
Collapse
Affiliation(s)
- Rebecca F Krall
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA
| | - Thanos Tzounopoulos
- Department of Otolaryngology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA.
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, USA; Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
27
|
Jeong JH, Lee SH, Kho AR, Hong DK, Kang DH, Kang BS, Park MK, Choi BY, Choi HC, Lim MS, Suh SW. The Transient Receptor Potential Melastatin 7 (TRPM7) Inhibitors Suppress Seizure-Induced Neuron Death by Inhibiting Zinc Neurotoxicity. Int J Mol Sci 2020; 21:ijms21217897. [PMID: 33114331 PMCID: PMC7663745 DOI: 10.3390/ijms21217897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) is an ion channel that mediates monovalent cations out of cells, as well as the entry of divalent cations, such as zinc, magnesium, and calcium, into the cell. It has been reported that inhibitors of TRPM7 are neuroprotective in various neurological diseases. Previous studies in our lab suggested that seizure-induced neuronal death may be caused by the excessive release of vesicular zinc and the subsequent accumulation of zinc in the neurons. However, no studies have evaluated the effects of carvacrol and 2-aminoethoxydiphenyl borate (2-APB), both inhibitors of TRPM7, on the accumulation of intracellular zinc in dying neurons following seizure. Here, we investigated the therapeutic efficacy of carvacrol and 2-APB against pilocarpine-induced seizure. Carvacrol (50 mg/kg) was injected once per day for 3 or 7 days after seizure. 2-APB (2 mg/kg) was also injected once per day for 3 days after seizure. We found that inhibitors of TRPM7 reduced seizure-induced TRPM7 overexpression, intracellular zinc accumulation, and reactive oxygen species production. Moreover, there was a suppression of oxidative stress, glial activation, and the blood–brain barrier breakdown. In addition, inhibitors of TRPM7 remarkably decreased apoptotic neuron death following seizure. Taken together, the present study demonstrates that TRPM7-mediated zinc translocation is involved in neuron death after seizure. The present study suggests that inhibitors of TRPM7 may have high therapeutic potential to reduce seizure-induced neuron death.
Collapse
Affiliation(s)
- Jeong Hyun Jeong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Song Hee Lee
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - A Ra Kho
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Dae Ki Hong
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Dong Hyeon Kang
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Beom Seok Kang
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Min Kyu Park
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
| | - Bo Young Choi
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Hui Chul Choi
- Department of Neurology, Hallym University, College of Medicine, Chuncheon 24252, Korea
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Man-Sup Lim
- Department of Medical Education, Hallym University, College of Medicine, Chuncheon 24252, Korea
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| | - Sang Won Suh
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 24252, Korea; (J.H.J.); (S.H.L.); (A.R.K.); (D.K.H.); (D.H.K.); (B.S.K.); (M.K.P.)
- Correspondence: (B.Y.C.); (H.C.C.); (M.-S.L.); (S.W.S.); Tel.: +82-10-8573-6364 (S.W.S.)
| |
Collapse
|
28
|
Wei S, Low SW, Poore CP, Chen B, Gao Y, Nilius B, Liao P. Comparison of Anti-oncotic Effect of TRPM4 Blocking Antibody in Neuron, Astrocyte and Vascular Endothelial Cell Under Hypoxia. Front Cell Dev Biol 2020; 8:562584. [PMID: 33195194 PMCID: PMC7604339 DOI: 10.3389/fcell.2020.562584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022] Open
Abstract
In stroke and other neurological diseases, Transient Receptor Potential Melastatin 4 (TRPM4) has been reported to cause oncotic cell death which is due to an excessive influx of sodium ions. Following stroke, hypoxia condition activates TRPM4 channel, and the sodium influx via TRPM4 is further enhanced by an increased TRPM4 expression. However, the effect of TRPM4 inhibition on oncotic cell death, particularly during the acute stage, remains largely unknown. Recently, we have developed a polyclonal antibody M4P that specifically inhibits TRPM4 channel. M4P blocks the channel via binding to a region close to the channel pore from extracellular space. Using M4P, we evaluated the acute effect of blocking TRPM4 in neurons, astrocytes, and vascular endothelial cells. In a rat stroke model, M4P co-localized with neuronal marker NeuN and endothelial marker vWF, whereas few GFAP positive astrocytes were stained by M4P in the ipsilateral hemisphere. When ATP was acutely depleted in cultured cortical neurons and microvascular endothelial cells, cell swelling was induced. Application of M4P significantly blocked TRPM4 current and attenuated oncosis. TUNEL assay, PI staining and western blot on cleaved Caspase-3 revealed that M4P could ameliorate apoptosis after 24 h hypoxia exposure. In contrast, acute ATP depletion in cultured astrocytes failed to demonstrate an increase of cell volume, and application of M4P or control IgG had no effect on cell volume change. When TRPM4 was overexpressed in astrocytes, acute ATP depletion successfully induced oncosis which could be suppressed by M4P treatment. Our results demonstrate that comparing to astrocytes, neurons, and vascular endothelial cells are more vulnerable to hypoxic injury. During the acute stage of stroke, blocking TRPM4 channel could protect neurons and vascular endothelial cells from oncotic cell death.
Collapse
Affiliation(s)
- Shunhui Wei
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - See Wee Low
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Charlene Priscilla Poore
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Bo Chen
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Yahui Gao
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore
| | - Bernd Nilius
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ping Liao
- Calcium Signaling Laboratory, Department of Research, National Neuroscience Institute, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
| |
Collapse
|
29
|
Loviscach L, Backes TM, Langfermann DS, Ulrich M, Thiel G. Zn 2+ ions inhibit gene transcription following stimulation of the Ca 2+ channels Ca v1.2 and TRPM3. Metallomics 2020; 12:1735-1747. [PMID: 33030499 DOI: 10.1039/d0mt00180e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zinc, a trace element, is necessary for the correct structure and function of many proteins. Therefore, Zn2+ has to be taken up by the cells, using specific Zn2+ transporters or Ca2+ channels. In this study, we have focused on two Ca2+ channels, the L-type voltage-gated Cav1.2 channel and the transient receptor potential channel TRPM3. Stimulation of either channel induces an intracellular signaling cascade leading to the activation of the transcription factor AP-1. The influx of Ca2+ ions into the cytoplasm is essential for this activity. We asked whether extracellular Zn2+ ions affect Cav1.2 or TRPM3-induced gene transcription following stimulation of the channels. The results show that extracellular Zn2+ ions reduced the activation of AP-1 by more than 80% following stimulation of either voltage-gated Cav1.2 channels or TRPM3 channels. Experiments performed with cells maintained in Ca2+-free medium revealed that Zn2+ ions cannot replace Ca2+ ions in inducing gene transcription via stimulation of Cav1.2 and TRPM3 channels. Re-addition of Ca2+ ions to the cell culture medium, however, restored the ability of these Ca2+ channels to induce a signaling cascade leading to the activation of AP-1. Secretory cells, including neurons and pancreatic β-cells, release Zn2+ ions during exocytosis. We propose that the released Zn2+ ions function as a negative feedback loop for stimulus-induced exocytosis by inhibiting Ca2+ channel signaling.
Collapse
Affiliation(s)
- Louisa Loviscach
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | | | | | | | | |
Collapse
|
30
|
Mellott A, Rockwood J, Zhelay T, Luu CT, Kaitsuka T, Kozak JA. TRPM7 channel activity in Jurkat T lymphocytes during magnesium depletion and loading: implications for divalent metal entry and cytotoxicity. Pflugers Arch 2020; 472:1589-1606. [PMID: 32964285 DOI: 10.1007/s00424-020-02457-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
TRPM7 is a cation channel-protein kinase highly expressed in T lymphocytes and other immune cells. It has been proposed to constitute a cellular entry pathway for Mg2+ and divalent metal cations such as Ca2+, Zn2+, Cd2+, Mn2+, and Ni2+. TRPM7 channels are inhibited by cytosolic Mg2+, rendering them largely inactive in intact cells. The dependence of channel activity on extracellular Mg2+ is less well studied. Here, we measured native TRPM7 channel activity in Jurkat T cells maintained in external Mg2+ concentrations varying between 400 nM and 1.4 mM for 1-3 days, obtaining an IC50 value of 54 μM. Maintaining the cells in 400 nM or 8 μM [Mg2+]o resulted in almost complete activation of TRPM7 in intact cells, due to cytosolic Mg2+ depletion. A total of 1.4 mM [Mg2+]o was sufficient to fully eliminate the basal current. Submillimolar concentrations of amiloride prevented cellular Mg2+ depletion but not loading. We investigated whether the cytotoxicity of TRPM7 permeant metal ions Ni2+, Zn2+, Cd2+, Co2+, Mn2+, Sr2+, and Ba2+ requires TRPM7 channel activity. Mg2+ loading modestly reduced cytotoxicity of Zn2+, Co2+, Ni2+, and Mn2+ but not of Cd2+. Channel blocker NS8593 reduced Co2+ and Mn2+ but not Cd2+ or Zn2+ cytotoxicity and interfered with Mg2+ loading as evaluated by TRPM7 channel basal activity. Ba2+ and Sr2+ were neither detectably toxic nor permeant through the plasma membrane. These results indicate that in Jurkat T cells, entry of toxic divalent metal cations primarily occurs through pathways distinct from TRPM7. By contrast, we found evidence that Mg2+ entry requires TRPM7 channels.
Collapse
Affiliation(s)
- Alayna Mellott
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Charles Tuan Luu
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Taku Kaitsuka
- School of Pharmacy in Fukuoka, International University of Health and Welfare, Enokizu 137-1, Okawa, Fukuoka, Japan
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
31
|
Protein Kinase C Regulates ASIC1a Protein Expression and Channel Function via NF-kB Signaling Pathway. Mol Neurobiol 2020; 57:4754-4766. [PMID: 32783140 DOI: 10.1007/s12035-020-02056-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Tissue acidosis is a common feature in many pathological conditions. Activation of acid-sensing ion channel 1a (ASIC1a) plays a key role in acidosis-mediated neurotoxicity. Protein kinase C (PKC) activity has been proved to be associated with many physiological processes and pathological conditions; however, whether PKC activation regulates ASIC1a protein expression and channel function remains ill defined. In this study, we demonstrated that treatment with phorbol 12-myristate 13-acetate (PMA, a PKC activator) for 6 h significantly increased ASIC1a protein expression and ASIC currents in NS20Y cells, a neuronal cell line, and in primary cultured mouse cortical neurons. In contrast, treatment with Calphostin C (a nonselective PKC inhibitor) for 6 h or longer decreased ASIC1a protein expression and ASIC currents. Similar to Calphostin C, PKC α and βI inhibitor Go6976 exposure also reduced ASIC1a protein expression. The reduction in ASIC1a protein expression by PKC inhibition involves a change in ASIC1a protein degradation, which is mediated by ubiquitin-proteasome system (UPS)-dependent degradation pathway. In addition, we showed that PKC regulation of ASIC1a protein expression involves NF-κB signaling pathway. Consistent with their effects on ASIC1a protein expression and channel function, PKC inhibition protected NS20Y cells against acidosis-induced cytotoxicity, while PKC activation potentiated acidosis-induced cells injury. Together, these results indicate that ASIC1a protein expression and channel function are closely regulated by the activity of protein kinase C and its downstream signaling pathway(s).
Collapse
|
32
|
Transcriptomic Profiling of Ca2+ Transport Systems During the Formation of the Cerebral Cortex in Mice. Cells 2020; 9:cells9081800. [PMID: 32751129 PMCID: PMC7465657 DOI: 10.3390/cells9081800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/05/2023] Open
Abstract
Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11–E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ “leak” channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels. At the end of neurogenesis (E17 and onward), a more numerous and diverse population of Ca2+ uptake systems was observed. In addition to the actors listed above, prominent Ca2+-conducting systems of the cortical wall emerged, including acid-sensing ion channel 1 (ASIC1), Orai2, P2X2, and GluN1. Altogether, this study provides a detailed view of the pattern of expression of the main actors participating in the import, export, and release of Ca2+. This work can serve as a framework for further functional and mechanistic studies on Ca2+ signaling during cerebral cortex formation.
Collapse
|
33
|
Numata T, Sato-Numata K, Okada Y. TRPM7 is involved in acid-induced necrotic cell death in a manner sensitive to progesterone in human cervical cancer cells. Physiol Rep 2020; 7:e14157. [PMID: 31293101 PMCID: PMC6640595 DOI: 10.14814/phy2.14157] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Because intravaginal pH is strongly acidic, it is important to investigate the effects of acidosis on cervical cancer cells. Recently, in response to strong acidosis, human cervical cancer HeLa cells were shown to exhibit necrosis after showing persistent cell swelling induced by Cl− influx. Since cation influx should be accompanied with Cl− influx to drive water inflow causing cell swelling, we here studied on the nature of acidotoxic cation conductance. The mRNA/protein expression was assessed by RT‐PCR and Western blotting. Ionic currents were measured by patch‐clamping techniques. Cell counting/viability and colorimetric assays were applied to assess proliferation rate and caspase 3/7 activity, respectively. Cell volume and size were measured by electronic sizing and video‐microscopic measurements, respectively. Acid exposure enhanced TRPM7 activity endogenously expressed in HeLa cells and exogenously overexpressed in HEK293T cells. Gene silencing of TRPM7 abolished acid‐induced cell swelling and necrosis but rather induced activation of apoptotic caspase 3/7 in HeLa cells. Overexpression with the pore charge‐neutralizing D1054A mutant suppressed acid‐enhanced cation currents, acid‐induced cell swelling, and acidotoxic necrosis in HEK293T cells. Progesterone treatment was surprisingly found to suppress molecular and functional expression of TRPM7 and cell proliferation in HeLa cells. Furthermore, in the progesterone‐treated cells, acid exposure did not induce persistent cell swelling followed by necrosis but induced persistent cell shrinkage and apoptotic cell death. These results indicate that in the human cervical cancer cells, TRPM7 is essentially involved in acidotoxic necrotic cell death, and progesterone inhibits TRPM7 expression thereby inhibiting acidotoxic necrosis by switching to apoptosis.
Collapse
Affiliation(s)
- Tomohiro Numata
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka, Japan
| | | | - Yasunobu Okada
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
34
|
Kang BS, Choi BY, Kho AR, Lee SH, Hong DK, Jeong JH, Kang DH, Park MK, Suh SW. An Inhibitor of the Sodium-Hydrogen Exchanger-1 (NHE-1), Amiloride, Reduced Zinc Accumulation and Hippocampal Neuronal Death after Ischemia. Int J Mol Sci 2020; 21:ijms21124232. [PMID: 32545865 PMCID: PMC7352629 DOI: 10.3390/ijms21124232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acidosis in the brain plays an important role in neuronal injury and is a common feature of several neurological diseases. It has been reported that the sodium–hydrogen exchanger-1 (NHE-1) is a key mediator of acidosis-induced neuronal injury. It modulates the concentration of intra- and extra-cellular sodium and hydrogen ions. During the ischemic state, excessive sodium ions enter neurons and inappropriately activate the sodium–calcium exchanger (NCX). Zinc can also enter neurons through voltage-gated calcium channels and NCX. Here, we tested the hypothesis that zinc enters the intracellular space through NCX and the subsequent zinc accumulation induces neuronal cell death after global cerebral ischemia (GCI). Thus, we conducted the present study to confirm whether inhibition of NHE-1 by amiloride attenuates zinc accumulation and subsequent hippocampus neuronal death following GCI. Mice were subjected to GCI by bilateral common carotid artery (BCCA) occlusion for 30 min, followed by restoration of blood flow and resuscitation. Amiloride (10 mg/kg, intraperitoneally (i.p.)) was immediately injected, which reduced zinc accumulation and neuronal death after GCI. Therefore, the present study demonstrates that amiloride attenuates GCI-induced neuronal injury, likely via the prevention of intracellular zinc accumulation. Consequently, we suggest that amiloride may have a high therapeutic potential for the prevention of GCI-induced neuronal death.
Collapse
Affiliation(s)
- Beom Seok Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Jeong Hyun Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Dong Hyeon Kang
- Department of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Korea;
| | - Min Kyu Park
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea; (B.S.K.); (B.Y.C.); (A.R.K.); (S.H.L.); (D.K.H.); (J.H.J.); (M.K.P.)
- Correspondence: ; Tel.: +82-10-8573-6364
| |
Collapse
|
35
|
Zhou R, Leng T, Yang T, Chen F, Hu W, Xiong ZG. β-Estradiol Protects Against Acidosis-Mediated and Ischemic Neuronal Injury by Promoting ASIC1a (Acid-Sensing Ion Channel 1a) Protein Degradation. Stroke 2019; 50:2902-2911. [PMID: 31412757 PMCID: PMC6756944 DOI: 10.1161/strokeaha.119.025940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/12/2019] [Indexed: 01/01/2023]
Abstract
Background and Purpose- Sex differences in the incidence and outcome of stroke have been well documented. The severity of stroke in women is, in general, significantly lower than that in men, which is mediated, at least in part, by the protective effects of β-estradiol. However, the detailed mechanisms underlying the neuroprotection by β-estradiol are still elusive. Recent studies have demonstrated that activation of ASIC1a (acid-sensing ion channel 1a) by tissue acidosis, a common feature of brain ischemia, plays an important role in ischemic brain injury. In the present study, we assessed the effects of β-estradiol on acidosis-mediated and ischemic neuronal injury both in vitro and in vivo and explored the involvement of ASIC1a and underlying mechanism. Methods- Cultured neurons and NS20Y cells were subjected to acidosis-mediated injury in vitro. Cell viability and cytotoxicity were measured by methylthiazolyldiphenyl-tetrazolium bromide and lactate dehydrogenase assays, respectively. Transient (60 minutes) focal ischemia in mice was induced by suture occlusion of the middle cerebral artery in vivo. ASIC currents were recorded using whole-cell patch-clamp technique while intracellular Ca2+ concentration was measured with fluorescence imaging using Fura-2. ASIC1a expression was detected by Western blotting and quantitative real-time polymerase chain reaction. Results- Treatment of neuronal cells with β-estradiol decreased acidosis-induced cytotoxicity. ASIC currents and acid-induced elevation of intracellular Ca2+ were all attenuated by β-estradiol treatment. In addition, we showed that β-estradiol treatment reduced ASIC1a protein expression, which was mediated by increased protein degradation, and that estrogen receptor α was involved. Finally, we showed that the level of ASIC1a protein expression in brain tissues and the degree of neuroprotection by ASIC1a blockade were lower in female mice, which could be attenuated by ovariectomy. Conclusions- β-estradiol can protect neurons against acidosis-mediated neurotoxicity and ischemic brain injury by suppressing ASIC1a protein expression and channel function. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Renpeng Zhou
- From the Department of Pharmacology, the Second Hospital of Anhui Medical University, China (R.Z., W.H.)
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| | - Tiandong Leng
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| | - Tao Yang
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| | - Feihu Chen
- Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, China (F.C.)
| | - Wei Hu
- From the Department of Pharmacology, the Second Hospital of Anhui Medical University, China (R.Z., W.H.)
| | - Zhi-Gang Xiong
- Department of Neurobiology, Morehouse School of Medicine, Atlanta (R.Z., T.L., T.Y., Z.X.)
| |
Collapse
|
36
|
Emodin inhibits zinc-induced neurotoxicity in neuroblastoma SH-SY5Y cells. Biosci Rep 2019; 39:BSR20182378. [PMID: 31023967 PMCID: PMC6522748 DOI: 10.1042/bsr20182378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Emodin is a natural anthraquinone derivative with numerous beneficial effects, including antioxidant properties, anti-tumor activities, and protecting the nerves. Zinc-induced neurotoxicity plays a crucial role in the pathogenesis of vascular dementia (VD) and Parkinson’s disease (PD). Here, the protective activity of emodin inhibiting zinc-induced neurotoxicity and its molecular mechanisms such as cellular Zn2+ influx and zinc-induced gene expression were examined using human neuroblastoma cells (SH-SY5Y cells). Our findings showed that emodin obviously enhanced cell viability and reduced cell apoptosis and lactate dehydrogenase release. Bedsides, we detected a decrease of intracellular Zn2+ concentration after SH-SY5Y cells were pretreated with emodin. Simultaneously, the expression of zinc transporter-1, metallothionein-1, and metallothionein-2 were weakened in emodin-pretreated SH-SY5Y cells. In addition, emodin prevented the depletion of NAD+ and ATP induced by zinc. Emodin also reduced intracellular reactive oxygen species and endoplasmic reticulum-stress levels. Strikingly, emodin elevated SH-SY5Y cell viability and inhibited cell apoptosis caused by AMP-activated protein kinase signaling pathway activation. Thus, emodin could protect against neurotoxicity induced by Zn2+ in neuroblastoma SH-SY5Y cells. It is expected to have future therapeutic potential for VD or PD and other neurodegenerative diseases.
Collapse
|
37
|
Zou ZG, Rios FJ, Montezano AC, Touyz RM. TRPM7, Magnesium, and Signaling. Int J Mol Sci 2019; 20:E1877. [PMID: 30995736 PMCID: PMC6515203 DOI: 10.3390/ijms20081877] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme that possesses an ion channel permeable to the divalent cations Mg2+, Ca2+, and Zn2+, and an α-kinase that phosphorylates downstream substrates. TRPM7 and its homologue TRPM6 have been implicated in a variety of cellular functions and is critically associated with intracellular signaling, including receptor tyrosine kinase (RTK)-mediated pathways. Emerging evidence indicates that growth factors, such as EGF and VEGF, signal through their RTKs, which regulate activity of TRPM6 and TRPM7. TRPM6 is primarily an epithelial-associated channel, while TRPM7 is more ubiquitous. In this review we focus on TRPM7 and its association with growth factors, RTKs, and downstream kinase signaling. We also highlight how interplay between TRPM7, Mg2+ and signaling kinases influences cell function in physiological and pathological conditions, such as cancer and preeclampsia.
Collapse
Affiliation(s)
- Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
38
|
Matveeva MV, Samoilova YG, Zhukova NG, Kudlay DA, Rotkank MA, Leyman OP. Rare genetic markers of cognitive impairment in diabetes mellitus. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:76-79. [DOI: 10.17116/jnevro201911902176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Carvacrol Attenuates Hippocampal Neuronal Death after Global Cerebral Ischemia via Inhibition of Transient Receptor Potential Melastatin 7. Cells 2018; 7:cells7120231. [PMID: 30486272 PMCID: PMC6315386 DOI: 10.3390/cells7120231] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 02/07/2023] Open
Abstract
Over the last two decades, evidence supporting the concept of zinc-induced neuronal death has been introduced, and several intervention strategies have been investigated. Vesicular zinc is released into the synaptic cleft, where it then translocates to the cytoplasm, which leads to the production of reactive oxygen species and neurodegeneration. Carvacrol inhibits transient receptor potential melastatin 7 (TRPM7), which regulates the homeostasis of extracellular metal ions, such as calcium and zinc. In the present study, we test whether carvacrol displays any neuroprotective effects after global cerebral ischemia (GCI), via a blockade of zinc influx. To test our hypothesis, we used eight-week-old male Sprague–Dawley rats, and a GCI model was induced by bilateral common carotid artery occlusion (CCAO), accompanied by blood withdrawal from the femoral artery. Ischemic duration was defined as a seven-minute electroencephalographic (EEG) isoelectric period. Carvacrol (50 mg/kg) was injected into the intraperitoneal space once per day for three days after the onset of GCI. The present study found that administration of carvacrol significantly decreased the number of degenerating neurons, microglial activation, oxidative damage, and zinc translocation after GCI, via downregulation of TRPM7 channels. These findings suggest that carvacrol, a TRPM7 inhibitor, may have therapeutic potential after GCI by reducing intracellular zinc translocation.
Collapse
|
40
|
Abstract
Evidence from both preclinical and clinical studies suggest the importance of zinc homeostasis in seizures/epilepsy. Undoubtedly, zinc, via modulation of a variety of targets, is necessary for maintaining the balance between neuronal excitation and inhibition, while an imbalance between excitation and inhibition underlies seizures. However, the relationship between zinc signaling and seizures/epilepsy is complex as both extracellular and intracellular zinc may produce either protective or detrimental effects. This review provides an overview of preclinical/behavioral, functional and molecular studies, as well as clinical data on the involvement of zinc in the pathophysiology and treatment of seizures/epilepsy. Furthermore, the potential of targeting elements associated with zinc signaling or homeostasis and zinc levels as a therapeutic strategy for epilepsy is discussed.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Katarzyna Młyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
41
|
Zhou RP, Leng TD, Yang T, Chen FH, Xiong ZG. Acute Ethanol Exposure Promotes Autophagy-Lysosome Pathway-Dependent ASIC1a Protein Degradation and Protects Against Acidosis-Induced Neurotoxicity. Mol Neurobiol 2018; 56:3326-3340. [PMID: 30120732 DOI: 10.1007/s12035-018-1289-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Tissue acidosis is a common feature of brain ischemia which causes neuronal injury. Activation of acid-sensing ion channel 1a (ASIC1a) plays an important role in acidosis-mediated neurotoxicity. Acute ethanol administration has been shown to provide neuroprotective effects during ischemic stroke, but the precise mechanisms have yet to be determined. In this study, we investigated the effect of ethanol on the activity/expression of ASIC1a channels and acidosis-induced neurotoxicity. We showed that acute treatment of neuronal cells with ethanol for more than 3 h could reduce ASIC1a protein expression, ASIC currents, and acid-induced [Ca2+]i elevation. We further demonstrated that ethanol-induced reduction of ASIC1a expression is mediated by autophagy-lysosome pathway (ALP)-dependent protein degradation. Finally, we showed that ethanol protected neuronal cells against acidosis-induced cytotoxicity, which effect was mimicked by autophagy activator rapamycin and abolished by autophagy inhibitor CQ. Together, these results indicate that moderate acute ethanol exposure can promote autophagy-lysosome pathway-dependent ASIC1a protein degradation and protect against acidosis-induced neurotoxicity.
Collapse
Affiliation(s)
- Ren-Peng Zhou
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, 230601, China
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA
| | - Tian-Dong Leng
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA
| | - Tao Yang
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| | - Zhi-Gang Xiong
- Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, 30310, USA.
| |
Collapse
|
42
|
Nadolni W, Zierler S. The Channel-Kinase TRPM7 as Novel Regulator of Immune System Homeostasis. Cells 2018; 7:cells7080109. [PMID: 30126133 PMCID: PMC6115979 DOI: 10.3390/cells7080109] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
The enzyme-coupled transient receptor potential channel subfamily M member 7, TRPM7, has been associated with immunity and immune cell signalling. Here, we review the role of this remarkable signalling protein in lymphocyte proliferation, differentiation, activation and survival. We also discuss its role in mast cell, neutrophil and macrophage function and highlight the potential of TRPM7 to regulate immune system homeostasis. Further, we shed light on how the cellular signalling cascades involving TRPM7 channel and/or kinase activity culminate in pathologies as diverse as allergic hypersensitivity, arterial thrombosis and graft versus host disease (GVHD), stressing the need for TRPM7 specific pharmacological modulators.
Collapse
Affiliation(s)
- Wiebke Nadolni
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Goethestr. 33, 80336 Munich, Germany.
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Goethestr. 33, 80336 Munich, Germany.
| |
Collapse
|
43
|
Huang Y, Leng TD, Inoue K, Yang T, Liu M, Horgen FD, Fleig A, Li J, Xiong ZG. TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis. J Biol Chem 2018; 293:14393-14406. [PMID: 30076216 DOI: 10.1074/jbc.ra117.001032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
High-glucose (HG) levels and hyperglycemia associated with diabetes are known to cause neuronal damage. The detailed molecular mechanisms, however, remain to be elucidated. Here, we investigated the role of transient receptor potential melastatin 7 (TRPM7) channels in HG-mediated endoplasmic reticulum stress (ERS) and injury of NS20Y neuronal cells. The cells were incubated in the absence or presence of HG for 48 h. We found that mRNA and protein levels of TRPM7 and of ERS-associated proteins, such as C/EBP homologous protein (CHOP), 78-kDa glucose-regulated protein (GRP78), and inducible nitric-oxide synthase (iNOS), increased in HG-treated cells, along with significantly increased TRPM7-associated currents in these cells. Similar results were obtained in cerebral cortical tissue from an insulin-deficiency model of diabetic mice. Moreover, HG treatment of cells activated ERS-associated proapoptotic caspase activity and induced cellular injury. Interestingly, a NOS inhibitor, l-NAME, suppressed the HG-induced increase of TRPM7 expression and cellular injury. siRNA-mediated TRPM7 knockdown or chemical inhibition of TRPM7 activity also suppressed HG-induced ERS and decreased cleaved caspase-12/caspase-3 levels and cell injury. Of note, TRPM7 overexpression increased ERS and cell injury independently of its kinase activity. Taken together, our findings suggest that TRPM7 channel activities play a key role in HG-associated ERS and cytotoxicity through an apoptosis-inducing signaling cascade involving HG, iNOS, TRPM7, ERS proteins, and caspases.
Collapse
Affiliation(s)
- Yan Huang
- From the School of Pharmacy, Anhui Medical University, Hefei 230032, China.,the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - Tian-Dong Leng
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310,
| | - Koichi Inoue
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310.,the Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tao Yang
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - Mingli Liu
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310
| | - F David Horgen
- the Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, and
| | - Andrea Fleig
- the Laboratory of Cell and Molecular Signaling, Center for Biomedical Research at The Queen's Medical Center and University of Hawaii John A. Burns School of Medicine and Cancer Center, Honolulu, Hawaii 96813
| | - Jun Li
- From the School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhi-Gang Xiong
- the Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, 30310,
| |
Collapse
|
44
|
Asai H, Inoue K, Sakuma E, Shinohara Y, Ueki T. Potential implication of SGK1-dependent activity change in BV-2 microglial cells. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2018; 10:115-123. [PMID: 29755644 PMCID: PMC5943610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
It has recently been established that microglial activation is involved in the pathophysiology of various neurological and psychiatric disorders such as amyotrophic lateral sclerosis and schizophrenia. The pathological molecular machineries underlying microglial activation and its accelerating molecules have been precisely described in the diseased central nervous system (CNS). However, to date, the details of physiological mechanism, which represses microglial activation, are still to be elucidated. Our latest report demonstrated that serum- and glucocorticoid-inducible kinases (SGK1 and SGK3) were expressed in multiple microglial cell lines, and their inhibitor enhanced the toxic effect of lipopolysaccharide on microglial production of inflammatory substances such as TNFα and iNOS. In the present report, we prepared SGK1-lacked microglial cell line (BV-2) and demonstrated that deficiency of SGK1 in microglia induced its toxic conversion, in which it took amoeboid morphology characteristic of reactive microglia, increased CD68 expression, quickened its proliferation, and showed higher susceptibility to ATP and subsequent cell death. Our data indicate that SGK1 plays pivotal roles in inhibiting its pathological activation, and suggest its potential function as a therapeutic target for the treatment of various disorders related to the inflammation in the CNS.
Collapse
Affiliation(s)
- Hayato Asai
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences Nagoya 467-8601, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences Nagoya 467-8601, Japan
| | - Eisuke Sakuma
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences Nagoya 467-8601, Japan
| | - Yoshiaki Shinohara
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences Nagoya 467-8601, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences Nagoya 467-8601, Japan
| |
Collapse
|
45
|
Zhu D, Su Y, Zheng Y, Fu B, Tang L, Qin YX. Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39. Am J Physiol Cell Physiol 2018; 314:C404-C414. [PMID: 29351417 PMCID: PMC5966790 DOI: 10.1152/ajpcell.00279.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023]
Abstract
Zn2+ is an essential element for cell survival/growth, and its deficiency is linked to many disorders. Extracellular Zn2+ concentration changes participate in modulating fundamental cellular processes such as proliferation, secretion, ion transport, and cell signal transduction in a mechanism that is not well understood. Here, we hypothesize that the Zn2+-sensing receptor ZnR/G protein-coupled receptor 39 (GPR39), found in tissues where dynamic Zn2+ homeostasis takes place, enables extracellular Zn2+ to trigger intracellular signaling pathways regulating key cell functions in vascular cells. Thus, we investigated how extracellular Zn2+ regulates cell viability, proliferation, motility, angiogenesis, vascular tone, and inflammation through ZnR/GPR39 in endothelial cells. Knockdown of GPR39 through siRNA largely abolished Zn2+-triggered cellular activity changes, Ca2+ responses, as well as the downstream activation of Gαq-PLC pathways. Extracellular Zn2+ promoted vascular cell survival/growth through activation of cAMP and Akt as well as overexpressing of platelet-derived growth factor-α receptor and vascular endothelial growth factor A. It also enhanced cell adhesion and mobility, endothelial tubule formation, and cytoskeletal reorganization. Such effects from extracellular Zn2+ were not observed in GPR39-/- endothelial cells. Zn2+ also regulated inflammation-related key molecules such as heme oxygenase-1, selectin L, IL-10, and platelet endothelial cell adhesion molecule 1, as well as vascular tone-related prostaglandin I2 synthase and nitric oxide synthase-3. In sum, extracellular Zn2+ regulates endothelial cell activity in a ZnR/GPR39-dependent manner and through the downstream Gαq-PLC pathways. Thus, ZnR/GPR39 may be a therapeutic target for regulating endothelial activity.
Collapse
Affiliation(s)
- Donghui Zhu
- Department of Biomedical Engineering, University of North Texas , Denton, Texas
| | - Yingchao Su
- Department of Biomedical Engineering, University of North Texas , Denton, Texas
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University , Beijing , China
| | - Bingmei Fu
- Department of Biomedical Engineering, The City College of the City University of New York , New York, New York
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington , Arlington, Texas
| | - Yi-Xian Qin
- Department of Biomedical Engineering, State University of New York at Stony Brook , Stony Brook, New York
| |
Collapse
|
46
|
Li J, Zheng Y, Li M, Yang C, Liu Y. Tanshinone IIA alleviates lipopolysaccharide-induced acute lung injury by downregulating TRPM7 and pro-inflammatory factors. J Cell Mol Med 2018; 22:646-654. [PMID: 29047214 PMCID: PMC5742685 DOI: 10.1111/jcmm.13350] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
The study aimed to investigate the role of Tanshinone IIA (Tan IIA) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) in its regulation of TRPM7. Wistar male rats were randomly divided into the normal saline (NS), LPS, knockout (KO) + LPS, low-dose Tan IIA (Tan-L), middle-dose Tan IIA (Tan-M), high-dose Tan IIA (Tan-H) and KO + high-dose Tan IIA (KO + Tan-H) groups. The level of tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, TRPM7 protein expression, current density-voltage curve and Ca2+ concentration were detected through ELISA, Western blotting, electrophysiological experiment and a calcium-imaging technique, respectively. The rats in the KO + LPS, Tan-L, Tan-M, Tan-H and KO + Tan-H groups all displayed lower levels of TNF-α, IL-1β and IL-6 than the LPS group. Rats in the KO + Tan-H group exhibited lower levels of NF-α, IL-1β and IL-6 than rats in the Tan-H group. Elevated levels of TRPM7 protein expression in the LPS and Tan groups were detected in comparison with the NS group. However, TRPM7 protein expression in Tan-M and Tan-H groups was notably lower than in that of the LPS group. In comparison with the NS group, the LPS and Tan groups had a greater PIMs cell density and a higher concentration of Ca2+ . Contrary results were observed in the KO + LPS, Tan-H and KO + Tan-H groups. Tan IIA decreases calcium influx in PIMs and inhibits pro-inflammatory factors which provide an alleviatory effect in regards to LPS-induced ALI by suppressing TRPM7 expression.
Collapse
Affiliation(s)
- Jie Li
- Department of Geriatricsthe First Hospital of Jilin UniversityChangchunChina
| | - Yan Zheng
- Department of Geriatricsthe First Hospital of Jilin UniversityChangchunChina
| | - Ming‐Xian Li
- Department of Respiratorythe First Hospital of Jilin UniversityChangchunChina
| | - Chu‐Wei Yang
- Emergency Departmentthe Second Hospital of Dalian Medical UniversityDalianChina
| | - Yu‐Fei Liu
- Emergency Departmentthe Second Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
47
|
Lin J, Xiong ZG. TRPM7 is a unique target for therapeutic intervention of stroke. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:211-216. [PMID: 29348798 PMCID: PMC5770518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Ischemic stroke is a leading cause of death and long-term disabilities. The current therapy is limited to thrombolysis and mechanical recanalization, which have limited success. A better understanding of the mechanisms underlying ischemic brain injury is therefore needed for the development of more effective interventions. Glutamate receptor-mediated Ca2+ overload and neurotoxicity have been well established for decades. However, clinical trials failed to show a satisfactory effect with the antagonists of glutamate receptors. Other glutamate-independent mechanisms, such as activation of acid-sensing ion channels and transient receptor potential melastatin 7 (TRPM7), have recently emerged as important events responsible for neuronal injury under ischemic conditions. In this review, we discuss how TRPM7 channels participate in ischemic brain injury.
Collapse
Affiliation(s)
- Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony BrookNY 11794-8480, USA
| | - Zhi-Gang Xiong
- Department of Neurobiology, MRC219, Morehouse School of MedicineAtlanta, GA 30310, USA
| |
Collapse
|
48
|
Komiya Y, Bai Z, Cai N, Lou L, Al-Saadi N, Mezzacappa C, Habas R, Runnels LW. A Nonredundant Role for the TRPM6 Channel in Neural Tube Closure. Sci Rep 2017; 7:15623. [PMID: 29142255 PMCID: PMC5688082 DOI: 10.1038/s41598-017-15855-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/19/2017] [Indexed: 01/17/2023] Open
Abstract
In humans, germline mutations in Trpm6 cause autosomal dominant hypomagnesemia with secondary hypocalcemia disorder. Loss of Trpm6 in mice also perturbs cellular magnesium homeostasis but additionally results in early embryonic lethality and neural tube closure defects. To define the mechanisms by which TRPM6 influences neural tube closure, we functionally characterized the role of TRPM6 during early embryogenesis in Xenopus laevis. The expression of Xenopus TRPM6 (XTRPM6) is elevated at the onset of gastrulation and is concentrated in the lateral mesoderm and ectoderm at the neurula stage. Loss of XTRPM6 produced gastrulation and neural tube closure defects. Unlike XTRPM6's close homologue XTRPM7, whose loss interferes with mediolateral intercalation, depletion of XTRPM6 but not XTRPM7 disrupted radial intercalation cell movements. A zinc-influx assay demonstrated that TRPM6 has the potential to constitute functional channels in the absence of TRPM7. The results of our study indicate that XTRPM6 regulates radial intercalation with little or no contribution from XTRPM7 in the region lateral to the neural plate, whereas XTRPM7 is mainly involved in regulating mediolateral intercalation in the medial region of the neural plate. We conclude that both TRPM6 and TRPM7 channels function cooperatively but have distinct and essential roles during neural tube closure.
Collapse
Affiliation(s)
- Yuko Komiya
- Rutgers-Robert Wood Johnson Medical School, Deptartment of Pharmacology, Piscataway, 08854, USA.
| | - Zhiyong Bai
- Rutgers-Robert Wood Johnson Medical School, Deptartment of Pharmacology, Piscataway, 08854, USA
| | - Na Cai
- Rutgers-Robert Wood Johnson Medical School, Deptartment of Pharmacology, Piscataway, 08854, USA
| | - Liping Lou
- Rutgers-Robert Wood Johnson Medical School, Deptartment of Pharmacology, Piscataway, 08854, USA
| | - Namariq Al-Saadi
- Rutgers-Robert Wood Johnson Medical School, Deptartment of Pharmacology, Piscataway, 08854, USA
| | | | - Raymond Habas
- Temple University, Deptartment of Biology, Philadelphia, 19122, USA.
| | - Loren W Runnels
- Rutgers-Robert Wood Johnson Medical School, Deptartment of Pharmacology, Piscataway, 08854, USA.
| |
Collapse
|
49
|
Steinritz D, Zehfuß F, Stenger B, Schmidt A, Popp T, Kehe K, Mückter H, Thiermann H, Gudermann T. Zinc chloride-induced TRPA1 activation does not contribute to toxicity in vitro. Toxicol Lett 2017; 293:133-139. [PMID: 28919489 DOI: 10.1016/j.toxlet.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
The hygroscopic zinc chloride (ZnCl2) is often used to generate smoke screens. Severe adverse pulmonary health effects have been associated with inhalation of ZnCl2 smokes. The underlying molecular toxicology is not known. Recent studies have shown that the Transient Receptor Potential Channel A1 (TRPA1) is important for sensing toxic chemicals. TRPA1 was shown to be activated by Zn2+ which was linked to pain and inflammation. In the present study, we investigated whether TRPA1 activation contributes to ZnCl2-mediated toxicity in vitro. HEK wildtype (HEK-wt), TRPA1 overexpressing HEK (HEK-A1) and A549 lung cells, endogenously expressing TRPA1, were exposed to ZnCl2. Changes of intracellular calcium levels [Ca2+]i and cell viability were assessed after ZnCl2 exposure in all cell types, without or with TRPA1 inhibition. ZnCl2 increased [Ca2+]i through TRPA1 channels in a complex manner in both HEK-A1 and A549 cells while HEK-wt did not respond to ZnCl2. There was no difference in toxicity between HEK-wt and HEK-A1 cells after ZnCl2 exposure. Inhibition of TRPA1 did not influence toxicity in all investigated cells. Thus, our in vitro results support the assumption that TRPA1 does not primarily mediate toxicity of ZnCl2 and does probably not represent a therapeutic target to abate ZnCl2 toxicity.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Franziska Zehfuß
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Bernhard Stenger
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Bundeswehr University Munich, Faculty of Human Sciences, 85577 Neubiberg, Germany
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Kai Kehe
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; Bundeswehr Medical Academy, 80937 Munich, Germany
| | - Harald Mückter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Thomas Gudermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| |
Collapse
|
50
|
Shank3 Is Part of a Zinc-Sensitive Signaling System That Regulates Excitatory Synaptic Strength. J Neurosci 2017; 36:9124-34. [PMID: 27581454 DOI: 10.1523/jneurosci.0116-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/08/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Shank3 is a multidomain scaffold protein localized to the postsynaptic density of excitatory synapses. Functional studies in vivo and in vitro support the concept that Shank3 is critical for synaptic plasticity and the trans-synaptic coupling between the reliability of presynaptic neurotransmitter release and postsynaptic responsiveness. However, how Shank3 regulates synaptic strength remains unclear. The C terminus of Shank3 contains a sterile alpha motif (SAM) domain that is essential for its postsynaptic localization and also binds zinc, thus raising the possibility that changing zinc levels modulate Shank3 function in dendritic spines. In support of this hypothesis, we find that zinc is a potent regulator of Shank3 activation and dynamics in rat hippocampal neurons. Moreover, we show that zinc modulation of synaptic transmission is Shank3 dependent. Interestingly, an autism spectrum disorder (ASD)-associated variant of Shank3 (Shank3(R87C)) retains its zinc sensitivity and supports zinc-dependent activation of AMPAR-mediated synaptic transmission. However, elevated zinc was unable to rescue defects in trans-synaptic signaling caused by the R87C mutation, implying that trans-synaptic increases in neurotransmitter release are not necessary for the postsynaptic effects of zinc. Together, these data suggest that Shank3 is a key component of a zinc-sensitive signaling system, regulating synaptic strength that may be impaired in ASD. SIGNIFICANCE STATEMENT Shank3 is a postsynaptic protein associated with neurodevelopmental disorders such as autism and schizophrenia. In this study, we show that Shank3 is a key component of a zinc-sensitive signaling system that regulates excitatory synaptic transmission. Intriguingly, an autism-associated mutation in Shank3 partially impairs this signaling system. Therefore, perturbation of zinc homeostasis may impair, not only synaptic functionality and plasticity, but also may lead to cognitive and behavioral abnormalities seen in patients with psychiatric disorders.
Collapse
|